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Abstract 

Preference heterogeneity in food demand has important health and equity implications for 

targeted taxes and subsidies intended to enhance diet quality and reduce obesity. We study the 

role of obesity in the purchases of food at home and food away from home using data from the 

nationally representative National Household Food Acquisition and Purchase Survey. We 

develop a method for incorporating the complex survey design and retail scanner data into the 

estimation of a 21-good Exact Affine Stone Index demand system with endogenous prices and 

truncated purchases. We find significant preference heterogeneity associated with the obesity 

status of household members. Counterfactual simulations find that 1) a sweetened beverage tax is 

effective in increasing the healthfulness of grocery purchases by lower-income obese consumers; 

2) the nutritional benefits of a fruit and vegetable subsidy are concentrated on nonobese 

consumers with little improvement in obese consumers’ Healthy Eating Index and an increase in 

their total calories purchased; and 3) a fiscally neutral healthy food subsidy fully funded by an 

unhealthy food tax benefits nonobese consumers both financially and nutritionally more than it 

does obese consumers. These findings show that lowering healthy food prices without raising the 

cost of unhealthy foods is unlikely to reduce obesity. Policymakers in favor of a systems 

approach of simultaneously taxing unhealthy foods and subsidizing healthy foods should be 

mindful of the distributional effects of this policy on obese consumers and the lower-income 

population.                    

 

Keywords: soda tax, fruit and vegetable subsidy, FoodAPS, EASI demand, preference 

heterogeneity, nutrition inequality  

JEL classification: D12, H23, I14, I18 

 

 

 

 



We study the distributional effects of food and beverage taxes and subsidies aimed at reducing 

prevalence of obesity and improving population diet quality. Unlike harmful goods such as 

tobacco and illicit drugs, which the majority of the population does not use, food is a necessity 

and most people, regardless of weight status, consume both foods considered to be healthy by 

nutrition science and foods deemed less healthy or unhealthy. As such, it is important to examine 

whether obesity-oriented pricing strategies are most impactful on the diets of the obese 

consumers and how the financial benefits and costs of the policies are distributed among obese 

and nonobese, and lower- and higher-income consumers.  

Obesity is a major public health threat in the United States. In 2017–2018, 43.0% of US 

adults are obese, an increase of 15.5 percentage points relative to 1999–2000 (Ogden et al. 

2020). For 2006, the most recent year estimates are available, annual obesity-related medical 

costs were $147 billion (in 2008 dollars), of which slightly less than half is paid for by Medicare 

and Medicaid (Finkelstein et al. 2009, Exhibit 4). Much of the policy attention is focused on 

promoting healthy eating because of the etiological association of suboptimal diets with obesity 

and diet-related noncommunicable diseases (Danaei et al. 2009). Prominent among the existing 

obesity policies are pricing strategies that lower the cost of healthy foods relative to unhealthy 

foods through targeted taxes and subsidies. For example, in 2020, seven US cities1 tax sweetened 

beverages at one penny per ounce or higher with the explicit goal of reducing added sugar take 

from beverages. While there is a consensus that all or significant portions of these excise taxes 

are passed through to retail prices (e.g., Falbe et al. 2015; Cawley and Frisvold 2017; Roberto et 

al. 2019; Powell and Leider 2020), results on intake and purchases are mixed with some 

reporting significant reductions (Falbe et al. 2016; Cawley et al. 2019) and others finding 

insignificant changes (Cawley et al. 2020a).  

Although these evaluation studies hold the promise of identifying the causal effect of 

prices by leveraging the city taxes as quasi experiments, threats to identification and 

measurement issues still exist. Taylor et al. (2019) found that media coverage and the outcome of 

an election with a referendum on the Berkeley sugar-sweetened beverage (SSB) tax caused 

significant reductions in SSB purchases well before the tax was implemented. Allcott, Lockwood 

and Taubinsky (2019a, p. 216) caution that the effect of the tax on demand could be confounded 

                                                           

1 They are: Berkeley, San Francisco, Oakland, and Albany, California; Philadelphia, 
Pennsylvania; Seattle, Washington; and Boulder, Colorado.   



by effects of interest groups’ advertising campaigns and public debates, which frequently follow 

the proposal of a SSB tax. On the measurement side, resource constraints often force evaluators 

to collect data only on beverage intakes and all studies except one (Silver et al. 2017) use the less 

expensive, but also less accurate, beverage frequency questionnaires rather than the more 

accurate 24-hour dietary recalls (Subar et al. 2003). The lack of information on intakes of other 

foods prevents an evaluation of changes in overall diet and an examination of the potential 

unintended consequence of substitution toward other unhealthy foods. Cross-border tax 

avoidance is also an issue that limits the generalizability of the city results to potential state or 

national taxes (Rojas and Wang 2021). Therefore, the quasi experimental design based on city 

SSB taxes cannot provide ex ante insights into innovative policies such as broad-based taxes and 

subsidies that have not been implemented and their national implications.    

An alternative to quasi experiments is to use econometric estimates of price elasticity of 

demand to simulate the effect of price changes on food purchases and nutrition. Practitioners of 

the econometric-simulation approach have made significant progress in model specification and 

policy relevance of the simulations. Early studies (e.g., Lin et al. 2011; Zhen et al. 2011; 

Dharmasena and Capps 2012) focused only on beverage purchases, assumed price exogeneity, 

and ignored the complication of nonpurchases. The more recent literature has accounted for the 

substitution between sugar-sweetened beverages and other foods (Harding and Lovenheim 

2017), price endogeneity (Allcott, Lockwood and Taubinsky 2019b), censored purchases in 

addition to substitution and endogeneity (Zhen et al. 2014), and the varying sugar content of 

SSBs (Zhen, Brissette and Ruff 2014). 

In this study, we estimate a complete food demand system with flexible functional form, 

in which an indicator for the presence of at least one obese household member interacts with 

food prices and total expenditures. We find significant preference heterogeneity associated with 

the obesity status of household members. For example, households with obese members appear 

to value variety by treating healthier and less healthy options of otherwise similar foods as 

complements, while households without obese members are more willing to substitute between 

healthy and less healthy options. The finding of complementarity demonstrates that demand 

models restricting goods to be substitutes may not be adequate when studying demand for goods 

across categories. The counterfactual simulations show that a sweetened beverage tax is effective 

in increasing the healthfulness of grocery purchases by lower-income obese consumers; the 



nutritional benefits of a fruit and vegetable subsidy are concentrated on nonobese consumers, 

with little change in obese consumers’ diet quality and an increase in caloric intake; and a 

fiscally-neutral healthy food subsidy fully funded by an unhealthy food tax benefits nonobese 

consumers both financially and nutritionally more than it does obese consumers. These findings 

of heterogeneous impacts highlight the complexity of using pricing policies to improve 

population diet and health and the importance of considering equity in designing such policies.  

In addition to contributing to the policy debate, we innovate in three areas. First, our food 

demand system includes foods purchased for at-home as well as away-from-home consumption. 

While demand for food at home (FAH) and food away from home (FAFH) has been modeled as 

a system using aggregate data (e.g., Okrent and Alston 2012), we present the first complete food 

demand system estimated with household-level data. The benefit of using micro data to estimate 

demand is obvious. It allows for an examination of whether preference heterogeneity is 

associated with observed consumer characteristics that are of policy interest. Because taxes and 

subsidies carry deadweight loss (Harberger 1964), understanding whether these policies are 

effective in promoting healthy eating for obese consumers is important for cost-effective and 

equitable policymaking. We provide the first evidence regarding the effect of obesity-related 

preference heterogeneity on total food demand and overall healthfulness. We also identify 

economically important cross-price relationships between FAH and FAFH. This means that 

findings from previous micro studies using household scanner data on FAH purchases cannot be 

extrapolated to total diets.    

Second, we develop a process that combines a household purchase survey with retail 

scanner data to create food group-level price indices and their instrumental variables. Previous 

studies using the econometric-simulation approach rely overwhelmingly on household and retail 

scanner data on packaged foods due to the depth and granularity of the reported purchases. 

However, this also results in substantial underreporting of purchases in categories made up of 

random-weight items such as loose fruit and vegetables and meats and cheese packaged in the 

store (Zhen et al. 2009). The USDA Food Purchase and Acquisition Survey (FoodAPS) collects 

7-day purchase data on all FAH and FAFH items. With FoodAPS providing data on purchase 

quantities and expenditures, we supplement these data with retail scanner data to construct price 

indices that include costs of unpurchased items, and to create instrumental price variables to 

correct for the unit value bias and the omitted variable bias. We also introduce a method 



developed in the international price comparison literature to create instruments for products not 

covered in retail scanner data (e.g., all restaurant foods). Collectively, these incremental data 

preparation steps are essential to obtaining demand estimates consistent with economic theory, 

such as downward-sloping demands.   

Third, we advance Zhen et al.’s (2014) instrumental variables truncated demand system 

estimator to account for the complex survey design of FoodAPS. Zhen et al.’s approach is an 

extension of the Amemiya generalized least squares (AGLS) estimator for a single truncated 

equation with endogenous regressors (Amemiya 1979; Newey 1987) to a system of truncated 

equations. The popular cluster-robust sandwich variance estimator (Williams 2000)2 does not 

have full rank when the number of parameters in each demand equation is greater than the 

number of clusters. This rank deficiency in the covariance matrix of the reduced-form parameters 

prevents the structural parameters of the demand system from being recovered using, for 

example, a minimum distance estimator. We avoid this by bootstrapping the covariance matrix 

of the system AGLS estimator. Few applications of truncated demand systems account for 

cluster sampling or complex design of the survey in general. This stands in contrast to the 

standard practice of reporting cluster-robust standard errors in other fields of econometrics 

(Cameron and Miller 2015). Unlike reduced-form regressions where only the standard errors are 

affected by clustering, accounting for the complex survey design affects both the point estimates 

and the standard errors of the structural parameters in a multi-step estimation of a utility-

theoretic demand system. The reason is that, to recover the structural parameters, the minimum 

distance estimator uses the inverse of the variance-covariance of the first-step reduced-form 

parameters as weighting matrix. To facilitate the accounting for complex survey design in 

demand system estimation, we provide a user-friendly code in SAS that can be changed to fit a 

number of specifications of the demand equations.     

The remainder of this article is structured as follows. The next section reviews the 

somewhat niche literature correlating food preferences with the weight status of the consumer. 

Before the empirical approach, we present some FoodAPS descriptive statistics to motivate the 

probe into preference heterogeneity. Presentation of the empirical results follows the discussion 

                                                           

2 In complex survey, this method is also known as the Taylor series expansion.  



of price indexing and instrumenting strategies. In the penultimate section, we compare our 

findings with estimates from previous experimental studies. The last section concludes.          

Preference Heterogeneity Associated with Weight Status                        

When studying the implications of preference heterogeneity related to consumer weight status, it 

is important to take a holistic approach where demand for all foods is accounted for such that 

predictions on overall diet and health can be made. Several authors examined the role of weight 

status in preferences for food. In a laboratory setting, Epstein et al. (2007) experimented with 

subjecting a sample of US mothers to different price conditions. They found that the number of 

energy-dense items purchased by obese mothers was less price elastic than that of normal-weight 

mothers, and the substitutability between more and less energy-dense foods was lower among 

obese mothers compared to normal-weight mothers. However, another laboratory experiment 

that examined purchased amounts of calories and other macronutrients did not find mothers’ 

weight status to moderate the price effects (Epstein et al. 2010). The divergent conclusions from 

two closely related studies underscore the importance of examining nutrition outcomes when 

studying pricing strategies.   

Observational studies using purchase data have also been used to examine links between 

price effects and food choices. For example, Gandal and Shabelansky (2010) found that, among 

a sample of Israeli women, those women who stated price to be very important in food shopping 

were more likely to be obese, suggesting a positive association between price responsiveness and 

obesity. Okrent and Sweitzer (2016) take a revealed preference approach by estimating an 

Almost Ideal Demand system of 19 FAH food categories for households of the 2010-2014 IRI 

Consumer Network panel. Weight status indicators are interacted with the price and total 

expenditure variables to capture the role of weight status as a modifier of the price and 

expenditure effects. The authors find that demand by households with obese members is less 

price elastic than overweight and normal-weight households. Using the IRI InfoScan retail 

scanner data, Wang, Rojas and Colantuoni (2017) estimate a dynamic model of inventory 

holding by households for regular Coke and Pepsi in 2-liter bottles and 12-packs of 12-ounce 

cans. They find that, in counties with higher obesity rates, a larger proportion of the population is 

likely to stockpile Coke and Pepsi products when they are on sale. This intertemporal 

optimization behavior on the part of consumers results in soda consumption being less elastic to 

prices in areas with higher obesity rates and potentially diminishing the effect of a soda tax.    



Data Sources and Stylized Facts 

FoodAPS provides the household purchase data for our empirical analyses. FoodAPS was 

designed to fill a data gap in food assistance and nutrition policy research. For our purposes, the 

most unique advantage of FoodAPS is the complete coverage of foods purchased from all 

sources and of both packaged and random-weight foods. Alternative data sources such as 

household scanner data are known to underreport FAH purchases, not record random-weight 

purchases with sufficient product detail to understand diet behavior, and not provide any FAFH 

information. The mean FAH spending in the Consumer Network scanner panel is 26% lower 

than that of FoodAPS (Clay et al. 2016, table 4b). Underreporting creates two issues. First, it 

underestimates the magnitude of purchase changes following a price change. Second, setting 

aside the bias in the level of purchases, underreporting may create bias in the price elasticities of 

food demand. Zhen et al. (2019) compared price elasticities of FAH demand estimated from the 

Consumer Network data and those from the Consumer Expenditure Survey. Although the 

authors did not find underreporting in Consumer Network to systematically under- or over-

estimate price elasticities, there are sizable differences in the price elasticities for comparable 

food groups between the two datasets.     

A feature of FoodAPS is that a household reported purchases and acquisitions over a 7-

day period and not all households purchase all categories of food in a given period. While a short 

reporting period reduces respondent burden and the degree of expenditure underreporting, it also 

leaves a significant fraction of food categories (e.g., grains, beverages) unpurchased by a 

household owing to infrequency of purchase and price-induced corner solutions. We explicitly 

account for nonpurchases in our demand model. Related to the truncated demand, prices of 

unpurchased foods are not available in FoodAPS. To fill in these missing prices, which are 

required in the truncated demand model, we link scanner data prices from thousands of retail 

stores in IRI InfoScan to FoodAPS purchase transactions by food type, purchase date, chain 

name, and store location. We discuss this process later in the section on price indices and 

instruments and in the technical appendix.       

Between April 2012 and January 2013, FoodAPS surveyed 4826 households, 87 of which 

did not report any food acquisition events in the 7-day period. Our empirical investigation is 

based on data reported by the 4739 households that acquired a positive amount of food. Because 

FoodAPS oversampled lower-income households, 52% of our sample households were at or 



below 185% of federal poverty line—the income threshold for participating in the Special 

Supplemental Nutrition Program for Women, Infants, and Children (WIC). We use the sampling 

weight throughout the empirical analysis.  

Table 1 provides descriptive statistics for the FoodAPS sample. We classify households 

into four types based on household income and the obesity status of household members, where 

households with income at or below 185% of the poverty line are considered lower income, and 

whether one or more members of the household are obese. An adult is considered obese if his/her 

body mass index (BMI) is 30 or above (Ogden et al. 2020). A child aged 17 or younger is 

considered obese if his/her BMI is at or above the 95th age- and sex-specific percentile. Within 

either income group, households with obese members have more children and more adult 

members working at a job or business, are more likely to be Hispanic or black and less likely to 

be college educated. The difference in prevalence of tobacco use, a leading indicator of risky 

health behavior, between households with and without obese members is small compared to the 

much larger difference between lower- and higher-income households. This can be attributed to 

two countervailing forces. First, the diet quality of smokers is known to be lower compared to 

nonsmokers (Guenther et al. 2014). Second, smoking is a major appetite suppressant (Mineur et 

al. 2011), although the evidence is less clear on whether tobacco control efforts have contributed 

to the rising rates of obesity (Gruber and Frakes 2006; Nonnemaker et al. 2009; Courtemanche, 

Tchernis and Ukert 2018). Not surprisingly, the BMI of the primary respondent is a strong 

indicator for whether a household has one or more obese members. In FoodAPS, the primary 

respondent is also the main food shopper and meal planner. So we expect the classification of 

households based on the presence of one or more obese members to be an adequate way to 

register preference heterogeneity associated with obesity.  

To adjust for the age- and sex-specific energy requirements, we also measure household 

size using the adult-male equivalent (AME). To calculate AME, we take the daily energy need, 

as established in the 2010 Dietary Guidelines for Americans (DGA) (USDA/US HHS 2010), of 

2600 kcal for a moderately active male aged 26 to 45 years as the reference. The AME for each 

household member is the ratio of the person’s age group- and gender-specific energy needs for 

moderately active living relative to 2600 kcal. The household AME is the sum of individual 

AMEs. 



FoodAPS oversampled the under-resourced population. Using the survey weights, we 

estimate that lower-income households with obese members, lower-income households without 

obese members, higher-income households with obese members and higher-income households 

without obese members represent 18%, 10%, 35%, and 36% of the US population, respectively. 

A greater proportion of lower-income Americans live in households with obese members than in 

households without obese members, consistent with the empirically documented inverse income, 

or more broadly, socioeconomic status gradient in obesity (Baum and Ruhm 2009).    

Food Categorization and Nutrient Profiling  

We categorize FAH purchases into nine broad food categories that largely follow the Tier-1 

classification scheme of ERS food groups (USDA ERS 2016). All FAFH purchases are assigned 

to a single FAFH category. Unlike the ERS scheme where 100% fruit and vegetable juice is 

classified as part of the fruit group, we count these juices as products of the beverage category. 

