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Abstract

We introduce the concept of negative extremal transfers (NETs), which

are transfers from the poorest individuals to the richest individuals. This

family of transfers alone is rich enough to describe the entire space of

income distributions: our first result is that any income distribution can

be obtained as an expansion from the uniform distribution by applying a

sequence of NETs. In other words, NETs constitute a mathematical basis

of the space of income distributions. Our second representation theorem

establishes that one can describe any given inequality index based on the

weight it attaches to all possible NETs.

These results allow one to observe how much importance a given in-

equality index attaches to poverty concerns in addition to inequality con-

cerns. Anecdotally, we find that indices used in practice lie in a relatively

small region of the index space: our NET representation theorem can serve

as a guide to proposing new inequality indices. Practitioners will find this

representation result useful to quantify the contribution of a given quan-

tile or subgroup to the population’s inequality level as well as to guide

policy toward the most effective transfers to lower the inequality measure.

∗The authors wish to thank Geir Asheim, Nicolas Gravel, Félix Muñoz-Garćıa, Salvador
Ortigueira, Paolo Piacquadio, as well as seminar participants at GATE (EM Lyon), Wash-
ington State University and Les Journées Louis-André Gérard-Varet (Aix-Marseille School of
Economics).
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1 Introduction

The issue of income inequality has been a major topic of economics for over a

century, and has taken the political center stage again since the early 2010s.1

This concern has given rise to a prolific literature on how to measure inequal-

ity in a population (e.g., Silber, 1999, Cowell, 2011, and references therein).

Typically, measures of inequality take information about the income distribu-

tion in the population and return a number—an index—usually normalized

between 0 (for full equality) and 1 (when a single individual hoards all of the

available income). Naturally, there are many ways to translate an income distri-

bution—an n-dimensional object, where n is the size of the population—into a

one-dimensional index. Accordingly, many different indices have been proposed

in the literature.

We propose a unifying representation of all inequality indices. The key con-

cept behind our results is that of negative extremal transfers (NETs), which are

transfers from the poorest individuals to the richest individuals.2 This concept

alone is rich enough to describe the space of income distributions. Indeed, our

first result (Theorem 1) is that any income distribution can be obtained as an

expansion from the uniform distribution by applying a sequence of NETs.

For example, consider five individuals with the following income profile:

y = (y1, y2, y3, y4, y5) = (2, 3, 5, 5, 10) .

The average income is ȳ = 5. Consider the uniform distribution y0 = (ȳ, ȳ, ȳ, ȳ, ȳ) =

(5, 5, 5, 5, 5) (Figure 1a). We now construct the unique sequence of NETs from

y0 to y. Starting from y0, begin by transferring income from the individuals

who will end up poorer than the mean income (yi < ȳ) to those that will be

richer than the mean income (yi > ȳ). The “magnitude” of the transfer depends

1Income inequality is but one form of inequality in a society. On may instead be concerned
with inequality in well-being (Adler, 2019), in essential ressources (Rawls, 1971), or in oppor-
tunities (Sen, 1992), among others; we refer the reader to Fleurbaey and Blanchet (2013) for
an overview. Throughout this work, we shall talk mainly about income inequality, but our ap-
proach applies to other types of inequality, provided they track a transferable one-dimensional
amount.

2The term is in relation to the foundational Transfer Principle (Dalton, 1920), which con-
siders transfers from a richer individual to a poorer individual. We use the word “extremal”
to highlight the fact that we consider only transfers between the poorest and richest individu-
als, and the word “negative” as a reminder that the transfer reduces equality (i.e., from poor
to rich).
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Figure 1: NET expansion sequence from the uniform distribution y0 =
(ȳ, ȳ, ȳ, ȳ, ȳ) = (5, 5, 5, 5, 5) to the final distribution y = (2, 3, 5, 5, 10). The
black dots represent the provisional income profile and the white circles repre-
sent the final income profile.
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on the number of “rich” and “poor” so as to keep total income constant: if there

are l poor and h rich, a total transfer of T dollars means that the poor each

give T/l to the rich whom, in turn, each receive T/h. In our example, l = 2

and h = 1 for small values of T , so that each poor person gives T/2 to the rich

person, who receives T (Figure 1b). Keep increasing T until a first individual

meets her final income yi—so that yi = ȳ − T/l if the first income to be met

turns out to be below the mean, or yi = ȳ + T/h if it is above the mean. In

our example, T = 4 and the first person to reach her final income is Person 2,

at which point the (provisional) income profile is (3, 3, 5, 5, 9). This marks the

end of the first sequence of NETs. The second sequence of NETs carries on the

mean-preserving spread of income by transferring income from the poor who

have not yet reached their final income—Person 1 in our example—to the rich

who have not yet reached their final income—Person 5— (Figure 1c), and stops

whenever the income level of another individual is reached. And so on, until

all incomes have been reached, meaning that we reach the final income profile

y (Figure 1d). The procedure reaches the incomes of the richest and poorest

individuals simultaneously.

By construction, a sequence of NETs from y0 exists, and is unique to y.

Conversely, it is obvious that any given sequence of NETs from a uniform dis-

tribution leads to a unique income distribution. In other words, the set of NETs

constitutes a mathematical basis of the space of income distributions.

Our next representation theorem (Theorem 2) builds upon the NET decom-

position of income distributions to describe any given inequality index based

on how it responds to all possible NETs. Put differently, it is enough to know

how an index behaves on NETs to fully describe it. Specifically, any inequality

index, ι, can be written in the following form:

ι (y) =

∫ 1

0

ϱLα (zL, zH , ϱL, ϱH , ỹ) dzL (1)

where y is the income distribution of interest and ϱL ≡ ϱL (y, zL) is the frac-

tion of the population whose (relative) income is no greater than the fraction

zL of mean income ȳ. The function α is what actually defines the index by

giving a weight to the NET where the expansion of y reaches income zLȳ.

The weight attributed can depend on zL, on zH ≡ zH (y, zL)—representing

the (relative) income of the recipients of the NET in question—, and on the

fractions of the population whose income is lower or higher than all involved
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Figure 2: Volume representing inequality in the distribution y = (2, 3, 5, 5, 10)
as measured by the Theil index, for which αTheil = ln(zH/zL). The L (resp.
H) subscript relates to the range z < 0 (resp. z > 1). On those ranges, one can
write αTheil

L = − ln(zL) and αTheil
H = ln(zH), respectively.

in the NET—ϱL (y, zL) and ϱH ≡ (y, zH (y, zL)), respectively. The argument

ỹ ≡ ỹ (y, zL) describes the provisional income profile when the expansion of y

reaches zLȳ.

Graphically, Expression (1) amounts to computing the total volume delim-

ited by the shaded areas of Figure 1d and the height determined by the weight

function α. Figure 2 illustrates the Theil index on the profile in example,

y = (2, 3, 5, 5, 10).

Expression (1) allows one to easily compute the weighting functions α of

many well-known inequality measures, which take on simple expressions. For

example, the variance index uses αvar ≡ 2ȳ2 (zH − zL) and the well-known

Gini coefficient uses αGini ≡ 2 − (ϱH + ϱL), which is equal to one plus the

fraction of people strictly between incomes zLȳ and zH ȳ. We can therefore see

clearly that the variance attaches a weight to a NET that is proportional to

its spread, zH − zL, whereas αGini only indirectly depends on the values of zL

and zH through the number of agents within the bracket [zLȳ, zH ȳ]. Hence, this

representation highlights the fact that the Gini coefficient is insensitive to actual

poverty levels. By contrast, the Pietra index, which is the amount of income to

be distributed from the rich to the poor to achieve equality, is associated with
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αPietra ≡ 1, thus attaching a unit weight to all NETs.

The representation theorems—Theorem 1 and Theorem 2—suggest useful

graphical representations to compare inequality indices (Section 3). For a given

income distribution, one can visualize precisely where each index allocates more

weight—i.e., where α is the largest.

Moreover, additive separability of the α function—which is often the case for

well-known indices—allows for finer decomposability, depending on the extent

to which α is additively separable. For example, if α is additively separable

in zL and ϱL on one side and zH and ϱH on the other—a property we coin

“inner-NET additivity”—it becomes a simple matter to decompose the value of

the inequality index ι into an inequality at the bottom, ιL, and an inequality at

the top, ιH so that ι = ιL+ ιH (Proposition 1). In addition to this rich-poor de-

composition, one can use our representation results to compute the contribution

to inequality of a given household (Proposition 2). It then becomes straightfor-

ward to compute the contribution of any collection of individuals. Of particular

interest to practitioners might be the ability to measure the contribution to

inequality of any given income quantile (Proposition 4).

Finally, if α is independent of the position in the distribution (i.e., inde-

pendent of ϱL and ϱH), the contribution to the inequality measure of a single

household is actually independent of the distribution itself (other than through

its relative income), Proposition 3. This is not the case for the Gini coefficient,

but is the case for many other well-known indices, like the variance, the Pietra

index, the Theil index, the mean-log deviation index and, more generally, the

entire family of generalized entropy indices.

Section 4 discusses several implications of our representation results for the

design of inequality indices and redistributive policies. We introduce the NET

Principle as a minimal property for an index to be considered a reasonable

inequality measure: an index should worsen as a result of a transfer from poorest

to richest. Though logically weaker than Dalton’s Transfer Principle, which

requires the inequality measure to worsen as a result of any transfer from poor

to rich, the NET Principle is also more morally intuitive, making it less likely

to be rejected empirically. We show that the NET Principle is equivalent to α

being strictly positive (Proposition 5) and is thus very simple to check.

Some inequality measures are not solely concerned with inequality per se—in

the sense of income spreads—but are also sensitive to whether the inequality

occurs at the top or at the bottom of the income distribution. Other mea-

sures, like the Gini coefficient, are symmetric: they assign the same value to
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a distribution and to its symmetric with respect to the mean income (when it

exists). Proposition 6 establishes that the symmetry of the index is related to

a symmetry property of the underlying α function.

Lastly, our NET representation theorem gives clear guidance for what are

the most effective (budget-neutral) transfers to lower the inequality index. If

the index is such that α increases as NETs involve incomes that are farther and

farther away from the mean income, then the most effective income transfer at

reducing the index is to transfer income from the richest to the poorest (Propo-

sition 8). Hence, efficiently reducing inequality is very different from the usual

progressivity of the income tax for redistribution purposes. Instead, it requires

taking money from the richest so as to reduce their income to a common value

(effectively an income cap) and transfer the funds to the poorest (effectively

creating an income floor). In particular, it should be noted that mid-income

households are not involved in this efficient redistribution scheme.

