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Abstract

This study provides empirical evidence documenting how COVID-19 affects in-

tertemporal price dispersion in the airline industry. Exploiting a unique panel of 43

million fares collected before and during the pandemic, we find that airlines discounted

fares by an average of 57%. The rate of intertemporal price increases also declined,

particularly in the last week to departure. We also find that flight-level price disper-

sion increased during the pandemic. These results are found to be driven primarily by

the diffusion of COVID-19, with slightly more emphasis on the number of cases at the
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1 Introduction

It is well-documented that deviations from the law of one price occur in a variety of retail

markets. For example, instead of charging a single price for the same product, a distribution

of prices often exists in the airline, automobile, book, gasoline, grocery, housing, insurance,

mortgage, prescription drug, and wine markets (Allen et al., 2014; Borenstein and Rose,

1994; Cardebat et al., 2017; Chandra and Tappata, 2011; Clay et al., 2001; Dahlby and

West, 1986; Gerardi and Shapiro, 2009; Goldberg and Verboven, 2001; Lewis, 2008; Li et al.,

2013; MacDonald, 2000; Sorensen, 2000; Van Nieuwerburgh and Weill, 2010). Accordingly,

a considerable empirical and theoretical literature has developed to better understand the

principal determinants of this observed price dispersion (Barron et al., 2004; Burdett and

Judd, 1983; Dana, 1999, 2001; Kaplan et al., 2019; McAfee, 1995; Pennerstorfer et al., 2020;

Reinganum, 1979; Salop, 1977; Salop and Stiglitz, 1977, 1982; Shepard, 1991). We add to this

literature by examining how intertemporal price dispersion is affected by the global economic

slowdown caused by the COVID-19 pandemic.

Similar to Cornia et al. (2012), the focus of our study is the United States (U.S.) airline

industry and how price dispersion is correlated with prevailing macroeconomic conditions.1

In Cornia et al. (2012), price dispersion was found to move pro-cyclically with the business

cycle (i.e., increasing during expansionary phases and decreasing during recessionary phases).

Thus, one might expect airline price dispersion to fall during the economic slowdown caused

by the COVID-19 pandemic. However, because previous recessions were not caused by a

pandemic, it is not abundantly clear that pro-cyclical behavior also extends to the COVID-

19 recession.

In particular, the COVID-19 recession is unique in the aspect that adverse supply and

demand shocks have permeated across a broad range of industries. Yet, few industries were

1Other studies that examine airline price dispersion include Aryal et al. (2021); Borenstein and Rose
(1994); Gaggero and Piga (2011); Gerardi and Shapiro (2009); Hayes and Ross (1998); Mantin and Koo
(2009); Orlov (2011); Sengupta and Wiggins (2014).
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as severely impacted as the airline industry. As governments imposed travel restrictions to

curb COVID-19’s spread, airlines were forced to cancel flights and the remaining flights that

operated often flew half empty. The resulting drop in travel demand was more severe than

other recent crises affecting the industry (e.g., the 9/11 terrorist attack, 2003 SARS outbreak,

2008 financial crisis, or the 2009 swine flu pandemic).

Another unique aspect of the COVID-19 recession relative to previous recessions are the

unprecedented airline responses. In addition to adjusting capacity and flight schedules, most

U.S. airlines waived cancellation and change fees during the pandemic. Since these ticket

restrictions are an important element of product differentiation, the COVID-19 pandemic

provides an interesting setting to explore how price dispersion changes when a key element

of product differentiation is suddenly eliminated.

Although fares are expected to fall due to the substantial decline in travel demand, the

predicted effect on price dispersion is unclear. Even though a decrease in fares may condense

the price distribution leading to lower price dispersion, it is also possible that the distribution

of fares expanded during the pandemic. For instance, by waiving cancellation and change

fees, airline yield-management systems may have had to frequently adjust fares as consumers

regularly altered their travel plans in response to local COVID-19 outbreaks and evolving

pandemic restrictions. These frequent adjustments may have resulted in a wider distribution

of fares, even if fares are lower on average.

To determine how COVID-19 affects intertemporal price dispersion, we exploit a unique

panel of over 43 million fares. Flights in our sample depart between October 1st, 2019 and

August 31st, 2020, providing us with over five months of data prior to COVID-19 being de-

clared a national emergency in the U.S. and over five months of data during the national

emergency.2 Notably, because we track the price of each flight in the sixty-day period be-

fore departure, we are able to examine how new COVID-19 case counts at the origin and

2COVID-19 was declared a national emergency in the U.S. on March 13th, 2020. The first state to issue
a statewide stay-at-home order was California on March 19th, 2020.

3



destination markets during a flight’s booking period affect both prices and price dispersion.

We have five main findings. Foremost, as COVID-19 spread across the country, airlines

responded by discounting fares by an average of 57%.3 Second, although fares exhibit the

typical pattern of increasing as the departure date approaches, the rate of intertemporal price

hikes declined during the pandemic, especially in the last week to departure. Third, we find

that an increase in new COVID-19 cases at the destination decreases fares while new cases

at the origin has no statistically measurable effect. Fourth, we find that flight-level price

dispersion increased during the pandemic. Fifth, we find that an increase in new COVID-

19 cases at the destination increases price dispersion while new cases at the origin has no

statistically measurable effect.

Although we find that pandemic fare decreases (and the associated increase in price dis-

persion) are driven primarily by the diffusion of COVID-19, there is slightly more emphasis

on the spread at the destination relative to the origin. We believe these findings are sensible

from the passenger perspective. In particular, since shutdowns and other pandemic restric-

tions are highly correlated with the local number of COVID-19 cases, travelers leaving home

(i.e., the origin market) will only care about restrictions that are in effect at the destination

because restrictions at the origin likely do not affect the utility of their trip. For example,

most leisure travelers do not want to travel to markets where restaurants, bars, museums,

and other attractions are closed due to local pandemic restrictions. Similarly, most business

travelers do not want to travel to markets where in-person meetings are not possible due to

regional office closures. As a result, if the number of new COVID-19 cases at the destination

are high, fares must be heavily discounted to entice prospective passengers to purchase when

the likelihood of new pandemic restrictions being introduced at the destination increases.

The rest of this article is organized as follows. Section 2 describes the data sources

3Consistent with this finding, the Bureau of Transportation Statistics (BTS) recorded the
lowest inflation-adjusted annual fare of ✩292 in 2020, down 19% from the previous low of
✩359 in 2019. See Release Number: BTS 27-21, available at https://www.bts.gov/newsroom/

average-air-fares-dropped-all-time-low-2020.
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used in the empirical analysis. Section 3 presents a descriptive analysis of the dynamics of

airline pricing during the booking period. Section 4 describes the econometric model used to

examine intertemporal pricing and presents intertemporal pricing results. Section 5 describes

the econometric model used to examine price dispersion and presents price dispersion results.