We exclude vitamins and meal supplements, baby food, and infant formula from the analysis 

because their contribution to total household dietary energy is trivial. Within each food category, 

we subdivide the products into a healthier food group and a less healthy food group based on the 

product’s Guiding Stars rating (Fischer et al. 2011). In total, we have twenty food groups 

differentiated by food category and healthfulness. We estimate the demand curves at the food 

group level.   

Guiding Stars is a nutrient profiling algorithm that rates a food product’s healthfulness 

based on its nutrient densities per 100 kcal of the food. Nutrients (e.g., vitamins and minerals, 

fiber, and whole grains) encouraged by scientific advisories, such as the DGA, receive positive 

scores, and nutrients recommended in limited quantities (e.g., trans-fatty acids, saturated fatty 

acids, cholesterol, sodium, and sugars) receive negative scores. Foods with negative total scores 

are assigned a 0-star rating, which means that the food item does not meet the nutritional criteria 

to receive a star rating. Foods with positive total scores are classified into 1 star, 2 stars, and 3 

stars to indicate good, better, and best nutrition value, respectively. In each category, the 

healthier and less healthy food groups consist of items rated at 1-3 stars and 0-star, respectively.   

There are some notable observations from the nutrient profiling exercise. Because 

Guiding Stars are scored on a per 100-kcal basis, the star levels for zero-calorie diet drinks (34.2 

percent) and all bottled water products cannot be calculated. Since nearly all diet drinks with 



some calories (65.8 percent) receive 0 star,3 we assign all zero-calorie diet drinks to the 

unhealthy (0-star) beverage group and all bottled water to the healthy (1-3 star) beverage group. 

Most products in the 0-star vegetable group are canned and have high sodium levels. 77.7 

percent of canned fruit products do not receive a star because they contain high levels of sugar 

and low levels of vitamins. Because calcium is not an input to Guiding Stars, a lot of skim/low-

fat milk products do not receive a star either because they are sweetened or still have too much 

fat by the Guiding Star standard. 12.6 percent of 100% juice products have 0 star, while the rest 

have between 1 and 3 stars.  

Unlike individual FAH items, FAFH contains full meals, combo meals (e.g., McDonald’s 

Big Mac combo) and buffets. In the survey data, the combo meals and buffets can be separated 

into distinct food items (e.g., “Big Mac” can be separated to burger, drink, and fries) with 

nutrient content reported for each food item. The Guiding Stars rating is calculated based on 

nutrients at the item level. Therefore, for combos and buffets, we first assign the star rating to 

each item and then calculate a weighted star rating for the entire meal, with the gram share of 

each food item as weights. We treated meals with a weighted star rating of one or more as a 

starred food and others as 0-star foods. For eating occasions that consisted of a single food item, 

we use the same method used to assign Guiding Stars ratings to FAH.  

Table 2 summarizes the unit value, budget share, and purchase quantity for each food 

group by income. A unit value for a food group is equal to the ratio of the expenditure on the 

food group to the purchase weight in hundred grams. There are several noteworthy observations. 

First, with few exceptions, the average unit values of foods purchased by higher-income 

households are greater than those of lower-income households. This is broadly consistent with 

previous research that found lower-income households use a variety of cost-minimization 

strategies to reduce the unit value of purchased foods (Broda, Leibtag and Weinstein 2009; 

Beatty 2010). Second, conditional on total food expenditures, mean expenditure shares are 

comparable between lower- and higher-income households for all FAH groups except the two 

meat and protein groups, on which the average lower-income household spent 2−3 percentage 

points more than the average higher-income household. In terms of FAFH shares in total food 

expenditures, higher-income households spent six and three percentage points more on 0-star and 

                                                           

3 Only 0.8 percent of diet drinks receive a 1-star rating and no diet drinks receive 2 or 3 stars.   



starred foods, respectively, than their lower-income counterparts. Third, higher-income 

households reported higher purchase quantities per AME than lower-income households in 17 of 

the 20 food groups. Because higher-income households spent substantially more on food than 

lower-income households ($138 vs. $88 per week) on average, the lower unit values of foods 

purchased by lower-income households may not be enough to compensate for their lower food 

expenditures.       

Table 3 provides another way of summarizing preferences for healthfulness. It compares 

the quantity share of healthier products within each of our ten food categories by income and 

whether or not a household has at least one obese household member. The average share of 

healthier foods purchased by lower-income (higher-income) households without obese members 

is three (one) percentage points higher than households of the same income class with obese 

members. As such, demand for healthier options is inversely related to obesity, although the 

slope of the healthfulness-obesity gradient is moderate when measuring demand by quantity 

shares.   

The third way to summarize preference heterogeneity is to compare differences in 

nutrient density. Table 4 conducts this comparison for nutrients and food components that are 

either encouraged by the DGA to increase (fiber, folic acid, iron, magnesium, calcium, 

potassium, whole grains, fruit, and vegetables) or limit (solid fats, added sugars, sodium, and 

refined grains). Two density measures are calculated for each nutrient and food component: 

amount per 100 grams of food, and amount per dollar of food expenditures. For lower-income 

households, those without obese members purchased higher or equal amounts of all but two 

nutrients (folic acid and iron) per 100 gram of food that the DGA encourages compared to those 

with obese members. The pattern is reversed when comparing lower-income households with 

and without obese members in the densities of dietary energy, solid fats, added sugars, sodium, 

and refined grains that the DGA recommends to limit. The patterns are somewhat less clear in 

the higher-income sample. Although, compared to households with obese members on a per-100 

gram of food basis, higher-income households without obese members purchased more of all 

nutrients the DGA encourages to increase, they also purchased more solid fats, added sugars and 

energy.   

The middle panel of table 4 presents nutrient densities per dollar of food expenditures. 

Compared to the per 100-gram measure, per dollar densities are a better indicator of consumer 



optimization given the budget constraint. The law of diminishing marginal product predicts that 

as income increases, a lower proportion of food expenditures is allocated for pure subsistence 

(Silberberg 1985). This implies an inverse relation between nutrient density per food dollar and 

income, which is confirmed for all nutrients and food components in table 4. Comparing nutrient 

density by obesity status within each income class, households with obese members tend to pack 

more nutrients, especially those the DGA recommends to limit, into the food dollar.  

The lower panel of table 4 provides total purchases of select nutrients and food 

components. As one would expect from all normal goods, higher-income households purchase 

greater amounts of nutrients and food components regardless whether they are recommended by 

the DGA to increase or to limit. Within an income class, households without obese members 

purchase more food components the DGA encourages but also some to limit than households 

with obese members. Given the large number of nutrients and food components that contribute to 

a healthy diet, it is useful to examine a summary measure of the healthfulness of all foods 

purchased. The last row of table 4 reports one such measure—the Healthy Eating Index (HEI)-

2010. While the Guiding Stars profiles the nutrients of individual foods, the HEI-2010 measures 

conformance of a diet or total food purchase with the 2010 DGA, per 1000 calories (Guenther et 

al. 2013). The HEI-2010 has 9 adequacy and 3 moderation components.4 The lowest possible 

score in a component is zero and the maximum varies from 5 to 20 depending on the component. 

The HEI score is the sum of the 12 component scores and ranges between 0 (worst) and 100 

(best). As a summary measure of diet quality, the HEI score differs between lower- and higher-

income households and between households with and without obese members in ways consonant 

with the food group- and nutrient-specific comparisons in table 3 and 4. Conditional on whether 

or not there is at least one obese household member, the HEI of higher-income households is 4-5 

points higher than that of lower-income households. Within an income class, the HEI of 

households without obese members is 2-3 points higher than those with obese members.         

Taken altogether, these descriptive statistics on food purchasing patterns are consistent 

with households optimizing given the budget constraint and differences in preferences associated 

with the obesity status of household members. To understand the structural differences in 

                                                           

4 The adequacy components are total fruit, whole fruit, total vegetables, greens and beans, whole 
grains, dairy, total protein foods, seafood and plant proteins, and fatty acids. The moderation 
components are refined grains, sodium, and empty calories.  



preferences across household types and predict how food choices would respond to price 

changes, we develop a structural model of food demand in the following sections.         

The Demand Model 

We use a flexible functional form demand system to characterize household food preferences. 

The main benefit of using a flexible functional form for demand modeling is that it imposes few 

a priori restrictions on the own- and cross-price elasticities. By contrast, the Lancaster-type 

(Lancaster 1966) characteristics demand models, which include the discrete-choice demand 

model (McFadden 1974; Berry, Levinsohn and Pakes 1995), restrict goods to be substitutes.5 As 

will be discussed in the empirical results, some of the distributional effects are caused by 

complementarity between food groups. Demand models restricting goods to be substitutes will 

not be able to identify these effects.   

We estimate a two-way Exact Affine Stone Index demand system (Lewbel and Pendakur 

2009)    

(1)         𝑤ℎ𝑖∗ = ∑ (𝑎𝑖𝑗 ln 𝑝ℎ𝑗 + 𝑎𝑖𝑗𝑧𝑧ℎ𝐾 ln 𝑝ℎ𝑗 + 𝑎𝑖𝑗𝑦𝑦ℎ ln 𝑝ℎ𝑗)𝐽𝑗=1 + ∑ 𝑏𝑖𝑟𝑦ℎ𝑟𝐿𝑟=1 + 𝑏𝑖𝑧𝑧ℎ𝐾𝑦ℎ +                            ∑ 𝑔𝑖𝑘𝑧ℎ𝑘𝐾𝑘=1 + 𝑢ℎ𝑖      𝑖 = 1, … , 𝐽 − 1            
where 𝑤ℎ𝑖∗  is the latent budget share of subgroup 𝑖 for household ℎ, 𝑝ℎ𝑗 is the price index of 

subgroup 𝑗, 𝑧ℎ𝑘 is the 𝑘th (out of a total of 𝐾) demand shifter for household ℎ, 𝑧ℎ1 is the 

constant, 𝑦ℎ is log deflated total expenditure equal to ln 𝑥ℎ − ∑ 𝑤ℎ𝑗 ln 𝑝ℎ𝑗𝐽𝑗=1  with 𝑥ℎ being 

household ℎ’s per capita nondurable expenditures, 𝑢ℎ𝑖 is the error term, 𝐽 (=21) is the number of 

FAH and FAFH groups plus the numéraire, 𝐿 is the highest order of polynomial for 𝑦ℎ, and 𝑎, 𝑏, 

and 𝑔 are coefficients. The last demand shifter 𝑧ℎ𝐾 is the indicator for households with obese 

members, equal to 1 if household ℎ has any obese members and 0 otherwise. The EASI demand 

in Eq. (1) is two-way because of the interactions between 𝑦ℎ and 𝑝ℎ𝑗. This allows the Hicksian 

price effects to vary with total expenditures and is unique to the EASI functional form. In the 

family of almost ideal demand systems (Deaton and Muellbauer 1980), only Marshallian price 

effects differ for lower- and higher-income households through the income effects.   

                                                           

5 An advantage of characteristics demand models over the flexible demand systems is the 
availability of estimates for the willingness to pay (WTP) for characteristics. However, the lack 
of WTP estimates does not impact, in any way, a flexible demand system’s ability to model the 
relationship between prices and quantities demanded.    



The interaction terms 𝑧ℎ𝐾 ln 𝑝ℎ𝑗 and 𝑧ℎ𝐾𝑦ℎ allow the price and expenditure elasticities to 

differ by the presence of obese household members. In addition to the obesity indicator 𝑧ℎ𝐾, 

other demand shifters include Census division dummies, calendar month dummies, the share of 

household members that are children, Hispanic, black, college-educated, and working adult, 

household size, primary respondent’s age group, an indicator for whether the primary respondent 

uses the Nutrition Facts label always or most of the time, and the frequency of using a grocery 

list. The last two FoodAPS variables, which are rarely available from general-purpose 

expenditure surveys, help account for heterogeneity in nutrition attitudes and shopping patterns. 

To construct 𝑦ℎ, we define 𝑥ℎ as the sum of weekly per capita expenses on shelter, 

rental/homeowner’s insurance, property taxes, public transport, health insurance and copays, 

doctor/hospital bills, prescription drug, child care, child support, and FAH and FAFH.     

We follow the bulk of the truncated demand system literature (e.g., Perali and Chavas 

2000; Dong, Gould and Kaiser 2004; Meyerhoefer, Ranney, and Sahn 2005) by using the Tobit 

model to characterize the zeros in food group-level purchases, where the latent budget share 𝑤ℎ𝑖∗  

is related to the observed budget share 𝑤ℎ𝑖 by 𝑤ℎ𝑖 ≡ max(𝑤ℎ𝑖∗ , 0). We use the extended AGLS 

estimator for censored equation systems (Zhen et al. 2014) to control for endogeneity in 𝑦ℎ and 𝑝ℎ𝑖. The variable 𝑦ℎ is endogenous because the budget shares 𝑤ℎ𝑖 which are decision variables, 

are in the Stone index. We instrument 𝑦ℎ by 𝑦̅ℎ ≡ ln 𝑥ℎ − ∑ 𝑤̅𝑗 ln 𝑝̅ℎ𝑗𝐽𝑗=1 , where 𝑤̅𝑗 is the sample 

mean budget share and 𝑝̅ℎ𝑗 is the instrument for 𝑝ℎ𝑖 discussed in the next section.  

Briefly, estimation of the EASI demand with accounting for clustered and stratified 

sampling proceeds in four steps. First, we regress the endogenous regressors (i.e., 𝑦ℎ𝑟, ln 𝑝ℎ𝑗, 𝑦ℎ ln 𝑝ℎ𝑗, 𝑧ℎ𝐾 ln 𝑝ℎ𝑗) on the exogenous regressors and the instruments using least squares. This 

produces a least squares residual for each endogenous regressor. Second, using single-equation 

Tobit, we regress the latent budget share 𝑤ℎ𝑖∗  on the exogenous regressors, the instruments, and 

all least squares residuals estimated from the previous step. This approach to addressing 

endogeneity in limited dependent variable models is known as the control function approach 

(Newey 1987) or the two-stage residual inclusion estimation in health economics (Terza, Basu 

and Rathouz 2008).  

The standard errors of the coefficients from the Tobit regressions are incorrect because 

the least squares residuals are estimated (Murphy and Topel 1985). The standard approach to 



accounting for the estimated regressor problem is to build a sandwich covariance matrix for the 

coefficients of the first-step least squares regressions and the Tobit regression in the second step. 

The sandwich covariance can be modified to be cluster robust. However, as Cameron and Miller 

(2015) showed for the case of single-equation regressions, the cluster-robust sandwich 

covariance is not full rank when there are fewer clusters than coefficients. We show in the 

technical appendix that a system of equations only exacerbates the rank deficiency problem. To 

overcome this issue, we bootstrap the covariance matrix. In the third step, we generate 4000 

bootstrap FoodAPS samples based on the PSU and stratum information. We repeat the first two 

steps 4000 times using the bootstrap samples. This creates 4000 vectors of coefficient estimates, 

which we use to build the covariance matrix for the least squares and reduced-form Tobit 

regression coefficients. In the fourth and final step, we use the minimum distance estimator to 

recover the structural coefficients of the EASI demand in equation (1) and their variance-

covariance. This variance-covariance is cluster- and stratification-robust and accounts for the use 

of estimated covariates in the control function and the correlation between budget share 

equations. The technical appendix provides an in-depth discussion of the econometric approach. 

Price Indexes and Instruments  

There are two potential causes of price endogeneity when using micro data. First, there is the 

well-known unit value bias (Cox and Wohlgenant 1987; Deaton 1988). A unit value, calculated 

as the ratio of food-group expenditure to food-group quantity, embeds both market price 

variation and the consumer’s quality choice. To obtain the price elasticities of quantities 

purchased, it is necessary to purge the quality element from the price variables in a demand 

model. Second, there is evidence that consumers conduct price search as an effective cost-

minimization strategy (Gauri, Sudhir and Talukdar 2008). The intensity of price search is 

correlated with preferences, thus prices paid are endogenous.  

We take a two-pronged approach to addressing price endogeneity. We create a price 

index for each food group 𝑖 to account for within-group product heterogeneity. We then 

instrument the price index of household ℎ using the average price index of other households and 

in other counties. We pay special attention to create price indexes and their instruments that are 

representative of the actual food prices faced by FoodAPS households and leverage all available 

information from FoodAPS and the IRI retail scanner data. In the sections below, we describe 

how we construct price indices for our food groups and the numeraire good.  



FAH Groups  

The initial prices used as inputs to the price index for each FAH group are calculated at the food 

code level, where 96.7% of the food codes are from either the USDA Food and Nutrient 

Database for Dietary Studies or the USDA National Nutrient Database for Standard Reference 

(USDA ERS 2016). For packaged foods, a food code encompasses a number of universal 

product codes (UPCs). UPC is the finest level of product differentiation available to consumers. 

For example, FoodAPS households reported purchasing 145 unique UPCs, differentiated by 

brand, size and flavor, under the food code 11432000 (yogurt, fruit variety, lowfat milk). The 

reason for not differentiating products at the UPC level is that a significant proportion of FAH 

purchases have missing UPCs because the items are random-weight or the UPCs are not 

reported.6 Any remaining unit value bias resulting from within-food code substitutions is 

addressed by the instrumental variables. To provide pricing information on items available at the 

retail stores but not purchased by FoodAPS households, we link FoodAPS FAH items with 

products in the IRI InfoScan retail scanner data by food code. The linked food codes represent 

76% of total FAH expenditures in FoodAPS. For each FAH group 𝑖, we create two sub-price 

indices 𝑝ℎ𝑖𝐿  and 𝑝ℎ𝑖𝑁𝐿 for foods linked and not linked with InfoScan, respectively. 𝑝ℎ𝑖𝐿  is 

constructed as a Fisher Ideal index as  

(2)                                               𝑝ℎ𝑖𝐿 = √∑ 𝑝𝑘ℎ𝑞𝑘0∑ 𝑝𝑘0𝑞𝑘0 ∑ 𝑝𝑘ℎ𝑞𝑘ℎ∑ 𝑝𝑘0𝑞𝑘ℎ 

where 𝑝𝑘ℎ is price of food code 𝑘 of food group 𝑖, 𝑞𝑘ℎ is quantity of 𝑘 purchased by household ℎ, and 𝑝𝑘0 and 𝑞𝑘0 are base price and quantity set to the FoodAPS sample averages, respectively. 