The literature on inequality measures is large and contains many strands,

ranging from the axiomatic—where the goal is to identify inequality measures

that satisfy desirable (moral) properties—to the statisitical, where computabil-

ity given limited datasets is paramount. Many works have focused on the de-

composition of inequality indices (Shorrocks, 1980, 1982, 1984, 2013; Foster

et al. 1984; Chantreuil and Trannoy, 1999), whether it is the contribution of

subgroups contributing to inequality or different factor components like gender

and ethnicity. While our analysis also focuses on decomposition, it does so in

a very different way. We do not decompose indices into the contributions of

different factors to inequality.3 Rather, we specify how inequality indices attach

weights to transfers between various points of the distribution. In other words,

we decompose the space of distributions into a mathematical basis of infinetisi-

mal transfers (NETs) and represent inequality indices by their description using

this new mathematical basis.

The remainder of the paper is organized as follows. Section 2 introduces

the decomposition result of any income distribution into a sequence of NETs

(Theorem 1) and the representation theorem for inequality indices (Theorem

3Although, in principle, our approach could be adapted to handle such decompositions.
As we have seen, when the index is inner-NET additive, we can quantify the contribution to
inequality of any individual—and, therefore, of any set of individuals grouped according to
some characteristic.
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2). Section 3 defines several degrees of additive separability of inequality indices

(Section 3.1) and details the resulting decomposability of the observed inequality

(Section 3.2). Section 4 introduces the NET principle (Section 4.1), a condition

on α to determine whether the index is concerned with poverty in addition to

only inequality (Section 4.2) and a policy rule to efficiently reduce the inequality

index (Section 4.3). Section 5 concludes.

2 A NET-space for representations

2.1 Negative Extremal Transfers (NETs)

Let n be the number of individuals in the population, and let y ∈ R
n
+ be the

income profile or income distribution of the population. Denote by Y =
∑

i yi

the total income and by ȳ = Y/n the mean income of the population.

For any profile y ∈ R
n
+ and any income level y ∈ R+, define L (y, y) =

{i|yi ≤ y} and H (y, y) = {j|yj ≥ y} the sets of agents who earn no more

and no less than y, respectively. Define also the cardinality of these sets:

l (y, y) = #L (y, y) and h (y, y) = #H (y, y). It follows that L (y,mini yi)

and H (y,maxi yi) are the set of the poorest and the wealthiest individuals in

the population, respectively.

Let I (Y, n) be the set of distributions of total income Y between n individ-

uals:

I (Y, n) =

{

y ∈ R
n
+|

n
∑

i=1

yi = Y

}

.

To measure income inequality, our main object of study will be inequality

indices, broadly defined4:

Definition 1. An inequality index (or index, for short) is a continuously dif-

ferentiable function ι : {I (Y, n) |Y ∈ R+, n ∈ N} → R+ such that :

• ι is invariant to permutations of the incomes of individuals (anonymity),

• ι (y0) = 0 where y0 is the uniform distribution, y0 = (ȳ, ..., ȳ) ∈ I (Y, n).

An important concept throughout will be that of a negative extremal transfer

(NET), which is a transfer from some (or all) of the poorest individuals to some

(or all) of the richest individuals.

4Our definition of what constitutes an inequality index is very broad. It is merely a non-
negative symmetric function that takes on its lowest value when all of its coordinates are
equal.
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Definition 2. (Negative Extremal Transfer, NET) Let y,y′ ∈ I (Y, n).

Distribution y′ is obtained from distribution y by a negative extremal trans-

fer (NET) of size T > 0 if, for some of the poorest individuals in y , i ∈

L (y,mini yi) ∩ L (y′,mini yi),

y′i = yi −
T

l (y,mini yi)
,

and if

y′j = yj +
T

h (y,maxi yi)

for some of the richest individuals in y, j ∈ H (y,maxi yi) ∩ H (y′,maxi yi),

while all non-extremal agents see their incomes unchanged: y′k = yk for all

k /∈ L (y′,mini yi) ∪H (y′,maxi yi).

Given Y and n, any NET is fully described by its starting income relative to

the mean income, zL ≡ yL/ȳ ≤ 1, its ending relative income, zH ≡ yH/ȳ ≥ 1,

the fraction of the population who gives up income (ϱL ≡ l/n), the fraction

of the population who receive income from the poor (ϱH ≡ h/n) and the size

of the transfer, T . When considering transfers of infinitesimal size, which we

will do throughout the remainder of the paper, a NET is fully described by zL,

zH , ϱL, and ϱH . In fact we shall denote by NET (Y, n) the set of all possible

4-tuples (zL, zH , ϱL, ϱH) that define a NET in an economy where a population

of n individuals owns a total income of Y .

2.2 NET-representation of income distributions

The following theorem establishes that every income distribution, y, is the result

of a unique sequence of NETs from the egalitarian distribution.

Theorem 1. Any y ∈ I (Y, n) can be obtained from y0 = (ȳ, ..., ȳ) ∈ I (Y, n) by

a sequence of NETs. Conversely, any sequence of NETs from y0 = (ȳ, ..., ȳ) ∈

I (Y, n) leads to a unique distribution y ∈ I (Y, n).

Proof. In Appendix A.1.

By establishing that any income distribution can be represented by a unique

sequence of NETs, Theorem 1 invites a graphical representation of income dis-

tributions in the 4-dimensional space of NETs. For instance, the projection
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of the path onto the (zL, zH)-quadrant is a downward-sloping curve ending at

(1, 1), the slope of which is equal to −ϱL/ϱH .5

For example, uniform distributions yield straight lines with slope equal to

−1 in both the (zL, zH)-quadrant and the (ϱL, ϱH)-quadrants, but of different

lengths, depending on the spread of the distribution (Figure 3). The Pareto I

distribution is a convex curve (Fig 4).

zH

zL
0

(1,1)

ϱL
1

ϱH

1

(0,0)

(a) Uniform distribution over [0, 2ȳ]

zH

zL
0

(1,1)

ϱL
1

ϱH

1

(0,0)

(b) Uniform distribution over
[(2/3)ȳ, (4/3)ȳ]

Figure 3: NET paths associated with two uniform distributions

2.3 NET-representation of inequality indices

An immediate consequence of Theorem 1 is that the set of potential NETs is a

mathematical basis of I (Y, n). It follows that an inequality index is completely

represented by how it behaves on the set of NETs. This is precisely the essence

of the next representation theorem.

To state Theorem 2, it will be useful to introduce some notation. Our

first main result, Theorem 1, established that any income profile, y, could be

obtained from a unique sequence of mean-preserving spreads, coined NETs, from

the egalitarian distribution. This sequence of NETs forms a path which, given

y, can be parametrized by any one of the four components defining a NET: zL,

5The expression for the slope at any point comes from the money conservation equation
in a NET: −ldyL = hdyH . Dividing troughout by nȳ and rearranging leads to dzH/dzL =
−ϱL/ϱH .
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zH

zL
0

(1,1)

ϱL
1

ϱH

1

(0,0)

Figure 4: NET path associated with the Pareto I distribution

zH , ϱL, or ϱH , the other three being uniquely defined. We shall choose zL as

the parametrizing variable so that, given income profile y and zL, we can define

the corresponding zH (y, zL), ϱL (y, zL), and ϱH (y, zL).
6

Finally, we denote by ỹ (y, zL) the profile when the path of NETs reaches

zL :

ỹ (y, zL) =



















ỹi (y, zL) = yL for all i such that yi < ȳzL,

ỹk (y, zL) = yk for all k such that ȳzL ≤ yk ≤ ȳzH (y, zL) ,

ỹj (y, zL) = yH for all j such that yj > ȳzH (y, zL) .

In words, ỹ (y, zL) is a snapshot of the construction of y along the mean-

preserving expansion at the stage where the lowest income is ȳzL (recall Figure

1).

Theorem 2. Any inequality index, ι, can be written as follows:

6Formally, ϱL (y, zL) = l (y, ȳzL) /n and ϱH (y, zL) = h (y, ȳzH (y, zL)) /n, where
zH (y, zL) is the value z ≥ 1 such that

∑
i (yi −min {yi, ȳz}) =

∑
i (max {yi, ȳzL} − yi),

meaning that the income left to distribute at the top equals the income left to withdraw from
the bottom. See Appendix A.1 for more detail.

11



For all y ∈ {I (Y, n) |Y ∈ R+, n ∈ N} ,

ι (y) =

∫ 1

0

ϱL (y, zL)α (zL, zH (y, zL) , ϱL (y, zL) , ϱH (y, zH (y, zL)) , Y, n, ỹ (y, zL)) dzL,

(2)

for some function α : [0, 1]× [1,+∞)× [0, 1]× [0, 1]× R+ × N× R
n
+ → R.

Proof. In Appendix A.2.

Theorem 2 establishes that an inequality index can be uniquely represented

by a function α on the NET space. One can interpret α (zL, zH , ϱL, ϱH , Y, n, ỹ)

as the cost that the evaluator attaches to the NET (zL, zH , ϱL, ϱH) on the path

to the real distribution. The infinitesimal flow of income transferred by this

NET is given by ϱL (y, zL) dzL.

Remark 1. Because all the arguments of α in Expression (2) depend only on zL

and on the profile y, a more compact expression would be to simply write

ι (y) =

∫ 1

0

ϱL (y, zL)α (y, zL) dzL.

Instead, we find Expression (2) more useful because it narrows down the specific

dimensions in which α depends on zL and on y; i.e., the specific information

required to compute it.

Example 1 provides the expressions of the weight functions α for several well-

known inequality indices. A simple method for computing α for any inequality

index ι can be found in Appendix B.

Example 1. Expressions of α for well-known indices:

- The variance index,

ιvar (y) =
1

n

∑

i=1,...,n

(yi − ȳ)
2
,

corresponds to αvar (zL, zH , ϱL, ϱH , Y, n, ỹ) ≡ 2ȳ2 (zH − zL).

- The Gini coefficient,

ιGini (y) =
2
∑n

i=1 iyi
nY

−
n+ 1

n
,

corresponds to αGini (zL, zH , ϱL, ϱH , Y, n, ỹ) ≡ 2−(ϱH + ϱL), which is 1 plus the

fraction of the population whose incomes belong to the open interval (zLȳ, zH ȳ).

12



- The Pietra index is the share of income to be distributed from rich to poor

to achieve equality:

ιPietra (y) =

∑

{i|yi≥ȳ} (yi − ȳ)

Y
,

corresponds to a constant α: αPietra (zL, zH , ϱL, ϱH , Y, n, ỹ) ≡ 1.

- The Theil index,

ιTheil (y) =
1

n

n
∑

i=1

yi
ȳ
ln

(

yi
ȳ

)

,

corresponds to αTheil (zL, zH , ϱL, ϱH , Y, n, ỹ) ≡ ln (zH/zL).

