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Abstract

The space industry’s rapid recent growth represents the latest Tragedy of the Commons. Satellites launched into

orbit contribute to—and risk damage from—a growing buildup of space debris and other satellites. Collision risk from

this orbital congestion is costly to satellite operators. Technological and managerial solutions—such as active debris

removal or end-of-life satellite deorbit guidelines—are currently being explored by regulatory authorities. However,

none of these approaches address the underlying incentive problem: satellite operators do not account for costs they

impose on each other via collision risk. Here, we show an internationally harmonized orbital-use fee can correct these

incentives and substantially increase the value of the space industry. We construct and analyze a coupled physical-

economic model of commercial launches and debris accumulation in low-Earth orbit. Similar to carbon taxes, our

model projects an optimal fee that rises at a rate of 14% per year, equal to roughly $235,000 per satellite-year in

2040. The long-run value of the satellite industry would more than quadruple by 2040—increasing from around

$600 billion under business-as-usual to around $3 trillion. In contrast, we project purely technological solutions

are unlikely to fully address the problem of orbital congestion. Indeed, we find debris removal sometimes worsens

economic damages from congestion by increasing launch incentives. In other sectors, addressing the Tragedy of the

Commons has often been a game of catch-up with substantial social costs. The infant space industry can avert these

costs before they escalate.

We acknowledge funding from the University of Colorado Boulder. We thank Francesca Letizia of the European Space Agency for data on

debris fragments and collision risk in low-Earth orbit, and Teri Grimwood of the Union of Concerned Scientists for the full catalog of UCS active
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draft, and attendees of a European Space Agency Space Debris Office seminar for providing helpful feedback on our results.

SI Appendix available here.
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In 2017, 466 new satellites were launched—more than double the previous year’s launches, and more than 20%

of all active satellites in orbit in 2017 [41, 37]. Rapid space industry growth is projected to continue, driven largely

by commercial satellites (Fig. 1). This growth is driving buildup of debris in low-Earth orbit, currently including over

15,000 objects [42]. Collision risk from debris is costly; collisions damage or destroy expensive capital assets that are

difficult or impossible to repair. Debris buildup could eventually make some low-Earth orbits economically unviable

and other orbits difficult or impossible to access [22]. In the worst case—though uncertain and occurring over long

time horizons—debris growth could become self-sustaining due to collisions between debris objects, a tipping point

called Kessler Syndrome [22, 27].

Proposed solutions have so far largely been technological and managerial, aimed at mapping, avoiding, and re-

moving debris [32, 29]. These include end-of-life deorbit guidelines and “keep-out” zones for active satellites, and

nets, harpoons and lasers to deorbit debris [32]. However, with open access to orbits, reducing debris and collision

risk incentivizes additional satellite launches, which eventually restores the debris and risk. For instance, if firms were

willing to tolerate a 0.1% annual risk of satellite loss before a technological improvement in debris removal, they will

be willing to launch more satellites until the 0.1% annual risk of satellite loss was restored.

Thus, the core of the space debris problem is incentives, not technology. Since satellite operators are unable to

secure exclusive property rights to their orbital paths or recover collision-related costs imposed by others, prospective

operators face a choice between launching profitable satellites, thereby imposing current and future collision risk on

others, or not launching and leaving those profits to competitors. This is a classic Tragedy of the Commons problem

[1, 42, 38, 30]. It can be economically efficiently addressed via incentive-based solutions, such as fees or tradable

permits per year in orbit, analogous to carbon taxes or cap-and-trade [17, 28, 1, 16]. Incentives should target objects in

orbit—rather than launches—because orbiting objects are what directly impose collision risk on other satellites [34].

We provide the first analysis, to our knowledge, quantifying the economic benefits of implementing such incentives

to correct the underlying open-access problem.

We use a coupled physical-economic model combining rich physical dynamics with satellite economics to quan-

tify the benefits of an internationally harmonized ‘orbital-use fee’ (OUF) relative to a business-as-usual (BAU) open-

access scenario, and relative to a scenario with active debris removal. An OUF is a type of Pigouvian tax—a well-

known economic instrument for addressing externality problems [33]. Our model accounts for the effects of each

scenario on satellite launch decisions (see Materials and Methods, and the SI Appendix). While we focus on an

orbital-use fee for analytical convenience, it is conceptually equivalent to other mechanisms for pricing orbits, such

as tradable permits.

Our physical model of satellite and debris evolution in orbit obeys relevant accounting identities and utilizes

reduced-form approximations of physical processes validated in other works [4, 24]. We fit and calibrate the model

using data on collision risk and orbital debris from the European Space Agency (ESA) [12], and data on active satel-

lites from the Union of Concerned Scientists (UCS) [37] (see Materials and Methods, and the SI Appendix). The

ESA dataset covers 1958-2017, and the UCS dataset covers 1957-2017. Our physical model assumes runaway debris

growth (Kessler Syndrome) cannot occur, which likely leads our model to understate the benefits of OUFs (see Meth-

ods). Our economic model assumes satellites are launched and operated to maximize per-satellite private profits, net

of any fees, subject to collision risk. We calibrate the model by fitting the BAU scenario (no fees or debris removal)

to historical industry data and launch trends [38, 37] (see Materials and Methods, and the SI Appendix).

We project future launch rates to 2040 under the BAU scenario using our fitted model and published projections of

future growth of the space economy [20]. The projections in ref [20] were developed by projecting how the industries

constituting the space sector—telecommunications, imaging, etc.—would grow from 2017 to 2040 under different

assumptions on their individual profitability over time, then aggregating up to obtain projections for the space sector.

We then calculate launch rates that would maximize the long-run value of the industry, and we calculate the time

series of OUFs that would incentivize these optimal launch rates. The industry value is measured as net present value

(NPV)—the long-run value of the entire fleet of satellites in orbit, accounting for both the financial costs of replacing

satellites due to natural retirement and collisions, as well as the opportunity cost of investing funds in satellites rather

than capital markets. For instance, an NPV of $1 trillion in 2020 means the sum total of the stream of net benefits,

looking from 2020 into the future and accounting for the timing of the net benefits, is $1 trillion.

Though our models are deliberately simplified for tractability, they are based on previously-validated approaches

to orbital object modeling [4, 24], and our calibrations allow us to reproduce observed trends and magnitudes in

the growth of orbital debris and satellite stocks, as well as the calculated collision risk (Fig. 3). Nonetheless, our

projections should be interpreted as order-of-magnitude approximations that can be refined as needed by more detailed
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Figure 1: State of the industry (data from refs. 6, 7, 17). a: Projected growth of satellite industry costs and revenues. Revenues and costs are yearly

flows. Costs are not annuitized over the satellite lifetime. b: Observed growth in commercial space sector revenues and government space budgets.

models. In these respects, our approach mirrors integrated assessment modeling approaches that have been useful in

developing solutions to other natural resource management problems (e.g., ref [11]).