When 𝑞𝑘ℎ > 0, 𝑝𝑘ℎ is price paid by household ℎ. When 𝑞𝑘ℎ = 0, that is, ℎ did not purchase 𝑘, 

we set 𝑝𝑘ℎ to the InfoScan price of food code 𝑘 at the store where ℎ shopped in the survey week; 

and if the store is not in InfoScan, we set 𝑝𝑘ℎ to the average price of food code 𝑘 in InfoScan 

stores in the same county. Overall, 50% of total FAH expenditures in FoodAPS occurred in 

InfoScan stores. The Fisher Ideal controls for between-food code price variation by comparing 

prices of the same food code across households.    

                                                           

6 For fruit and vegetables, the bulk of which are expected to be random-weight, 21% of the 
expenditures are reported with a UPC. For grains, milk products, prepared meals, fats and oils, 
beverages, and snacks, 73% of the expenditures are reported with a UPC.    



Our approach to constructing 𝑝ℎ𝑖𝑁𝐿, the sub-price index for food codes not linked to 

InfoScan, is the household equivalent of the weighted country product dummy method (CPDW) 

originally developed for international price comparisons (Summers 1973; Rao 1990). We project 

food code-level prices onto a set of fixed effects using the following food group-specific 

weighted regression  

(3)                                             ln 𝑝𝑘ℎ = 𝛼ℎ + 𝛽𝑡 + 𝛾𝑝𝑠𝑢 + 𝛿𝑘 + 𝜖𝑘ℎ 

where 𝛼ℎ, 𝛽𝑡, 𝛾𝑝𝑠𝑢, and 𝛿𝑘 are the household, week, primary sampling unit (PSU), and food code 

fixed effects, respectively; 𝜖𝑘ℎ is the residual; and the weight is the budget share of food code 𝑘 

among unlinked (with InfoScan) food codes of food group 𝑖 purchased by household ℎ. 𝑝ℎ𝑖𝑁𝐿 is 

equal to exp(𝛼̂ℎ + 𝛽̂𝑡 + 𝛾𝑝𝑠𝑢) with a base value of one at the FoodAPS sample mean prices.7 By 

excluding the food code fixed effects 𝛿𝑘 from the creation of 𝑝ℎ𝑖𝑁𝐿, the CPDW method removes 

the effect of product heterogeneity at the food code level from the price index. 

With both sub-price indexes calculated, we construct the price variable 𝑝ℎ𝑖 in equation 

(1) as a Fisher Ideal index 

(4)                                                  𝑝ℎ𝑖 = √𝑝ℎ𝑖𝐿 𝑞0𝑖𝐿 +𝑝ℎ𝑖𝑁𝐿𝑞0𝑖𝑁𝐿1×𝑞0𝑖𝐿 +1×𝑞0𝑖𝑁𝐿 𝑝ℎ𝑖𝐿 𝑞ℎ𝑖𝐿 +𝑝ℎ𝑖𝑁𝐿𝑞ℎ𝑖𝑁𝐿1×𝑞ℎ𝑖𝐿 +1×𝑞ℎ𝑖𝑁𝐿                

where 𝑞0𝑖𝐿  and 𝑞0𝑖𝑁𝐿 are the sample mean purchase quantities of linked and unlinked food codes in 

food group 𝑖, respectively; 𝑞ℎ𝑖𝐿  and 𝑞ℎ𝑖𝑁𝐿 are household ℎ’s purchase quantities of linked and 

unlinked food codes in food group 𝑖, respectively; and the ones in the denominators are base 

values of 𝑝ℎ𝑖𝐿  and 𝑝ℎ𝑖𝑁𝐿. The resulting 𝑝ℎ𝑖 summarizes price variations of all food codes that 

belong to food group 𝑖. This is important because a partial representation of the constituent food 

codes would cause measurement error bias in the price coefficients in equation (1).  

Because of the use of food code-level prices as elements of the food group-level price 

index, 𝑝ℎ𝑖 does not control for a specific form of unit value bias arising from product 

differentiation within a food code. For example, a household with an above-average demand for 

food code 92410510 (soft drink, fruit flavored, caffeine free) may purchase larger volumes of 

private labels than someone who prefers quality over quantity and chooses name brands. An 

                                                           

7 To set the base at the sample mean, we create a reference household 0 whose purchase prices 
and quantities are the averages for all FoodAPS households. By restricting the household, time, 

and PSU fixed effects for the reference household to zero, 𝑝ℎ𝑖𝑁𝐿 has a normalized value of one at 
the sample mean.  



omitted variable bias results when unobserved taste for quality is correlated with food code-level 

prices. Another potential source of price endogeneity comes from the correlation between 

unobserved preference heterogeneity and the intensity of price search. If households who have a 

higher demand for a food are more motivated to find lower prices, then we have a case of reverse 

causality: the between-household demand variation drive differences in prices. This would bias 

estimates of the causal effect of prices on demand. We create instrumental variables to address 

these endogeneity concerns.    

To instrument 𝑝ℎ𝑖𝐿 , we calculate a retail Fisher Ideal price index using InfoScan at the 

chain-county-week level. The instrument 𝑝̅ℎ𝑖𝐿  is the weighted average of the retail index from the 

same retail chain in counties within a 500-mile radius (excluding the home county) of the store 

where ℎ shopped, where the weight is the inverse distance to the donor counties. If a store does 

not belong to any chain in InfoScan, we use the retail price index from all chains to create its 

instrument. The instrument for 𝑝ℎ𝑖𝑁𝐿 is calculated as 𝑝̅ℎ𝑖𝑁𝐿 = exp(𝛽̂𝑡 + 𝛾𝑝𝑠𝑢), which is equivalent 

to the time- and PSU-specific mean excluding the household ℎ-specific component 𝛼̂ℎ that may 

be endogenous with ℎ’s food demand. The final instrument for 𝑝ℎ𝑖 is created as a Fisher Ideal 

price index using 𝑝̅ℎ𝑖𝐿  and 𝑝̅ℎ𝑖𝑁𝐿 as its elements. Our approach to instrumenting has its roots in 

Hausman (1997) who used average prices in neighboring cities to instrument city-level prices. 

Identification of the price coefficients in equation (1) is based on the assumption that demand 

shocks are uncorrelated between areas after controlling for observed determinants of demand, 

which include time-invariant regional demand shocks and time-varying national demand shocks 

captured by the Census division and monthly fixed effects in the 𝑧ℎ𝑘 variables (in equation 1), 

respectively. Allcott et al. (2019b) and DellaVigna and Gentzkow (2019) advocated the use of 

same-chain prices in other counties to further increase instrument strength and convincingly 

argued that much of the between-chain price variations is due to differences in supply costs, 

which can be used to identify demand curves. The Hausman-type instrumentation strategy is 

widely used in studies of differentiated product demand where a high degree of specificity is 

required of the price instruments to identify the large number of own- and cross-price 

coefficients.    

FAFH Groups  

Unlike the eighteen FAH groups where retail scanner data provide important supplemental 

information on prices, the price indices and their instruments for the two FAFH groups rely 



entirely on information collected by FoodAPS. For each FAFH group, we fit equation (3) to 

FAFH acquisitions at the item (e.g., potato chips) or bundle (e.g., burger, drink, and fries) level 

depending on the level at which paid price is reported. The advantage of the CPDW method is 

that product heterogeneity in items/bundles containing multiple food codes is accounted for by 

the food code fixed effects. In contrast, a matched-basket index such as the Fisher Ideal index 

treats a unique combination of food codes as a unique product. The sheer number of unique 

FAFH products makes using a matched-basket index unwieldy. The two FAFH price indices are 𝑝ℎ𝑖 = exp(𝛼̂ℎ + 𝛽̂𝑡 + 𝛾𝑝𝑠𝑢) and the instruments are 𝑝̅ℎ𝑖 = exp(𝛽̂𝑡 + 𝛾𝑝𝑠𝑢), 𝑖 = 19 (0-star FAFH) 

and 20 (1-3 star FAFH).  

Numeraire  

The price index for the numeraire good is calculated as follows. The Bureau of Economic 

Analysis creates the annual regional price parities (RPPs) to measure cost of living differences 

across metropolitan statistical areas in a given year. We multiply the 2012 RPPs with Bureau of 

Labor Statistics’ monthly consumer price index (CPI) for all items to create the panel monthly 

RPPs. The panel RPP is linked with FoodAPS household based on county of residence and date 

of survey. For households in counties outside of a metropolitan statistical area (MSA), we impute 

their RPP using the average RPP of other counties within a 500-mile radius weighted by the 

inverse distances between the home county and these counties.8 The price index for the 

numeraire good 𝐽 for household ℎ is calculated as  

(5)                                            𝑝ℎ𝐽 = exp {ln(𝑅𝑃𝑃ℎ)−∑ 𝑤̅𝑗 ln 𝑝ℎ𝑗𝐽−1𝑗=1𝑤̅𝐽 } 

where 𝑤̅𝐽 is the sample mean budget share of the numeraire. The instrument 𝑝̅ℎ𝐽 is created by 𝑅𝑃𝑃̅̅ ̅̅ ̅̅ ℎ and 𝑝̅ℎ𝑗 for 𝑅𝑃𝑃ℎ and 𝑝ℎ𝑗 in equation (5), where 𝑅𝑃𝑃̅̅ ̅̅ ̅̅ ℎ is the average RPP in other MSAs 

weighted by their inverse distance to household ℎ’s home MSA.  

Empirical Results 

The log real total expenditure polynomials 𝑦ℎ𝑟 (𝑟 = 1, … , 𝐿) shape the Engel curves. We 

determine the optimal value of 𝐿 through a sequence of tests on the joint significance of the 𝑏𝑖𝐿 

coefficients starting with 𝐿 = 2. If the test statistic is significant, we increase 𝐿 by one to re-

                                                           

8 We obtain county distances from the National Bureau of Economic Research website: 
http://data.nber.org/data/county-distance-database.html   

http://data.nber.org/data/county-distance-database.html


estimate the EASI demand. At 𝐿 = 3, the minimum distance test (Wooldridge 2002, p. 444), 

which is 𝜒2-distributed with 20 degrees of freedom, produces a test statistic of 38.6 (p-value = 

0.007). At 𝐿 = 4, the test statistic is 27.8 and not statistically significant (p-value=0.114) at 

conventional levels. To avoid overfitting with too many polynomial terms, we choose 𝐿 = 3 as 

the preferred specification for the Engel curves.9 A test of the joint significance of the 𝑎𝑖𝑗𝑧 

coefficients on the price-obesity interaction terms strongly rejects the null of no interaction 

effects (p-value<1E−5).  

Figure 1 plots the mean Marshallian price elasticites over the full sample. All own-price 

elasticities are negative and precisely estimated.10 For every food group, consistent with a priori 

expectations, demand is more elastic with respect to its own price than other food prices. With 

the exception of grains and fruit, the healthier and less healthy foods of the same category are 

complements at the mean of the overall sample. When segmented by household type, the mean 

within-category cross-price elasticites (mean standard errors) between the healthier and less 

healthy options are −0.24 (0.07), −0.03 (0.07), −0.20 (0.07), and −0.01 (0.06) for lower-income 

households with obese members, lower-income households without obese members, higher-

income households with obese members, and higher-income households without obese members, 

respectively. The finding of significant complementarity for households with obese members 

suggests that variety in terms of having both healthy and less healthy foods is important for these 

consumers. The lack of significant complementarity for households without obese members 

means that these households are more willing to substitute as taxes and subsidies change the 

relative prices of healthy and less healthy foods. These findings, which are new to the best of our 

knowledge, have policy implications as will be clear in our later pricing simulations.           

In table 5, we present the overall, as well as household type-specific, mean Marshallian 

own-price elasticities. There is considerable preference heterogeneity that is associated with 

household members’ obesity status. For example, within an income class, the own-price 

                                                           

9 As an additional guard against overfitting, we conducted these minimum distance tests without 
imposing the homogeneity and symmetry restrictions on parameters of the latent budget share 
equations (1). These parametric restrictions help increase the precision of the remaining 
parameters, which results in the joint tests easily rejecting the null at high orders of income 
polynomials.     
10 Table A1 of the technical appendix reports the elasticities that underlie figure 1 and their 
standard errors. 



elasticity for 0-star grains (1-3 star beverages) among households without obese members is (less 

than) one half of the magnitude among households with obese members. However, demand by 

households without obese members is not always less elastic than those with obese members. For 

1-3 star vegetables and fruit, demand of households without obese members is almost twice as 

elastic as that of households with obese members.  

Table 6 presents expenditure elasticities for the overall sample and by household type. 

Consistent with Engel’s law, expenditure elasticities for most food groups decline as household 

income increases. It also appears that overall food demand of households without obese members 

is less elastic with respect to total expenditure changes than that of households with obese 

members. This pattern is more salient among lower-income households compared to higher-

income households.    

Pricing Simulations        

With a multitude of own- and cross-price effects, a more informative approach than comparing 

price and expenditure elasticities is to simulate various pricing strategies. To this end, we study 

three pricing scenarios: a one penny per ounce excise tax on 0-star beverages, a 30 percent 

subsidy on 1- to 3-star fruit and vegetables, and a fiscally neutral 10 percent subsidy on 1- to 3-

star foods paid for by an 8.84 percent11 tax on 0-star foods. Because our classification of 0-star 

beverages includes artificially sweetened beverages, the nature of our beverage tax is similar to 

Philadelphia’s sweetened beverage tax except that the city’s rate is at 1.5 pennies per ounce. The 

fruit and vegetable subsidy is of the same magnitude as the subsidy evaluated in the USDA 

Healthy Incentive Pilot experiment (Bartlett et al. 2014) with some differences in the eligible 

varieties of vegetables. The fiscally neutral subsidy-tax is new and benefits from the use of a 

nationally representative survey with adequate coverage on random-weight food purchases, 

which allows the projection of household-level estimates to the national level. For the sweetened 

beverage excise tax, we assume a 70 percent pass-through of the tax to retail prices. This is the 

average of ten studies of beverage excise tax pass-through rates in six US cities.12 To simulate 

                                                           

11 Based on the estimated EASI demand parameters, the 8.84 percent is the magnitude required 
to fully fund the 10 percent subsidy on starred foods and beverages.  
12 The ten studies are Roberto et al. (2019), Cawley et al. (2020b), and Seiler, Tuchman and Yao 
(2021) for Philadelphia, Silver et al. (2017) and Cawley and Frisvold (2017) for Berkeley, 
Cawley et al. (2021) for Boulder, Cawley et al. (2020a) and Léger and Powell (2021) for 



the effect of pricing strategies on nutrient and food component purchases, we follow Huang 

(1996) by combining food group elasticities with nutrient and food component densities to derive 

the elasticities of nutrient and food component demand with respect to food group prices and 

total expenditures. These derived elasticities are then used to simulate purchase changes in 

nutrients and food components. 

Table 7 reports the simulation results for the 1-penny-per-ounce tax on 0-star beverages. 

With a 70 percent pass-through, the sweetened beverage tax raises overall retail price by 21 

percent. Because of differences in unit values, the percent increase is higher for lower-income 

households at 24% versus the 22% and 19% for higher-income households with and without 

obese members, respectively. On average, the tax is predicted to reduce weekly calories 

purchased (baseline mean = 19,972 kcal) by 361 kcal/AME and increase HEI (baseline mean = 

53.07) by 0.25 points. Unlike the predictions of unintended increases in total fat and sodium 

purchases in Zhen et al.’s (2014) analysis of demand for a subset of FAH groups, our complete 

food demand system predicts a negligible change in solid fats and a weekly reduction of 194 

mg/AME in sodium purchases (baseline mean = 26,606 mg) for an average consumer. 

Interestingly, because the percent reduction in calories is larger than the percent reduction in the 

quantity of solid fats and sodium, the density of sodium per 1000 kcal and energy share of solid 

fats, both moderation components of the HEI, increase with a sweetened beverage tax. The 

higher price of 0-star beverages, which are estimated to be a complement to fruit and vegetables, 

reduces fruit and vegetable demand and their densities per 1000 kcal of purchases. These indirect 

effects offset a portion of the positive direct effect on HEI of the sweetened beverage tax, 

primarily owing to the reduced energy share of added sugars.  

The simulated changes are not uniform across household types. Households with obese 

members are expected to experience greater improvements in HEI than households of the same 

income class but without obese members. The increase in HEI is also predicted to be higher 

among lower-income households than among their higher-income counterparts. In fact, the HEI 

for higher-income households without obese members are not expected to change. Several 

factors help explain the lack of improvement in HEI for this household type. First, higher-income 

households without obese members are the only group that experiences a decline in total score of 

                                                           

Oakland, Falbe et al. (2020) for Oakland and San Francisco, and Powell and Leider (2020) for 
Seattle.  



the nine HEI adequacy components. Second, this group’s net improvement in the three 

moderation component scores is the lowest among the four household types.  