- The log deviation index,

ιlog (y) =
1

n

n
∑

i=1

ln

(

yi
ȳ

)

,

corresponds to αlog (zL, zH , ϱL, ϱH , Y, n, ỹ) ≡ 1/zL − 1/zH .

- Generalized entropy indices are parametrized by a coefficent ε ∈ R+\ {0, 1}:

ιGEε (y) =
1

ε (ε− 1)

1

n

n
∑

i=1

[(

yi
ȳ

)ε

− 1

]

,

and correspond to αGEε (zL, zH , ϱL, ϱH , Y, n, ỹ) ≡
[

(zH)
ε−1 − (zL)

ε−1
]

/ (ε− 1).

- The Atkinson index associated with utility function u (y) =
(

y1−ε − 1
)

/ (1− ε)

for ε ∈ R+\ {1} (Atkinson, 1970), when given an empirical distribution, writes:

ιAtkε (y) = 1−
1

ȳ

(

1

n

n
∑

i=1

y1−ε
i

)
1

1−ε

,

which corresponds to

αAtkε (zL, zH , ϱL, ϱH , Y, n, ỹ) ≡
[

z−ε
L − z−ε

H

]

(1− ιAtkε (ỹ))
ε
.
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zL zH ϱL ϱH Y n ỹ

αvar ✓ ✓ - - ✓ ✓ -
αGini - - ✓ ✓ - - -
αPietra - - - - - - -
αTheil ✓ ✓ - - - - -
αlog ✓ ✓ - - - - -
αGEε ✓ ✓ - - - - -
αAtkε ✓ ✓ - - - - ✓

Table 1: Display of the relevant variables for the weight functions α of Example
1

3 Index additivity and inequality decomposition

This sections discusses some implications raised by the NET representation of

inequality indices. It highlights the relative simplicity of the weighting function

α of most inequality measures. Furthermore, we show that when the inequality

meausre is additive, the value of the index is easily decomposed.

3.1 NET additivity and Inner-NET additivity

Example 1 displayed seven weight functions, α, corresponding to well-known in-

equality indices. Table 1 summarizes, for each one, which variables are actually

relevant.

Table 1 allows us to make two observations regarding the space of inequality

indices.

NET additivity

Looking at Table 1, a first observation is that the α of all indices shown depends

only on a few of the potential seven variables. Only one of them—the Atkinson

index—makes use of the ỹ variable, which is the only variable to account for

the path of NETs taken up to now in the expansion. In other words, all other

indices shown exhibit a path-independent NET representation.

Definition 3. An inequality index, ι, is NET additive if its corresponding α

does not depend on ỹ:

α (zL, zH , ϱL, ϱH , Y, n, ỹ) ≡ α (zL, zH , ϱL, ϱH , Y, n) . (3)
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It is interesting to note that, for NET-additive indices, the function α acts

as a field on the space of NETs, on which any continuous path represents an

income distribution. Figures 5 and 6 display such fields for the Gini coefficient,

the Theil index and the log deviation index, respectively.

zH

zL
0

(1,1)

ϱL
1

ϱH

1

(0,0)

αGini ≡ 2− (ϱH + ϱL)

Pareto I

Figure 5: Mapping of the Gini coefficient in the NET-space. A Pareto I dis-
tribution is superimposed to illustrate the interaction between the distribution
and the level curves of the α function in the four-dimensional NET space. For
the Gini coefficient, only the ϱL and ϱH dimensions are relevant.

Inner-NET additivity

Following the previous observation regarding NET-additive indices, one can

identify a further type of separability that will prove useful in various applica-

tions of inequality measures. Namely, when the lower and upper components of

a NET can be disentangled, one can measure the contribution of each individual

in the distribution to the overall inequality.

Definition 4. A NET-additive inequality index, ι, is inner-NET additive if its

corresponding α is additively additive in the NET’s lower and upper compo-

nents:

α (zL, zH , ϱL, ϱH , Y, n, ỹ) ≡ αL (zL, ϱL, Y, n) + αH (zH , ϱH , Y, n) (4)
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zH

zL
0

(1,1)

ϱL
1

ϱH

1

(0,0)

αTheil ≡ ln
(

zH
zL

)

Pareto I

(a) Theil Index

zH

zL
0

(1,1)

ϱL
1

ϱH

1

(0,0)

αlog ≡ 1
zL

− 1
zH

Pareto I

(b) Log Deviation Index

Figure 6: Mappings of Inequality Indices in the NET-space. A Pareto I dis-
tribution is superimposed to illustrate the interaction between the distribution
and the level curves of the α function in the four-dimensional NET space. For
these two indices, only the zL and zH dimensions are relevant.

for some functions αL and αH .

As it turns out, other than the family of Atkinson indices, which are not

NET additive, all indices mentioned thus far are not only NET additive, but

also inner-NET additive. Even among those, which already lie in a restricted

subspace of inequality indices, the Gini coefficient’s weight function depends

exclusively on ϱL and ϱH : αGini,L = 1 − ϱL and αGini,H = 1 − ϱH . This

highlights the already well-known fact that the Gini coefficient considers only the

individuals’ positions in the distribution but not the (relative) income inequality

per se, as αGini does not depend on zL nor zH . By contrast, all remaining

examples have their corresponding α depend only on zL and zH (and, in the

case of the variance index, on Y/n).

While the list of indices mentioned as examples is far from exhaustive, one

can make the following two observations. First, many indices used in practice

are NET-additive. Second, many of those NET-additive index, if not all, are

actually inner-NET additive. Moreover, it seems the richness of even the space

of inner-NET additive inequality indices is strikingly underutilized, as one could

have expected more indices to depend on both relative income (reflected in zL

and zH) as well as ranking in the distribution (reflected in ϱL and ϱH).

One could very well imagine an (inner-NET additive) inequality index that
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would make explicit use of all four dimensions. In fact, the NET representation

we develop in this article could provide a way to propose new inequality indices,

simply by proposing new α functions, potentially using all variables.7

3.2 Inner-NET additivity and inequality decomposition

Inner-NET additivity is convenient because it allows for clean decompositions

of the inequality index. We shall make explicit three such decompositions: rich-

poor decomposition, an individual’s contribution to the inequality measure, and

the contribution of a given quantile to the inequality measure.

Rich-poor decomposition

The first decomposition of inequality is between rich and poor, which highlights

whether the inequality is mainly due to the bottom or to the top of the distri-

bution. This can be useful because indices typically do not explicitly convey the

weight they attribute to low-income spreads relative to high-income spreads, or

are even invariant to symmetry around the mean (like the Pietra index and the

Gini coefficient, for example, see Section 4.2).

Proposition 1. When the index ι is inner-NET additive, the value of the index

can be decomposed into two parts:

ι (y) = ιL (y) + ιH (y)

with

ιL (y) =

∫ 1

0

ϱL (y, z)αL (z, ϱL (y, z) , Y, n) dz and

ιH (y) =

∫ +∞

1

ϱH (y, z)αH (z, ϱH (y, z) , Y, n) dz,

where ιL (y) (resp. ιH (y)) can be interpreted as the contribution to the inequal-

ity of the low-income (resp. high-income) population.

Proof. Consider an inner-NET additive index, ι. From Theorem 2 and Expres-

7Although, regarding variables Y and n, it may be preferable that they only enter as the
ratio Y/n (as in αvar) so as to ensure that the index is population invariant or, better, that
these variables do not enter at all, so that the index is scale invariant (unlike αvar).
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sion (4), it can be rewritten as

ι (y) =

∫ 1

0

ϱL (y, zL)αL (zL, ϱL (y, zL) , Y, n) dzL

+

∫ 1

0

ϱL (y, zL)αH (zH (y, zL) , ϱH (y, zH (y, zL)) , Y, n) dzL.

By definition of a NET, we know that

dzH
dzL

=
dyH
dyL

= −
l (y, yL)

h (y, yH)
= −

ϱL (y, zL)

ϱH (y, zH)
.

This says that dzL = − [ϱH (y, zH) /ϱL (y, zL)] dzH , so that a simple change of

variable (from zL to zH) yields:

∫ 1

0

ϱL (y, zL)αH (zH (y, zL) , ϱH (y, zH (y, zL)) , Y, n) dzL

= −

∫ 1

+∞

ϱH (y, zH)αH (zH , ϱH (y, zH) , Y, n) dzH .

Therefore,

ι (y) =

∫ 1

0

ϱL (y, z)αL (z, ϱL (y, z) , Y, n) dz (5)

+

∫ +∞

1

ϱH (y, z)αH (z, ϱH (y, z) , Y, n) dz.

Denoting

ιL (y) =

∫ 1

0

ϱL (y, z)αL (z, ϱL (y, z) , Y, n) dz, (6)

ιH (y) =

∫ +∞

1

ϱH (y, z)αH (z, ϱH (y, z) , Y, n) dz, (7)

we obtain

ι (y) = ιL (y) + ιH (y) .

Individual contribution to the inequality measure

The second decomposition we consider allows one to assess the contribution of

a single individual household to the inequality index.
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Proposition 2. When the index ι is inner-NET additive, the contribution to

the inequality measure of a single individual with income y = zȳ is equal to:

η (y, zL) =







1
n

∫ 1

z
αL (u, ϱL (y, u) , Y, n) du if z ∈ [0, 1]

1
n

∫ z

1
αH (u, ϱH (y, u) , Y, n) du. if z ≥ 1

Proof. Consider an inner-NET additive index, ι, and define the contribution to

ι (y) of all households with (relative) income between zL ≤ 1 and 1, abusing

notations slightly:

ιL (zL) =

∫ 1

zL

ϱL (y, z)αL (z, ϱL (y, z) , Y, n) dz, (8)

(notice that ιL (0) = ιL (y)). Denote λ the normalized density of the income

distribution, l, so that

ϱL (y, z) =
1

n

∫ z

0

λ (u) du.

Therefore,

ιL (zL) =

∫ 1

zL

ϱL (y, z)αL (z, ϱL (y, z) , Y, n) dz

=

∫ 1

zL

[

1

n

∫ z

0

λ (u) du

]

αL (z, ϱL (y, z) , Y, n) dz

=
1

n

∫ 1

zL

∫ z

0

λ (u)αL (z, ϱL (y, z) , Y, n) dudz

=
1

n

∫ z

0

∫ 1

zL

λ (u)αL (z, ϱL (y, z) , Y, n) dzdu

=

∫ z

0

λ (u)

[

1

n

∫ 1

zL

αL (z, ϱL (y, z) , Y, n) dz

]

du.