Results

We project shifting from open access to the optimal series of OUFs in 2020 would increase the NPV of the satellite

industry from around $600 billion under business-as-usual to around $3 trillion—a more than four-fold increase (Fig.

2) (4.18 to 6.49-fold increases in 95% of parameter sets randomly drawn from their calibrated distributions; see Fig.

2d). Assuming a 5% market rate of return, an increase of $2.5 trillion in NPV would be equivalent to annual bene-

fits of approximately $120 billion in perpetuity. The large immediate increase in NPV that we project in each OUF

scenario, relative to BAU (Fig. 2a), comes primarily from the immediate effect of reducing launch activity while the

satellite and debris stocks are sub-optimally high (see the SI Appendix).

Based on our calculations (see Methods), the optimal OUF starts at roughly $14,900 per satellite-year in 2020 and

escalates at roughly 14% per year (aside from some initial transition dynamics) to around $235,000 per satellite-year

in 2040. Rising optimal price paths are common in environmental pricing such as carbon taxes [31], though declining

optimal price paths are also possible [9]. The rising price path in this case partly reflects the rising value of safer orbits

(resulting in rising industry NPV; see Fig. 2a) from the OUF. For comparison, the average annual profits of operating

a satellite in 2015 were roughly $2.1 million. The 2020 and 2040 OUF values we describe amount to roughly 0.7%

and 11% of average annual profits generated by a satellite in 2015.

Forgone NPV from the satellite industry in 2040—which is the cost of inaction under BAU—escalates from
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Figure 2: Projected gains from optimal management via orbital-use fees. a: NPV of orbit recovery, with optimal management beginning in different

years. BAU is shown in black. The NPV gain is the difference between optimal management and BAU. b: Loss in permanent orbit use value from

delaying optimal management, relative to 2020 optimal management start. c: Time path of the optimal OUF. d: Distribution of the ratio of optimal

NPV in 2040 (assuming optimal management begins in 2020) to BAU NPV in 2040 using 250 draws of alternate parameter sets. The distribution

is calculated via a residual-bootstrap resampling procedure which illustrates the effect of calibration uncertainty. We describe the bootstrap in more

detail in the SI Appendix, section 1.4.

around $300 billion if optimal management begins in 2025 to around $700 billion if optimal management begins

in 2035. Without OUFs, losses remain substantial even when active debris removal (implemented in the model as

removal of 50% of debris objects in orbit each year) is available. In a best-case analysis where we assume debris

removal is costless (i.e., it requires no payments nor additional satellites to implement), debris removal can only

recover up to 9.5% of the value lost under open access. (The satellite industry’s willingness to pay for debris removal

is not easily calculable in our model; see SI Appendix, section 1.9.2.) At worst, debris-removal can exacerbate orbital

congestion via a rebound-type effect, causing additional losses on the order of 3% of the value already lost from open

access (see Fig. 4 and the SI Appendix). The inability of debris removal to induce efficient orbit use is driven by

open-access launching behavior and underscores the importance of policies to correct economic incentives to launch

satellites.

Discussion

The costly buildup of debris and satellites in low-Earth orbit is fundamentally a problem of incentives—satellite

operators currently lack the incentives to factor into their launch decisions the collision risks their satellites impose

on other operators. Our analysis suggests correcting these incentives, via an orbital-use fee, could have substantial

economic benefits to the satellite industry, and failing to do so could have substantial and escalating economic costs.

Escalating costs of inaction are a common feature of the Tragedy of the Commons, evident in several other sectors

in which it went unaddressed for lengthy periods [25]. For example, tens of billions of dollars in net benefits are lost

annually from open-access or poorly-managed fisheries globally [21]. Similarly, open access to oil fields in U.S.

at the turn of the century drove recovery rates down to 20-25% at competitively drilled sites, compared to 85-90%

potential recovery under optimal management [26]. Open access to roadways—somewhat analogous to orbits—is

estimated to create traffic congestion costs in excess of $120 billion a year in the U.S. alone [35]. In contrast, there is

still time to get out ahead of the Tragedy of the Commons in the young space industry.

The international and geopolitically complex nature of the space sector poses challenges to implementing orbital-

use pricing systems, but these challenges need not be insurmountable. Theory suggests countries could each collect
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and spend orbital-use fee revenues domestically, without losing economic efficiency, as long as the fee’s magnitude

was internationally harmonized [31]. Engaging in such negotiations would be in the economic interests of all par-

ties involved [40]. An example of such a system is the Vessel Day Scheme (VDS) used by the Parties to the Nauru

Agreement (PNA) to manage tuna fisheries. Under the VDS, PNA countries each lease fishing rights within their

waters, using a common price floor [18]. The European Union’s (E.U.) Emissions Trading System (ETS) provides

an example of an internationally coordinated tradable permit system [7]. Notably, each of these pricing programs is

built on a pre-existing international governance institution (the Nauru Agreement and the E.U.).

An OUF could also be built within existing space governance institutions, such as the Outer Space Treaty [14].

For example, Article VI states that countries supervise their space industries, which provides a framework for orbital-

use fees to be administered nationally. Article II prohibits national appropriation of outer space but does not prohibit

private property rights, potentially allowing for tradable orbital permitting.

The 1972 Convention on International Liability for Damage Caused by Space Objects (“Liability Convention”)

could provide another mechanism for internalizing collision-risk externalities. The Liability Convention states that

the entity which launches a satellite is liable for any damages caused by that satellite to another satellite. To the extent

damages can be attributed and the Convention is enforced, launching entities may internalize some of the collision

risk they impose on others. However, attributing damage caused by small fragments of debris is challenging, and the

Liability Convention has yet to be seriously tested at scale. We simulate the effects of improved collision avoidance

in the SI Appendix, section 1.9.4, finding that the gains from optimal management are quantitatively similar to our

base model. Indeed, costs of additional evasive actions made necessary by open-access congestion are externalities—

similar to collision-related costs—that an OUF should account for. This is analogous to the importance of accounting

for adaptation costs in climate policy.

Military and other non-commercial satellites are also important to consider in designing any incentive-based or-

bital management policy. In December of 2018, 430 of 1957 satellites had acknowledged military users [37]. Some

ostensibly-commercial satellites may also fill national security needs. Further, governments provide satellite-based

public goods to their citizens, such as remote sensing and GIS. In addition to collision risk, satellite and debris buildup

may impose costly interference on ground-based space observation systems. OUFs targeting the commercial sector

should account for these interests and monitor, as best possible, any “leakage” (see ref [13]) from the commercial

sector to the government sector. Antarctica and the Arctic Circle offer two models of internationally managed regions

in which commercial interests, environmental interests, and geopolitical interests interact (e.g., ref [6]).