Households without obese members increase calories from untaxed foods to compensate 

for reduced calories from 0-star beverages. In contrast, households with obese members reduce 

calories from untaxed foods, which reflects their complementary relationships with 0-star 

beverages. The magnitude of compensation is 43% (405.78−233.12405.78 ) and 26% (286.21−210.45286.21 ) of 

the caloric reduction from 0-star beverages for lower- and higher-income households without 

obese members, respectively. Among households with obese members, the additional reductions 

in calories from other foods equal 8% (439.19−405.91405.91 )and 35% (568.46−419.57419.57 ) of the caloric 

reduction from 0-star beverages for lower- and higher-income households, respectively.  

Higher-income households with obese members have the highest overall weekly caloric 

reduction at 568 kcal/AME but the second lowest improvement in HEI. This is not surprising 

given that the HEI is density-based and the nutrition epidemiology literature has extensively 

documented a negative but imperfect correlation between energy intake and density-based diet 

quality indexes (Epstein et al. 2008; Ebbeling et al. 2012).  

In terms of tax burden, there is little difference in the amount of taxes paid between 

lower- and higher-income households when controlling for the obesity status of household 

members. Across household types, households with obese members pay more sweetened 

beverage taxes per AME than households without obese members. In aggregate, our model 

predicts a weekly national tax revenue of $85 million.  

Table 8 presents simulation results from a 30% subsidy on starred fruits and vegetables. 

The model predicts an average weekly increase of 774 calories per AME, one half of which 

comes from increased purchases of the subsidized fruits and vegetables and the rest from higher 

demand for other food and beverage due to their complementarity with starred fruit and 

vegetables. The magnitude of complementarity is highly variable across household types. The 

increases in calories from unsubsidized food and beverage are 5.9 (1290.53−126.51−60.96126.51+60.96 ) and 4.4 (1221.9−118.89−109.42118.89+109.42 ) times the amount from starred fruit and vegetables for lower- and higher-

income households with obese members, respectively. The striking differences in caloric 

increases between the subsidized and unsubsidized purchases can be partially attributed to 

unsubsidized food and beverage being much more energy dense than starred fruit and vegetables. 



The differences are less conspicuous when measuring purchase changes in grams13: the increases 

in unsubsidized food and beverage gram weight are 1.7 and 1.2 times the increases in starred 

fruit and vegetables for lower- and higher-income households with obese members, respectively. 

In contrast, the caloric increase in unsubsidized food and beverage purchases by lower-income 

households without obese members is 5 percent of the increase in starred fruit and vegetable 

purchases; and higher-income households without obese members compensate 41% of the 

increased calories from starred fruit and vegetable by reducing calories from other food and 

beverage. Because of the sizable increases in calories and other food components (e.g., refined 

grains) and nutrients (e.g., added sugars, sodium and solid fats), which the DGA recommends to 

limit, from unsubsidized food and beverage among households with obese members, the 

improvement of their HEI scores is negligible. The population average HEI increase of 1.5 points 

is entirely driven by the increases of 2.7 points or more among households without obese 

members.  

In terms of subsidy receipts per AME, higher-income households and households without 

obese members receive more than lower-income households and households with obese 

members, respectively. The national outlay in fruit and vegetable subsidy is projected to be $655 

million per week or $34 billion per year, 80% of which goes to higher-income households. This 

is obviously a huge expenditure considering that the total cost of the Supplemental Nutrition 

Assistance Program (SNAP) was $78 billion in FY2012,  

Table 9 presents results of the fiscally neutral policy of subsidizing starred food and 

beverage at 10 percent and taxing 0-star food and beverage at 8.84 percent. This policy is 

simulated to reduce weekly purchases by 351 calories per AME with larger declines among 

lower-income households. Average improvement in HEI is predicted to be 2.3 points with 

greater (smaller) gains for households without (with) obese members. Within an income class, 

households without obese members experience a 1.5-point higher HEI improvement than 

households with obese members. Households with obese members are net tax payers at 

$0.57/AME and $0.86/AME per week for lower- and higher-income households, respectively. 

Owing to their higher demand for starred food and beverage, households without obese members 

receive a net subsidy valued at $0.65/AME and $0.42/AME per week for lower- and higher-

                                                           

13 To conserve space, we do not report gram changes in table 8.  



income households, respectively. Compared to the sweetened beverage tax, household with 

obese members pay between 50 and 100 percent more in taxes under the fiscal neutral policy but 

also experience one to six times greater improvement in HEI.  

Comparisons with Previous Literature   

It is useful to compare our simulation results with those from past field, lab and quasi 

experiments on similar pricing policies. Because our sweetened beverage tax is most similar to 

Philadelphia’s in the scope of products covered but one half penny less than Philadelphia’s 1.5-

penny per ounce tax, it is most convenient to compare our own-price elasticity estimate of −1.90 

for 0-star beverages with those implied in the evaluations of the Philadelphia tax. At the higher 

end, Roberto et al.’s (2019) retail scanner data-based estimates of the sales reduction and tax 

pass-through imply an own-price elasticity of −2.77 for retail sales. At the lower end, the sales 

and price effects estimated in Seiler, Tuchman and Yao (2021), who also used retail scanner 

data, suggest a sales elasticity of −0.65. In the middle is Cawley et al.’s (2019) estimates of 

−1.01 for regular soda and −1.73 for diet soda based on purchase data collected through exit 

interviews at stores. Overall, our elasticity estimate for 0-star beverages for an average 

household falls within the ranges of elasticities implied by evaluations of the Philadelphia 

sweetened beverage tax. We do not find significant substitution to untaxed food and beverage 

calories at the population level. This is consistent with quasi experimental evidence from 

Philadelphia (Gibson et al. 2021) and Seattle (Oddo et al. 2021) based on retail scanner data. At 

the subpopulation level, our simulation does indicate meaningful caloric compensations among 

households without obese members, although the magnitude is not large enough to dominate the 

direct effect of a sweetened beverage tax. When examining micro-level responses using 

household scanner data, Lozano-Rojas and Carlin (2021) estimated that 15−27% of the reduction 

in beverage sugar in Philadelphia was offset by substitution to other sugary foods.    

Our 30-percent fruit and vegetable subsidy simulation produces a 1.51-point 

improvement in HEI but a sizable 774 kcal/AME per week increase in total calories purchased 

among lower-income households. The results for total calories appear to be inconsistent with 

some previous studies but more in line with others, while the predicted increases in HEI fall 

within the ranges of previous literature. The Healthy Incentive Pilot (HIP) was a randomized 

controlled trial during 2011-2012 that provided a 30% fruit and vegetable subsidy to SNAP 

households. HIP targeted a group of fresh, canned, frozen and dried fruit and vegetables without 



added sugars, fats, and sodium, which was very similar in coverage to the starred fruit and 

vegetable groups in our demand system. HIP is associated with a 4.7-point increase in HEI 

(Olsho et al. 2016) and a statistically insignificant 49-kcal reduction in daily total energy intake 

(Bartlett et al. 2014, p 162). Harnack et al. (2016) conducted a 4-arm RCT to predict the effects 

of a 30-percent fruit and vegetable subsidy and a prohibition of using SNAP benefits toward 

sugary beverages and baked goods and candy on SNAP participants’ diet quality. The authors 

found daily total calories and HEI of the subsidy arm (n = 68) to be 108.8 kcal lower and 1.8 

points higher than the control arm (n = 66), respectively. But neither is statistically significant.  

Bartlett et al and Harnack et al. measured energy intakes using 24-hour dietary recalls, 

while our demand system predicts purchase changes. Yu and Jaenicke (2020) estimated that 

31.9% of food purchases in FoodAPS were wasted (i.e., not consumed). This means that our 

demand system-predicted increase in daily energy intake would be 75 kcal/AME (774×(1−0.319)7 )—two thirds the predicted increase in energy purchased. Bartlett et al. (2014, p 

162) cautioned that their sample size (n = 2009) was not large enough to determine whether the 

increased intake of subsidized fruit and vegetables replaced other food intakes. It is possible that 

communications from the HIP project office to the treatment group about the targeted fruits and 

vegetables contributed to the above-average HEI improvement. For example, participants in the 

treatment group were significantly more likely to report having received messages about eating a 

healthy diet that includes fruit and vegetables than those in the control group; and among those 

eating ≥3 servings of fruit and vegetables per day at baseline, treated households subsequently 

had more positive attitudes toward fruit and vegetables than those in the control (Bartlett et al. 

2014, p.132). If the treatment itself improved HIP participants’ underlying preferences for fruit 

and vegetables, the HEI increase would be a combination of the effects of the subsidy and 

preference changes, the latter of which is not modeled in our simulations.     

Our fruit and vegetable subsidy results are closer to the findings of Epstein et al. (2010), 

in which 42 mothers performed a series of purchasing tasks in a lab environment set up to 

simulate the experience of shopping in a real grocery store. Epstein and coauthors found that 

subsidizing healthy foods led to increases in total calories purchased and no change in the 



macronutrient profile of foods purchased.14 The magnitude of the energy increase is large: a 10 

percent reduction in healthy food prices results in a 9.8 percent increase in total energy 

purchased (Epstein et al. 2010, p 409).              

We are not aware of any experimental studies on fiscally neutral pricing policies. The 

reason is that such an experiment requires ex ante quantification of how respondents would 

respond to taxes and subsidies, which is only possible with the econometric-simulation approach. 

Nevertheless, our fiscally neutral pricing results are qualitatively similar to previous 

experimental research combining both incentives and disincentives. For example, Harnack et al. 

(2016) found that prohibition of sugar drinks and snacks from SNAP food benefits plus a fruit 

and vegetable subsidy generated a larger improvement in HEI (4.3 points) than any one strategy 

alone.        

Conclusion 

This study aims to deepen our understanding of the implications of preference heterogeneity for 

nutrition-oriented pricing strategies. Using the nationally representative FoodAPS data, we 

estimate a 21-good complete food demand system that accounts for nearly all purchased calories 

and differentiates by food category and the nutrient profile of food products. We find substantial 

preference heterogeneity that is associated with the obesity status of household members. In 

particular, simulations based on the demand parameters provide three main findings. First, 

households with obese members would experience larger increases in the healthfulness of the 

food purchases following a sweetened beverage tax, than households of the same income class 

but without obese members. In addition, lower-income households experience greater 

improvement in healthfulness than their higher-income counterparts. Second, the positive effect 

of a fruit and vegetable price discount on healthfulness of purchases is almost entirely 

concentrated on households without obese members. Third, a fiscally neutral policy that taxes 

unhealthy food and uses the tax revenue to subsidize healthier options improves the healthfulness 

of purchases by households with and without obese members. The improvement in healthfulness 

is greater for households without obese members, who also receive a net subsidy. Households 

with obese members experience a smaller improvement in healthfulness of their purchases and 

are net tax payers.  

                                                           

14 There were 32 healthy food and beverage items, 10 of which were fruits and vegetables, and 
an equal number of less healthy food and beverage items in Epstein et al.’s experiment.   



The results on sweetened beverage taxes are encouraging for proponents of these taxes. 

The arguments against taxing sweetened beverages have been that these taxes would not improve 

nutrition of lower-income, nor obese consumers as much as that of higher-income and nonobese 

consumers, and there could be sizable unintended substitutions to less healthy, but untaxed foods 

and beverages that render the overall nutritional benefit of a beverage tax dubious. Our 

simulation exercise does not lend support to either argument.  

Like many taxes on consumption goods (e.g., gasoline), the regressive nature of a 

sweetened beverage tax remains a concern.15 To reduce regressivity, one proposal for recycling 

the tax revenue back to consumers is by subsidizing healthier foods (Valizadeh, Popkin and Ng 

2021). Our fruit and vegetable subsidy and the fiscally neutral tax-subsidy simulations suggest 

that not everyone will benefit equally from such a strategy due to preference heterogeneity. Of 

greatest concern to nutrition policymaking is how a tax-subsidy would impact lower-income 

obese consumers. Our simulations predict that these consumers would receive the lowest fruit 

and vegetable subsidy amount and be net tax payers under the fiscally neutral tax-subsidy 

regime. Future research should explore other means of recycling nutrition-oriented food and 

beverage taxes that reduce the regressivity of such taxes. There are useful lessons to learn from 

the environmental economics literature. For example, West and Williams (2004) estimated that 

using revenues from a gasoline tax to fund labor tax cuts makes taxing gasoline use substantially 

less regressive. 

These findings also have modeling implications for the literature on using food demand 

models to understand health and nutrition outcomes. Although flexible demand systems are 

theoretically preferred because of the flexibility in parameter estimates, practitioners are often 

forced to estimate a restricted functional form to reduce dimensionality.16 This is even more true 

                                                           

15 Regressivity refers to the extent to which the tax paid as a percent of income is inversely 
correlated with income. As lower-income and obese consumers pay very similar amounts of 
taxes as their higher-income and nonobese counterparts, a sweetened beverage tax is regressive.  
16 Dubois, Griffith and Nevo (2014) developed a direct utility function with constant elasticity of 
substitution over item-level food quantities, Cobb-Douglas sub-utility over food groups, and 
additive sub-utility over food characteristics. The authors used the model to understand the 
preference differences between France, the United Kingdom, and United States that could 
explain cross-country differences in diet quality and obesity prevalence. Allcott et al. (2019c) 
used this model to structurally identify the effect of food deserts on nutrition disparity. Although 
this novel utility function relaxes the between-food group weak separability assumption common 



when prices need to be instrumented: great specificity is required of the instruments in order to 

individually identify the large number of free parameters in a flexible demand system. The 

strategy of creating strong and specific instruments using same-chain prices in other locations, as 

recently advocated by DellaVigna and Gentzkow (2019) and Allcott et al. (2020), makes it more 

practical to instrument prices in a large flexible demand system. Our multi-step approach to 

estimating a large demand with endogenous prices, truncated purchases and complex survey 

design should also facilitate applications of flexible demand systems in the future. As we have 

documented that some of the distributional effects of food taxes and subsidies result from the 

estimated complementarity between food groups, demand models restricting goods to be 

substitutes will not be able to shed light on this important implication of food pricing policies.  
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Table 1. Characteristics of the FoodAPS Households     

  

lower-
income 
with obese 
members 

lower-
income 
without 
obese 
members 

higher-
income 
with obese 
members 

higher-
income 
without 
obese 
members 

Share of HH members that are     

≤18 yrs 0.26 0.10 0.16 0.12 

Hispanic 0.24 0.18 0.12 0.09 

black 0.23 0.17 0.11 0.08 

     

Share of adult HH members     

working at a job/business 0.37 0.29 0.67 0.64 

with one or more years of college 0.36 0.47 0.64 0.77 

that use tobacco  0.32 0.31 0.19 0.16 

     

Primary respondent's BMI 33.33 24.57 31.79 24.19 

Primary respondent's age 47.21 53.92 49.36 49.90 

HH size (persons) 3.10 1.79 2.71 2.20 

HH size (adult-male equivalents) 2.37 1.40 2.16 1.76 

Sample size 1436 1035 1109 1159 

Population (MM of people) 53.6 30.4 104.2 105.6 

Notes: All except population are sample means weighted by the survey weights. 
HH=household. Population is projected based on the household size and sampling weights.  

 

Table 2. Unit Values, Budget Shares, Purchase Quantities and Calories       

 
unit value  
($/100g)  budget share  

weekly quantity  
(100g/AME) 

Food group 
lower-
income 

higher-
income   

lower-
income 

higher-
income   

lower-
income 

higher-
income 

1. grains, 0 star 0.50 0.53  0.01 0.01  1.18 1.20 

2. grains, 1-3 star 0.31 0.41  0.04 0.04  6.80 7.02 

3. vegetables, 0 star  0.34 0.41  0.01 0.01  0.82 1.06 

4. vegetables, 1-3 star 0.23 0.29  0.05 0.05  9.26 11.08 

5. fruit, 0 star 0.31 0.39  0.00 0.01  0.58 0.91 

6. fruit, 1-3 star 0.33 0.39  0.04 0.04  5.66 7.70 

7. milk products, 0 star 0.21 0.30  0.05 0.05  11.87 11.30 

8. milk products, 1-3 star 0.11 0.12  0.01 0.01  3.13 6.51 

9. meat and protein, 0 star 0.62 0.74  0.10 0.07  7.28 6.43 

10. meat and protein, 1-3 star 0.72 0.79  0.08 0.06  4.92 5.49 

11. prepared meals, 0 star  0.51 0.60   0.05 0.04   4.37 4.79 



Table 2. Unit Values, Budget Shares, Purchase Quantities and Calories (Continued)   

 
unit value  
($/100g)  budget share  

weekly quantity  
(100g/AME) 

Food group 
lower-
income 

higher-
income   

lower-
income 

higher-
income   

lower-
income 

higher-
income 

12. prepared meals, 1-3 star 0.43 0.54  0.03 0.02  2.90 3.04 

13. fats and oils, 0 star 0.36 0.44  0.02 0.02  3.21 3.92 

14. fats and oils, 1-3 star 0.42 0.45  0.01 0.01  1.19 1.13 

15. beverages, 0 star  0.11 0.15  0.06 0.06  25.82 25.95 

16. beverages, 1-3 star 0.10 0.15  0.04 0.04  18.13 18.62 

17. snacks, 0 star 0.47 0.46  0.09 0.08  9.00 11.62 

18. snacks, 1-3 star 0.88 0.95  0.02 0.02  1.04 1.34 

19. FAFH, 0 star 0.78 1.06  0.23 0.29  13.42 19.72 

20. FAFH, 1-3 star 0.87 1.10  0.06 0.09  3.39 5.87 

N 2471 2268             

Notes: Sample means weighted by survey weights. The budget shares are shares of food 
groups in total food spending. Prepared meals include prepared meals, sides, and salads. Fats 
and oils include table fats, oils, salad dressings; and gravies, sauces, condiments and spices. 
Beverages include, among other nonalcoholic beverages, 100% fruit and vegetable juice. 
Snacks include sweets and salty snacks. FAFH=food away from home. Weekly quantities are 
in per adult-male equivalent.   