Finally, Section 6 provides concluding remarks.

2 Data

To examine how the COVID-19 pandemic affected intertemporal pricing and price dispersion

in the U.S. airline industry, we rely on several data sources. However, the data underlying our

main empirical results are obtained from two primary sources: fare and itinerary data from

a major online travel agency (OTA) and COVID-19 case counts from the National Center

for Health Statistics (NCHS). Section 2.1 describes the fare and itinerary data, Section 2.2

the data on the number of COVID-19 cases, and Section 2.3 the other data sources used for

the construction of instrumental variables.

2.1 Fare and Itinerary Data

Previous studies that examine airline price dispersion typically rely on the U.S. Department

of Transportation’s Airline Origin and Destination Survey (DB1B).4 These data are released

quarterly and represent a 10% random sample of tickets purchased for domestic air travel.

However, the DB1B does not include information on the specific flight(s) purchased or the

exact purchase and departure dates. Thus, the DB1B are not appropriate for examining how

fares for a given flight evolve over time nor can the data be used to control for key factors that

may affect fares during the COVID-19 pandemic such as advance-purchase requirements or

the number of COVID-19 cases at the origin and destination markets at the time of purchase.

To overcome these shortcomings, we collected published fare and itinerary information from

4For example, see Borenstein and Rose (1994), Gerardi and Shapiro (2009), and Cornia et al. (2012).
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a major OTA.5 Nevertheless, because the DB1B are transacted fares while data from an OTA

are only published fares, we employ the DB1B for a robustness check in Section 5.2.1.

In lieu of collecting data for all possible routes in the U.S., DB1B data from the third and

fourth quarters of 2018 were first used to identify the top directional airport-pair markets

within the continental U.S. ranked by total passenger traffic.6 148 of these top directional

airport-pairs were selected for analysis and include a mix of competitive, monopoly, duopoly,

and connecting only (i.e., airport-pairs without nonstop service) markets. Figure 1 displays

a map of the 148 markets included in our analysis. As the figure demonstrates, these routes

provide fairly extensive coverage of the domestic U.S. market.

Figure 1: U.S. domestic routes included in our analysis sample
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5Major OTAs include Expedia, Google Flights, and Kayak. Previous studies that analyze data from a
major OTA include Escobari (2009), Escobari et al. (2019), Gaggero and Luttmann (2021), and Luttmann
(2019), among others.

6A market in our analysis is defined as a directional airport-pair. Accordingly, Los Angeles (LAX)-Chicago
(ORD) and Chicago (ORD)-Los Angeles (LAX) are treated as separate markets.
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To construct our analysis sample, data were collected for flights departing between Oc-

tober 1st, 2019 and August 31st, 2020. Daily economy-class fare quotes were collected for

one-way travel between each of the directional airport-pairs in Figure 1.7 For each route,

fares for each of the next sixty travel days were collected to capture leisure travelers who

purchase flights well in advance of the departure date and business travelers who purchase

flights closer to the date of departure. This data collection strategy also allows us to track

the price of an individual flight (or pair of flights for connecting trips) over the sixty-day

period prior to departure.

Our sampling procedure resulted in a unique sample of 43,160,581 observations. Roughly

35% of our observations are for connecting trips. The airlines included in our sample include

four full-service carriers (Alaska, American, Delta, and United) and five low-cost carriers

(Allegiant, Frontier, JetBlue, Spirit, and Sun Country).8

2.2 COVID-19 Cases

From the NCHS, we downloaded the daily number of new COVID-19 cases for each state

in the continental U.S.9 These daily numbers were then used to construct seven-day moving

average new COVID-19 case counts for each origin and destination market in our sample (see

routes in Figure 1).

7Similar to Bilotkach et al. (2010), Escobari et al. (2019), Gaggero and Luttmann (2021), and Luttmann
(2019), we focus on one-way trips due to difficulties in specifying trip duration. For any given departure
date, there are a large number of roundtrip fares that could potentially be gathered, each depending on trip
duration. For example, fares for two-day trips are likely different from seven or ten-day trips.

8Fare quotes for Southwest Airlines are not available on travel aggregator websites such as Expedia, Google
Flights, and Kayak. However, the presence of Southwest is accounted for in our empirical analysis when we
construct any variable controlling for the number of carriers or flights serving a given route.

9See https://covid.cdc.gov/covid-data-tracker/. Navigate to “Cases & Death” to select “Cases &
Death by States” and then click on “View Historic Case and Death Data” to download the data.
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2.3 Other Data Sources

In general, measures of competition and flight frequency are endogenous in analyses of airline

pricing. For example, markets with high fares may be attractive for new entrants. However,

these markets may also be unattractive if high fares are the result of entry barriers such

as slot controls or limited gate access at the endpoint airports. Accordingly, the potential

simultaneity bias that results from an airline’s decision to enter or exit a given route may

bias results. To correct for this potential endogeneity, we employ an instrumental variables

strategy (see Section 5.1).

To instrument for the level of competition on a given departure date, we construct lagged

measures of competition using the U.S. Department of Transportation’s Airline On-Time

Performance Statistics database.10 Furthermore, since jet fuel prices affect the marginal cost

of serving a given route, we collect daily jet fuel prices from the U.S. Energy Information

Administration to instrument for flight frequency.11

3 Descriptive Analysis

To provide preliminary evidence on the impact of COVID-19 on fares, Figure 2 displays the

average fare per mile for nonstop flights across each booking date in our sample (i.e., NOT

each departure date). The booking date is the date when the fare is observed and includes

flights departing in the next few days as well as flights departing up to sixty days in the

future. However, the proportion of flights departing in the next few days and the proportion

of flights departing in the next sixty days are approximately equal across booking dates.

Thus, pricing dynamics in Figure 2 are displayed over a time horizon of similar average

length across booking dates.12

10See https://transtats.bts.gov/Fields.asp?gnoyr_VQ=FGK.
11See https://www.eia.gov/dnav/pet/hist/EER_EPJK_PF4_RGC_DPGD.htm.
12This balance is also maintained in the booking months of July and August since the latest departure

date included in the construction of Figure 2 is October 26th, 2020. For example, booking dates in August
2020 include flights that depart in August, September, and October 2020.
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To relate the pricing decision of airlines to the diffusion of the COVID-19 pandemic, we

calculated the average number of new COVID-19 cases across each state and calendar date in

our sample. Then, to smooth any reporting differences, we computed the seven-day moving

average number of new cases.13 This moving average is displayed on the secondary Y-axis of

Figure 2.

Figure 2: Average nonstop fare per mile and average new COVID-19 cases by booking date
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As demonstrated by Figure 2, there is clear evidence of an inverse relationship between

the number of new COVID-19 cases and the average nonstop fare. For instance, in early

March 2020, fares fell substantially as the pandemic began to spread in the United States.