We focus our discussion on an orbital-use fee, rather than a launch fee levied on satellites at the time of launch,

despite these being equivalent in our simplified model. OUFs should be more robust to additional realism because

they directly target the source of the externality—the object in orbit. For instance, if unexpected fragmentations cre-

ate an urgent need for satellites to be deorbited, an optimal OUF structured as we describe here could automatically

increase to provide the necessary incentive for operators to deorbit, whereas a launch fee cannot by itself induce

current satellite owners to deorbit their satellites. A launch fee would require an additional instrument, such as a

deorbit rebate (described in [28] and [16]). By deterring new entrants, launch fees would also have the drawback of

encouraging incumbents to remain in orbit. Furthermore, launch fees combined with deorbit rebates are not neces-

sarily revenue-positive, which could limit their attractiveness to governments.

Accounting for operators’ ability to deorbit satellites would not affect the qualitative conclusions of our model.

Open access would still cause collision risk to be maintained at a level dictated by the profitability of satellite owner-

ship. Should one firm deorbit a satellite, they or another firm would have incentive to take advantage of the reduction

in collision risk by launching another (see the SI Appendix, Section 1.7).

Weitzman [39] considers whether managers should choose price-based policies (e.g. fees, as proposed here) or

quantity-based policies (e.g. tradable permits) when uncertain about the marginal costs firms face in abating pollution.

When the marginal costs of abatement are steeper than the marginal benefits of abatement, price-based policies are

favored over quantity-based policies. These results generally lead economists to favor price-based policies for miti-

gating climate change. Though our model does not consider such uncertainty, Weitzman’s [39] results should apply.

Further research could explore the relative benefits of using fee or quantity-based pricing instruments for orbital use.

We project a single fee for all satellites in our simplified model, but in practice economically optimal OUFs could

vary according to factors that cause satellites to differ in the collision risks they pose. Such factors may include satel-

lite composition, orbital path and altitude, and degrees of risk internalized by satellite ownership structures, among

others. Ownership structure may affect the collision risk externality because some firms—e.g. megaconstellation
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operators—may tolerate less risk while potentially strategically imposing more risk on competitors. The next gen-

eration of orbit-use models could account for these features by computing an optimal OUF for a “standard unit” of

risk, similarly to how existing models of carbon pricing calculate Pigouvian taxes for emitting one ton of carbon

dioxide. While our estimates do not use data from megaconstellations and the dollar value of the OUF is likely too

high for “smallsats”, the percentage gain from optimal management calculations are more robust to such scale effects.

Despite the simplifying assumptions of our model, its key qualitative results may be robust to geopolitical and

other complexities. Experience in other resource contexts supports our projection that technological or managerial

solutions to the space debris problem are unlikely to be as effective as incentive-based solutions. For instance, in

fisheries, attempts to restrict entry have led to “capital stuffing,” where existing vessels heavily invest in harvest ca-

pacity [36]. Similarly, catch limits led to the “race to fish” phenomena [3], whereby fishermen exert extreme effort to

harvest as much as possible before the catch limit is reached. Attempts to build new highway capacity to reduce traffic

congestion have been frustrated because new capacity induces new demand for travel [10]. By contrast, policies such

as individual tradable quotas [8] and congestion charges [23] directly target the underlying incentive issue and have

proven more successful, though are not without some controversy due to distributional effects [2].

The Tragedy of the Space Commons is an international incentives problem and therefore needs an internationally

coordinated incentive-based solution. Our analysis suggests such solutions could add trillions in value to the industry.

Programs such as the EU Emissions Trading System and the PNA’s Vessel Day Scheme offer potential models for

success.

Data Archival

A replication package with data and code used for this paper can be found here.

Materials and Methods

Here we describe the data sources, calibration procedures, and dynamic optimization model used to quantify the

economic benefits of orbits under BAU and under optimal management via an OUF.

Data

We use data on collision risk, orbital debris counts, and satellite counts provided by the European Space Agency

(ESA) [12] and the Union of Concerned Scientists (UCS) [37] to calibrate our physical models of aggregate active

satellite and debris evolution. We use data on destructive anti-satellite missile tests compiled by Brian Weeden of the

Secure World Foundation [5]. We calibrate our economic model of open access using historical aggregate revenues

and costs for the space industry obtained from ref. [38] and launch data calculated from ref. [37]. Our physical data

cover 1957–2017, while our historical economic data cover 2005–2015.

For each year, the ESA data provides counts of the number of debris objects in orbit within a specified 50 km.

altitude band (average orbital altitude) from 100 km. to 2000 km. above mean sea level, as well as the estimated

probability that a collision occurs in the same bands. Each observation in the ESA data corresponds to a year, and

each column corresponds to an altitude band. The UCS data describe all known active satellites currently in orbit,

including variables for stated purpose, date of launch, and date of deorbit (if applicable). Each observation in this

dataset corresponds to an active satellite, with corresponding variables describing that satellite. This dataset is spread

over a series of files, released at roughly quarterly to semi-annually frequencies between 2005–2018, from which we

reconstruct yearly counts of the number of active satellites in the 100-2000 km. range from 1957–2015.

The economic dataset we use comes from refs. [38] and [20], with data from ref. [38] representing historical

data. An observation in the dataset represents a year, with variables for dollars spent on different space sector activ-

ities, e.g. satellite construction and launch services, ground observation services, government spending by different

national governments. We classify these entries into yearly revenues flowing to satellite owners, and yearly costs of

building, launching, and operating satellites (which we refer to as “launch costs” for brevity).

An observation in the final, merged dataset we use for physical model calibration represents a year in 1957–2015,

which includes variables for active satellite count, debris count, estimated collision probability, and estimated rev-

enues and costs of launching a satellite in the 100-2000 km. range. An observation in the final, merged dataset we use

for economic model calibration represents a year in 2005–2015, with variables for aggregate satellite sector revenues
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Figure 3: Historical and future model simulations. a-d: Time paths of satellites launched, the satellite stock, collision risk, and the debris stock over

time in both open access and optimal management simulations. The solid black lines show the observed data from 2006–2015. The vertical dashed

black line shows the end of the historical sample in 2015. The red dashed lines show the fit of the open-access model simulation, and the blue

dashed lines show the fit of the optimal model simulation. Simulation paths begin from the initial condition of observed satellite and debris levels

in 2006 to emphasize that the open-access model is consistent with the observed data from 2006–2015. Simulation procedures and discussion of

the discrepancies between observed and modeled outcomes are found in the SI Appendix, section 1.3 and Fig. S1.
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Figure 4: Model simulations with debris removal. a-d: Time paths of launches, satellites, debris, and collision risk with 50% debris removal

beginning in 2029. The red lines show open access paths, while the blue lines show optimal management paths. The dashed lines show time paths

with debris removal. The vertical dashed black line marks 2029, when removal begins in the simulation. e: Change in fleet NPV in 2040 with debris

removal and open access, relative to a baseline of switching to optimal management in 2020 with debris removal beginning in 2029. f: Summary

statistics for changes in open-access welfare loss 50% debris removal for free beginning in each year from 2021–2034. Positive values in panels

e and f indicate increased losses due to open access (debris removal makes open access worse), and negative values indicate reduced losses due to

open access (debris removal makes open access better). We discuss the intuition for the results in the SI Appendix, section 1.9.
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and costs, the yearly gross rate of return on a satellite, the year-over-year change in launch costs, and the estimated

collision probability. We describe our data and variable construction procedures in greater detail in the SI Appendix.