It follows that the contribution ot the inequality index of a household with

income yL = ȳzL ≤ ȳ is equal to

η (y, zL) =
1

n

∫ 1

zL

αL (z, ϱL (y, z) , Y, n) dz. (9)

Similarly, the individual contribution to the inequality measure of a household
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with income yH = ȳzH ≥ ȳ writes as

η (y, zH) =
1

n

∫ zH

1

αH (z, ϱH (y, z) , Y, n) dz. (10)

1

1
n

(a) Uniform Distribution

1

1
n

(b) Pareto Distribution

Figure 7: Individual contributions to the Gini index

Distribution-free inequality contribution Interestingly enough, if the func-

tions αL and αH are independant from ϱL and ϱH , respectively, the individual

contributions become distribution-free.

Proposition 3. If αL (zL, ϱL, Y, n) ≡ αL (zL, Y, n) and αH (zH , ϱH , Y, n) ≡

αH (zH , Y, n), the contribution to the inequality measure of a single individual

is independent of the distribution:

η (z) =







1
n

∫ 1

z
αL (u, Y, n) du if z ∈ [0, 1]

1
n

∫ z

1
αH (u, Y, n) du if z ≥ 1.

Proof. Follows immediately from Proposition 2.

Figure 8 displays the individual contribution of a household for a given

income level for various indices.

Example 2. Variance index: αvar (zL, zH , Y, n) ≡ 2ȳ2 (zH − zL) can be de-

composed as the sum of αL
var ≡ 2ȳ2 (1− zL) and αH

var ≡ 2ȳ2 (zH − 1). Hence,

ηvar (z) =
ȳ2

n
(1− z)

2 ∀z ∈ R+
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Pietra index: αPietra ≡ 1 can be decomposed with αL
Pietra ≡ αH

Pietra ≡ 1/2.

We thus obtain

ηPietra (z) =







1
2n (1− z) if z ∈ [0, 1]

1
2n (z − 1) if z ≥ 1

Theil index: αTheil (zL, zH) ≡ ln (zH/zL) can be decomposed as the sum of

αL
Theil ≡ − ln (zL) and αH

Theil ≡ ln (zH), so that

ηTheil (z) =
1

n
(1 + z ln z − z) ∀z ∈ R+

1
n

0 z = 1 2

ηV ar ≡ ȳ2

n
(1 − z)2

ηPietra ≡ ∥z − 1∥ /2

ηTheil ≡ 1 + z ln z − z

ηLog ≡ z − 1 − ln z

ηGE2 ≡ 1 − z −
(

1 − z2
)

/2

Figure 8: Individual contributions to inequality. All the indices pictured have
a horizontal slope at z = 1 except for the Pietra index. This implies that for
distributions that are very concentrated around the mean the Pietra index will
display more inequality than the others. By contrast, the other indices generally
assign more weight to large income spreads. Specifically, the log-normal index
is the one that assigns the most weight to very-low-income households. It is
therefore most sensitive to the existence of very poor households.

Mean-log deviation index: αlog (zL, zH) ≡ 1/zL − 1/zH can be decomposed as

the sum of αL
log ≡ 1/zL − 1 and αH

log ≡ 1− 1/zH . We thus obtain

ηlog (z) =
1

n
[(z − 1)− ln z] ∀z ∈ R+
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Generalized entropy index: αGEε (zL, zH) ≡
[

(zH)
ε−1 − (zL)

ε−1
]

/ (ε− 1) can

be decomposed as the sum of αH
GEε ≡ [1 (zH)− 1] / (ε− 1) and αL

GEε ≡
[

1− (zL)
ε−1
]

/ (ε− 1).

We thus obtain

ηGEε (z) =
(1− z)− (1− zε) /ε

n (ε− 1)
∀z ∈ R+

Quantile contribution to the inequality measure

Finally, we make explicit how any given portion of the distribution contributes

to the inequality measure. Practical applications include breaking down the

inequality by quantiles.

Formally, define the income bracket [y1, y2] associated to some quantile of

interest, Q. There are three cases to consider, depending on whether the quantile

lies entirely below the mean income level, entirely above, or straddles the mean

income level.

Proposition 4. The contribution of income bracket Q = [y1, y2] to the overall

inequality, ι (y), is equal to ιQ (y) =































n (ϱL (y, z2)− ϱL (y, z1)) η (z2) +
∫ z2
z1

(ϱL (y, z)− ϱL (y, z1))αL (z, ϱL (y, z) , Y, n) dz if z2 ≤ 1

(ϱH (y, z1)− ϱH (y, z2)) η (z1) +
∫ z2
z1

(ϱH (y, z)− ϱH (y, z2))αH (z, ϱH (y, z) , Y, n) dz if 1 ≤ z1
∫ 1

z1
(ϱL (y, z)− ϱL (y, z1))αL (z, ϱL (y, z) , Y, n) dz

+
∫ z2
1

(ϱH (y, z)− ϱH (y, z2))αH (z, ϱH (y, z) , Y, n) dz if z1 ≤ 1 ≤ z2

where z1 = y1/ȳ and z2 = y2/ȳ.

Proof. In Appendix A.3.

4 Discussions

The formal representation of inequality indices by their corresponding α lends

itself to useful interpretations and even yields policy implications.

4.1 The NET Principle as a minimal requirement for a

useful inequality index

A positive value of α means that the inequality measure worsens when trans-

fers from poorest to richest occur. Arguably, this is a desirable feature of any
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inequality measure. In fact, it would be problematic if an inequality index were

unaffected—or, worse, decreased—as NETs are implemented. We shall call NET

principle this property:

Definition 5. An inequality index, ι, satisfies the NET Principle if ι (y′) > ι (y)

whenever y′ is the result of a NET applied to y, for any income profile y.

Proposition 5. An inequality index, ι, satisfies the NET Principle if and only

if its underlying function α is always positive.

Proof. The proof follows immediately from the representation in Theorem 2.

The NET Principle is a direct reference to Dalton’s Transfer Principle, which

states that inequality should decrease whenever a transfer from a richer to a

poorer person occurs that does not reverse their relative positions or, equiva-

lently, that inequality should increase whenever a transfer from poorer to richer

occurs. Clearly, by considering only transfers at the extremes of the income

distribution, the NET Principle is a weakening of Dalton’s Transfer Principle.

It is a useful weakening, as some indices, like the Pietra index, satisfy the NET

Principle, but not the Transfer Principle. In fact, in his seminal work, Dalton

argued that the Pietra index was a poor metric because it did not satisfy the

Transfer Principle.8Actually, we claim that the Pietra index is not such a poor

metric, because it at least satisfies the NET Principle. By contrast, a bad index

would be one that does not even satisfy the NET Principle.

4.2 Inequality concerns vs. poverty concerns

From a formal standpoint, inequality measurements should merely concern

themselves with how spread out is the income distribution, not with whether

the inequality occurs at the top or at the bottom. From an economic stan-

point, however, it is not clear that the issues of inequality and poverty should

be considered separately.

We shall say that an inequality index is symmetric if it returns the same value

for a distribution y and for distribution y′, the symmetric of y with respect to

the mean income. In other words, a symmetric index is insensitive to poverty

issues. As it turns out, whether an index is symmetric depends intimately on

the symmetry properties of its underlying α function:

8While Dalton considered the Transfer Principle to be a minimal requirement of a good
inequality measure, empirical evidence suggests that a large fraction of the population rejects
this principle (Amiel and Cowell, 1998, 1999; Gaertner and Schokkaert, 2012).
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Proposition 6. If an index, ι, is NET additive and if its underlying function

α satisfies

α (zL, zH , ϱL, ϱH , Y, n) = α (2− zH , 2− zL, ϱH , ϱL, Y, n) (11)

for all (zL, zH , ϱL, ϱH , Y, n) ∈ [0, 1] × [1, 2] × [0, 1] × [0, 1] × R+ × N, then ι is

symmetric.

Proof. In Appendix A.4.

Symmetry of the weight function α is easily checked. In fact, as we have

observed, the α functions of most commonly-used indices take on very simple

expressions. For example, with αGini = 2− ϱL − ϱH , checking the symmetry of

the Gini coefficient is immediate. Other representations of the Gini coefficient,

like ιGini (y) =
2

nY

∑n
i=1 iyi −

n+1
n or ιGini (y) =

2
nY

[

∑n
i=1

∑n
j=1 |yi − yj |

]

are

much less transparent.

4.3 The α function as guide to the most efficient way of

reducing inequality

When considering α as an implicit function of zL:

zL 7→ α (zL, zH (y, zL) , ϱL (y, zL) , ϱH (y, zH (y, zL)) , Y, n, ỹ (y, zL)) , (12)

we obtain a clear recommendation for reducing the inequality index efficiently

(i.e., with the least amount of income transferred): if this function is decreasing

in zL the most impactful way to reduce the inequality index is to reverse the

NET expansion ỹ.

Proposition 7. When the function

zL 7→ α (zL, zH (y, zL) , ϱL (y, zL) , ϱH (y, zH (y, zL)) , Y, n, ỹ (y, zL))

is decreasing in zL the redistribution policy that reduces the value of the inequal-

ity index the most consists in undoing the most extreme NET, that is, to take

from the individuals with the highest income to give to those with the lowest

income.

Proof. Immediate from the proof of Theorem 2.
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Clearly, whether the explicit function in (12) is decreasing in zL depends

on the income profile y, so that general statements about a given index cannot

typically be made. However, when the index is Inner-NET additive, one can

make distribution-independent statements true for any income distribution: If

the goal of the social planner is to operate budget-neutral transfers to reduce

the value of the inequality index, the shape of the functions αL and αH offer a

guide in doing so in the most efficient manner.

Proposition 8. For any inner-NET additive index for which αL (zL, ϱL (y, zL) , Y, n)

is a decreasing function of zL and αH (zH , ϱH (y, zH) , Y, n) is an increasing

function of zH , the redistribution policy that reduces the value of the inequality

index the most consists in undoing a NET, that is, to take from the individual(s)

with the highest income to give to those with the lowest income.

Proof. It follows from Theorem 2 and Expression (4) that the (marginal) impact

of giving an extra dollar to an individual is equal to −αL (zL, ϱL (y, zL) , Y, n) /n

or αH (zH , ϱH (y, zH) , Y, n) /n, depending upon their income level. Monotonic-

ity in zL and zH yield the result.

In particular, if the functions αL and αH are independant from ϱL and

ϱH , respectively, Proposition 8 becomes distribution-free. Among the examples

considered thus far, this is the case for the variance, Pietra, Theil, Mean-Log

Deviation and Generalized Entropy indices seen in Example 2.