Then, as the number of new COVID-19 cases declined between May and June, average fares

increased.

To further illustrate how the intertemporal behavior of fares evolved prior to and during

13The pattern of the seven-day moving average of new COVID-19 cases in our sample is similar to what is
observed over the entire United States. For comparison, see https://covid.cdc.gov/covid-data-tracker/
#trends_dailytrendscases.
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the pandemic, Figure 3 displays the average nonstop fare per mile by number of days to

departure for full-service carriers (FSCs) in Panel A and low-cost carriers (LCCs) in Panel

B. Flights are grouped by month of departure to demonstrate the impact of COVID-19 on

fares over time.

In general, fares are lower during the pandemic months of our sample (March through

August). This result is particularly clear for FSCs (Panel A), but less evident for LCCs

(Panel B). This finding is sensible considering that price-cost margins (i.e., markups) for

LCCs are already low, suggesting that LCCs do not have substantial room to decrease fares

in response to adverse demand shocks. In contrast, FSCs typically operate with higher

price-cost margins, implying more leeway to decrease fares in response to an adverse demand

shock. Furthermore, it is also likely that the pandemic more severely impacted routes with

substantial business traffic (routes typically served by FSCs) than routes with high volumes

of leisure traffic (routes typically served by LCCs). Since most differences in Figure 3 are

observed for FSCs, the subsequent discussion primarily focuses on the intertemporal pricing

behavior of FSCs. However, some of the following discussion also applies to LCCs.

Considering that our data collection window begins sixty days prior to a flight’s departure,

the March and April diagrams in Figure 3 include fares collected during the pre-pandemic

period and fares collected during the outbreak of the pandemic. Although we suspect that

the decline in average fares observed in April and the steep increase in the last week to

departure observed in March were likely due to the pandemic, we cannot definitively state

that these changes were solely due to COVID-19.14

All diagrams from May 2020 onwards in Figure 3 are fully affected by the pandemic. For

FSCs, it is worth comparing the May, June, and July 2020 diagrams with those completely

unaffected by COVID-19 (i.e., the October, November, and December 2019 diagrams). Two

important regularities are observed in the fare diagrams for the last three months of 2019.

14Since COVID-19 was not declared a national emergency in the U.S. until March 13th, 2020 and the first
statewide stay-at-home order was not issued until March 19th, 2020, the majority of observations within one
week of departure in the March diagrams were collected during the pre-pandemic period.
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Figure 3: Average nonstop fare per mile by days to departure and month of departure

(a) Full-service carriers

0.05

0.15

0.25

0.35

0.45

$
 p

e
r 

m
ile

1714212835425160
Days to departure

October 2019

0.05

0.15

0.25

0.35

0.45

$
 p

e
r 

m
ile

1714212835425160
Days to departure

November 2019

0.05

0.15

0.25

0.35

0.45

$
 p

e
r 

m
ile

1714212835425160
Days to departure

December 2019

0.05

0.15

0.25

0.35

0.45

$
 p

e
r 

m
ile

1714212835425160
Days to departure

January 2020

0.05

0.15

0.25

0.35

0.45

$
 p

e
r 

m
ile

1714212835425160
Days to departure

February 2020

0.05

0.15

0.25

0.35

0.45

$
 p

e
r 

m
ile

1714212835425160
Days to departure

March 2020

0.05

0.15

0.25

0.35

0.45

$
 p

e
r 

m
ile

1714212835425160
Days to departure

April 2020

0.05

0.15

0.25

0.35

0.45

$
 p

e
r 

m
ile

1714212835425160
Days to departure

May 2020

0.05

0.15

0.25

0.35

0.45

$
 p

e
r 

m
ile

1714212835425160
Days to departure

June 2020

0.05

0.15

0.25

0.35

0.45

$
 p

e
r 

m
ile

1714212835425160
Days to departure

July 2020

0.05

0.15

0.25

0.35

0.45

$
 p

e
r 

m
ile

1714212835425160
Days to departure

August 2020

Alaska

American

Delta

United

11



Figure 3: Average nonstop fare per mile by days to departure and month of departure (cont.)

(b) Low-cost carriers
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Foremost, the average fare monotonically increases as the departure date approaches, with

four well-defined fare hikes occurring from twenty-one to twenty, fourteen to thirteen, seven

to six, and three to two days prior to departure.15 Second, average fares across carriers

mostly overlap, indicating that FSCs adopt very similar intertemporal pricing strategies on

average.

In contrast, these regularities are not observed in the May, June, and July 2020 diagrams

for FSCs. In these months, the increasing trend in fares across carriers are not monotonic

and the average fare curves do not overlap in the same manner as the 2019 diagrams. For

instance, the irregular pricing curves for United and Alaska in July and the irregular pricing

curve for Delta in May 2020 suggest that each FSC employed differential pricing responses

during the first few months of the COVID-19 pandemic. This type of behavior is expected

to occur if yield management staff for each FSC had to manually intervene in the process of

updating fares, ignoring the output suggested by pricing algorithms that were not accustomed

to dealing with the drastic drop in demand induced by the diffusion of COVID-19. A similar

argument may apply to some LCCs.

Finally, the regularities observed during the pre-pandemic months reappear in August

2020 with well-defined fare hikes observed from fourteen to thirteen, seven to six, and three

to two days prior to departure. However, the average fare remains lower than during the

pre-pandemic period for both FSCs and LCCs.

15As discussed in Gaggero and Luttmann (2021), these fare hikes likely reflect the expiration of discount
fare classes attached to the three-week, two-week, one-week, and three-day advance purchase requirements.
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4 COVID-19 and Intertemporal Pricing

4.1 Econometric Model of Intertemporal Pricing

To identify how intertemporal pricing changed during the COVID-19 pandemic, we estimate

equation (1),

log(Farerafdb) =
4∑

i=1

δi ·DaysToDepartureib + γ · CovidOutbreak b

+
4∑

i=1

γi · CovidOutbreak b ×DaysToDepartureib

+α · CovidOriginrdb + β · CovidDestrdb + ρrafd + εrafdb (1)

where the individual dimension of the panel is the combination of route (i.e., directional

airport-pair) r, airline a, and flight f that is scheduled to depart on a given day d.16 The

time dimension of the panel is represented by b, which records the day the fare is observed

(i.e., the day the fare is booked).