Calibrating the physical model

We construct the laws of motion for aggregate active satellite and debris stocks from accounting relationships. We

assume a) a constant fraction (estimated per below discussion) of undestroyed active satellites naturally deorbit each

period (without creating additional debris), b) a constant fraction (50%) of debris deorbits each period, and c) new

fragment creation occurs due to launch debris, anti-satellite missile tests, and collisions between orbital objects. We

parameterize the probability an active satellite is destroyed in a collision using an approximate form validated in other

works [4, 24], and from that functional form derive an expression for the number of new fragments created in colli-

sions. The parameters in these functions are calibrated separately. Specific formulas are presented in the SI Appendix.

We first calibrate the collision probability function by fitting it to data on the estimated probability of a collision

between 100-2000 km, using constrained nonlinear least squares. We constrain the parameter estimates to be posi-

tive, which is consistent with the physical interpretation of the collision probability parameters as products of positive

values: the magnitude of velocity differences between colliding objects, the total cross-sectional area of the collision,

and scaling constants that relate object counts to object densities.

We then calibrate the debris law of motion, using the estimated collision probability parameters, by constrained

ridge regression. We use ridge regression to improve the debris model out-of-sample fit, given we have relatively few

observations for the number of parameters. We constrain the parameters to comply with their physical interpretations:

parameters representing numbers of fragments created in collisions must be positive, while the debris decay rate must

be between 0 and 1. Given the uncertainties involved in modeling and calibrating the potential for Kessler Syndrome,

we disallow the possibility of debris objects colliding with each other. This likely makes our conclusions conser-

vative, as it likely understates the growth in collision risk over time due to debris-debris collisions. Consequently,

the estimated optimal OUF is likely less than what a model with debris-debris collisions would predict, as are the

estimated benefits of implementing the OUF.

Finally, we calibrate the fraction of active satellites that naturally deorbit by fitting the active satellite law of

motion using ordinary least squares. This yields an estimated average lifespan of approximately 30 years (a 3.3%

deorbit rate), which is consistent with an average mission length of 5 years followed by compliance with the IADC’s

25-year deorbit guideline [19]. We assume full compliance with the guideline to be conservative in our estimates of

debris production. We describe our physical calibration procedures in greater detail in the SI Appendix. We show

sensitivity analyses of our calibrations in SI Appendix Fig. S3, and of our model projections in SI Appendix Fig.

S4-6, and describe the sensitivity analysis procedure in SI Appendix section 1.4.

Calibrating the economic model

Economic theory predicts the collision probability will be determined by the excess rate of return on an active satellite

[34]. However, the excess rate of return includes the unobserved internal rate of return on a satellite asset, as well as

factors relating to the economic structure of the various satellite-using industries involved, which we do not model.

To account for these issues, we model the excess rate of return using observed aggregate revenues and costs for the

satellite industry, and then include the various unknown and unmodeled factors as parameters to estimate. We fit

this model to the estimated collision probability data using ordinary least squares. Since the signs of the parameters

representing the unknown and unmodeled factors are ambiguous, we do not constrain the estimates. The estimated

parameters are incorporated into the economic model and used to calibrate the data for unmodeled economic factors.

The calibration produces estimated “implied aggregate costs”, shown in SI Appendix Table S5. We describe this

calibration procedure and discuss the relevant unmodeled factors in the SI Appendix. We assume a market discount

rate of 5% [15]. The economic gains from an OUF would be even larger in magnitude at lower discount rates (see SI

Appendix, Fig. S8).

Projecting open access and optimal launch rates

To project launch rates under BAU and optimal management via an OUF, we solve the dynamic optimization prob-

lems associated with launching new satellites. Under open access BAU, each firm maximizes their own lifetime

satellite profits, and the optimization problem determines each firm’s decision of whether to launch or not, and thus

the total launch rate across all firms. This involves calculating whether the expected lifetime revenues from another

satellite exceed the cost of launching it and aggregating up from the individual decisions to the total launch rate.
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Under optimal management, the optimization problem directly determines the total launch rate which maximizes the

NPV of the satellite fleet. This involves calculating whether the expected lifetime revenues from another satellite

exceed the marginal industry-wide costs of launching it, including the expected costs of replacing other satellites lost

due to collision risk created by the new satellite and its associated debris.

Solving these dynamic optimization problems yields “launch policy functions”, which map the possible orbital

states – satellite and debris counts, given current revenues and costs – into an annual launch rate. As the launch policy

functions encode physical condition and behavioral and institutional assumptions, the launch rates they generate are

more realistic approximations of orbital outcomes than simple sensitivity analyses over all possible launch rates. That

is, the launch decisions are consistent with, and respond to changes in, economic and orbital conditions. By using the

launch policy functions along with the laws of motion for the satellite and debris stocks and an initial condition, we

can project the number of satellites and debris in orbit each year under a specified type of management institution. We

describe the computation of the launch policy functions in more detail in Algorithms 1-3 in the SI Appendix. Figure

3 compares optimal and open-access projections from the calibrated model assuming no debris removal against the

observed data, while figure 4 compares projections with and without debris removal.

Calculating the optimal orbital-use fee and its benefits

The optimal OUF for each year t is calculated as the marginal external cost of another orbiting satellite, which is the

additional industry-wide cost of another satellite in orbit (additional collision risk and debris production both now

and in the future) not internalized by individual firms under BAU (see Equation 18 in the SI Appendix). By charging

firms the marginal external cost of their satellite through an OUF, each firm’s incentives and thus their launch rates

are aligned with those under industry-wide, NPV-maximizing optimal management.

To calculate the benefits of imposing the OUF, we use the launch policy functions described above to compute

the NPV of the entire satellite fleet under BAU and optimal management. These NPVs reflect the value of the entire

satellite fleet, in perpetuity, assuming society stays on the BAU or optimal management path. The difference between

the NPVs yields the gains from the optimal OUF and moving from BAU to the optimal management path.

Although we abstract from many of the economic and physical complications in modeling orbit use, we consider

how those factors would affect our analysis in the Supplementary Methods and Supplementary Discussion. In par-

ticular, Supplementary Methods details our sensitivity analyses with respect to physical parameter uncertainty, and

Supplementary Discussion considers how these concerns may impact our conclusions. Our conclusions are likely ro-

bust to the complications we abstract from, with our calculated optimal OUF and the NPV benefits of implementing

it providing the correct order of magnitude with the correct qualitative features. Future research will improve our

estimates and provide more detailed guidance to policymakers.
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1 Extended description of methods and discussion of results

We generate the path of an optimal orbital-use fee (OUF) in three steps. First, we calibrate functions describing the

physics and economics of orbit use to match observed data on satellite and debris stock levels and aggregate satellite

industry costs and revenues prior to 2015. Then, using the calibrated values, we generate open access and optimal

launch paths from 2006 to 2040. Finally, by comparing the open access path of collision risk to the optimal path of

collision risk, we calculate the path of the optimal OUF which induces open access satellite owners to internalize the

externality they impose on other orbit users. Since the optimal OUF is precisely the marginal external cost of another

satellite launched, the final calculation amounts to calculating this marginal external cost.