Hence, efficiently reducing inequality is very different from the usual pro-

gressivity of the income tax for redistribution purposes. Instead, it requires

taking money from the richest so as to reduce their income to a common value

(effectively an income cap) and transfer the funds to the poorest (effectively

creating an income floor). In particular, it should be noted that mid-income

households are not involved in this efficient redistribution scheme. This is true

for all pairs of index and income profiles such that α is decreasing in zL, which

are quite common. Moreover, many commonly used indices share this feature

independently of the distribution, as seen in Example 2.

5 Conclusion

We showed that introducing the concept of negative extremal transfers (NETs)

provides a novel way of describing income distributions (Theorem 1). In addi-

tion, we established that the set of NETs provides a mathematical basis that
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naturally leads to a new representation of inequality indices, through the weight

function α that they assign to all possible NETs (Theorem 2).

This NET-based mathematical structure sheds new light on the properties

of inequality indices. In particular, it makes it easy to identify whether an

index emphasizes incomes rankings over income spreads—as is the case of the

Gini coefficient, contrary to most other indices considered here—or whether an

index puts a premium on income spreads at the bottom of the distribution—as

the Theil and lognormal indices do, but not the Pietra index nor the income

variance. (Section 3.1)

Furthermore, practitioners who work on income inequalities may find an

interest in being able to compute the contribution of each income quantile to

the inequality (Proposition 4). In addition, being able to assess the contribution

to the inequality measure of any single household (Propositions 2 and 3) provides

guidance in how to efficiently operate transfers from rich to poor (Proposition

8).

Finally, although the analysis focused on income distributions and income

inequality, the methods carried out could largely apply to, say, utility distribu-

tions and social welfare functions (SWFs)—instead of income distributions and

inequality indices, respectively. As a result, one could represent an SWF by how

much weight it places on extremal utility transfers and, as a result, tease out

the impact of any segment of the population on the overall value of the SWF.
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A Proofs

A.1 Proof of Theorem 1

Let y ∈ I (Y, n), and define the uniform distribution y0 = (ȳ, ..., ȳ) ∈ R
n
+.

Suppose y ̸= y0, otherwise the result is trivial.
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For any pair (yL, yH) ∈ R
2
+ such that yL ≤ ȳ ≤ yH , define the profile

ỹ (y, yL, yH) such that



















ỹi = yL for all i such that yi < yL,

ỹk = yk for all k such that yL ≤ yk

ỹj = yH for all j such that yj > yH .

≤ yH , (13)

In words, the profile ỹ (y, yL, yH) spreads the income distribution starting from

y0 towards y while bounding incomes by yL below and by yH above.

Define the volumes of income transfers associated to the shift from distribu-

tion y0 to the distribution ỹ (y, yL, yH):

TL (y, yL) =

∫ ȳ

yL

l (y, y) dy, (14)

TH (y, yH) =

∫ yH

ȳ

h (y, y) dy. (15)

By definition, TL (resp. TH) returns the total amount of income to be taken from

individuals in L (y, ȳ) \ {k|yk = ȳ} (resp. to be given to agents inH (y, ȳ) \ {k|yk = ȳ})

to obtain ỹ (y, yL, yH) from y0.

Conversely, define on R+ the following two functions:

yL (y, ·) ≡ T−1
L (y, ·) , (16)

yH (y, ·) ≡ T−1
H (y, ·) . (17)

By definition, for T ≥ 0, yL (y, T ) (resp. yH (y, T )) returns the extremal income

levels of ỹ after transfering an amount T from individuals in L (y, ȳ) \ {k|yk = ȳ}

to individuals in H (y, ȳ) \ {k|yk = ȳ} according to the expansion path delim-

ited by (13). For readibility, we abuse notations slightly and denote ỹ (y, T ) ≡

ỹ (y, yL (y, T ) , yH (y, T )). By construction, ỹ (y, T ) is the mean-preserving

spread of the uniform distribution y0, which obtains from y0 by a sequence

of NETs.

Denote T (y) =
∫ ȳ

0
l (y, y) dy. By construction, T (y) is the total amount of

income taken from individuals in L (y, ȳ) \ {k|yk = ȳ} and given to individuals
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Figure 9: Truncated profile

in H (y, ȳ) \ {k|yk = ȳ} to obtain profile y from the uniform profile y0:

T (y) =

∫ ȳ

0

l (y, y) dy =

∫ +∞

ȳ

h (y, y) dy.

Equivalently,

T (y) =
∑

i∈L(y,ȳ)

(ȳ − yi) =
∑

j∈H(y,ȳ)

(yj − ȳ) .

By construction, for any 0 ≤ T ≤ T (y) the profile ỹ (y, T ) is the result

of a sequence of NETs from the uniform distribution ỹ (y, 0) = y0. Fur-

thermore, ỹ
(

y, T (y)
)

= y, thus proving the first statement of the Theorem.

The second statement immediately follows from noticing that the expansion

T 7→ ỹ (y, yL (y, T ) , yH (y, T )) is unique to y.

A.2 Proof of Theorem 2

This proof reuses the same notations in the proof of Theorem 1. Consider an

index ι. Fix Y and n for now, and let y ∈ I (Y, n). Consider the NET expansion

of Theorem 1 from y0 to y. By definition of an index, we have ι (y0) = 0.
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Define, for any yi ∈ R+,

T (y, yi) =







TL (y, yi) if 0 ≤ yi ≤ ȳ,

TH (y, yi) if yi ≥ ȳ,

the volume of transfer needed to reach income yi by the means of the NET ex-

pansion ỹ (y, T ) from the uniform profile, y0. Define s : N → N a permutation

that reorders the agents in increasing order of T (y, yi): for all k ∈ N ,

T
(

y, ys(k+1)

)

≥ T
(

y, ys(k)
)

.

By the anonymity of an index, such a reordering does not affect its value. Given

s, one can define the profiles ỹ(k) ≡ ỹ
(

y, T
(

y, ys(k)
))

, k = 1, ..., n. We abuse

notation slightly to denote ỹ(0) ≡ ỹ (y, 0) = y0.

Observe that the permutation s is not uniquely defined. This is because it is

the case that T
(

y, ys(k+1)

)

= T
(

y, ys(k)
)

for some k. Note, in particular, that

T (y, y1) = T (y, yn) = T (y), so that so that we can have s (n) = 1 or s (n) = n.

However, the sequence of profile vectors ỹ(k) is unique.

For any k ∈ N , define the semi-open intervalRk (y) =
(

T
(

y, ys(k−1)

)

, T
(

y, ys(k)
)]

,

where we extend notations to T
(

y, ys(0)
)

≡ 0. By construction, in the interior

of any interval Rk (y), the extremal income values yL (y, T ) and yH (y, T ) do

not cross any income levels yi of the actual income distribution, y. Hence, the

sets of poorest and richest individuals of ỹ (y, T ) are independent of the value

of T ∈ Rk(y). For any such Rk (y), one can thus define the two sets Lk ≡

L (ỹ (y, T ) , yL (y, T )) = L (y, yL (y, T )) and Hk ≡ H (ỹ (y, T ) , yH (y, T )) =

H (y, yH (y, T )) for any T ∈ Rk (y) as well as their cardinality lk = #Lk and

hk = #Hk.

For any T, T ′ ∈ Rk (y) such that T ′ ≥ T . By construction, when applied to

the profile ỹ (y, T ′),

l (ỹ (y, T ′) , x) = lk, for all yL (y, T ′) ≤ x ≤ yL (y, T ) , (18)

h (ỹ (y, T ′) , x) = hk, for all yH (y, T ) ≤ x ≤ yH (y, T ′) . (19)
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Thus for any T, T ′ in Rk,

T ′ − T =

∫ yL(y,T )

yL(y,T ′)

l (ỹ (y, T ′) , x) dx = [yL (y, T )− yL (y, T ′)] lk, (20)

T ′ − T =

∫ yH(y,T ′)

yH(y,T )

h (ỹ (y, T ′) , x) dx = [yH (y, T ′)− yH (y, T )]hk. (21)

This makes it clear that ỹ (y, T ′) is obtained from ỹ (y, T ) by a NET:



















y′i = yi − (T ′ − T ) /lk for all i ∈ Lk

y′i = yi + (T ′ − T ) /hk for all i ∈ Hk

y′i = yi otherwise.

(22)

Observe that the function yL (y, ·), as defined in (16) is strictly decreasing

over
[

0, T
]

. The partition of the interval
[

0, T
]

into the semi-open intervals

Rk (y), k ∈ N , can therefore be associated to the partition of
[

yL
(

y, T̄
)

, ȳ
]

into the semi-open intervals of income levels

Dk (y) =
[

yL
(

y, T
(

y, ys(k)
))

, yL
(

y, T
(

y, ys(k−1)

)))

where we again extend notations to yL
(

y, T
(

y, ys(0)
))

≡ ȳ. By construction

l (y, ·) = lk over Dk (y).

Let t ∈ Rk and define the associated income level ζ = yL (y, t) ∈ Dk. Let

ε ∈
[

0, T
(

y, ys(k)
)

− t
]

and t′ = t+ ε. Define again the associated income level

ζ ′ = yL (y, t′). By construction ζ ′ ∈ Dk and is such that ζ ′ ≤ ζ, so that it can

be written as ζ ′ = ζ − δ, with δ ∈
[

0, ζ − yL
(

y, T
(

y, ys(k)
))]

. Define the two

profiles

yζ = ỹ (y, T (y, ζ)) and y′
ζ ≡ ỹ (y, T (y, ζ ′)) . (23)

The latter distribution, y′
ζ , is obtained from yζ by a transfer of ε = T (y, ζ − δ)−

T (y, ζ) from the least wealthy to the most wealthy. Observe that this NET

involves a total transfer of a share lkδ/Y of total income.

Define now the impact, β, of the above NET on the inequality index ι. This

impact depends on the characteristics of the NET itself—its starting income ζ,

its ending income yH (y, T (y, ζ)), the number of individuals involved on each

side, l (y, ζ) and h (y, yH (y, T (y, ζ))), and the size of the transfer, lkδ—as well

31



as potentially on the starting distribution yζ . Normalizing the impact of the

NET per percent of total income transferred (lkδ/Y ), we obtain:

ι
(

y′
ζ

)

−ι (yζ) =
lkδ

Y
β (ζ, yH (y, T (y, ζ)) , l (y, ζ) , h (y, yH (y, T (y, ζ))) , lkδ,yζ) .

(24)

Define f : ζ 7→ ι (yζ). Considering infinitesimal increments, define

f ′ (ζ) = lim
δ→0

f (ζ − δ)− f (ζ)

−δ
(25)

= − lim
δ→0





ι
(

y′
ζ

)

− ι (yζ)

δ



 , (26)

which exists by the fact that ι is continuously differentiable.