In this specification, the fixed-effect ρ identifies the unique combination of flight, airline,

route, and departure date. Since airline and route are specific to each f , we refer to ρ as the

set of flight-date fixed-effects. Notably, because the departure date is time-invariant within

each f , any fare effect attributable to the time-of-day, day-of-week, or month-of-departure is

absorbed by ρ. A similar argument applies to the level of competition, which is also date-

specific, and therefore time-invariant within the panel. Accordingly, these flight-date fixed

effects control for any time-invariant flight, airline, and route-specific characteristics that

affect fares.17

16For example, the American Airlines flight from Chicago (ORD) to Los Angeles (LAX) on April 22nd,
2020 that departs at 7:23am is an example of f . By extension, a combination of flights on the same itinerary
is another example of f . For instance, the pair of Delta flights on November 15th, 2019 from Chicago (MDW)
to Atlanta (ATL) and from Atlanta (ATL) to Las Vegas (LAS) is another example of f .

17For example, time-invariant flight-specific characteristics include the type of aircraft used and the sched-
uled departure and arrival times. Time-invariant carrier-specific characteristics include any fare effects at-
tributable to the airline’s frequent flyer program or average quality of service. In addition to the level of
competition, other time-invariant route-specific characteristics include the level of airport dominance at the
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The first term of the right hand side of equation (1) are the set of days to departure

dummies, which allow fares to change as the departure date approaches in a nonlinear way.

As suggested by Figure 3 and the analysis in Gaggero and Luttmann (2021), we split the

booking period into five mutually exclusive groups: 60 to 21, 20 to 14, 13 to 7, 6 to 3, and

1-2 days before departure. The earliest days-to-departure group (60 to 21 days) is excluded,

so that the coefficients on the included DaysToDeparture dummies indicate the change in

fare relative to this earliest booking period.

The effect of the COVID-19 pandemic on fares is accounted for by CovidOutbreak, CovidOrigin,

and CovidDest. CovidOutbreak is a dummy equal to one if the fare is collected on any day

after March 13th, 2020, the date when COVID-19 was declared a national emergency in the

United States. CovidOrigin is the 7-day moving average of new positive COVID-19 cases

(in thousands) in the state of the origin airport. Similarly, CovidDest is the 7-day moving

average of new positive COVID-19 cases (in thousands) in the state of the destination air-

port. We use the 7-day moving average to reduce the impact of possible reporting differences

across states, as well as to allow for possible spillover effects of nearby booking dates on fares.

The variables of interest in equation (1) are the set of interactions between CovidOutbreak

and DaysToDeparture. Compared to the pre-pandemic period (i.e., before March 13th,

2020), the coefficients on these interactions indicate how the rate of intertemporal price hikes

changed during the pandemic for flight’s booked 1-2, 3-6, 7-13, and 14-20 days prior to

departure.

Finally, ε is the error term. We estimate the fixed effects model described by equation (1)

using ordinary least squares (OLS) with standard errors that are clustered at the route-level

to allow for the residuals of flights operated by the same airline and other airlines on a given

route to be correlated.

origin and destination airports, the route distance, and whether low-cost carriers are present on the route.
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4.2 Intertemporal Pricing Results

Table 1 presents results from estimating the model described by equation (1). All specifica-

tions include flight-date fixed effects to control for any time-invariant flight, carrier, and route-

specific characteristics that affect fares. The first column includes only theDaysToDeparture

dummies and confirms the well-documented empirical result that fares increase as the flight’s

departure date approaches, irrespective of the pandemic.18 For example, the coefficient of

0.679 on DaysToDeparture 1-2 indicates that flights booked in the last two days before de-

parture are, on average, almost twice the price of comparable flights booked 21 to 60 days

before departure (the omitted DaysToDeparture group).19

To provide a baseline for how fare levels differ across the pre-pandemic and pandemic

periods of our sample, column 2 adds the CovidOutbreak dummy to the specification pre-

sented in column 1. Notably, the Adjusted R2 almost doubles, illustrating the importance

of CovidOutbreak for explaining pandemic fares. In particular, the coefficient of -0.835 on

CovidOutbreak indicates that domestic fares in the six month period after COVID-19 was

declared a national emergency were, on average, 57% cheaper than comparable fares prior to

the emergency.

Column 3 adds the set of interactions between CovidOutbreak and the DaysToDeparture

dummies to the specification presented in column 2. Consistent with column 2, the positive

coefficients on the DaysToDeparture dummies indicate that fares increase as the departure

date approaches while the negative coefficient on CovidOutbreak indicates that fares declined

after Covid-19 was declared a national emergency. However, the negative coefficients on the

four interaction terms indicate that the rate of intertemporal fare hikes during the pandemic

are lower relative to the pre-pandemic period. In particular, the slowdown of intertemporal

fare hikes during the pandemic is especially evident in the last week to departure. As pre-

18For example, see Alderighi et al. (2015a,b); Bergantino and Capozza (2015); Escobari (2012, 2014);
Escobari and Jindapon (2014); Gaggero and Piga (2010); Gaggero and Luttmann (2021), among others.

19Because the dependent variable is logged and DaysToDeparture 1-2 is an indicator variable, the marginal
effect is 100(e0.679 − 1) = 97.2%.
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Table 1: Intertemporal pricing results

(1) (2) (3) (4)
Dependent variable: ln(Fare) ln(Fare) ln(Fare) ln(Fare)

DaysToDeparture 1-2 0.679*** 0.756*** 0.806*** 0.806***
(0.019) (0.019) (0.023) (0.023)

DaysToDeparture 3-6 0.444*** 0.517*** 0.543*** 0.543***
(0.024) (0.022) (0.027) (0.027)

DaysToDeparture 7-13 0.216*** 0.275*** 0.274*** 0.274***
(0.020) (0.018) (0.020) (0.020)

DaysToDeparture 14-20 0.021*** 0.067*** 0.073*** 0.073***
(0.008) (0.007) (0.007) (0.007)

CovidOutbreak -0.835*** -0.814*** -0.814***
(0.029) (0.031) (0.031)

CovidOutbreak × DaysToDeparture 1-2 -0.156*** -0.137***
(0.021) (0.022)

CovidOutbreak × DaysToDeparture 3-6 -0.086*** -0.069***
(0.024) (0.024)

CovidOutbreak × DaysToDeparture 7-13 -0.007 0.008
(0.016) (0.015)

CovidOutbreak × DaysToDeparture 14-20 -0.025*** -0.013*
(0.008) (0.008)

CovidOrigin -0.002
(0.005)

CovidDest -0.019***
(0.004)

Adjusted R2 0.171 0.300 0.302 0.303
Observations 43,160,581 43,160,581 43,160,581 43,160,581

Notes: Summary statistics are provided in Appendix Table A1. Marginal effects are interpreted as the 100(eβ-
1)% change in fare. All specifications include flight-date fixed effects that control for any time-invariant flight,
carrier, and route-specific characteristics that affect fares. Standard errors are clustered at the route-level.
Constant is included but not reported. *** Significant at the 1 percent level, ** Significant at the 5 percent
level, * Significant at the 10 percent level.

viously illustrated in Figure 3b, this result may be driven by low-cost carriers who did not

substantially increase fares in the last week to departure during the pandemic months of our

sample.