 

Table 3. Importance of Starred Foods in Purchases   

 Quantity share of starred foods in a food category 

Food category 

lower-
income 
with obese 
members 

lower-income 
without obese 
members 

higher-
income with 
obese 
members 

higher-income 
without obese 
members 

grains 0.84 0.88 0.85 0.85 

vegetables 0.92 0.92 0.92 0.91 

fruit 0.91 0.91 0.90 0.89 

milk product 0.20 0.22 0.32 0.40 

meat and protein 0.38 0.44 0.46 0.47 

prepared meals 0.40 0.39 0.39 0.38 

fats and oils 0.28 0.25 0.24 0.21 

beverages 0.37 0.49 0.38 0.46 

snacks 0.12 0.08 0.12 0.09 

FAFH 0.16 0.28 0.21 0.25 

N 1436 1035 1109 1159 

Notes: Sample mean shares weighted by survey weights.  

 



Table 4. Nutrient Densities, Total Nutrient Purchases, and Overall Nutritional Quality 

Nutrient/food component  

lower-
income with 
obese 
members 

lower-
income 
without 
obese 
members 

higher-
income with 
obese 
members 

higher-
income 
without 
obese 
members 

 per 100 g of food 

dietary fiber (g) 0.92 0.98 0.95 1.14 

folic acid (mcg) 14.23 12.67 12.38 13.29 

iron (mg) 0.98 0.94 0.93 1.00 

magnesium (mg) 15.59 16.62 16.29 18.87 

calcium (mg) 53.57 53.76 53.77 57.11 

potassium (mg) 150.80 161.47 156.76 173.81 

whole grains (oz. eq.) 0.05 0.05 0.05 0.06 

total fruita (cup eq.) 0.05 0.05 0.05 0.06 

total vegetablesb (cup eq.) 0.08 0.10 0.09 0.11 

solid fats (g) 2.65 2.42 2.52 2.79 

added sugars (tsp eq.) 1.43 1.27 1.24 1.35 

sodium (mg) 186.64 171.26 180.66 175.15 

refined grains (oz. eq.) 0.38 0.35 0.34 0.34 

energy (kcal) 137.25 130.13 130.50 137.44 

     

 per dollar of food spending 

dietary fiber (g) 2.70 2.77 2.15 2.36 

folic acid (mcg) 41.79 35.67 28.13 27.55 

iron (mg) 2.88 2.64 2.11 2.08 

magnesium (mg) 45.76 46.78 37.02 39.11 

calcium (mg) 157.29 151.30 122.17 118.35 

potassium (mg) 442.75 454.48 356.20 360.20 

whole grains (oz. eq.) 0.13 0.14 0.12 0.13 

total fruita (cup eq.) 0.14 0.14 0.11 0.12 

total vegetablesb (cup eq.) 0.25 0.29 0.21 0.23 

solid fats (g) 7.77 6.80 5.73 5.78 

added sugars (tsp eq.) 4.20 3.56 2.83 2.80 

sodium (mg) 547.99 482.04 410.49 362.97 

refined grains (oz. eq.) 1.12 0.98 0.78 0.70 

energy (kcal) 402.99 366.28 296.52 284.82 

     

 weekly purchases per adult-male equivalent  

whole grains (oz. eq.) 6.0 6.7 8.0 9.7 

total fruita (cup eq.) 6.0 7.0 7.9 8.7 



Table 4. Nutrient Densities, Total Nutrient Purchases, and Overall Nutritional Quality 
(Continued) 

Nutrient/food component  

lower-
income with 
obese 
members 

lower-
income 
without 
obese 
members 

higher-
income with 
obese 
members 

higher-
income 
without 
obese 
members 

 weekly purchases per adult-male equivalent  

total vegetablesb (cup eq.) 11.0 14.3 14.6 16.7 

solid fats (g) 344.8 339.4 396.0 425.4 

added sugars (tsp eq.) 186.1 177.8 195.4 206.2 

sodium (mg) 24305.7 24052.2 28381.6 26693.1 

refined grains (oz. eq.) 49.5 48.9 53.9 51.3 

energy (kcal) 17874.3 18276.0 20501.4 20946.4 
     

HEI-2010c 48.75 50.68 52.75 55.69 

Notes: Sample means weighted by survey weights. aincludes whole fruit and fruit juice. 
bexcludes legumes. cbased on households that purchased a positive amount of dietary energy.  

 

Table 5. Marshallian Own-price Elasticities       

Food group Overall 

lower-
income  
with 
obese 
members 

lower-
income 
without 
obese 
members 

higher-
income 
with 
obese 
members 

higher-
income 
without 
obese 
members 

1. grains, 0 star -0.748 -1.020 -0.498 -1.023 -0.518 

 (0.088) (0.090) (0.092) (0.090) (0.084) 

2. grains, 1-3 star -1.240 -1.281 -1.282 -1.208 -1.235 

 (0.066) (0.071) (0.060) (0.071) (0.062) 

3. vegetables, 0 star -1.916 -2.060 -2.038 -1.841 -1.880 

 (0.102) (0.108) (0.111) (0.100) (0.098) 

4. vegetables, 1-3 star -1.423 -1.159 -2.050 -0.849 -1.757 

 (0.131) (0.121) (0.152) (0.125) (0.132) 

5. fruit, 0 star -2.128 -1.612 -2.508 -1.620 -2.586 

 (0.164) (0.194) (0.190) (0.142) (0.160) 

6. fruit, 1-3 star -1.347 -0.884 -1.704 -0.947 -1.710 

 (0.106) (0.103) (0.111) (0.101) (0.109) 

7. milk products, 0 star -1.225 -1.887 -1.815 -0.969 -0.982 

 (0.146) (0.159) (0.166) (0.143) (0.138) 

8. milk products, 1-3 star -1.669 -2.198 -1.445 -1.956 -1.327 

  (0.089) (0.121) (0.089) (0.093) (0.073) 



Table 5. Marshallian Own-price Elasticities       

Food group Overall 

lower-
income  
with 
obese 
members 

lower-
income 
without 
obese 
members 

higher-
income 
with 
obese 
members 

higher-
income 
without 
obese 
members 

9. meat and protein, 0 star -0.978 -1.178 -0.935 -1.084 -0.836 

 (0.107) (0.100) (0.104) (0.109) (0.108) 

10. meat and protein, 1-3 star -1.980 -1.954 -1.708 -2.225 -1.888 

 (0.061) (0.057) (0.055) (0.068) (0.058) 

11. prepared meals, 0 star -1.142 -1.405 -1.660 -0.794 -1.144 

 (0.118) (0.124) (0.137) (0.116) (0.110) 

12. prepared meals, 1-3 star -1.848 -1.309 -1.455 -2.034 -2.032 

 (0.107) (0.108) (0.110) (0.109) (0.104) 

13. fats and oils, 0 star -1.700 -2.365 -1.435 -2.063 -1.262 

 (0.138) (0.178) (0.121) (0.162) (0.110) 

14. fats and oils, 1-3 star -1.738 -1.701 -1.858 -1.627 -1.797 

 (0.086) (0.089) (0.089) (0.089) (0.082) 

15. beverages, 0 star -1.902 -1.672 -1.912 -1.857 -2.018 

 (0.066) (0.064) (0.068) (0.066) (0.065) 

16. beverages, 1-3 star -1.733 -2.539 -1.034 -2.518 -1.060 

 (0.088) (0.106) (0.079) (0.096) (0.079) 

17. snacks, 0 star -0.544 -0.983 -0.609 -0.614 -0.305 

 (0.151) (0.167) (0.142) (0.161) (0.140) 

18. snacks, 1-3 star -2.312 -2.420 -2.214 -2.463 -2.188 

 (0.137) (0.149) (0.147) (0.147) (0.122) 

19. FAFH, 0 star -0.777 -0.605 -0.582 -0.875 -0.828 

 (0.076) (0.080) (0.088) (0.071) (0.074) 

20. FAFH, 1-3 star -0.880 -0.882 -0.853 -0.898 -0.874 

 (0.078) (0.082) (0.077) (0.083) (0.074) 

21. numeraire  -1.725 -1.846 -1.707 -1.772 -1.650 

 (0.051) (0.062) (0.055) (0.049) (0.046) 

N 4739 1436 1035 1109 1159 

Notes: Sample mean estimates. Standard errors in parentheses.  

 

 

 

 

 

 

 

 



Table 6. Total Expenditure Elasticities     

Food group Overall 

lower-
income 
with 
obese 
members 

lower-
income 
without 
obese 
members 

higher-
income 
with 
obese 
members 

higher-
income 
without 
obese 
members 

1. grains, 0 star 1.229 1.810 1.775 1.050 0.970 

 (0.148) (0.178) (0.196) (0.141) (0.152) 

2. grains, 1-3 star 0.929 0.991 0.941 0.910 0.918 

 (0.075) (0.082) (0.078) (0.085) (0.079) 

3. vegetables, 0 star 1.506 1.743 1.563 1.543 1.371 

 (0.171) (0.183) (0.191) (0.155) (0.173) 

4. vegetables, 1-3 star 1.113 1.371 0.990 1.230 0.970 

 (0.114) (0.130) (0.135) (0.107) (0.107) 

5. fruit, 0 star 1.252 2.869 1.569 1.388 0.447 

 (0.275) (0.432) (0.430) (0.241) (0.281) 

6. fruit, 1-3 star 1.278 1.620 1.291 1.376 1.072 

 (0.106) (0.148) (0.142) (0.111) (0.111) 

7. milk products, 0 star 0.720 0.621 0.918 0.488 0.872 

 (0.098) (0.112) (0.122) (0.113) (0.102) 

8. milk products, 1-3 star 1.338 1.436 1.630 1.134 1.364 

 (0.164) (0.209) (0.200) (0.155) (0.157) 

9. meat and protein, 0 star 0.918 1.047 0.963 0.871 0.892 

 (0.079) (0.084) (0.096) (0.080) (0.084) 

10. meat and protein, 1-3 star 1.039 1.165 1.119 0.971 1.021 

 (0.069) (0.075) (0.080) (0.068) (0.066) 

11. prepared meals, 0 star 1.208 1.202 1.397 1.059 1.263 

 (0.136) (0.127) (0.147) (0.109) (0.105) 

12. prepared meals, 1-3 star 1.139 1.308 1.143 1.131 1.082 

 (0.125) (0.139) (0.143) (0.116) (0.114) 

13. fats and oils, 0 star 1.091 1.372 1.350 0.905 1.047 

 (0.163) (0.188) (0.176) (0.147) (0.129) 

14. fats and oils, 1-3 star 1.471 1.435 1.506 1.396 1.533 

 (0.161) (0.178) (0.188) (0.147) (0.144) 

15. beverages, 0 star 1.067 1.019 1.177 0.899 1.180 

 (0.088) (0.085) (0.105) (0.073) (0.075) 

16. beverages, 1-3 star 1.172 1.274 1.177 1.175 1.132 

 (0.084) (0.098) (0.089) (0.082) (0.084) 

17. snacks, 0 star 0.993 1.213 0.951 1.068 0.868 

 (0.098) (0.092) (0.090) (0.084) (0.090) 

18. snacks, 1-3 star 0.978 1.186 0.928 1.020 0.887 

  (0.157) (0.148) (0.163) (0.131) (0.134) 



Table 6. Total Expenditure Elasticities (Continued)    

Food group Overall 

lower-
income 
with 
obese 
members 

lower-
income 
without 
obese 
members 

higher-
income 
with 
obese 
members 

higher-
income 
without 
obese 
members 

19. FAFH, 0 star 0.905 0.762 0.899 0.906 0.957 

 (0.050) (0.049) (0.058) (0.048) (0.052) 

20. FAFH, 1-3 star 1.198 1.257 1.036 1.335 1.124 

 (0.070) (0.082) (0.087) (0.066) (0.070) 

21. numeraire  0.975 0.947 1.005 0.961 0.985 

 (0.015) (0.015) (0.015) (0.015) (0.016) 

N 4739 1436 1035 1109 1159 

Notes: Sample mean estimates. Standard errors in parentheses.    

 

Table 7. The Simulated Effects of a One Penny per Ounce Tax on Sweetened Beverages 

Predicted changes in  overall 

lower-
income 
with 
obese 
members 

lower-
income 
without 
obese 
members 

higher-
income 
with 
obese 
members 

higher-
income 
without 
obese 
members 

total fruit purchased (cup eq.) -0.46 -0.48 -0.39 -0.56 -0.40 
 (0.05) (0.05) (0.06) (0.05) (0.05) 

total veg purchased (cup eq.) -0.42 -0.06 -0.24 -0.46 -0.59 
 (0.09) (0.08) (0.11) (0.09) (0.09) 

whole grains purchased (oz. eq.) 0.23 0.13 0.25 0.19 0.30 
 (0.06) (0.05) (0.06) (0.07) (0.06) 

refined grains purchased (oz. eq.) 0.34 0.46 0.53 0.28 0.27 
 (0.24) (0.28) (0.27) (0.25) (0.21) 

sodium purchased (mg) -193.52 -66.53 299.41 -556.43 -122.45 
 (112.72) (141.55) (120.40) (120.29) (93.53) 

added sugars purchased (tsp eq.) -17.90 -24.20 -23.37 -19.42 -12.48 
 (1.03) (1.23) (1.11) (1.12) (0.86) 

solid fats purchased (g) 0.10 -4.83 6.33 -5.87 4.47 
 (1.90) (1.99) (1.95) (2.10) (1.70) 

total calories purchased -360.56 -439.19 -233.12 -568.46 -210.45 
 (68.72) (74.55) (72.18) (75.57) (59.90) 
      

calories purchased from      

1. grains, 0 star -13.63 15.66 4.80 -22.69 -23.42 
  (6.01) (7.89) (6.93) (5.24) (5.62) 



Table 7. The Simulated Effects of a One Penny per Ounce Tax on Sweetened Beverages 
(Continued)  

Predicted changes in  overall 

lower-
income 
with 
obese 
members 

lower-
income 
without 
obese 
members 

higher-
income 
with 
obese 
members 

higher-
income 
without 
obese 
members 

calories purchased from      

2. grains, 1-3 star 57.71 54.10 72.74 49.98 59.90 
 (17.02) (18.02) (18.85) (18.31) (14.98) 

3. vegetables, 0 star -4.11 -3.44 -2.67 -5.45 -3.77 
 (0.74) (0.57) (0.84) (0.69) (0.80) 

4. vegetables, 1-3 star -21.29 -3.22 -11.82 -25.21 -28.01 
 (5.58) (5.56) (7.98) (5.25) (4.99) 

5. fruit, 0 star -2.51 0.78 -10.17 5.00 -7.02 
 (1.82) (1.48) (2.27) (1.68) (1.90) 

6. fruit, 1-3 star -26.72 -17.59 -17.85 -33.29 -27.88 
 (4.28) (4.20) (4.73) (4.32) (4.13) 

7. milk products, 0 star 35.86 -45.50 134.59 -61.52 108.41 
 (14.18) (15.92) (16.38) (13.70) (13.16) 

8. milk products, 1-3 star -9.60 -10.02 12.66 -30.31 -0.71 
 (4.07) (2.99) (4.15) (3.91) (4.56) 

9. meat and proteins, 0 star -5.49 4.54 35.02 -34.11 -0.47 
 (12.01) (14.71) (13.78) (14.00) (8.81) 

10. meat and proteins, 1-3 star -11.54 0.94 5.70 -23.06 -12.89 
 (7.34) (7.19) (8.38) (8.32) (6.24) 

11. prepared meals, 0 star -32.62 0.28 26.49 -76.50 -30.18 
 (9.30) (11.52) (10.76) (10.33) (7.16) 

12. prepared meals, 1-3 star -15.52 20.19 -6.05 -18.13 -29.65 
 (6.57) (8.42) (7.85) (6.70) (5.35) 

13. fats and oils, 0 star -10.08 4.34 20.79 -31.81 -8.76 
 (11.57) (12.82) (14.26) (13.04) (8.99) 

14. fats and oils, 1-3 star 44.46 121.43 46.85 54.99 7.42 
 (9.69) (16.99) (12.12) (10.45) (5.60) 

15. beverages, 0 star -362.69 -405.91 -405.78 -419.57 -286.21 
 (11.86) (14.56) (13.52) (14.03) (8.56) 

16. beverages, 1-3 star -20.54 -58.69 -18.73 -48.60 15.10 
 (7.96) (6.89) (10.62) (8.99) (6.59) 

17. snacks, 0 star -62.50 -164.72 -140.32 -21.65 -30.90 
 (28.64) (30.83) (27.92) (28.31) (28.38) 

18. snacks, 1-3 star 59.66 29.96 87.66 28.16 85.74 
  (7.70) (6.75) (8.36) (7.68) (7.84) 



Table 7. The Simulated Effects of a One Penny per Ounce Tax on Sweetened Beverages 
(Continued)  

Predicted changes in  overall 

lower-
income 
with 
obese 
members 

lower-
income 
without 
obese 
members 

higher-
income 
with 
obese 
members 

higher-
income 
without 
obese 
members 

calories purchased from      

19. FAFH, 0 star 57.97 15.13 -31.68 142.27 37.48 
 (17.71) (17.14) (15.03) (22.66) (14.89) 

20. FAFH, 1-3 star -17.39 2.55 -35.36 3.04 -34.62 
 (6.64) (5.36) (6.20) (8.20) (6.01) 
      

density of        

total fruit (cup eq./1000 kcal) -0.02 -0.02 -0.02 -0.02 -0.01 
 (0.00) (0.00) (0.00) (0.00) (0.00) 

total veg (cup eq./1000 kcal) -0.01 0.01 0.00 0.00 -0.02 
 (0.00) (0.00) (0.01) (0.00) (0.00) 

sodium density (g/1000 kcal) 0.02 0.03 0.03 0.01 0.01 
 (0.00) (0.00) (0.00) (0.00) (0.00) 
      

share of energy from added 
sugars (percentage points) 

-1.13 -1.73 -1.73 -1.07 -0.76 

(0.06) (0.08) (0.07) (0.06) (0.05) 
share of energy from solid fats 

(percentage points) 
0.29 0.20 0.46 0.22 0.33 

(0.05) (0.06) (0.05) (0.05) (0.04) 
HEI 0.25 0.82 0.56 0.19 -0.01 

 (0.11) (0.13) (0.12) (0.11) (0.09) 
weekly tax paid ($) 0.35 0.38 0.29 0.42 0.30 

 (0.01) (0.01) (0.01) (0.01) (0.01) 
projected weekly tax revenue 

(million $) 85.23 15.87 7.24 36.13 25.98 

Notes: Sample means weighted by survey weights. All quantity statistics are reported on a per-
AME-week basis, except for the projected tax revenue from the population. Standard errors in 
parentheses.   