As we state in the main text, our goal in this article is to provide order-of-magnitude estimates of the optimal OUF

and the net present value (NPV) gains from implementing it, and to show the qualitative features of both the OUF path

and NPV gains. As we discuss below, our conclusion that a globally-harmonized OUF is necessary to improve the

value of the satellite industry is robust to the limitations in our estimation methodology.

We measure the value of the satellite industry as the NPV of cash flows generated by the satellite fleet. NPV

accounts for the time value of money — the fact that cash flows received sooner are preferable to cash flows re-

ceived later — by discounting future cash flows according to the interest that could have been earned on those cash

flows had they been received in the present and immediately reinvested in capital markets. In this article, we use the

infinite-horizon NPV of the satellite fleet. To calculate this value, we assume that satellite costs and revenues evolve

according to the projection in Jonas et al. [12] until 2050, after which they stabilize at 2050 levels and are constant

for the infinite future.1 The resulting NPVs reflect the sum of short- and long-run costs and returns from the satellite

fleet. To express these in terms of equivalent constant cash flows received each year, we convert the NPV into an an-

nuitized present value in the main text.2 For example, given a discount rate of 5%, a net present value of $1 trillion in

2020 is equivalent to an annuitized present value of $47 billion received in perpetuity in each year from 2020 onwards.3

We obtain physical functions relating launches, satellites, and debris stocks to collisions, new fragments, and

satellite and debris growth from the engineering literature, and economic functions relating the decision to launch

to collision risk, costs, and returns from the economics literature. To calibrate the physical functions, we estimate

the unknown parameters from satellite stocks, debris stocks, and launches observed over 1957–2014. We constrain

the parameters to comply with theoretical restrictions imposed by the engineering model. To calibrate the economic

functions, we estimate the unknown parameters from satellite stocks, debris stocks, launches, aggregate satellite in-

1The projection in Jonas et al. [12] only goes till 2040 — we extend it to 2050 by calculating the compound annual growth rate of the costs and

revenues, and assuming that they continue to grow at those rates from 2040 until 2050.
2The annuitized present value (PV) of an NPV level is the constant number of dollars received each year such that the discounted sum of annu-

itized PVs is equal to the target NPV level. Formally, defining the NPV of a stream of uneven cashflows xt as NPV = ∑
∞
t=1 β t−1xt = ∑

∞
t=1 β t−1A =

A(1− β )−1 for some constants A > 0 and β ∈ (0,1), the annuitized PV is A = NPV (1− β ). These conversions facilitate comparisons between

uneven streams of cash flows, as they can be expressed in a common unit at a single point in time (NPV terms) or in a common unit at every point

in time (annuitized PV terms).
3We discuss the interpretation of the discount rate as the opportunity cost of funds invested below.
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dustry costs, and aggregate satellite industry returns over 2006–2014.4 To allow the estimation process to adjust for

unobserved launch market frictions, we do not constrain these parameter estimates.

1.1 Data

1.1.1 Satellite and debris counts, 1957–2014

We use data on satellites in orbit from the Union of Concerned Scientists’ (UCS) lists of active satellites to construct

the satellite stock and launch rate series [22]. The UCS data provide details on payloads in low-Earth orbit (LEO) and

their projected lifetimes. The data are described in Table S1.

Variable Sample period Mean St. Dev. Min Max

Active satellite count 1957–2014 1057.9 720.3 4 2271

Launch successes 1957–2014 89.9 47.1 5 334

Launch failures 1957–2014 13.8 9.8 1 42

Payloads decayed 1957–2014 50.8 24.1 3 90

Debris-creating anti-satellite missile tests 1957–2014 0.2 0.4 0 1

Debris count 1957–2014 3375.6 2681.3 0 9662

Expected collision rate (active satellites hit) 1957–2014 2.6 1.8 0 6

Historical satellite industry revenues (billion nominal USD) 2006–2014 101.7 20.4 70.4 126.6

Historical satellite industry costs (billion nominal USD) 2006–2014 185.4 40.1 136.2 254.4

Projected satellite industry revenues (billion nominal USD) 2015–2040 217.9 76.5 120.8 366.6

Projected satellite industry costs (billion nominal USD) 2015–2040 362.2 87 210.7 525.1

Table S1: Summary statistics for the data we use to calibrate our physical and economic models and to project open access and optimal launch rates.

All values rounded to first non-zero decimal place.

We construct the number of active satellites in each year by calculating the number of objects launched in a partic-

ular year, adding the number of satellites previously calculated in orbit, and then subtracting the number of satellites

listed as having decayed in that year.5

Letting ℓt be the number of collisions observed in year t and Zt be the number of payloads listed as decayed in t,

we construct the launch rate in t, Xt , from the law of motion for the satellite stock series as

St+1 = St −Zt − ℓt +Xt

=⇒ Xt = St+1−St +Zt + ℓt , (1)

where St is the number of active payloads in t and Zt is the number of payloads listed as decayed in t.

The debris and collision risk series’ we use were provided by the European Space Agency. We use debris data

from the DISCOS database [8] and collision probability data used in Letizia et al. [18] (the variable pc in that paper).

4While we have physical data series extending till 2017, and economic data series covering 2005–2015, we omit observations after 2014 in all

calibration data and the 2005 observations in the economic data series. Equations 7 and 14 are the bottlenecks: the former requires omission of the

first year’s data to construct the cost growth variable, while the latter cannot be used to construct the necessary implied cost growth for the final

year. As a result, our economic data calibration only uses data covering 2006–2014. Since our economic model implies that the number of objects

in orbit and the collision risk convey economic information about returns and costs, we omit physical variables after 2014 from our physical model

calibration to avoid unintended data snooping.
5This procedure is likely to produce an upward-biased estimate of the returns-generating satellite stock in any given year, since satellites which

are no longer operational will not be removed from the estimated stock until they have deorbited. Thus, the satellite stock in this procedure includes

some objects which are, economically speaking, “socially-useless debris”. We use this procedure despite the attribution issue for two reasons. First,

we do not have data on when specific satellites were declared nonoperational by their owners. Such a determination can be particularly tricky when a

mission has ended, but the satellite still has fuel and could be repurposed for another mission. Second, to the extent that our estimates of the satellite

stock are biased upward (toward positive infinity), our physical and economic parameters estimates will be biased downwards. The downward bias

in economic parameters will deflate both the open access and socially optimal launch rates, while the downward bias in physical parameters will

inflate both the open access and socially optimal launch rates, with the net effect being difficult to determine. However, the downward bias in our

estimated collision risk coefficients and the upward bias in our estimated satellite stock will bias our estimated OUF downward, so that it is a lower

bound.
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We use only objects with a semi-major axis of 2000km or less in all our data series. We prefer to use the DISCOS

fragment data rather than the Space-Track fragment data [6] as DISCOS attributes fragments to the time they were

created or detected, whereas the Space-Track data attributes fragments to the time their parent body was launched. The

DISCOS attribution method is closer to how economic agents in our model receive information and make decisions.