Define

α (ζ/ȳ, yH (y, T (y, ζ)) /ȳ, l (y, ζ) /n, h (y, yH (y, T (y, ζ))) /n,yζ)

≡ β (ζ, yH (y, T (y, ζ)) , l (y, ζ) , h (y, yH (y, T (y, ζ))) , 0,yζ) ,

which we shall abreviate to α (ζ/ȳ, yH/ȳ, l/n, h/n,yζ) for readability. With this

notation, Expression (24) becomes:

f ′ (ζ) = −
l (y, ζ)

Y
α

(

ζ

ȳ
,
yH
ȳ

,
l

n
,
h

n
,yζ

)

. (27)

Summing over the closure of Dk, Dk ∪
{

yL
(

y, T
(

y, ys(k−1)

))}

, and ob-

serving that limζ→yL(y,T(y,ys(k−1))) yζ = ỹ(k−1) and that yζ = ỹ(k) when

ζ = yL
(

y, T
(

y, ys(k)
))

, we obtain:

ι
(

ỹ(k)
)

− ι
(

ỹ(k−1)
)

=

∫ yL(y,T(y,ys(k−1)))

yL(y,T(y,ys(k)))

l (y, ζ)

Y
α

(

ζ

ȳ
,
yH
ȳ

,
l

n
,
h

n
,yζ

)

dζ.

(28)

Recall that ỹ(0) = y0 is the egalitarian distribution, so that ι (y0) = 0, and that

ỹ(n) ≡ y, so that yL (y, 0) = ȳ and yL
(

y, T
(

y, ys(n)
))

= yL
(

y, T
)

. Hence, we
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have, by summation of (28) over all k:

ι (y) = ι (y0) +

n
∑

k=1

∫ yL(y,T(y,ys(k−1)))

yL(y,T(y,ys(k)))

[

l (y, ζ)

Y
α

(

ζ

ȳ
,
yH
ȳ

,
l

n
,
h

n
,yζ

)]

dζ

=

∫ ȳ

yL(y,T)

l (y, ζ)

Y
α

(

ζ

ȳ
,
yH
ȳ

,
l

n
,
h

n
,yζ

)

dζ. (29)

Let zL = ζ/ȳ ≤ 1 be the ratio of income ζ to average income. The previous

expression can be directly rewritten as

ι (y) =

∫ 1

yL(y,T)/ȳ

[

l (y, ȳzL)

n
α

(

zL, zH ,
l

n
,
h

n
,yzL

)]

dzL, (30)

where zH = yH/ȳ ≥ 1. We denote ϱL (y, z) = l (y, ȳz) /n the (normalized)

cumulative distribution function associated with y; it is increasing in z and

belongs to [0, 1]. Furthermore, for any 0 ≤ z < yL
(

y, T
)

/ȳ, we have ϱL (y, z) =

0. Hence,

ι (y) =

∫ 1

0

ϱL (y, zL)α (zL, zH (y, zL) , ϱL (y, zL) , ϱH (y, zH (y, zL)) ,yzL) dzL,

(31)

with ϱH (y, zH) ≡ h (y, ȳzH) /n.

Finally, considering that the previous argument was made for given Y and

given n, we must adapt the result to account for variations in these two di-

mensions. Indeed, the function α—which contains all the degrees of freedom in

determining ι— potentially depends on both Y and n. Hence the result:

ι (y) =

∫ 1

0

ϱL (y, zL)α (zL, zH (y, zL) , ϱL (y, zL) , ϱH (y, zH (y, zL)) ,yzL , Y, n) dzL.

A.3 Proof of Proposition 4

The proof covers three cases:

Case 1 z2 ≤ 1, meaning that the quantile lies wholly below the mean income.

Its contribution to inequality is given by

ιQ (y) =

∫ z2

z1

nϱ′L (y, zL) ιL (zL) dzL
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where

nϱ′L (y, zL) = n
dϱL (y, zL)

dzL

is the (relative) income density function associated to the distribution of

z = y/ȳ. Thus we have, through integration by parts:

ιQ (y) =

∫ z2

z1

ϱ′L (y, zL)

(
∫ 1

zL

αL (z, ϱL (y, z) , Y, n) dz

)

dzL

=

∫ z2

z1

ϱ′L (y, zL)

(
∫ 1

z2

αL (z, ϱL (y, z) , Y, n) dz

)

dzL

+

∫ z2

z1

ϱ′L (y, zL)

(
∫ z2

zL

αL (z, ϱL (y, z) , Y, n) dz

)

dzL

= (ϱL (y, z2)− ϱL (y, z1))

(
∫ 1

z2

αL (z, ϱL (y, z) , Y, n) dz

)

+

[

(ϱL (y, zL)− ϱL (y, z1))

∫ z2

zL

αL (z, ϱL (y, z) , Y, n) dz

]zL=z2

zL=z1

−

∫ z2

z1

(ϱL (y, zL)− ϱL (y, z1)) (−αL (zL, ϱL (y, zL) , Y, n)) dzL

= n (ϱL (y, z2)− ϱL (y, z1)) η (z2)

+

∫ z2

z1

(ϱL (y, z)− ϱL (y, z1))αL (z, ϱL (y, z) , Y, n) dz.

Case 2 z1 ≥ 1, meaning that the quantile lies wholly above the mean income.

Its contribution to inequality is given by

ιQ (y) = −

∫ z2

z1

nϱ′H (y, zH) ιH (zH) dzH

where

−nϱ′H (y, zH) = −n
dϱH (y, zH)

dzH

is the (relative) income density function associated to the distribution of
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z = y/ȳ. Thus we have

ιQ (y) = −

∫ z2

z1

ϱ′H (y, zH)

(
∫ zH

1

αH (z, ϱH (y, z) , Y, n) dz

)

dzH

= −

∫ z2

z1

ϱ′H (y, zH)

(
∫ z1

1

αH (z, ϱH (y, z) , Y, n) dz

)

dzH

−

∫ z2

z1

ϱ′H (y, zH)

(
∫ zH

z1

αH (z, ϱH (y, z) , Y, n) dz

)

dzH

= (ϱH (y, z1)− ϱH (y, z2))

(
∫ z1

1

αH (z, ϱH (y, z) , Y, n) dz

)

dzH

−

[

(ϱH (y, zH)− ϱH (y, z2))

∫ zH

z1

αH (z, ϱH (y, z) , Y, n) dz

]zH=z2

zH=z1

+

∫ z2

z1

(ϱH (y, zH)− ϱH (y, z2)) (αH (zH , ϱH (y, zH) , Y, n)) dzH

= (ϱH (y, z1)− ϱH (y, z2)) η (z1)

+

∫ z2

z1

(ϱH (y, z)− ϱH (y, z2))αH (z, ϱH (y, z) , Y, n) dz.

Case 3 z1 ≤ 1 ≤ z2, meaning that the quantile straddles the mean income, we

have

ιQ (y) =

∫ 1

z1

nϱ′L (y, zL) ιL (zL) dzL +

∫ z2

1

nϱ′H (y, zH) ιH (zH) dzH

=

∫ 1

z1

(ϱL (y, z)− ϱL (y, z1))αL (z, ϱL (y, z) , Y, n) dz

+

∫ z2

1

(ϱH (y, z)− ϱH (y, z2))αH (z, ϱH (y, z) , Y, n) dz

where the result comes from applying the expressions found in Case 1 and

Case 2.

A.4 Proof of Proposition 6

Let ι be a NET-additive profile, so that it can be represented by a function

α (zL, zH , ϱL, ϱH , Y, n), as per Proposition 3, and suppose α satisfies condition

(11). Consider a profile, y, whose support is included in the interval [0, 2ȳ] and
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its symmetric with respect to the mean income, y′. By construction,

ϱL (y′, z) ≡ ϱH (y, 2− z) and (32)

ϱH (y′, z) ≡ ϱL (y, 2− z) , (33)

for all z ∈ [0, 2]. We aim to show that ι (y′) = ι (y).

From Theorem 2, we have

ι (y′) =

∫ 1

0

ϱL (y′, zL)α (zL, zH (y′, zL) , ϱL (y′, zL) , ϱH (y′, zH (y′, zL)) , Y, n) dzL.

(34)

By definition of the NET expansion path we know that the function zL 7→

zH (y′, zL) is such that

ϱL (y′, zL) dzL = −ϱH (y′, zH (y′, zL)) dzH

for all zL ∈ [0, 1]. Hence, a change of variable zH = zH (y′, zL) turns Expression

(34) into:

ι (y′) = −

∫ 1

2

ϱH (y′, zH)α (zL (y′, zH) , zH , ϱL (y′, zL (y′, zH)) , ϱH (y′, zH) , Y, n) dzH

=

∫ 1

0

ϱH (y′, 2− u)α (zL (y′, 2− u) , 2− u, ϱL (y′, zL (y′, 2− u)) , ϱH (y′, 2− u) , Y, n) du

(35)

where the second line comes from another change of variable: u = 2− zH .

By construction of the NET expansion, we have

∫ 2−u

1

ϱH (y′, z) dz =

∫ 1

zL(y′,2−u)

ϱL (y′, z) dz.

Thus, by the symmetric relation between profiles y and y′, (i.e., Expressions

(32) and (33)) the above expression becomes

∫ 2−u

1

ϱL (y, 2− z) dz =

∫ 1

zL(y′,2−u)

ϱH (y, 2− z) dz

∫ 1

u

ϱL (y, w) dw =

∫ 2−zL(y′,2−u)

1

ϱH (y, w) dw (36)
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where the last line follows from the change of variable w = 2− z. Applying the

definition of the function zH (y, ·) we obtain

2− zL (y′, 2− u) = zH (y, u) (37)

Getting back to Expression (35) and replacing zL (y′, 2− u) by 2− zH (y, u)

yields:

ι (y′) =

∫ 1

0

ϱH (y′, 2− u)α (2− zH (y, u) , 2− u, ϱL (y′, 2− zH (y, u)) , ϱH (y′, 2− u) , Y, n) du

=

∫ 1

0

ϱL (y, u)α (2− zH (y, u) , 2− u, ϱH (y, zH (y, u)) , ϱL (y, u) , Y, n) du

(38)

=

∫ 1

0

ϱL (y, u)α (u, zH (y, u) , ϱL (y, u) , ϱH (y, zH (y, u)) , Y, n) du (39)

= ι (y) , (40)

where (38) follows from (32) and (33), and (39) follows from the assumption on

α. Expression (40) is simply the expression of ι (y) via Theorem 2.

B A simple method for extracting α

Consider a mean-preserving expansion profile of Theorem 1, denoted ỹ (y, yL, yH)

using the notations of Expression (13), where yL ≤ ȳ and yH (y, yL) ≥ ȳ.