 

 

 

 

 

 

 

 

 



Table 8. The Simulated Effects of a 30 Percent Subsidy on Starred Fruit and Vegetables 

Predicted changes in  overall 

lower-
income 
with 
obese 
members 

lower-
income 
without 
obese 
members 

higher-
income 
with 
obese 
members 

higher-
income 
without 
obese 
members 

total fruit purchased 1.62 0.79 1.86 0.98 2.34 

 (0.22) (0.16) (0.20) (0.21) (0.25) 

total veg purchased 3.66 1.94 4.89 2.22 5.00 

 (0.42) (0.26) (0.46) (0.39) (0.49) 

whole grains purchased  -0.84 0.21 -0.68 -0.43 -1.60 

 (0.20) (0.12) (0.17) (0.19) (0.24) 

refined grains purchased 0.81 4.71 -0.48 3.46 -2.27 

 (0.71) (0.61) (0.74) (0.65) (0.79) 

sodium purchased  1203.12 1503.84 264.75 2216.44 613.47 

 (336.02) (338.69) (329.26) (332.19) (340.51) 

added sugars purchased  13.61 23.56 13.12 19.33 5.60 

 (3.02) (2.57) (2.63) (3.10) (3.25) 

solid fats purchased 5.12 16.76 -6.34 19.03 -6.19 

 (6.86) (5.79) (6.24) (7.23) (7.17) 

total calories purchased 774.05 1290.53 529.62 1221.90 314.90 

 (183.53) (155.06) (179.01) (179.39) (198.71) 

calories purchased from      

1. grains, 0 star 40.41 31.37 -26.15 91.67 26.08 

 (19.14) (20.99) (16.77) (19.71) (18.85) 

2. grains, 1-3 star -231.82 53.71 -239.53 -125.75 -417.16 

 (56.99) (47.86) (58.48) (54.29) (61.93) 

3. vegetables, 0 star 2.99 7.97 1.21 7.94 -2.15 

 (2.14) (1.39) (2.23) (1.90) (2.58) 

4. vegetables, 1-3 star 223.34 126.51 332.63 118.89 303.42 

 (28.85) (19.63) (34.26) (26.00) (32.55) 

5. fruit, 0 star -12.99 3.40 1.61 -16.73 -21.07 

 (4.62) (3.26) (4.64) (4.28) (5.39) 

6. fruit, 1-3 star 159.67 60.96 171.27 109.42 231.47 

 (19.04) (14.04) (18.39) (18.64) (21.39) 

7. milk products, 0 star -189.47 -12.71 -240.48 -72.78 -328.79 

 (58.18) (49.78) (54.96) (55.73) (64.31) 

8. milk products, 1-3 star 17.73 -18.27 50.48 -46.41 70.61 

 (10.07) (5.71) (8.11) (9.47) (12.83) 

9. meat and proteins, 0 star -71.09 -80.26 -326.84 127.83 -136.93 

  (41.44) (43.74) (47.67) (45.25) (35.34) 



Table 8. The Simulated Effects of a 30 Percent Subsidy on Starred Fruit and Vegetables 
(Continued) 

Predicted changes in  overall 

lower-
income 
with 
obese 
members 

lower-
income 
without 
obese 
members 

higher-
income 
with 
obese 
members 

higher-
income 
without 
obese 
members 

calories purchased from      

10. meat and proteins, 1-3 star 55.52 19.50 60.06 42.74 77.16 

 (13.93) (11.14) (13.31) (15.55) (13.86) 

11. prepared meals, 0 star 251.88 177.86 183.48 300.12 264.04 

 (31.83) (29.17) (29.96) (34.77) (31.09) 

12. prepared meals, 1-3 star 8.37 28.14 -6.06 25.50 -7.40 

 (20.19) (20.53) (20.76) (21.95) (18.46) 

13. fats and oils, 0 star -22.63 -249.06 91.65 -193.10 155.38 

 (53.82) (48.53) (56.25) (58.92) (50.77) 

14. fats and oils, 1-3 star 11.28 59.60 -73.42 77.83 -29.57 

 (23.43) (30.99) (29.35) (23.09) (18.88) 

15. beverages, 0 star 124.88 59.13 59.74 191.89 117.86 

 (17.83) (17.10) (16.52) (23.42) (14.08) 

16. beverages, 1-3 star -67.37 11.17 24.11 -102.14 -100.15 

 (20.53) (13.57) (26.19) (19.87) (21.56) 

17. snacks, 0 star 363.66 724.15 479.61 343.50 208.84 

 (119.89) (95.95) (96.52) (120.11) (136.61) 

18. snacks, 1-3 star -175.55 -32.55 -149.20 -142.44 -263.00 

 (27.37) (21.22) (21.81) (30.04) (29.41) 

19. FAFH, 0 star 135.14 287.28 -57.16 421.11 -81.17 

 (48.18) (39.24) (32.71) (64.16) (44.04) 

20. FAFH, 1-3 star 150.09 32.62 192.61 62.82 247.43 

 (21.69) (12.16) (19.01) (23.79) (24.39) 
density of        

total fruit (cup eq./1000 kcal) 0.14 0.02 0.67 0.02 0.10 
 (0.01) (0.01) (0.02) (0.01) (0.01) 

total veg (cup eq./1000 kcal) 0.31 0.06 1.42 0.06 0.22 
 (0.02) (0.01) (0.05) (0.02) (0.03) 

sodium density (g/1000 kcal) -0.09 -0.02 -0.72 0.02 0.01 

 (0.01) (0.01) (0.02) (0.01) (0.01) 

      

share of energy from added 
sugars (percentage points) 

0.82 0.85 3.32 0.50 0.19 

(0.17) (0.15) (0.22) (0.16) (0.17) 
share of energy from solid fats 

(percentage points) 
-1.67 -0.40 -9.85 -0.18 -0.43 

(0.20) (0.16) (0.32) (0.19) (0.19) 



Table 8. The Simulated Effects of a 30 Percent Subsidy on Starred Fruit and Vegetables 
(Continued) 

Predicted changes in  overall 

lower-
income 
with 
obese 
members 

lower-
income 
without 
obese 
members 

higher-
income 
with 
obese 
members 

higher-
income 
without 
obese 
members 

HEI 1.51 0.04 2.89 0.10 2.68 

 (0.38) (0.33) (0.40) (0.38) (0.40) 

Subsidy receipt ($) 2.98 1.60 2.67 2.63 3.88 

 (0.09) (0.05) (0.08) (0.08) (0.12) 
projected weekly subsidy outlay 

(million $) 654.53 64.49 63.11 214.17 312.76 

Notes: Sample means weighted by survey weights. All quantity statistics are reported on a per-
AME-week basis, except for the projected subsidy for the population. Standard errors in 
parentheses.  

 

Table 9. The Simulated Effects of a Fiscally Neutral 10% Subsidy on Starred Foods Funded by 
a 8.8% Tax on 0-Star Foods 

Predicted changes in  overall 

lower-
income 
with 
obese 
members 

lower-
income 
without 
obese 
members 

higher-
income 
with 
obese 
members 

higher-
income 
without 
obese 
members 

total fruit purchased -0.59 -0.62 0.01 -1.24 -0.27 

 (0.18) (0.14) (0.15) (0.20) (0.18) 

total veg purchased 1.88 0.97 3.09 0.72 2.72 

 (0.32) (0.22) (0.36) (0.28) (0.37) 

whole grains purchased  0.07 0.06 0.61 -0.55 0.37 

 (0.20) (0.14) (0.16) (0.22) (0.21) 

refined grains purchased -0.18 -0.19 2.45 -2.14 0.47 

 (0.68) (0.66) (0.65) (0.71) (0.67) 

sodium purchased  -1756.64 -2398.22 -2362.99 -1218.56 -1742.62 

 (300.17) (343.46) (313.23) (297.06) (282.44) 

added sugars purchased  -11.90 -11.65 -9.84 -15.72 -9.64 

 (2.41) (2.27) (2.23) (2.51) (2.44) 

solid fats purchased -36.94 -36.15 -51.59 -25.83 -40.95 

 (6.13) (5.58) (6.08) (6.29) (6.22) 

total calories purchased -351.46 -458.43 -432.60 -304.60 -321.80 

 (150.09) (142.70) (150.49) (151.06) (151.83) 

calories purchased from      

1. grains, 0 star -31.61 -3.32 -11.28 -37.58 -44.21 

  (17.36) (20.36) (15.53) (16.67) (17.48) 



Table 9. The Simulated Effects of a Fiscally Neutral 10% Subsidy on Starred Foods Funded by 
a 8.8% Tax on 0-Star Foods (Continued) 

Predicted changes in  overall 

lower-
income 
with 
obese 
members 

lower-
income 
without 
obese 
members 

higher-
income 
with 
obese 
members 

higher-
income 
without 
obese 
members 

calories purchased from      

2. grains, 1-3 star -23.12 -15.37 228.61 -244.00 62.30 

 (60.33) (57.03) (55.62) (66.30) (58.39) 

3. vegetables, 0 star -9.40 1.26 -12.03 -1.85 -18.38 

 (1.79) (1.18) (1.86) (1.50) (2.21) 

4. vegetables, 1-3 star 118.40 73.02 235.93 21.69 170.79 

 (21.36) (16.28) (26.65) (17.90) (24.09) 

5. fruit, 0 star -23.63 0.37 -9.85 -23.37 -37.38 

 (4.54) (3.19) (4.67) (3.98) (5.43) 

6. fruit, 1-3 star -65.45 -99.79 1.86 -143.16 -14.52 

 (14.70) (11.93) (12.82) (16.62) (14.83) 

7. milk products, 0 star -278.07 -128.71 -489.24 -30.96 -455.53 

 (60.55) (52.28) (63.21) (55.74) (66.45) 

8. milk products, 1-3 star 30.12 6.59 14.96 27.35 46.18 

 (9.64) (6.48) (6.99) (9.60) (11.74) 

9. meat and proteins, 0 star -409.40 -490.61 -423.29 -454.28 -339.19 

 (37.03) (42.98) (42.40) (39.68) (30.86) 

10. meat and proteins, 1-3 star 219.74 155.96 171.46 263.70 224.54 

 (12.68) (10.21) (12.23) (14.48) (12.30) 

11. prepared meals, 0 star -49.89 -151.76 -129.15 -8.49 -18.35 

 (27.45) (31.89) (27.62) (30.37) (23.44) 

12. prepared meals, 1-3 star 85.78 35.16 68.24 91.43 105.70 

 (18.21) (18.90) (20.14) (17.68) (17.70) 

13. fats and oils, 0 star -143.96 -251.67 -256.32 -104.41 -97.12 

 (44.75) (44.73) (50.89) (44.95) (42.42) 

14. fats and oils, 1-3 star 200.82 249.81 135.18 275.55 146.41 

 (20.98) (29.74) (23.42) (23.68) (14.78) 

15. beverages, 0 star -180.52 -201.05 -226.67 -176.52 -160.00 

 (16.26) (17.54) (18.01) (19.39) (12.67) 

16. beverages, 1-3 star 108.32 185.90 29.15 241.38 1.58 

 (18.24) (14.19) (19.72) (19.65) (18.05) 

17. snacks, 0 star -53.60 -77.45 157.92 -282.92 64.20 

 (92.26) (82.70) (76.16) (94.63) (99.50) 

18. snacks, 1-3 star 93.75 106.95 42.42 145.33 65.75 

  (22.90) (20.75) (18.68) (26.57) (22.23) 



Table 9. The Simulated Effects of a Fiscally Neutral 10% Subsidy on Starred Foods Funded by 
a 8.8% Tax on 0-Star Foods (Continued) 

Predicted changes in  overall 

lower-
income 
with 
obese 
members 

lower-
income 
without 
obese 
members 

higher-
income 
with 
obese 
members 

higher-
income 
without 
obese 
members 

calories purchased from      

19. FAFH, 0 star -36.83 136.63 -83.84 106.26 -197.55 

 (44.00) (41.36) (29.60) (58.47) (38.43) 

20. FAFH, 1-3 star 97.09 9.64 123.33 30.26 172.97 

 (18.12) (11.49) (15.71) (19.80) (20.01) 
density of        

total fruit (cup eq./1000 kcal) -0.02 -0.02 0.01 -0.05 -0.01 
 (0.01) (0.01) (0.01) (0.01) (0.01) 

total veg (cup eq./1000 kcal) 0.10 0.07 0.18 0.05 0.14 
 (0.02) (0.01) (0.02) (0.01) (0.02) 

sodium density (g/1000 kcal) -0.06 -0.09 -0.09 -0.03 -0.06 

 (0.01) (0.01) (0.01) (0.01) (0.01) 
share of energy from added 
sugars (percentage points) 

-0.61 -0.54 -0.50 -0.85 -0.49 

(0.14) (0.16) (0.15) (0.14) (0.13) 
share of energy from solid fats 

(percentage points) 
-1.22 -1.25 -1.92 -0.76 -1.32 

(0.19) (0.19) (0.21) (0.19) (0.18) 

HEI 2.30 1.87 3.40 1.36 2.83 

 (0.38) (0.36) (0.37) (0.39) (0.37) 

taxes paida ($) 0.10 0.57 -0.65 0.86 -0.42 

 (0.09) (0.06) (0.08) (0.10) (0.10) 
projected weekly tax revenueb 

(million $) 
0.00 13.84 -23.28 52.99 -43.55 

Notes: Sample means weighted by survey weights. All quantity statistics are reported on a per-
AME-week basis, except for the projected subsidy for the population. Standard errors in 
parentheses. anegative values indicate subsidy received. bnegative values indicate public 
expenditures.   

 

 

 

 

 

 

 

 

 



Figure 1. Average Marshallian Price Elasticities, Overall Sample 
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The Construction of the Price Indexes and Their Instruments  

For FoodAPS trips to InfoScan retailers, we aggregated total FAH expenditures at the household-

trip-date-retailer-county level. For purchases at non-InfoScan retailers, we aggregated FAH 

expenditures to the household-trip-date-county level. We also calculated total FAH expenditures 

by household and the county in which it shopped. These total FAH expenditures are used as 

weights on the trip-level price indexes and their instruments (described below) to create 

household-level price indexes and instruments, which are used to estimate the EASI demand.   

For each FAH food group 𝑗 (𝑗 = 1, …, 18), the set of food codes ever purchased by 

FoodAPS household is defined as the universe of food group 𝑗. We mapped InfoScan food items 

to these food codes and extracted InfoScan sales data at the food-code-week-retailer-county 

level. Not all food codes can be mapped to items in InfoScan.  

We identified FoodAPS trips in which the household purchased food group 𝑗 and 

calculated expenditures on 𝑗 at the household-retailer-county-trip-date level. For FoodAPS 

retailers not geocoded to a county, we used the visiting household’s county of residence as 

replacement. For trips to InfoScan retailers, we linked them with InfoScan food code-level prices 

by trip date, retailer and county. For trips to non-InfoScan retailers, we linked them with 

InfoScan food code-level prices by trip date and county. We then constructed the Fisher Ideal 

price index for food group 𝑗 for each trip in which group 𝑗 was purchased. Elementary prices are 

FoodAPS prices for food codes purchased by the household and InfoScan prices for food codes 

not purchased on the trip. The household-level Fisher Ideal index, for purchasing households, is 

the weighted average of trip-level Fisher Ideal indexes, using trip-level expenditures on food 

group 𝑗 as weights. The base prices and quantities for the Fisher Ideal index are sample averages 

over all FoodAPS households.  



For households that shopped for FAH but did not purchase food group 𝑗 in the 7-day 

survey period, we started with two Fisher Ideal price indexes: a county-level index 𝑝𝑐𝑗 based on 

InfoScan aggregated to county level, and a retailer-county level index 𝑝𝑐𝑟𝑗 based on InfoScan 

aggregated to retailer-county level, both at IRI week frequencies. We linked 𝑝𝑐𝑗 and 𝑝𝑐𝑟𝑗 to trips 

to non-InfoScan retailers and InfoScan retailers, respectively. We then weighted the trip-level 

indexes by FAH expenditure to create weighted average indexes 𝑝𝑐ℎ𝑗 and 𝑝𝑟ℎ𝑗 for household ℎ. 

Next, we weighted 𝑝𝑐ℎ𝑗 and 𝑝𝑟ℎ𝑗 based on FAH expenditures at non-InfoScan retailers and 

InfoScan retailers to create a price index 𝑝ℎ𝑗 for households who shopped for FAH but did not 

purchase food group 𝑗 during the survey. 