Given the difficulties in determining operational status, the collision probability estimates account for the probability

of collisions with all intact bodies. This produces an upward-biased estimate of the probability of collisions with only

operational satellites. This upward bias likely deflates the number of open access and optimal launches we project.

However, since the open access and optimal launch rates are chosen to equate collision risk with measures of economic

returns (described in equations 6 and 9), the resulting estimated OUF paths will not be biased upward by the same

degree as the collision probability estimates.

The historical time-series of destructive hit-to-kill anti-satellite missile tests we use was compiled by Brian Weeden

of the Secure World Foundation, and provided to us by Laura Grego [3]. It is the most comprehensive dataset we are

aware of regarding anti-satellite missile and ballistic missile defense tests. Since our ASAT parameter represents the

number of fragments created by a missile destroying a satellite, we ignore tests recorded as creating no debris (e.g.

tests in which the missile only passed through a chosen point in space and then fell into the ocean) and only use

those which were recorded as creating debris. The original data only records fragments cataloged by the U.S military,

generally fragments 10cm in size or larger. As a result, there could be additional tests which created debris too small

to track which we do not account for. Improvements in radar systems used for space situational awareness after 2003

also result in higher numbers of fragments detected after 2003 (implying fragment counts before 2003 were likely

understated in the data). These factors, combined with the likelihood of too-small-to-track fragments from known

destructive tests, likely bias our estimated ASAT parameter toward zero.

1.1.2 Aggregate satellite industry returns and costs, 2006–2040

We use data on historical satellite industry revenues from Wienzierl [24], and UCS data on satellites in LEO (semi-

major axis less than 2000km) [22]. The economic data provide a breakdown of revenues across satellite manufacture,

launch, insurance, and products and services. The satellite industry revenues data cover 2006-2015, while the active

satellites data cover 1957-2014. To generate launch rate and OUF projections out to 2040, we use revenue and cost

projections from Jonas et al. [12]. These projections are shown in Figure 1a of the main text. The historical and

projected data we use are described in Table S1.

We calculate the per-period returns on owning a satellite (πt ) as the revenues generated from commercial space

products and services, and the per-period costs of building, launching, and operating a satellite (Ft ) as the sum of

revenues from commercial infrastructure and support industries, ground stations and equipment, commercial satellite

manufacturing, and commercial satellite launching. The ratio πt/Ft then gives a time series of the rate of return on a

single satellite, as the number of satellites cancels out of the numerator and denominator.6 Since the numbers provided

in Wienzierl [24] are for the satellite industry as a whole, the ratio still needs to be adjusted to represent satellites

in LEO. We do not explicitly conduct this adjustment, but let the adjustment be calculated during the estimation of

equation 7.7

Note that the data we use for πt and Ft are industry-level aggregates, rather than satellite-level figures. To convert

the data from industry-level figures to per-satellite figures, we must apply a scaling factor which “disaggregates” the

data. This unknown factor is common to both cost and revenue aggregates, and so cancels out of πt/Ft such that the

ratio correctly represents the rate of return per satellite. Since we use πt/Ft to compute the open access and optimal

policy and value functions, the unknown scaling factor does not affect our solutions (launch rates). However, it does

affect our calculated time paths of NPV under business-as-usual (BAU, i.e. open access) and optimal management as

well as the OUF, since those values do not involve ratios which would cancel out the unknown scaling factor. Since

the unknown scaling factor is on the order of the reciprocal of the number of satellites in orbit (or projected to be in

6This is true whether the satellites were launched individually on separate rockets or in groups on the same rockets.
7Another way to perform this adjustment is by calculating the yearly share of satellites in LEO and multiplying the ratio πt/Ft by the share in

LEO. This approach is difficult to generalize to future years since it requires projections of satellites in other orbits. It is also not clear that the

returns of satellites in LEO are truly proportional to the LEO share of the total number of active satellites in all orbits; it seems more likely that LEO

satellites earn less revenue per satellite than geostationary satellites.
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orbit) in each period, we proxy for it in our projected time paths by dividing by the BAU satellite stock path. This

choice of proxy does not affect our qualitative results or the order of magnitude of the OUF or NPV under BAU

and optimal management—using alternate proxies such as the optimal management path of satellites or the observed

number of satellites in 2015 produces similar results, although our proxy results in more conservative projections than

those alternative choices.

1.2 Models

1.2.1 Orbital mechanics with limited lifespans, missile tests, and certainty

Our physical model uses physical accounting relationships in the aggregate stocks of satellites and debris for the laws

of motion, and draws on [17] for the functional forms of the new fragment creation and collision probability functions

G(S,D) and L(S,D). The time scale is set as one calendar year to match our data. St denotes the number of active

satellites in an orbital shell in period t, Dt the number of debris objects in the shell in t, Xt the number of satellites

launched in t, L(St ,Dt) the probability that an active satellite in the shell will be destroyed in a collision in t, µ is the

fraction of satellites which do not deorbit in t, and m is the average amount of debris generated by launching satellites

(such as rocket bodies). δ is the average proportion of debris objects which deorbit in t, and G(St ,Dt) is the number of

new debris fragments generated due to all collisions between satellites and debris.8 At is the number of anti-satellite

missile tests conducted in t, and γ is the average number of fragments created by one test. We assume that satellites

which deorbit do so without creating any additional debris.

In the real world, satellite operators typically take evasive action to avoid debris. The collision probability function

L should therefore be interpreted as the probability of a collision which is not avoided, either because it is unavoidable,

the avoidance maneuver did not succeed, or because it would be too costly to do so. A more detailed model would

separate the probability of collisions into the probability of a physical collision event and the probability of an unsuc-

cessful avoidance maneuver; we lack sufficient data to make this distinction. Modeling the failure rate of avoidance

maneuvers is an important area for future research.