Nevertheless, the statistically insignificant, albeit negative, coefficient on CovidOutbreak

× DaysToDeparture 7-13 suggests that the slower rate of intertemporal fare hikes observed

during the pandemic is not ubiquitous across days to departure groups. This finding is
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consistent with the fare hikes observed 7-13 days before departure in Figure 3a for full-

service carriers during the pandemic months (e.g., Alaska in May-August or American and

Delta in June).

To examine how heterogeneity in the diffusion of COVID-19 affects fares, column 4 adds

the 7-day moving average number of new positive COVID-19 cases in the origin (CovidOrigin)

and destination (CovidDest) states to the specification presented in column 3. The coeffi-

cients on CovidOrigin and CovidDest are both negative, providing additional evidence that

COVID-19 adversely affected fares. However, the statistical insignificance and lower absolute

magnitude of the CovidOrigin coefficient implies that pandemic fare decreases are mainly

driven by the diffusion of COVID-19 at the destination.

From the passenger perspective, this finding is sensible. In particular, the origin typi-

cally represents the home market of the passenger. Considering that shutdowns and other

pandemic restrictions are highly correlated with the local number of COVID-19 cases, pas-

sengers leaving home will only care about restrictions that are in effect at the destination

because restrictions at the origin likely do not affect the utility of their trip. For example,

most leisure travelers do not want to travel to markets where restaurants, bars, museums,

amusement parks, and other attractions are closed due to pandemic restrictions. Similarly,

most business travelers do not want to travel to markets where in-person meetings are not

possible due to local office closures. Accordingly, if the number of new COVID-19 cases at

the destination are high, fares must be heavily discounted to entice prospective passengers to

purchase when the likelihood of new pandemic restrictions being introduced at the destina-

tion increases. The coefficient on CovidDest provides an estimate of this effect: an increase

of 1,000 new COVID-19 cases in the state of the destination airport is associated with a 1.9%

fare decrease.
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5 COVID-19 and Price Dispersion

Figure 3 illustrated a different pattern of airfares across the pre-pandemic and pandemic

months of our sample. In the last quarter of 2019, when “COVID-19” was practically un-

known, the diagrams are very similar across months and carriers: they unambiguously show

that average fares increase as the departure date approaches with fare hikes that occur at spe-

cific days to departure (e.g., at three-week, two-week, one-week, and three-day milestones).

The diagrams also show that the fare curves of FSCs substantially overlap with one another.

These regularities are not observed in the months following the outbreak of the pandemic.

For example, in the second quarter of 2020, the fare curves are more distant from one another

and huge price drops occur, suggesting that price dispersion may have increased during the

pandemic months of our sample.

In this section, we examine how the pandemic affected flight-level price dispersion. The

topic of price dispersion has spurred a considerable empirical literature. For example, previ-

ous studies have focused on how airline price dispersion is related to competition (Borenstein

and Rose, 1994; Dai et al., 2014; Gaggero and Piga, 2011; Gerardi and Shapiro, 2009), ca-

pacity (Dana, 1999), demand characteristics (Mantin and Koo, 2009), and business cycles

(Cornia et al., 2012). The analysis in this section enriches this literature by linking price

dispersion to COVID-19.

5.1 Econometric Model of Price Dispersion

Following Borenstein and Rose (1994) and Gerardi and Shapiro (2009), we measure price

dispersion with the Gini coefficient of inequality. Specifically, we estimate equation (2),

Giniloddrafd = φ · Carriersrd + θ · Flightsrd + σ ·Holidayd + δ ·Weekendd +
10∑

i=1

µi ·Monthid +

+γ · CovidOutbreakBookd + α · CovidOriginBookrd +

+β · CovidDestBookrd + λraf + νrafd (2)
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where the dependent variable Ginilodd is the Gini log-odds ratio, ln[Gini/(1−Gini)], which

is employed to unbound the inequality index.20 The Gini coefficient is computed using all

fares collected during the sixty-day booking period of each flight f .21

Similar to equation (1), r refers to the route, a the airline, and f the flight; the combination

raf identifies the individual component of the panel. The time dimension of the panel is

now d, the date-of-departure for flight f . In this specification, we refer to λ as the set of

flight-number fixed effects (i.e., flights across multiple departure dates that have the same

flight number, time-of-departure, and operating carrier). Since an observation in this analysis

is the price dispersion of an individual flight, these flight-number fixed effects control for any

flight-invariant characteristics that do not differ across departure dates (e.g., flight distance,

operating carrier, and time-of-departure). In this respect, λ differs from ρ, the fixed-effect in

equation (1), which identified an individual flight and departure date combination. For this

reason, equation (2) includes more controls than equation (1).

In particular, equation (2) now includes flight-specific and route-specific controls that

were time-invariant within the panel definition of equation (1). To control for the effect that

competition has on price dispersion, Carriers counts the number of nonstop carriers serving

the route on the flight’s date-of-departure. To proxy for the density of the route, Flights

counts the number of nonstop flights serving the route on the flight’s date-of-departure (Ger-

ardi and Shapiro, 2009). In our analysis, Carriers and Flights are computed on a daily

basis, while previous studies relying on DB1B data use a monthly or quarterly aggregation.

Due to the possible simultaneity of price and quantity, Carriers and Flights are treated

as endogenous variables and equation (2) is estimated using two-stage least squares (2SLS).

We correct for this potential endogeneity using four instruments: (i) the number of nonstop

20By unbounding the inequality index, we are able to estimate equation (2) using a linear estimator such
as OLS or two-stage least squares.

21Because several fights were canceled during the pandemic, the average number of fare observations for
each f is 44. We restrict the calculation of the Gini coefficient to f ’s with at least 10 observations, since this
threshold reduces potential small sample bias (Deltas, 2003). Note that this sample restriction is innocuous
if applied to equation (1), whose results remain qualitatively unchanged when the restriction is implemented.
These estimates are not reported in this paper, but are available from the authors upon request.
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carriers serving the route on the same corresponding day during the previous year,22 (ii)

the number of nonstop flights serving the route on the same corresponding day during the

previous year, (iii) the daily jet fuel price,23 and (iv) the interaction of the daily jet fuel

price with flight distance. The first two instruments reflect that lagged market structure is

correlated with current market structure.24 The last two instruments reflect that jet fuel

prices affect the marginal cost of serving a given route.

To control for flight-specific characteristics, we use a series of indicator variables. Holiday

is an indicator equal to one if the departure date of flight f falls on a holiday.25 We ex-

pect lower fare dispersion on holidays due to peak-load pricing (Gaggero and Piga, 2011).

Weekend is an indicator equal to one if flight f departs on a Saturday or Sunday. Finally,

Month is the set of month-of-departure indicators that control for any possible seasonal

variation in price dispersion.