Finally, for households who did not shop for FAH, we linked the InfoScan county-level 

index 𝑝𝑐𝑗 to the household’s county of residence. For households who straddled two IRI weeks, 

we used the number of overlapping days between an IRI week and the 7-day survey period as 

weight to create a weighted average county-level index for the household. The weighted average 

is used as the price index of food group 𝑗 for a household who did not purchase FAH in the 

survey. 

To create an instrumental variable 𝑧ℎ𝑗 for 𝑝ℎ𝑗, we repeat the above process but replace 

the trip-level price indexes with their instruments. For trips to InfoScan retailers, we use the 

average price index of the same retailer in the same IRI week but in other counties as the 

instruments. For trips to non-InfoScan retailers, we use weighted average county prices in all 

other counties within 500 miles as the instrument. The inverse distance is used as the weight.  

 

 

 



Complex Survey Design-based Extended System AGLS Estimator 

Zhen et al. (2014) extend Amemiya’s generalized least squares (AGLS) estimator for a single-

equation limited dependent variable with endogenous explanatory variables to a system of 

limited dependent variables. In this appendix, we build on the extended AGLS estimator to 

incorporate the complex sampling design of the survey used to estimate the demand system. 

Unlike reduced-form demand models, accounting for the survey sampling design in a utility-

theoretic censored demand system not only affects the standard errors but also the structural 

parameter estimates themselves.   

AGLS Estimation for Censored Demand System 

The budget share equation (1) can be expressed in matrix notation as 

(A1) 𝑤ℎ𝑖∗ = 𝑌ℎ𝛽𝑖 + 𝑋1ℎ𝛼𝑖 + 𝑢ℎ𝑖 = 𝑍ℎ𝛿𝑖 + 𝑢ℎ𝑖 
where 𝑌ℎ is the 1 × (𝐽 + 𝐿) vector of endogenous regressors including log prices, real income, 

and its polynomials; 𝑋1ℎ is the 1 × 𝐾 vector of demand shifters; the vectors 𝛽𝑖 and 𝛼𝑖 contain 

structural parameters of the EASI model; and 𝑍ℎ = [𝑌ℎ, 𝑋1ℎ], and 𝛿𝑖′ = [𝛽𝑖′, 𝛼𝑖′]. The subscript ℎ 

indexes the 𝐻 households in the sample.  

The extended AGLS estimator entails applications of quasi-maximum likelihood (White 

1982) and classical minimum distance (CMD) estimation (Wooldridge 2002, p. 442) in four 

steps. In the first step, estimate the following system of regressions by least squares: 

(A2) 𝑌ℎ = 𝑋1ℎΠ1 + 𝑋2ℎΠ2 + 𝑉ℎ 

where 𝑋2ℎ is a 1 × 𝑁 vector of instruments excluded from equation (A1), we assume 𝑁 ≥(𝐽 + 𝐿) for identification; Π1 and Π2 are 𝐾 × (𝐽 + 𝐿) and 𝑁 × (𝐽 + 𝐿) coefficient matrices, 

respectively; 𝑉ℎ is a 1 × (𝐽 + 𝐿) vector of residuals. 



In the second step, substitute equation (A2) into equation (A1) and write the linear 

projection of 𝑢ℎ𝑖 on 𝑉ℎ in error form, 𝑢ℎ𝑖 = 𝑉ℎ𝜌𝑖 + 𝜀ℎ𝑖, to obtain the following reduced-form 

budget share equation: 

(A3) 𝑤ℎ𝑖∗ = 𝑋1ℎ(Π1𝛽𝑖 + 𝛼𝑖) + 𝑋2ℎΠ2𝛽𝑖 + 𝑉ℎ𝛽𝑖 + 𝑉ℎ𝜌𝑖 + 𝜀ℎ𝑖 = 𝑋ℎ𝜔𝑖 + 𝑉ℎ𝜆𝑖 + 𝜀ℎ𝑖 
where 𝜀ℎ𝑖~𝑁(0, 𝜎ℎ𝑖2 ), 𝑋ℎ = [𝑋1ℎ, 𝑋2ℎ], 𝜆𝑖(≡ 𝛽𝑖 + 𝜌𝑖) and 𝜔𝑖 are (𝐽 + 𝐿) × 1 and (𝐾 + 𝑁) × 1 

vectors of parameters, respectively. By design, the error term 𝜀ℎ𝑖 is independent of 𝑌ℎ, 𝑋ℎ, and 𝑉ℎ (Newey 1987, p. 235). The vector 𝜔𝑖 is related to 𝛿𝑖 by 𝜔𝑖 ≡ 𝐷(Π)𝛿𝑖, where Π′ = [Π1′ , Π2′ ], 𝐷(Π) ≡ [Π, 𝑆1], and 𝑆1 is a (𝐾 + 𝑁) × 𝐾 selection matrix such that 𝑋1ℎ = 𝑋ℎ𝑆1. The residual 

variance 𝜎ℎ𝑖2  is specified to be a function of select demand shifters: 𝜎ℎ𝑖2 = 𝜎𝑖02 (1 + 𝑍ℎ,𝜎𝜁𝑖), where 𝑍ℎ,𝜎 is a 1 × 𝐾𝜎 vector of demand shifters with 𝐾𝜎 < 𝐾. The scalar 𝜎𝑖0 and vector 𝜁𝑖 are 

parameters. In some applications, numerical issues can occur when the same demand shifters 

appear in both 𝑍ℎ and 𝑍ℎ,𝜎 due to multicollinearity. Setting 𝑍ℎ,𝜎 to a null vector and thereby 

restricting the residual variance to be homoscedastic will solve the problem.  

As part of the second step, substitute least squares estimates 𝑉̂ℎ of 𝑉ℎ into equation (A3) 

and estimate equation (A3) individually for 𝑖 = 1, . . . , 𝐽 − 1 using the Tobit estimator. Let 𝜃𝑖′ =[𝜔𝑖′, 𝜆𝑖′ , 𝜎𝑖0, 𝜁𝑖 ′] for 𝑖 = 1, . . . , 𝐽 − 1, 𝜃′ = [𝜃1′ , . . . , 𝜃𝐽−1′ ], and Φ′ = [vec(Π)′, 𝜃′]. The correct 

variance for the estimator Φ̂ of Φ must account for the fact that least squares estimates of 𝑉ℎ are 

used in the estimation of equation (A3) and that single-equation Tobit estimation misses the 

correlation across budget share equations. We can estimate the variance of Φ̂ using a sandwich 

estimator or through bootstrapping.  

The Sandwich Variance Estimator 

The asymptotic variance of √𝑇(Φ̂ − Φ) is 



(A4) √𝑇(Φ̂ − Φ)~𝑎 𝑁(0, 𝐺−1Ψ(𝐺−1)′) with Ψ = [Ψ11 Ψ12Ψ21 Ψ22] and 𝐺 = [𝐺11 𝐺12𝐺21 𝐺22] 

where Ψ11 and Ψ22 are the outer product of the score of equations (A2) and (A3), respectively; 𝐺11 and 𝐺22 are the Hessian of equations (A2) and (A3), respectively; and 𝐺21 and 𝐺12 account 

for the correlation between Π and 𝜃. Independence of 𝜀ℎ𝑖𝑡 from 𝑌ℎ, 𝑋ℎ, and 𝑉ℎ implies Ψ12 =Ψ21 = 0. Least squares estimation of equation (A2) means that Ψ11 = ∑22 ⊗ 𝐸[𝑋ℎ′ 𝑋ℎ] and 𝐺11 = −𝐼𝐽+𝐿 ⊗ 𝐸[𝑋ℎ′ 𝑋ℎ], where ∑22 is the variance-covariance of 𝑉ℎ and 𝐼𝑚 denotes an 𝑚-

dimensional identity matrix. 

Let 𝑙ℎ𝑖 be the marginal log-likelihood of equation (A3), then 

(A5) Ψ22 = 𝐸 [(𝜕𝑙ℎ1 𝜕𝜃1′⁄ , . . . , 𝜕𝑙ℎ𝐽−1 𝜕𝜃𝐽−1′⁄ )′(𝜕𝑙ℎ1 𝜕𝜃1′⁄ , . . . , 𝜕𝑙ℎ𝐽−1 𝜕𝜃𝐽−1′⁄ )] 
The fact that 𝜔𝑖 and 𝜆𝑖 appear only in the 𝑖th budget share equation implies 

(A6) 𝐺22 = 𝑑𝑖𝑎𝑔{𝐸(𝜕2𝑙ℎ1 𝜕𝜃1𝜕𝜃1′⁄ ), . . . , 𝐸(𝜕2𝑙ℎ𝐽−1 𝜕𝜃𝐽−1𝜕𝜃𝐽−1′⁄ )}. 

The 𝐺21 and 𝐺12 terms take the following form 

(A7)  𝐺21 = 𝐺12′ = [ 𝐸(𝜕2𝑙ℎ1 𝜕𝜃1𝜕𝑣𝑒𝑐(Π)′⁄ )⋮𝐸(𝜕2𝑙ℎ𝐽−1 𝜕𝜃𝐽−1𝜕𝑣𝑒𝑐(Π)′⁄ )] = [ −𝜆1′ ⊗ (𝐸(𝜕2𝑙ℎ1 𝜕𝜃1𝜕𝜃1′⁄ )𝑆2)⋮−𝜆𝐽−1′ ⊗ (𝐸(𝜕2𝑙ℎ𝐽−1 𝜕𝜃𝐽−1𝜕𝜃𝐽−1′⁄ )𝑆2)], 

where 𝑆2′ = [𝐼𝐾+𝑁 , 0𝐾+𝑁,𝐽+𝐿+1+𝐾𝜎], and 0𝑚,𝑛 denotes an 𝑚 × 𝑛 null matrix. Equation (A7) is an 

extension of Newey’s (1987) equation A.15 from one to 𝐽 − 1 limited dependent variables. In 

fact, the variance estimator in (A4) is the system of equations version of the sandwich variance 

estimator for two-step maximum likelihood models (Hardin 2002). It is asymptotically 

equivalent to the Murphy-Topel (Murphy and Topel 1985) variance estimator when the assumed 

model distributions are correct. Compared with bootstrapping for standard errors, (A4) offers 

significant saving in computational time in large datasets because the demand model needs only 



be estimated once. The variance of Φ̂ equals 𝐺̂−1Ψ̂(𝐺̂−1)′ 𝐻⁄ , where 𝐺̂ and Ψ̂ are the sample 

estimates of 𝐺 and Ψ, respectively.  

When data are clustered, we need to account for the effect of clustering on the variance 

estimate. To calculate the cluster-robust sandwich variance, the sample estimates of Ψ11 and Ψ22 

are constructed as   

               Ψ̂11 = ∑ [(∑ (𝑉̂ℎ ⊗ 𝑋ℎ)′ℎ∈𝐶𝑠 ) (∑ (𝑉̂ℎ ⊗ 𝑋ℎ)ℎ∈𝐶𝑠 )]𝑀𝑠=1 𝐻⁄ , and   

 Ψ̂22 = ∑ [(∑ (𝜕𝑙ℎ1 𝜕𝜃1′⁄ , . . . , 𝜕𝑙ℎ𝐽−1 𝜕𝜃𝐽−1′⁄ )′ℎ∈𝐶𝑠 ) (∑ (𝜕𝑙ℎ1 𝜕𝜃1′⁄ , . . . , 𝜕𝑙ℎ𝐽−1 𝜕𝜃𝐽−1′⁄ )ℎ∈𝐶𝑠 )]𝑀𝑠=1 𝐻⁄  

where the subscript 𝐶𝑠 denotes the 𝑠th cluster, 𝑀 is the total number of clusters, and the 

expression for Ψ̂11 follows from the structure of the sandwich cluster-robust variance for least 

squares (Cameron and Miller 2015, equation 11). The rank of Ψ̂, and by extension Φ̂, is ≤min{(𝐾 + 𝑁) × (𝐽 + 𝐿) + (𝐾 + 𝑁 + 𝐽 + 𝐿 + 1 + 𝐾𝜎) × (𝐽 − 1), 2𝑀 − 2}. To see this, note that 

the cluster-robust Ψ̂ can be rewritten as Ψ̂ = 𝐵′𝐵 𝐻⁄ , where 𝐵 = 𝑑𝑖𝑎𝑔{𝐵11, 𝐵22},  

                                                   𝐵11 = [ ∑ (𝑉̂ℎ ⊗ 𝑋ℎ)ℎ∈𝐶1 ⋮∑ (𝑉̂ℎ ⊗ 𝑋ℎ)ℎ∈𝐶𝑀 ], and  

                                 𝐵22 = [ ∑ (𝜕𝑙ℎ1 𝜕𝜃1′⁄ , … , 𝜕𝑙ℎ𝐽−1 𝜕𝜃𝐽−1′⁄ )ℎ∈𝐶1 ⋮∑ (𝜕𝑙ℎ1 𝜕𝜃1′⁄ , … , 𝜕𝑙ℎ𝐽−1 𝜕𝜃𝐽−1′⁄ )ℎ∈𝐶𝑀 ] .  
There are two linear dependencies in 𝐵 due to the optimization of least squares and maximum 

likelihood estimators: 1) ∑ ∑ (𝑉̂ℎ ⊗ 𝑋ℎ)ℎ∈𝐶𝑠𝑀𝑠=1 = 𝟎; and 2) ∑ ∑ 𝜕𝑙ℎ𝑗 𝜕𝜃𝑗′⁄ℎ∈𝐶𝑠𝑀𝑠=1 = 𝟎 ∀𝑗. 

Hence, the rank of 𝐵 is ≤ min{2𝑀 − 2, (𝐾 + 𝑁) × (𝐽 + 𝐿) + (𝐾 + 𝑁 + 𝐽 + 𝐿 + 1 + 𝐾𝜎) ×(𝐽 − 1)}. Obviously, when the demand system is large relative to the number of clusters, Φ̂ may 

not be full rank and not invertible. Because recovery of the structural parameters 𝛿𝑖 requires 



inversion of Φ̂, the sandwich approach to building cluster-robust variance estimates does not 

work in large demand systems with too few clusters.  

The Bootstrapped Variance  

An alternative to the sandwich variance estimator is bootstrapping the variance of Φ̂. In addition 

to the effect of clustering, we also account for the effect of the stratified sample on variance 

estimates. Our approach largely follows the bootstrap method reviewed in Rao, Wu and Yue 

(1992) and implemented in statistical packages such as Stata (StataCorp 2013, p. 189). Let 𝑁𝐵 be 

the number of bootstrap replicates. In our FoodAPS application, we set 𝑁𝐵 = 4000. Each 

replicate sample is produced by randomly sampling 𝑛𝑡 − 1 primary sampling units (PSUs), i.e., 

clusters, with replacement from stratum 𝑡, where 𝑛𝑡 is the number of PSUs in the 𝑡th stratum. All 

households within the selected PSU are included in the replicate sample. The adjusted sampling 

weight for household ℎ from PSU 𝑠 in stratum 𝑡 is calculated to be 𝑔ℎ𝑚𝑠𝑛𝑡 (𝑛𝑡 − 1)⁄ , where 𝑔ℎ 

is the original sampling weight, 𝑚𝑠 is the number of times PSU 𝑠 is resampled. We normalize 

the adjusted sampling weight so that the sum of the normalized weights over all households in 

each replicate sample is equal to the sample size. The 4000 replicate samples are used to obtain 

4000 replicate estimates of 𝜃. The bootstrap variance estimate of Φ is  

                                                        𝑣𝑎𝑟(Φ̂) = ∑ (𝜃̂(𝑟)−𝜃̂)(𝜃̂(𝑟)−𝜃̂)′𝑁𝐵𝑟=1 𝑁𝐵              

where 𝜃(𝑟) and 𝜃 are the estimates of 𝜃 based on the 𝑟th replicate sample and the full-sample, 

respectively.                                                  

Recovering the Structural Parameters  

In the third step, the structural parameters 𝛿𝑖 from equation (A1) are recovered from estimates of 

the reduced-form parameters 𝜃 and Π using CMD estimation. Let 𝜑𝑖′ = [𝛿𝑖′, 𝜆𝑖′ , 𝜎𝑖0, 𝜁𝑖′] for 𝑖 =



1, . . . , 𝐽 − 1, 𝜑′ = [𝜑1′ , . . . , 𝜑𝐽−1′ ]. The vector 𝜃 is related to 𝜑 by 𝜃 = ℎ1(Π)𝜑, where ℎ1(Π) =𝐼𝐽−1 ⊗ (𝐷(Π) ⊕ 𝐼𝐽+𝐿+1+𝐾𝜎). Extending equation (A.17) of Newey (1987) to 𝐽 − 1 limited 

dependent variables yields 

(A8) √𝑇(𝜃 − ℎ1(Π̂)𝜑)~𝑎 𝑁(0, Ω1) 

where Ω1 = [𝐴, 𝐼𝑚1](𝐺−1Ψ(𝐺−1)′)[𝐴, 𝐼𝑚1]′
, 𝑚1 = (𝐽 − 1)(𝐾 + 𝑁 + 𝐽 + 𝐿 + 1 + 𝐾𝜎), and 𝐴 =

[(−𝛽1′ ⊗ 𝑆2)′, . . . , (−𝛽𝐽−1′ ⊗ 𝑆2)′]′
. The matrix 𝐴 requires consistent estimates of 𝛽𝑖, which 

could be obtained by estimating equation (A1) with 𝑌ℎ𝑡 replaced by its least squares prediction 

and with least squares residuals from equation (A2) used as additional regressors. The CMD 

estimator of 𝜑 is 𝜑̂ = (ℎ̂1′ Ω̂1−1ℎ̂1)−1ℎ̂1′ Ω̂1−1𝜃, with asymptotic variance consistently estimated by (ℎ̂1′ Ω̂1−1ℎ̂1)−1 𝐻⁄ . 