The number of active satellites in orbit is modeled as the number of launches in the previous period plus the

number of satellites which survived the previous period (also shown in equation 1). The amount of debris in orbit is

the amount from the previous period which did not decay, plus the number of new fragments created in collisions, plus

the amount of debris in the shell created by new launches.9 Formally,

St+1 = St(1−L(St ,Dt))µ +Xt (2)

Dt+1 = Dt(1−δ )+G(St ,Dt)+ γAt +mXt . (3)

For simplicity, we assume all non-operational satellites are immediately deorbited, making our OUF estimates

conservative. [17] use an analogy to kinetic gas theory to parameterize the probability of a collision as a negative

exponential function, with the density of colliding objects one of the arguments of the exponential function. We

therefore parameterize L(St ,Dt) as

L(St ,Dt) = 1− exp(−αSSSt −αSDDt), (4)

where αSS and αSD include the difference in velocities between the objects colliding, the total cross-sectional area

of the collision, and scaling parameters which relate the number of objects to their density in the volume. We use these

probability functional forms to parameterize G(St ,Dt) as

G(St ,Dt) = βSS(1− exp(−αSSSt))St +βSD(1− exp(−αSDDt))St , (5)

8For most of our sample, the number of observed collisions is zero. We use the probability of collisions in our models rather than the observed

number for two reasons. First, it proxies for unobserved collisions, including non-catastrophic ones. Second, a model with stochastic collisions

complicates the process of solving for the optimal time path by adding another state variable to the dynamic programming algorithm. As the number

of objects in a single period increases, the fraction of satellites destroyed in collisions in that period converges to the probability of destruction, so

this assumption provides a “mean field”-type approximation.
9Empirically, we only consider the population of trackable fragments, i.e. those with size greater than 5-10cm in LEO.
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where the β jk parameters are interpreted as “effective” numbers of fragments from collisions between objects of

type j and k.10 We refer to the α jk and β jk as “structural physics parameters”, as they represent physical entities which

are exogenous to our model.

We ignore the possibility of collisions between debris objects for two reasons. First, the data we have do not allow

us to identify the effective number of fragments from such collisions, or the probability of such collisions, using our

calibration approach. Second, our focus here is not on the probability of Kessler Syndrome, but on launch patterns

and their response to the extant stock of orbiting satellites and debris. Our estimates of the optimal OUF path and

the benefits of implementing it are likely understated due to this omission. Incorporating the possibility of Kessler

Syndrome is an important piece of optimal orbit use analysis and policy design, and will likely require higher-fidelity

physical modeling than the “aggregate calibration” approach we take here. This is an important area for future research.

Equations 3, 4, and 5 can be viewed as reduced-form statistical models which recreate the results of higher-fidelity

physics models of debris growth and the collision probability. While higher-fidelity physics models may use similar

functional forms, the key difference between our approach and the approach in such models is how we calibrate the

models: rather than derive the appropriate parameter values from physical first principles given the data, we estimate

the values of those parameters which maximize the fit between the data and model-predicted collision probabilities,

satellite evolution, and debris stocks. Though our approach is computationally convenient, it likely sacrifices some

predictive power.

While we model a collision probability, we do not formally include uncertainty (e.g. as a probability measure over

collisions to be integrated) in the decision-making processes of satellite launchers/operators. Formal uncertainty of

this type could be important when modeling untracked debris. However, our data do not include estimates of untracked

debris. Our lack of formal uncertainty could therefore be interpreted as assuming all data are tracked. We also do not

observe the history of near-hits, making it challenging to calibrate the stochastic process of collision events directly.

Finally, the linearity of per-period profit functions in our model suggests behavioral effects like risk aversion will not

matter to launch rates.

1.2.2 Open access orbit use with time-varying aggregate returns and costs

The economic model of open access here is based on the model of open access in [21] to determine the satellite launch

rate under open access, Xt , as a function of the collision probability, L(St+1,Dt+1), and the excess return on a satellite,

rs− r.11 We derive the following equilibrium conditions, equations 6 and 7, in section 1.7. In the simplest case, where

all of the economic parameters are constant over time and satellites are infinitely lived, the open access launch rate

equates the collision probability with the excess return:

L(St+1,Dt+1) = rs− r
︸ ︷︷ ︸

excess return
on a satellite

, (6)

where rs is the per-period rate of return on a single satellite (π/F), where π is the per-period return generated by a

satellite and F is the cost of launching a satellite, inclusive of non-launch expenditures such as satellite manufacturing

and ground stations) and r is the risk-free interest rate.12

Equation 6 can therefore also be used to calculate the implied internal rate of return (IRR) for satellite investments

from observed data on collision risk and satellite returns. r is not observed in our data. When costs and returns are

10“Effective” numbers of fragments measure the number of new fragments weighted by the time they spend inside the volume of interest. This

approach is used in the debris modeling literature, for example [2].
11While we consider LEO as a whole, this approach could be generalized to individual spherical shells within LEO. Such generalization could

incorporate the substantial heterogeneity in orbital-use values. For example, some orbits are more valuable because they offer ideal conditions for

Earth observation, and will likely need a different fee schedule than orbits which do not offer such conditions.
12More precisely, r is the opportunity cost of funds invested in launching a satellite, and may diverge from the risk-free rate if the satellite

launcher’s most-preferred alternate investment is not a risk-free security. This rate is sometimes referred to as the internal rate of return.
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time-varying, equation 6 becomes

L(St+1,Dt+1) = 1+ rs,t+1− (1+ r)
Ft

Ft+1
(7)

=⇒ L(St+1,Dt+1) =

(

rs,t+1− r
Ft

Ft+1

)

︸ ︷︷ ︸

excess return
on a satellite

+

(

1−
Ft

Ft+1

)

︸ ︷︷ ︸

capital gains

from open access

and satellite launch
cost variation

where rs,t+1 = πt+1/Ft+1. With time-varying economic parameters, two sources of returns drive the collision risk.

One is the excess return realized in t + 1 from launching a satellite in t. The other is the capital gain (or loss) due to

open access and the change in satellite costs. Since open access drives the value of a satellite down to the total cost of

launching and operating it, Ft becomes the cost of receiving Ft+1 in present value the following period, and the returns

are given as percentages of Ft+1. Since the discount rate is unobserved, we fix it to be constant over time to facilitate

estimation.13 While we abstract from the fact that satellite lifetimes are finite in equation 7, we account for it in our

calibration. We discuss this issue further when describing our calibration methodology in section 1.3.2, including why

it is unlikely to affect our estimates of the optimal OUF and the benefits of implementing it.

1.2.3 Optimal orbit use with time-varying aggregate returns and costs

Determining the launch plan to ensure optimal orbit use is more complicated. Economists commonly refer to this type

of problem as “the (fleet) planner’s problem”, imagining a planner tasked with maximizing fleet-wide NPV. The fleet

planner launches satellites to maximize the value of the entire fleet into the (discounted) infinite future, subject to the

laws of motion of satellite and debris stocks. Formally, letting β = (1+ r)−1 be the discount factor, the planner solves

Wt(St ,Dt) = max
Xt≥0
{πtSt −FtXt +βWt+1(St+1,Dt+1)} (8)

St+1 = St(1−L(St ,Dt))µ +Xt

Dt+1 = Dt(1−δ )+G(St ,Dt)+ γAt +mXt .