The variables of interest in equation (2) are those that capture the effect of the pan-

demic on price dispersion: CovidOutbreakBook, CovidOriginBook, and CovidDestBook.

CovidOutbreakBook is set equal to the share of fare observations collected after March 13th,

2020 that are used to calculate the Gini coefficient for flight f . This variable equals zero for

all flights departing before March 13th, 2020, since no fares were collected during the pan-

demic period (i.e., after COVID-19 was declared a national emergency in the U.S.). Since our

fare collection begins sixty days prior to each flight’s departure, this variable is positive, but

22By “same corresponding day” we mean that observations are matched with respect to the same day-of-
week, although this may be a different calendar date across years. For example, the number of competitors
serving a given route on Tuesday October 1st, 2019 are paired with the number of competitors that served
that same route on Tuesday October 2nd, 2018.

23The daily jet fuel price is matched to the day that the flight is scheduled to depart. If the flight departs
on a Saturday, Sunday, or holiday when financial markets are closed, we used the nearest previously available
quote.

24Although unobserved cost and demand shocks may persist over time, these shocks are less likely to be
correlated with previous year market structure than with current year market structure. Other papers that
instrument for market structure using lagged measures include Davis (2005), Evans et al. (1993), Greenfield
(2014), and Whalen (2007).

25Twelve holidays occur during our sample period: Columbus Day, Veterans Day, Thanksgiving, the day
after Thanksgiving (i.e., Black Friday), Christmas Eve, Christmas Day, New Year’s Eve, New Year’s Day,
Martin Luther King Jr. Day, Presidents’ Day, Memorial Day, and Independence Day.
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smaller than one, for flights departing between March 13th, 2020 and May 12th, 2020 (i.e.,

fare observations are collected before and after the declaration of the national emergency).

Finally, CovidOutbreakBook equals one for any flight departing on or after May 13th, 2020

(i.e., all fare observations are collected after the declaration of the national emergency).26

To account for the spread of COVID-19 at the origin and destination, CovidOriginBook

and CovidDestBook are set equal to the average number of new COVID-19 cases across the

sixty-day booking period in the state of flight f ’s origin and the state of flight f ’s destination,

respectively. Similar to CovidOrigin and CovidDest in equation (1), these variables test

whether the pandemic’s effect on price dispersion is predominantly driven by the spread of

COVID-19 at one route endpoint over another.

5.2 Price Dispersion Results

The results of estimating equation (2) with flight-number fixed effects are provided in Table

2. The first two columns are specifications closest to those reported in Gerardi and Shapiro

(2009) and Gaggero and Piga (2011). Column (1) reports OLS estimates while column (2)

reports 2SLS estimates.

The sign on Carriers is negative, suggesting that an increase in competition decreases

price dispersion. This finding is consistent with the results in Gerardi and Shapiro (2009)

who found that an increase in the number of competitors reduces the higher percentiles of

the fare distribution to a greater extent than the lower percentiles, thereby resulting in lower

price dispersion. A negative relationship between competition and price dispersion is also

found in Dai et al. (2014) and in Gaggero and Piga (2011).

Also consistent with Gerardi and Shapiro (2009) is the negative and statistically significant

coefficient on Flights. Accordingly, denser routes (as measured by flight volumes) exhibit

lower price dispersion. These are routes where, because of the large volume of passengers, it

26CovidOutbreakBook corresponds to CovidOutbreak in equation (1). Over the sixty-day book-
ing period, CovidOutbreak captures the overall effect of the pandemic on intertemporal pricing while
CovidOutbreakBook captures the overall effect of the pandemic on price dispersion.
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Table 2: Price dispersion results

(1) (2) (3)
Dependent variable: Ginilodd Ginilodd Ginilodd

Estimator: FE-OLS FE-2SLS FE-2SLS

Carriers -0.018* -0.053 -0.056*
(0.010) (0.033) (0.032)

Flights -0.005*** -0.007** -0.007**
(0.001) (0.003) (0.003)

Holiday -0.059*** -0.062*** -0.063***
(0.012) (0.012) (0.012)

Weekend -0.027*** -0.029*** -0.029***
(0.005) (0.007) (0.007)

CovidOutbreakBook 0.242***
(0.064)

CovidOriginBook -0.013
(0.013)

CovidDestBook 0.024**
(0.010)

Adjusted R2 0.015 0.015 0.017
Observations 936,241 936,241 936,241
Kleibergen-Paap LM statistic 22.962*** 22.898***
Kleibergen-Paap Wald F statistic 16.253*** 16.389***

Notes: Summary statistics are provided in Appendix Table A1. All specifications include flight-number fixed
effects that control for any flight-invariant characteristics that do not differ across departure dates (e.g.,
distance, operating carrier, and time-of-departure). Constant and month-of-departure dummies are included
but not reported. Standard errors are clustered at the route-level. In columns (2) and (3), Carriers and
Flights are treated as endogenous variables and instrumented for using past-year values of Carriers and
Flights in addition to the jet fuel price and the interaction between jet fuel price and flight distance. The
null hypothesis of the Kleibergen-Paap rk LM statistic is that the equation is underidentified. First-stage
estimates are reported in Appendix Table A2. *** Significant at the 1 percent level, ** Significant at the 5
percent level, * Significant at the 10 percent level.

may be more difficult to distinguish passengers by their willingness-to-pay (i.e., more difficult

to price discriminate), which translates to lower price dispersion.

The negative and statistically significant coefficient on Holiday is consistent with the

results in Gaggero and Piga (2011), who find lower levels of price dispersion for flights de-

parting during holiday periods. Due to peak-load pricing, fares are higher and less dispersed

during the entire booking period for these holiday flights. Notably, the data in Gaggero and

Piga (2011) cover a sample of European routes, while our present work is, to the best of our
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knowledge, the first to document the holiday effect on price dispersion for the U.S. domestic

market.

Finally, the negative and statistically significant coefficient on Weekend indicates lower

price dispersion for flights departing on a Saturday or Sunday. This result likely reflects

a more homogeneous mix of passengers on weekends relative to weekdays. Since business

travelers seldom travel on weekends, most passengers traveling on Saturdays and Sundays

are leisure travelers. The lack of weekend business travel limits an airline’s ability to price

discriminate, which translates to lower price dispersion (Gaggero and Piga, 2011).

Column (3) of Table 2 is new to the price dispersion literature and presents the impact

of COVID-19 on price dispersion. The positive and statistically significant coefficient on

CovidOutbreakBook indicates that fares collected during the pandemic period exhibit more

price dispersion than similar fares collected before the pandemic.