In the fourth and final step, CMD estimation is applied again to impose the theoretical 

restrictions of symmetry 𝑎𝑖𝑗 = 𝑎𝑗𝑖 and homogeneity ∑ 𝑎𝑖𝑗𝐽𝑗=1 = 0 on the latent demand. Let 𝜑 =ℎ2𝛾, where 𝛾 is the column vector of theory-restricted parameters and ℎ2 is the selection matrix 

that maps the restricted parameters 𝛾 to the unrestricted parameters 𝜑. The CMD estimator of 𝛾 

is 𝛾 = (ℎ2′ Ω̂2−1ℎ2)−1ℎ2′ Ω̂2−1𝜑 with asymptotic variance (ℎ2′ Ω̂2−1ℎ2)−1 𝐻⁄ , where Ω̂2 =(ℎ̂1′ Ω̂1−1ℎ̂1)−1
. The parameters of the budget share equation for the numéraire good are recovered 

using the adding-up restrictions on the latent demand: ∑ 𝑎𝑖𝑗𝐽𝑖=1 = ∑ 𝑏𝑖𝑟𝐽𝑖=1 = 0, ∑ 𝑔𝑖𝑘𝐽𝑖=1 = 1 for 𝑘 = 1, ∑ 𝑔𝑖𝑘𝐽𝑖=1 = 0 for 𝑘 > 1. 

SAS Code  

We provide x sets of SAS code for estimating a censored EASI demand system. Model 1 

assumes price and total expenditure to be exogenous and calculates the sandwich variance 

estimates for Φ̂. Use tobit_cl.sas macro for cluster-robust variance. Model 4 instruments 



the endogenous prices and the deflated total expenditure and continues to take the sandwich 

variance estimation approach. Use ivtobit_cl.sas macro for cluster-robust variance. 

Model 8 maintains the assumption of price and total expenditure exogeneity in Model 1 but 

bootstraps the design-based variance estimates that account for clustering, stratification and 

sampling weights. Model 9 also bootstraps the design-based variance estimates but allows prices 

and the deflated total expenditure to be endogenous. Model 10 assumes price and total 

expenditure exogeneity and bootstraps the variance of Φ̂ without accounting for clustering and 

stratification. It generates each replicate sample by randomly sampling 𝐻 households with 

replacement. Model 11 produces the same type of variance estimates as Model 10 but 

instruments endogenous prices and the deflated total expenditure.    
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Table A1. Average Marshallian price and expenditure elasticities over all households  

 With respect to price of group  

Demand for food group  1 2 3 4 5 6 

1. grains, 0 star -0.748 0.122 0.111 0.160 0.237 -0.472 

 (0.088) (0.073) (0.055) (0.105) (0.069) (0.089) 

2. grains, 1-3 star 0.059 -1.240 -0.303 0.182 0.034 0.168 

 (0.040) (0.066) (0.035) (0.067) (0.035) (0.056) 

3. vegetables, 0 star 0.154 -0.734 -1.916 -0.389 -0.536 0.098 

 (0.073) (0.085) (0.102) (0.114) (0.088) (0.102) 

4. vegetables, 1-3 star 0.071 0.166 -0.134 -1.423 0.174 0.174 

 (0.048) (0.057) (0.040) (0.131) (0.051) (0.077) 

5. fruit, 0 star 0.271 0.071 -0.462 0.427 -2.128 0.045 

 (0.082) (0.078) (0.079) (0.130) (0.164) (0.124) 

6. fruit, 1-3 star -0.218 0.102 0.036 0.181 0.018 -1.347 

 (0.043) (0.051) (0.037) (0.081) (0.051) (0.106) 

7. milk products, 0 star 0.039 -0.342 -0.028 0.500 0.091 -0.137 

 (0.044) (0.068) (0.033) (0.092) (0.042) (0.067) 

8. milk products, 1-3 star 0.235 0.156 -0.382 -0.263 0.155 0.114 

 (0.070) (0.064) (0.061) (0.098) (0.083) (0.090) 

9. meat and protein, 0 star -0.066 0.189 -0.100 0.099 -0.012 0.059 

 (0.036) (0.038) (0.028) (0.065) (0.034) (0.049) 

10. meat and protein, 1-3 star -0.067 -0.097 0.046 -0.091 -0.154 -0.072 

 (0.016) (0.017) (0.016) (0.028) (0.024) (0.025) 

11. prepared meals, 0 star -0.138 -0.178 0.218 -0.559 0.048 -0.362 

 (0.044) (0.053) (0.035) (0.078) (0.047) (0.068) 

12. prepared meals, 1-3 star -0.122 -0.043 0.000 -0.071 0.079 0.025 

 (0.047) (0.059) (0.039) (0.090) (0.056) (0.073) 

13. fats and oils, 0 star 0.205 0.293 -0.042 0.001 -0.001 0.097 

 (0.063) (0.071) (0.048) (0.121) (0.068) (0.095) 

14. fats and oils, 1-3 star -0.132 0.085 0.160 -0.333 -0.068 0.292 

 (0.063) (0.071) (0.048) (0.098) (0.071) (0.075) 

15. beverages, 0 star -0.057 0.079 -0.113 -0.135 -0.033 -0.200 

 (0.022) (0.023) (0.021) (0.032) (0.030) (0.032) 

16. beverages, 1-3 star -0.023 -0.168 -0.094 0.065 -0.157 0.153 

 (0.032) (0.030) (0.025) (0.050) (0.041) (0.044) 

17. snacks, 0 star 0.012 -0.228 0.024 0.074 0.030 -0.412 

  (0.036) (0.054) (0.032) (0.072) (0.039) (0.067) 



Table A1. Average Marshallian price and expenditure elasticities over all households 
(Continued) 

 With respect to price of group  

Demand for food group  7 8 9 10 11 12 

1. grains, 0 star 0.087 0.214 -0.280 -0.244 -0.371 -0.209 

 (0.102) (0.066) (0.135) (0.059) (0.120) (0.078) 

2. grains, 1-3 star -0.444 0.086 0.374 -0.187 -0.264 -0.046 

 (0.085) (0.032) (0.076) (0.034) (0.077) (0.052) 

3. vegetables, 0 star -0.115 -0.473 -0.499 0.201 0.770 0.004 

 (0.101) (0.075) (0.134) (0.076) (0.124) (0.086) 

4. vegetables, 1-3 star 0.513 -0.103 0.195 -0.152 -0.677 -0.051 

 (0.098) (0.043) (0.113) (0.046) (0.098) (0.068) 

5. fruit, 0 star 0.286 0.173 -0.003 -0.635 0.126 0.149 

 (0.115) (0.093) (0.153) (0.105) (0.151) (0.110) 

6. fruit, 1-3 star -0.187 0.054 0.098 -0.134 -0.466 0.015 

 (0.073) (0.040) (0.088) (0.043) (0.087) (0.058) 

7. milk products, 0 star -1.225 -0.058 -0.303 -0.125 -0.029 0.004 

 (0.146) (0.036) (0.107) (0.034) (0.102) (0.063) 

8. milk products, 1-3 star -0.160 -1.669 0.370 -0.007 -0.517 0.280 

 (0.089) (0.089) (0.119) (0.065) (0.112) (0.084) 

9. meat and protein, 0 star -0.193 0.103 -0.978 -0.147 -0.619 -0.113 

 (0.066) (0.029) (0.107) (0.033) (0.072) (0.044) 

10. meat and protein, 1-3 star -0.082 -0.002 -0.159 -1.980 -0.257 -0.109 

 (0.021) (0.017) (0.034) (0.061) (0.032) (0.024) 

11. prepared meals, 0 star -0.023 -0.169 -0.854 -0.351 -1.142 -0.004 

 (0.087) (0.039) (0.101) (0.044) (0.118) (0.061) 

12. prepared meals, 1-3 star -0.012 0.159 -0.247 -0.241 -0.007 -1.848 

 (0.088) (0.047) (0.099) (0.054) (0.099) (0.107) 

13. fats and oils, 0 star -0.140 -0.089 -1.172 -0.171 -0.046 -0.413 

 (0.122) (0.049) (0.152) (0.047) (0.112) (0.079) 

14. fats and oils, 1-3 star -0.002 -0.027 -0.099 -0.143 -0.006 -0.018 

 (0.089) (0.056) (0.112) (0.070) (0.112) (0.084) 

15. beverages, 0 star 0.069 -0.065 -0.024 -0.060 -0.163 -0.087 

 (0.029) (0.024) (0.044) (0.037) (0.041) (0.030) 

16. beverages, 1-3 star -0.104 0.043 -0.237 -0.267 0.230 -0.070 

 (0.042) (0.032) (0.060) (0.037) (0.056) (0.039) 

17. snacks, 0 star -0.849 0.046 -0.175 0.080 0.272 0.026 

  (0.095) (0.032) (0.091) (0.031) (0.080) (0.053) 



Table A1. Average Marshallian price and expenditure elasticities over all households 
(Continued) 

 With respect to price of group  

Demand for food group  13 14 15 16 17 18 

1. grains, 0 star 0.268 -0.123 -0.180 -0.081 0.026 0.131 

 (0.087) (0.059) (0.068) (0.097) (0.127) (0.092) 

2. grains, 1-3 star 0.222 0.037 0.128 -0.249 -0.410 -0.061 

 (0.054) (0.036) (0.038) (0.051) (0.101) (0.056) 

3. vegetables, 0 star -0.096 0.202 -0.468 -0.368 0.131 0.211 

 (0.090) (0.061) (0.084) (0.102) (0.144) (0.094) 

4. vegetables, 1-3 star -0.009 -0.142 -0.181 0.091 0.120 0.283 

 (0.079) (0.043) (0.046) (0.073) (0.115) (0.077) 

5. fruit, 0 star 0.039 -0.076 -0.129 -0.603 0.102 0.153 

 (0.111) (0.080) (0.112) (0.159) (0.162) (0.111) 

6. fruit, 1-3 star 0.059 0.133 -0.295 0.220 -0.760 0.398 

 (0.064) (0.035) (0.048) (0.068) (0.112) (0.063) 

7. milk products, 0 star -0.100 -0.010 0.093 -0.121 -1.280 0.136 

 (0.074) (0.037) (0.040) (0.057) (0.142) (0.065) 

8. milk products, 1-3 star -0.136 -0.026 -0.204 0.118 0.142 -0.302 

 (0.075) (0.057) (0.080) (0.109) (0.119) (0.084) 

9. meat and protein, 0 star -0.440 -0.019 -0.023 -0.203 -0.166 -0.094 

 (0.055) (0.029) (0.036) (0.051) (0.085) (0.047) 

10. meat and protein, 1-3 star -0.068 -0.036 -0.048 -0.223 0.079 -0.030 

 (0.018) (0.018) (0.031) (0.032) (0.030) (0.023) 

11. prepared meals, 0 star -0.017 0.004 -0.185 0.266 0.350 0.048 

 (0.059) (0.039) (0.048) (0.067) (0.104) (0.061) 

12. prepared meals, 1-3 star -0.362 -0.005 -0.162 -0.129 0.053 -0.006 

 (0.067) (0.048) (0.055) (0.075) (0.112) (0.067) 

13. fats and oils, 0 star -1.700 -0.094 -0.050 -0.176 0.190 -0.495 

 (0.138) (0.050) (0.052) (0.080) (0.169) (0.093) 

14. fats and oils, 1-3 star -0.142 -1.738 0.287 -0.110 0.396 -0.453 

 (0.075) (0.086) (0.072) (0.097) (0.119) (0.081) 

15. beverages, 0 star -0.025 0.087 -1.902 -0.085 -0.097 0.248 

 (0.024) (0.022) (0.066) (0.043) (0.041) (0.029) 

16. beverages, 1-3 star -0.085 -0.034 -0.100 -1.733 -0.243 -0.241 

 (0.035) (0.030) (0.042) (0.088) (0.052) (0.043) 

17. snacks, 0 star 0.082 0.109 -0.079 -0.205 -0.544 -0.070 

  (0.068) (0.033) (0.036) (0.046) (0.151) (0.054) 
 

 



Table A1. Average Marshallian price and expenditure elasticities over all 
households (Continued) 

 
With respect to price of 

group Expenditure 
elasticity Demand for food group  19 20 21 

1. grains, 0 star -0.712 -0.138 0.912 1.229 

 (0.189) (0.115) (0.317) (0.158) 

2. grains, 1-3 star -0.808 0.194 1.609 0.929 

 (0.116) (0.071) (0.187) (0.081) 

3. vegetables, 0 star -0.427 0.482 2.114 1.506 

 (0.210) (0.127) (0.335) (0.171) 

4. vegetables, 1-3 star 0.254 -0.507 0.157 1.113 

 (0.148) (0.092) (0.218) (0.114) 

5. fruit, 0 star -0.657 0.701 0.592 1.252 

 (0.264) (0.165) (0.551) (0.311) 

6. fruit, 1-3 star -0.950 -0.355 2.006 1.278 

 (0.153) (0.081) (0.264) (0.121) 

7. milk products, 0 star 0.588 -0.095 1.707 0.720 

 (0.144) (0.076) (0.212) (0.110) 

8. milk products, 1-3 star -0.426 -0.312 1.354 1.338 

 (0.205) (0.110) (0.306) (0.170) 

9. meat and protein, 0 star -0.178 0.304 1.659 0.918 

 (0.102) (0.063) (0.204) (0.084) 

10. meat and protein, 1-3 star 0.191 0.224 1.856 1.039 

 (0.072) (0.037) (0.187) (0.070) 

11. prepared meals, 0 star -0.077 0.251 1.527 1.208 

 (0.132) (0.080) (0.242) (0.115) 

12. prepared meals, 1-3 star -0.314 -0.372 2.404 1.139 

 (0.168) (0.084) (0.286) (0.122) 

13. fats and oils, 0 star 0.475 0.466 1.674 1.091 

 (0.185) (0.111) (0.310) (0.150) 

14. fats and oils, 1-3 star 0.221 -0.451 0.580 1.471 

 (0.189) (0.114) (0.320) (0.156) 

15. beverages, 0 star 0.183 -0.108 1.346 1.067 

 (0.085) (0.042) (0.208) (0.080) 

16. beverages, 1-3 star 0.010 0.254 1.573 1.172 

 (0.099) (0.051) (0.189) (0.086) 

17. snacks, 0 star 0.029 -0.317 1.092 0.993 

  (0.111) (0.074) (0.181) (0.089) 
 

 



Table A1. Average Marshallian price and expenditure elasticities over all households 
(Continued) 

 With respect to price of group  

Demand for food group  1 2 3 4 5 6 

18. snacks, 1-3 star 0.104 -0.079 0.107 0.443 0.087 0.590 

 (0.064) (0.071) (0.049) (0.113) (0.064) (0.091) 

19. FAFH, 0 star -0.077 -0.158 -0.030 0.077 -0.058 -0.201 

 (0.019) (0.022) (0.016) (0.032) (0.022) (0.031) 

20. FAFH, 1-3 star -0.038 0.088 0.101 -0.309 0.166 -0.208 

 (0.031) (0.035) (0.026) (0.053) (0.038) (0.045) 

21. numeraire  0.013 0.036 0.024 0.008 0.011 0.059 

  (0.003) (0.004) (0.003) (0.005) (0.004) (0.006) 
 

Table A1. Average Marshallian price and expenditure elasticities over all households 
(Continued) 

 With respect to price of group  

Demand for food group  7 8 9 10 11 12 

18. snacks, 1-3 star 0.215 -0.189 -0.235 -0.075 0.089 -0.008 

 (0.103) (0.053) (0.119) (0.056) (0.112) (0.076) 

19. FAFH, 0 star 0.136 -0.037 -0.069 0.084 -0.005 -0.047 

 (0.032) (0.019) (0.038) (0.026) (0.035) (0.028) 

20. FAFH, 1-3 star -0.083 -0.083 0.300 0.213 0.187 -0.167 

 (0.047) (0.028) (0.062) (0.036) (0.057) (0.038) 

21. numeraire  0.045 0.019 0.074 0.086 0.059 0.051 

  (0.004) (0.003) (0.007) (0.008) (0.006) (0.005) 
 

Table A1. Average Marshallian price and expenditure elasticities over all households 
(Continued) 

 With respect to price of group  

Demand for food group  13 14 15 16 17 18 

18. snacks, 1-3 star -0.472 -0.297 0.510 -0.495 -0.163 -2.312 

 (0.088) (0.053) (0.062) (0.092) (0.130) (0.137) 

19. FAFH, 0 star 0.070 0.029 0.071 -0.004 0.016 -0.090 

 (0.026) (0.018) (0.026) (0.031) (0.040) (0.025) 

20. FAFH, 1-3 star 0.176 -0.114 -0.092 0.212 -0.303 0.209 

 (0.041) (0.029) (0.035) (0.043) (0.068) (0.041) 

21. numeraire  0.032 0.013 0.054 0.065 0.049 0.023 

  (0.004) (0.003) (0.006) (0.007) (0.007) (0.004) 
 

 



Table A1. Average Marshallian price and expenditure elasticities over all 
households (Continued) 

 With respect to price of group Expenditure 
elasticity Demand for food group  19 20 21 

18. snacks, 1-3 star -0.606 0.530 1.233 0.978 

 (0.170) (0.107) (0.258) (0.139) 

19. FAFH, 0 star -0.777 -0.161 0.351 0.905 

 (0.076) (0.038) (0.112) (0.051) 

20. FAFH, 1-3 star -0.459 -0.880 -0.184 1.198 

 (0.101) (0.078) (0.151) (0.073) 

21. numeraire  0.038 0.001 -1.725 0.975 

  (0.013) (0.006) (0.051) (0.015) 

Notes: Standard errors in parentheses. Bold face numbers are own-price 
elasticities.  

 

 

 

 

 

 

 

 

 

 