By Theorem 2, there exists a weighting function α such that

ι (ỹ (y, yL, yH)) =

∫ 1

0

ϱL (ỹ (y, yL, yH) , ζ)α (ζ, zH , ϱL, ϱH , Y, n, ỹ (y, ζ)) dζ

=

∫ 1

zL

ϱL (ỹ (y, yL, yH) , ζ)α (ζ, zH , ϱL, ϱH , Y, n, ỹ (y, ζ)) dζ

because ϱL (ỹ (y, yL, yH) , ζ) = 0 whenever ζ < zL = yL/ȳ.
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Hence,

dι (ỹ (y, yL, yH (y, yL)))

dyL
= −

1

ȳ
ϱL (ỹ (y, yL, yH) , zL)α (zL, zH , ϱL, ϱH , Y, n, ỹ (y, zL))

+

∫ 1

zL

d

dyL
ϱL (ỹ (y, yL, yH) , ζ)α (ζ, zH , ϱL, ϱH , Y, n, ỹ (y, ζ)) dζ

= −
1

ȳ
ϱL (ỹ (y, ȳzL, ȳzH) , zL)α (zL, zH , ϱL, ϱH , Y, n, ỹ (y, zL)) ,

since the second term is equal to zero because ϱL (ỹ (y, yL, yH) , ζ) is indepen-

dent of yL for ζ ∈ (zL, 1].

It follows that α can be extracted by simply computing the derivative of ι

along the NET expansion of Theorem 1.

Moreover, upon observing that

ϱL (ỹ (y, ȳzL, ȳzH) , zL) = ϱL (y, zL) ,

we have that

α (zL, zH , ϱL, ϱH , Y, n,yzL) = −
ȳ

ϱL (y, zL)

dι (ỹ (y, yL, yH (y, yL)))

dyL
(41)

whenever ϱL (y, zL) ̸= 0.

C Mathematical derivations of examples/Not in-

tended for publication

This section is devoted to computing the NET representation of well-known

inequality measures.

C.1 The Variance Index

Consider the variance of the distribution as the inequality measure:

ιvar (y) =
1

n

∑

i=1,...,n

(yi − ȳ)
2
.
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Consider a mean-preserving expansion profile of Lemma 1, denoted ỹ (y, yL, yH)

using the notations of Expression (13), where yL ≤ ȳ and yH (y, yL) ≥ ȳ:

ιvar (ỹ (y, yL, yH)) =
1

n







l (yL) (yL − ȳ)
2
+

∑

{i|yi∈[yL,yH ]}

(yi − ȳ)
2
+ h (yH) (yH − ȳ)

2







where we abuse notations slightly and write l (yL) = l (y, yL) and h (yH) =

h (y, yH). Consider the following partial derivatives on neighborhoods where

l (yL) and h (yH) are constant:9

∂ι (ỹ (y, yL, yH))

∂yL
=

2

n
l (yL) (yL − ȳ)

∂ι (ỹ (y, yL, yH))

∂yH
=

2

n
h (yH) (yH − ȳ)

Mean-preserving expansions require dyH/dyL = −l (yL) /h (yH), so that:

dιvar (ỹ (y, yL, yH))

dyL
=

2

n

[

l (yL) (yL − ȳ)−
l (yL)

h (yH)
h (yH) (yH − ȳ)

]

= −
2

n
l (yL) (yH − yL)

= −2ȳ
l (yL)

n

(

yH
ȳ

−
yL
ȳ

)

= −2ȳϱL (y, yL) (zH − zL)

with zL = yL/ȳ et zH = yH/ȳ et ϱL = l/n. Integrating over the full range of

zL, we get:

∫ 1

0

dιvar (ỹ (y, ȳzL, ȳzH))

dȳzL
ȳdzL = ιvar (ỹ (y, ȳ, ȳ))−ιvar

(

ỹ
(

y, 0,max
i

yi

))

= 0−ιvar (y) .

Hence,

ιvar (y) = −

∫ 1

0

−2ȳϱL (y, yL) (zH − zL) ȳdzL

= 2ȳ2
∫ 1

0

ϱL (y, yL) (zH − zL) dzL.

9The set of pairs (yL, yH) where l (y, yL) and h (y, yH) are not constant is of measure zero
and will not affect the integral to be computed later.
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By comparison with the expression of Theorem 1, this yields:

αvar (zL, zH , ϱL, ϱH , Y, n, ỹ (y, zL)) ≡ 2ȳ2 (zH − zL) .

C.2 The Gini Coefficient

Consider a profile y where agents are ordered: yi ≤ yi+1:

ιGini (y) =
2

nY

n
∑

i=1

iyi −
n+ 1

n
.

Consider a mean-preserving expansion profile of Lemma 1, denoted ỹ (y, yL, yH)

using the notations of Expression (13), where yL ≤ ȳ and yH (y, yL) ≥ ȳ:

ιGini (ỹ (y, yL, yH)) =
2

nY







l (y, yL) (1 + l (y, yL))

2
yL +

n−h(y,yH)
∑

i=l(y,yL)+1

iyi

+

(

n (n+ 1)

2
−

(n− h (y, yH)) (n− h (y, yH) + 1)

2

)

yH

}

−
n+ 1

n

=
2

nY







l (y, yL) (1 + l (y, yL))

2
yL +

n−h(y,yH)
∑

i=l(y,yL)+1

iyi

+
1

2

(

n2 + n− (n− h (y, yH))− (n− h (y, yH))
2
)

yH

}

−
n+ 1

n

=
2

nY







l (y, yL) (1 + l (y, yL))

2
yL +

n−h(y,yH)
∑

i=l(y,yL)+1

iyi

1

2
(h (y, yH) + h (y, yH) ∗ (2n− h (y, yH))) yH

}

−
n+ 1

n

Rearranging further we obtain:

ιGini (ỹ (y, yL, yH)) =
2

nY







l (y, yL) (1 + l (y, yL))

2
yL +

n−h(y,yH)
∑

i=l(y,yL)+1

iyi

+
h (y, yH)

2
(1 + 2n− h (y, yH)) yH

}

−
n+ 1

n

=
1

nY







(1 + l (y, yL)) l (y, yL) yL +

n−h(y,yH)
∑

i=l(y,yL)+1

2iyi

+(1 + 2n− h (y, yH))h (y, yH) yH} −
n+ 1

n
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Differentiating with respect to yL yields :

dιGini (ỹ (y, yL, yH))

dyL
=

∂ιGini (ỹ (y, yL, yH))

∂yL
+

dyH
dyL

∂ιGini (ỹ (y, yL, yH))

∂yH
.

Consider the following partial derivatives on neighborhoods where l (y, yL)

and h (y, yH) are constant:10

∂ιGini

∂yL
=

1

nY
(1 + l (y, yL)) l (y, yL)

∂ιGini

∂yH
=

1

nY
(1 + 2n− h (y, yH))h (y, yH)

Using the fact that
dyH
dyL

= −
l (y, yL)

h (y, yH)
,

we obtain

dιGini (ỹ (yL))

dyL
=

∂ιGini

∂yL
+

dyH
dyL

∂ιGini

∂yH

=
1

nY

{

(1 + l (y, yL)) l (y, yL)−
l (y, yL)

h (y, yH)
(1 + 2n− h (y, yH))h (y, yH)

}

=
l (y, yL)

nY
{(1 + l (y, yL))− (1 + 2n− h (y, yH))}

= −
l (y, yL)

nY
[2n− l (y, yL)− h (y, yH)] .

Using the normalized notations ϱL = l/n, ϱH = 1 − ϱL = h/n, zL = yL/ȳ and

zH = yH/ȳ, and integrating over the full range of zL, we get:

∫ 1

0

dιGini (ỹ (y, ȳzL, ȳzH))

dȳzL
ȳdzL = ιGini (ỹ (y, ȳ, ȳ))−ιGini

(

ỹ
(

y, 0,max
i

yi

))

= 0−ιGini (y) .

Hence,

ιGini (y) = −

∫ 1

0

−
l (y, yL)

nY
[2n− l (y, yL)− h (y, yH)] ȳdzL

=

∫ 1

0

ϱL (y, yL)
ȳ

Y
[2n− l (y, yL)− h (y, yH)] dzL

=

∫ 1

0

ϱL (y, yL) [2− ϱL (y, yL)− ϱH (y, yH)] dzL

10The set of pairs (yL, yH) where l (y, yL) and h (y, yH) are not constant is of measure zero
and will not affect the integral to be computed later.
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By comparison with the expression of Theorem 1, this yields:

αGini (zL, zH , ϱL, ϱH , Y, n, ỹ (y, zL)) ≡ 2− ϱL − ϱH .

Note that 1− ϱH is the share of the population whose income is below zH ȳ, so

that αGini = 1+ (1− ϱH − ϱL) equals 1 plus the share of the population whose

incomes are strictly between zLȳ and zH ȳ.

C.3 The Pietra Index

The Pietra index writes:

ιPietra (y) =

∑

{i|yi≤ȳ} (ȳ − yi)

Y

Consider a mean-preserving expansion profile of Lemma 1, denoted ỹ (y, yL, yH)

using the notations of Expression (13), where yL ≤ ȳ and yH (y, yL) ≥ ȳ:

ιPietra (ỹ (y, yL, yH)) =
1

Y







l (yL) (ȳ − yL) +
∑

{i|yi≤ȳ}

(ȳ − yi)







Consider the following partial derivatives on neighborhoods where l (y, yL)

and h (y, yH) are constant:11

∂ιPietra (ỹ (y, yL, yH))

∂yL
= −

l (y, yL)

Y

∂ιPietra (ỹ (y, yL, yH))

∂yH
= 0

Using the fact that
dyH
dyL

= −
l (y, yL)

h (y, yH)
,

11The set of pairs (yL, yH) where l (y, yL) and h (y, yH) are not constant is of measure zero
and will not affect the integral to be computed later.
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we obtain

dιPietra (ỹ (y, yL, yH))

dyL
=

∂ιPietra

∂yL
+

∂ιPietra

∂yH

dyH
dyL

= −
l (y, yL)

Y

= −
ϱL (y, yL)

ȳ
.

Using the normalized notations ϱL = l/n, ϱH = 1 − ϱL = h/n, zL = yL/ȳ

and zH = yH/ȳ, and integrating over the full range of zL, we get:

∫ 1

0

dιPietra (ỹ (y, ȳzL, ȳzH))

dȳzL
ȳdzL = ιPietra (ỹ (y, ȳ, ȳ))−ιPietra

(

ỹ
(

y, 0,max
i

yi

))

= 0−ιPietra (y) .