Consistent with Table 1 where it was found that the number of new COVID-19 cases at

the origin is not a significant factor affecting intertemporal pricing dynamics, the coefficient

on CovidOriginBook in column (3) of Table 2 is also statistically insignificant. Therefore,

new Covid-19 cases at the origin during the flight’s booking period are not an important

determinant of price dispersion. In contrast, the positive and statistically significant coeffi-

cient on CovidDestBook indicates that more COVID-19 cases at the destination during the

flight’s booking period results in higher levels of price dispersion.

5.2.1 Robustness: Price dispersion with DB1B fares

The analysis presented in Table 2 relied on published fares. Since there exists uncertainty

regarding whether these fares were actually purchased at the published rates, we further relate

our work to the existing empirical literature (Dai et al., 2014; Gerardi and Shapiro, 2009)

by performing a robustness check using DB1B data. As discussed in Section 2.1, the DB1B

are released quarterly and represent a 10% random sample of tickets purchased for domestic

air travel. However, because the DB1B does not provide information on the purchase date
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(only the quarter of travel is reported), it is impossible to determine whether fares for a

flight operated during the pandemic were purchased before or after the pandemic’s outbreak.

For example, a passenger flying in April 2020 could have booked the flight in December

2019, before the outbreak, or in late March 2020, after COVID-19 was declared a national

emergency.

For this reason, we believe analyses relying on DB1B data will not be as accurate as

our investigation with published fares in Table 2. Nevertheless, to minimize uncertainty

associated with the timing of ticket purchases in the DB1B, we exclude the first quarter of

2020 because it mixes pre-pandemic and pandemic flights. We also exclude the second quarter

of 2020 because, although it is entirely during the pandemic, a large volume of tickets may

have been purchased before the pandemic’s outbreak. Thus, to approximately capture the

same time period as our published fare analysis, and to take into account that the demand

for air travel has a seasonal component, we rely on the same quarter of data: the third

quarter of 2019 and the third quarter of 2020. The former quarter is clearly representative of

the pre-pandemic period while the latter quarter is assumed to include tickets that are only

purchased after the pandemic’s outbreak.27

To comply with the aggregation of the DB1B, which are at the route, airline, and quarter

level, we compute the Gini coefficient for price dispersion by route, airline, and quarter.28

Accordingly, our estimating equation becomes,

Giniloddraq = ψ · CovidOriginQuarterrq + ω · CovidDestQuarterrq +

µ · 2020Q3q + γ · Carriersrq + θ · Flightsrq + πra + ϕraq (3)

where the individual component of the panel is the combination of route r and airline a,

27It is possible that some DB1B fares from the third quarter of 2020 were booked during the pre-pandemic
period. However, the number of these fares should be negligible since they reflect tickets that are purchased
four or more months in advance.

28Consistent with Gerardi and Shapiro (2009), we only include one-way and roundtrip economy-class fares
in the calculation of the Gini coefficient. We also exclude non-credible fares, bulk fares, and fares less than
✩20 (✩10 for one-way tickets) since these fares are likely heavily discounted frequent flyer tickets.
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while the time dimension of the panel is represented by quarter q.

The definition of Carriers and Flights is similar to those in equation (2), except that

these variables now vary by route and quarter rather than by flight and departure date.29

Consistent with equation (2), Carriers and Flights are treated as endogenous variables and

are instrumented for using their past-year values in addition to the interaction between the

average quarterly jet fuel price and route distance.

2020Q3 is an indicator equal to one for the third quarter of 2020. CovidOriginQuarter

is the average number of new daily COVID-19 cases (in thousands) in the state of route

r’s origin during quarter q. Similarly, CovidDestQuarter is the average number of new

daily COVID-19 cases (in thousands) in the state of route r’s destination during quarter q.

Finally, π are the set of airline-route fixed-effects that control for any time-invariant airline

and route-specific characteristics that affect price dispersion.

In contrast to equation (2), Holiday and Weekend are not included because the DB1B

does not include information on the exact purchase and departure dates for each ticket. For

this same reason, we also are not able to include CovidOutbreakBook to indicate whether

the ticket was purchased during the pre-pandemic or pandemic periods. However, 2020Q3

should capture this effect. Since the third quarter of 2019 serves as the comparison group, the

sign of the coefficient on 2020Q3 indicates whether price dispersion increased or decreased

relative to the level of price dispersion observed prior to the pandemic (i.e., during 2019Q3).

The results of estimating equation (3) with airline-route fixed effects are provided in

Table 3. Consistent with Table 2, the positive and statistically significant coefficient on

2020Q3 across all specifications confirms that price dispersion increased during the pandemic.

Furthermore, the positive and statistically significant coefficients on CovidOriginQuarter

and CovidDestQuarter indicate that an increase in new COVID-19 cases at the origin or

29Carriers and Flights are constructed using the U.S. Department of Transportation’s Airline On-Time
Performance Statistics database. This database contains information on each individual domestic flight
operated by U.S. carriers (e.g., the date and actual departure and arrival times). To generate quarterly
averages, daily values of Carriers and Flights are averaged across each quarter.
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destination are also associated with higher levels of price dispersion.

Table 3: Price dispersion results with DB1B fares

(1) (2) (3)
Dependent variable: Ginilodd Ginilodd Ginilodd

Estimator: FE-OLS FE-OLS FE-2SLS

2020Q3 0.222*** 0.212*** 0.246***
(0.002) (0.004) (0.008)

CovidOriginQuarter 0.002* 0.003***
(0.001) (0.001)

CovidDestQuarter 0.002** 0.004***
(0.001) (0.001)

Carriers -0.049**
(0.022)

Flights 0.054***
(0.008)

Adjusted R2 0.267 0.268 0.246
Observations 58,466 58,466 58,466
Kleibergen-Paap LM statistic 145.421***
Kleibergen-Paap Wald F statistic 51.050***

Notes: Summary statistics are provided in Appendix Table A1. All specifications include airline-route fixed-
effects. Constant is included but not reported. Carriers and Flights in column (3) are treated as endogenous
variables and instrumented for using past-year values of Carriers and Flights in addition to the interaction
between the average daily jet fuel price in each quarter and route distance. The null hypothesis of the
Kleibergen-Paap rk LM statistic is that the equation is underidentified. First-stage estimates are reported
in Appendix Table A3. Standard errors are clustered by route. *** Significant at the 1 percent level, **
Significant at the 5 percent level, * Significant at the 10 percent level.

6 Conclusion

In this article, we documented how the economic downturn caused by the COVID-19 pan-

demic affected intertemporal price dispersion in the U.S. airline industry. Although COVID-

19 is (hopefully) a once-in-a-lifetime event, our results help shed light on the potential price

effects if a future pandemic were to affect the industry.

Exploiting a unique panel of over 43 million fares collected before and during the pan-

demic, we find that airlines discounted ticket prices by an average of 57% in the months after

COVID-19 was declared a national emergency. The rate of intertemporal price increases
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also declined, particularly in the last week to departure. We also find that an increase in

new COVID-19 cases at the destination decreases fares while an increase in new cases at

the origin has no statistically measurable effects. Furthermore, we find that flight-level price

dispersion increased during the pandemic and that an increase in new COVID-19 cases at

the destination increases price dispersion while an increase in new cases at the origin has no

statistically measurable effects.