Hence,

ιPietra (y) = −

∫ 1

0

−
ϱL (y, yL)

ȳ
ȳdzL

=

∫ 1

0

ϱL (y, yL) dzL

By comparison with the expression of Theorem 1, this yields:

αPietra (zL, zH , ϱL, ϱH , Y, n, ỹ (y, zL)) ≡ 1.

C.4 The Theil Index

The Theil index writes:

ιTheil (y) =
1

n

n
∑

i=1

yi
ȳ
ln

(

yi
ȳ

)

.

Consider a mean-preserving expansion profile of Lemma 1, denoted ỹ (y, yL, yH)

using the notations of Expression (13), where yL ≤ ȳ and yH (y, yL) ≥ ȳ:

ιTheil (y) =
1

nȳ







l (y, yL) yL ln

(

yL
ȳ

)

+

n−h(y,yH)
∑

i=l(y,yL)+1

yi ln

(

yi
ȳ

)

+ h (y, yH) yH ln

(

yH
ȳ

)







.

Consider the following partial derivatives on neighborhoods where l (y, yL)
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and h (y, yH) are constant:12

∂ιTheil

∂yL
=

1

nȳ
l (y, yL)

[

ln

(

yL
ȳ

)

+
yL
ȳ

(

yL
ȳ

)−1
]

=
1

nȳ
l (y, yL)

[

ln

(

yL
ȳ

)

+ 1

]

∂ιTheil

∂yH
=

1

nȳ
h (y, yH)

[

ln

(

yH
ȳ

)

+ 1

]

.

Using the fact that
dyH
dyL

= −
l (y, yL)

h (y, yH)
,

we obtain

dιTheil (ỹ (y, yL, yH))

dyL
=

∂ιTheil

∂yL
+

∂ιTheil

∂yH

dyH
dyL

=
1

nȳ
l (y, yL)

[

ln

(

yL
ȳ

)

+ 1

]

−
l (y, yL)

h (y, yH)

1

nȳ
h (y, yH)

[

ln

(

yH
ȳ

)

+ 1

]

=
1

nȳ
l (y, yL)

[

ln

(

yL
ȳ

)

− ln

(

yH
ȳ

)]

=
1

nȳ
l (y, yL)

[

ln

(

yL
yH

)]

Following Expression (41), we obtain:

αTheil (zL, zH , ϱL, ϱH , Y, n, ỹ (y, zL)) = −
ȳ

ϱL (y, yL)

dιTheil (ỹ (y, yL, yH))

dyL

= ln

(

zH
zL

)

.

C.5 The Mean Log Deviation

The mean log deviation index writes:

ιlog (y) =
1

n

n
∑

i=1

ln

(

yi
ȳ

)

.

Consider a mean-preserving expansion profile of Lemma 1, denoted ỹ (y, yL, yH)

12The set of pairs (yL, yH) where l (y, yL) and h (y, yH) are not constant is of measure zero
and will not affect the integral to be computed later.
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using the notations of Expression (13), where yL ≤ ȳ and yH (y, yL) ≥ ȳ:

ιlog (y) =
1

n







l (y, yL) ln

(

yL
ȳ

)

+

n−h(y,yH)
∑

i=l(y,yL)+1

ln

(

yi
ȳ

)

+ h (y, yH) ln

(

yH
ȳ

)







.

Consider the following partial derivatives on neighborhoods where l (y, yL)

and h (y, yH) are constant:13

∂ιlog
∂yL

=
1

n
l (y, yL)

[

1

ȳ

(

yL
ȳ

)−1
]

=
1

nȳ
l (y, yL)

ȳ

yL
∂ιlog
∂yH

=
1

nȳ
h (y, yH)

ȳ

yH
.

Using the fact that
dyH
dyL

= −
l (y, yL)

h (y, yH)
,

we obtain

dιlog (ỹ (y, yL, yH))

dyL
=

∂ιlog
∂yL

+
∂ιlog
∂yH

dyH
dyL

=
1

nȳ
l (y, yL)

ȳ

yL
−

l (y, yL)

h (y, yH)

1

nȳ
h (y, yH)

ȳ

yH

=
1

nȳ
l (y, yL)

[

ȳ

yL
−

ȳ

yH

]

Following Expression (41), we obtain:

αlog (zL, zH , ϱL, ϱH , Y, n, ỹ (y, zL)) = −
ȳ

ϱL (y, yL)

dιTheil (ỹ (y, yL, yH))

dyL

=
ȳ

yL
−

ȳ

yH

=
1

zL
−

1

zH
.

13The set of pairs (yL, yH) where l (y, yL) and h (y, yH) are not constant is of measure zero
and will not affect the integral to be computed later.
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C.6 Generalized Entropy Indices

Generalized entropy indices are parametrized by a coefficent ε ∈ R+\ {0, 1}:

ιGEε (y) =
1

ε (ε− 1)

1

n

n
∑

i=1

[(

yi
ȳ

)ε

− 1

]

.

Consider a mean-preserving expansion profile of Lemma 1, denoted ỹ (y, yL, yH)

using the notations of Expression (13), where yL ≤ ȳ and yH (y, yL) ≥ ȳ:

ιGEε (y) =
1

ε (ε− 1)

1

n

n
∑

i=1







l (y, yL)

[(

yL
ȳ

)ε

− 1

]

+

n−h(y,yH)
∑

i=l(y,yL)+1

[(

yi
ȳ

)ε

− 1

]

+ h (y, yH)

[(

yH
ȳ

)ε

− 1

]







.

Consider the following partial derivatives on neighborhoods where l (y, yL)

and h (y, yH) are constant:14

∂ιGEε

∂yL
=

1

ε (ε− 1)

1

n
l (y, yL)

[

ε

ȳ

(

yL
ȳ

)ε−1
]

=
1

(ε− 1)

1

ȳn
l (y, yL)

(

yL
ȳ

)ε−1

∂ιGEε

∂yH
=

1

(ε− 1)

1

ȳn
h (y, yH)

(

yH
ȳ

)ε−1

.

Using the fact that
dyH
dyL

= −
l (y, yL)

h (y, yH)
,

we obtain

dιGEε (ỹ (y, yL, yH))

dyL
=

∂ιGEε

∂yL
+

∂ιGEε

∂yH

dyH
dyL

=
1

(ε− 1)

1

ȳn

[

l (y, yL)

(

yL
ȳ

)ε−1

−
l (y, yL)

h (y, yH)
h (y, yH)

(

yH
ȳ

)ε−1
]

=
1

(ε− 1)

1

ȳn
l (y, yL)

[

(

yL
ȳ

)ε−1

−

(

yH
ȳ

)ε−1
]

14The set of pairs (yL, yH) where l (y, yL) and h (y, yH) are not constant is of measure zero
and will not affect the integral to be computed later.
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Following Expression (41), we obtain:

αGEε (zL, zH , ϱL, ϱH , Y, n, ỹ (y, zL)) = −
ȳ

ϱL (y, yL)

dιGEε (ỹ (y, yL, yH))

dyL

=
1

(ε− 1)

[

(zH)
ε−1 − (zL)

ε−1
]

.

C.7 The Atkinson Indices

The Atkinson index is defined relative to a social welfare function. It is defined

as the normalized ratio of the egalitarian equivalent income—the individual

income which, if received by all individuals, would yield the same social welfare

as the current income distribution—over the mean income.

The underlying utility function generally considered in the literature is u (y) =
(

y1−ε − 1
)

/ (1− ε) for ε ∈ R+\ {1}. When given an empirical distribution, the

Atkinson index using parameter ε writes:

ιAtkε (y) = 1−
1

ȳ

(

1

n

n
∑

i=1

y1−ε
i

)
1

1−ε

.

Consider a mean-preserving expansion profile of Theorem 1, denoted ỹ (y, yL, yH)

using the notations of Expression (13), where yL ≤ ȳ and yH (y, yL) ≥ ȳ:

ιAtkε (y) = 1−
1

ȳ

(

1

n

)
1

1−ε







l (y, yL) y
1−ε
L +

n−h(y,yH)
∑

i=l(y,yL)+1

y1−ε
i + h (y, yH) y1−ε

H







1
1−ε

.

Consider the following partial derivatives on neighborhoods where l (y, yL)

and h (y, yH) are constant:15

∂ιAtkε

∂yL
= −

1

ȳ

(

1

n

)
1

1−ε 1

1− ε
l (y, yL) (1− ε) y−ε

L







l (y, yL) y
1−ε
L +

n−h(y,yH)
∑

i=l(y,yL)+1

y1−ε
i + h (y, yH) y1−ε

H







ε
1−ε

= −
1

ȳ

l (y, yL)

n

(

1

n

)
ε

1−ε

y−ε
L







l (y, yL) y
1−ε
L +

n−h(y,yH)
∑

i=l(y,yL)+1

y1−ε
i + h (y, yH) y1−ε

H







ε
1−ε

∂ιAtkε

∂yH
= −

1

ȳ

h (y, yH)

n

(

1

n

)
ε

1−ε

y−ε
H







l (y, yL) y
1−ε
L +

n−h(y,yH)
∑

i=l(y,yL)+1

y1−ε
i + h (y, yH) y1−ε

H







ε
1−ε

.

15The set of pairs (yL, yH) where l (y, yL) and h (y, yH) are not constant is of measure zero
and will not affect the integral to be computed later.
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Using the fact that
dyH
dyL

= −
l (y, yL)

h (y, yH)
,

we obtain

dιAtkε (ỹ (y, yL, yH))

dyL
=

∂ιAtkε

∂yL
+

∂ιAtkε

∂yH

dyH
dyL

= −

1

ȳ

l (y, yL)

n

(

1

n

) ε
1−ε







l (y, yL) y
1−ε
L +

n−h(y,yH )
∑

i=l(y,yL)+1

y1−ε
i + h (y, yH) y1−ε

H







ε
1−ε

[

y−ε
L − y−ε

H

]

Following Expression (41), we obtain:

αAtkε (zL, zH , ϱL, ϱH , Y, n, ỹ (y, zL)) = −

ȳ

ϱL (y, yL)

dιAtkε (ỹ (y, yL, yH))

dyL

=

(

1

n

) ε
1−ε

[

y−ε
L − y−ε

H

]







l (y, yL) y
1−ε
L +

n−h(y,yH )
∑

i=l(y,yL)+1

y1−ε
i + h (y, yH) y1−ε

H







ε
1−ε

= ȳε
[

y−ε
L − y−ε

H

]

(

1

ȳ

)ε







1

n



l (y, yL) y
1−ε
L +

n−h(y,yH )
∑

i=l(y,yL)+1

y1−ε
i + h (y, yH) y1−ε

H











ε
1−

=
[

z−ε
L − z−ε

H

]

(1− ιAtkε (ỹ (y, zL)))
ε .
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