Even though we find that pandemic fare decreases (and the associated increase in price

dispersion) are driven primarily by the diffusion of COVID-19, there is slightly more emphasis

on the spread at the destination relative to the origin. These findings are sensible from the

passenger perspective. Since shutdowns and other pandemic restrictions are highly correlated

with the number of COVID-19 cases, travelers leaving home (i.e., the origin market) will only

care about restrictions that are in place at the destination because restrictions at home are

not expected to affect the utility of the trip. After all, most leisure travelers do not want

to travel to markets where restaurants, museums, and other attractions are closed due to

local pandemic policies and most business travelers do not want to travel to markets where

in-person meetings cannot be accommodated due to office closures. Given these preferences,

if new COVID-19 cases at the destination are high, fares must be heavily discounted to entice

prospective passengers to purchase when the likelihood of new pandemic restrictions being

introduced in the destination market increases.

The analysis presented in this article offer some interesting avenues for future research.

Since COVID-19 has likely had differential impacts across industries, it would be interesting

to determine if similar price dispersion impacts have also occurred in other oligopolistic

industries such as the automobile, gasoline, grocery, hotel, or shipping industries. Future

work could also extend the present analysis to airline markets in other countries or regions.

Since the diffusion of COVID-19 and the arrival of new variants has been heterogeneous

across regions, it would be interesting to see if similar intertemporal pricing patterns are

observed in the African, Australian, Asian, European, or South American airline markets.
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Appendix A: Supplementary Tables

Table A1: Descriptive Statistics

Intertemporal pricing regressions: equation (1)
Variable Mean Std. dev. Min Max Obs.

Fare 167.168 132.635 11.000 6155.000 43,160,581
DaysToDeparture 1-2 0.031 0.173 0.000 1.000 43,160,581
DaysToDeparture 3-6 0.063 0.243 0.000 1.000 43,160,581
DaysToDeparture 7-13 0.110 0.312 0.000 1.000 43,160,581
DaysToDeparture 14-20 0.109 0.312 0.000 1.000 43,160,581
DaysToDeparture 21-60 0.687 0.464 0.000 1.000 43,160,581
CovidOutbreak 0.348 0.476 0.000 1.000 43,160,581
CovidOrigin (in 1,000s) 0.658 1.692 0.000 11.931 43,160,581
CovidDest (in 1,000s) 0.753 1.927 0.000 11.931 43,160,581

Price dispersion regressions: equation (2)
Variable Mean Std. dev. Min Max Obs.

Ginilodd -1.979 0.971 -10.429 1.267 936,241
Carriers 2.775 1.613 0.000 8.000 936,241
Flights 15.402 10.844 0.000 50.000 936,241
Holiday 0.031 0.173 0.000 1.000 936,241
Weekend 0.270 0.444 0.000 1.000 936,241
CovidOutbreakBook 0.436 0.470 0.000 1.000 936,241
CovidOriginBook (in 1,000s) 0.835 1.743 0.000 11.376 936,241
CovidDestBook (in 1,000s) 0.958 1.983 0.000 11.616 936,241
Instruments
Past-year carriers 2.696 1.566 0.000 7.000 936,241
Past-year flights 15.453 11.400 0.000 57.000 936,241
Fuel price 1.272 0.481 0.407 1.980 936,241
Fuel price × Distance (in 100s of miles) 16.689 11.773 0.961 53.539 936,241

Price dispersion regressions with DB1B fares: equation (3)
Variable Mean Std. dev. Min Max Obs.

Ginilodd -1.151 0.319 -3.045 3.087 58,466
2020Q3 0.500 0.500 0.000 1.000 58,466
CovidOriginQuarter (in 1,000s) 1.158 2.033 0.000 6.402 58,466
CovidDestQuarter (in 1,000s) 1.160 2.033 0.000 6.402 58,466
Carriers 0.622 0.937 0.000 6.000 58,466
Flights 1.580 3.305 0.000 44.000 58,466
Instruments
Past-year carriers 0.702 1.005 0.000 6.000 58,466
Past-year flights 2.013 4.037 0.000 50.000 58,466
Fuel price × Distance (in 100s of miles) 18.513 11.843 0.450 150.224 58,466
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Table A2: First-stage estimates for Table 2

(1) (2) (3) (4)
Dependent variable Carriers Carriers F lights F lights

Past-year carriers 0.312*** 0.312*** -0.323*** -0.327***
(0.042) (0.043) (0.099) (0.099)

Past-year flights 0.003** 0.003** 0.506*** 0.507***
(0.001) (0.001) (0.028) (0.028)

Fuel price -0.076*** -0.073*** -0.959*** -0.888***
(0.022) (0.022) (0.155) (0.166)

Fuel price × Distance 0.002 0.002 0.035*** 0.035***
(0.001) (0.001) (0.010) (0.011)

Holiday -0.016** -0.016** -1.293*** -1.294***
(0.007) (0.007) (0.128) (0.128)

Weekend 0.008 0.008 -0.739*** -0.738***
(0.006) (0.006) (0.096) (0.096)

CovidOutbreakBook 0.012 0.337***
(0.020) (0.128)

CovidOriginBook -0.009 -0.103**
(0.009) (0.041)

CovidDestBook -0.000 -0.045
(0.008) (0.031)

Adjusted R2 0.072 0.072 0.379 0.380
Observations 936,241 936,241 936,241 936,241

Notes: All specifications include flight-number fixed effects that control for any flight-invariant characteristics
that do not differ across departure dates (e.g., distance, operating carrier, and time-of-departure). Constant
and month-of-departure dummies are included but not reported. Standard errors are clustered by route. ***
Significant at the 1 percent level, ** Significant at the 5 percent level, * Significant at the 10 percent level.

Table A3: First-stage estimates for Table 3

(1) (2)
Dependent variable Carriers F lights

Past-year carriers -0.432*** -0.524**
(0.035) (0.247)

Past-year flights 0.022 0.059
(0.019) (0.216)

Fuel price × Distance 0.006*** -0.056***
(0.001) (0.005)

2020Q3 -0.093*** -1.275***
(0.012) (0.061)

CovidOriginQuarter -0.004* -0.033***
(0.002) (0.010)

CovidDestQuarter -0.004* -0.034***
(0.002) (0.010)

Adjusted R2 0.178 0.183
Observations 58,466 58,466

Notes: All specifications include airline-route fixed effects. Constant is included but not reported. Standard
errors are clustered by route. *** Significant at the 1 percent level, ** Significant at the 5 percent level, *
Significant at the 10 percent level.
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