The economic parameters π and F are allowed to be time-varying in our solution approach, though all other physical

and economic parameters are constant over time.14

Solving the planner’s problem by taking the first-order condition and applying the envelope condition to recover

the unknown functional derivatives, we obtain an expression for the collision risk in period t +1 which characterizes

the optimal launch rate in period t:

L(St+1,Dt+1) = 1+ rs,t+1− (1+ r)
Ft

Ft+1
−ξ (St+1,Dt+1), (9)

where

ξ (St+1,Dt+1) = St+1LS(St+1,Dt+1)µFt+1 +
πt − rFt −L(St ,Dt)µFt −StLS(St ,Dt)µFt

β (1−δ +GD(St+1,Dt+1)+mLD(St+1,Dt+1)µSt+1)

−
βGS(St+1,Dt+1)+m(1−L(St+1,Dt+1)−St+1LS(St+1,Dt+1))µ

β (1−δ +GD(St+1,Dt+1)+mLD(St+1,Dt+1)µSt+1)
LD(St+1,Dt+1)µSt+1Ft+1 (10)

is defined as the marginal external cost of another satellite. These equations are derived in Section 1.8.

13This equation was derived in the Appendix of [21]. In that setting the discount rate was not constant over time.
14While the convention in infinite-horizon dynamic programming is to drop time subscripts and use primes on a variable’s right to indicate future

values, we use time subscripts here to avoid cluttering the state vector with changing parameters and to clearly show which values are changing

over time.
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1.3 Calibration and simulation

1.3.1 Physical parameters: deorbit, decay, collisions, and fragments

We calibrate the rate at which satellites deorbit, µ , by estimating the following analog to equation 1 by ordinary least

squares (OLS):

St+1 = St(1−L(St ,Dt))µ̂ +Xt + εSt . (11)

We use hats over variables to indicate a parameter being estimated, e.g. µ is the true (unknown) value while µ̂ is

the estimate of µ.εSt is the error term.

Equation 11 yields an estimated average lifespan of about 30 years, i.e. µ̂ = 0.967. This is consistent with an

average mission length of 5 years, followed by compliance with the 25-year deorbit guideline issued by the IADC

[11]. Using this rate in our forward simulations is conservative in the sense that the estimated OUF becomes a lower

bound relative to a model with imperfect compliance. Bradley and Wein [2] show full compliance to be optimal.

We calibrate equations 3 and 4 by estimating the following equations:

L(St ,Dt) = 1− exp(−α̂SSSt − α̂SDDt)+ εLt (12)

Dt+1 = (1− δ̂ )Dt + β̂SS(1− exp(−α̂SSSt))St + β̂SD(1− exp(−α̂SDDt))St+

γ̂At + m̂Xt + εDt . (13)

Theory predicts α jk, β jk, and m are nonnegative, and δ is in (0,1). We constrain the parameter estimates to comply

with the theoretical restrictions.

We estimate equations 12 and 13 in two stages. First, we estimate equation 12 by constrained nonlinear least

squares (NLS). Then, using the estimated values of α̂SS and α̂SD to generate (1−exp(−α̂SSSt))St and (1−exp(−α̂SDDt))St ,

we estimate equation 13 by constrained ridge regression, estimating (1−δ ) directly.15 We estimate both equations on

the sample from 1957-2014. The fitted values for all three equations are shown against the actual values in Figure S1.

Tables S2 and S3 show the calibrated parameters for equations 12 and 13. Since our goal is predicting the time

series rather than inference on the physical coefficients, we focus on prediction uncertainty estimates for equations 12

and 13 in Figure S3 rather than coefficient standard errors.

Collision probability parameters αSS αSD

Parameter values 1.29e-06 2.56e-08

Standard errors: 1.61e-07 4.90e-08

Table S2: Parameter values and standard errors from estimating equation 12. Standard errors are computed from residual-bootstrapped parameter

sets. The residual bootstrap procedure is described in section 1.4.

Debris law of motion parameters δ m γ βSS βSD

Parameter values 0.50 4.38 462.47 292.68 5159.58

Standard errors 0.003 0.04 0.37 39.57 5807.69

Table S3: Parameter values and standard errors from estimating equation 13. All values are rounded to two decimal places. The penalty parameter

λ was selected through cross-validation. Standard errors are computed from residual-bootstrapped parameter sets. The residual bootstrap procedure

is described in section 1.4.

Values estimated for equation 13 are lower bounds due to ridge estimation bias. For example, the value of m

suggests that every satellite launched creates at least 4.38 pieces of debris on average, while the value of γ suggests

that when anti-satellite missile tests create debris they create at least 462.47 pieces of debris on average.

15We use ridge regression for the debris equation to improve the model’s out-of-sample predictive performance, despite bias in the estimated

parameters and potentially poorer in-sample fit [10, 26]. Ridge estimates are biased toward zero relative to OLS estimates. For a given penalty

parameter λ ≥ 0, the relationship between a ridge coefficient estimate β̂ ridge and the corresponding OLS estimate β̂ OLS is β̂ ridge = β̂ OLS/(1+λ ).
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1.3.2 Economic parameters: returns, costs, and discounting

While we observe the total revenues for various sectors of the satellite industry, we do not have sufficient data to

(a) disentangle the revenues arising due to LEO operators from those of other operators, or (b) accurately model the

market structures of the various sectors of the satellite industry. We also do not observe the discount rate used by LEO

satellite operators. Consequently, the data we use for Ft and πt must be adjusted in an unknown fashion to account for

these issues before they can be used to project open-access launch rates to LEO.

Fortunately, equation 7 offers an equilibrium relationship which can provide us with reduced-form “adjustment

coefficients” that reflect a combination of the unobservable factors we mention above. We therefore calibrate equation

7 by estimating

L(St ,Dt) = aL1 +aL2rst +aL3
Ft−1

Ft

+ εrt , (14)

using OLS on the sample of returns data from 2005-2015, omitting the first observation (for 2005) to construct

Ft−1/Ft . εrt is a mean-zero error term, aL2 is a scale parameter, and aL3 measures the gross IRR, 1+ r. We do not

explicitly incorporate satellite lifetimes net of exogenous failure (the parameter µ) as the coefficient is not separately

identifiable — it enters each term in equation 14 as a scalar multiplying the parameters (aL1,aL2,aL3), and does not

affect the model’s predictions. Table S4 shows the calibrated parameters.

Economic calibration parameters aL1 aL2 aL3

Parameter values 0.004 0.009 -0.0004

Standard errors 0.002 0.002 0.001

Table S4: Parameter values from estimating equation 14. All values are rounded to the first non-zero digit.

If our data perfectly measured the costs and returns of satellite ownership, and our theoretical model held exactly,

we would expect aL1 = 1, aL2 = 1, and aL3 <−1. Our estimates therefore suggest that our returns and cost series are

measured with error or that our theoretical model is missing some important factors. Some potential factors include

binding launch constraints, cost efficiencies in satellite production, market power in the launch industry, or vertical

integration between launch providers and satellite operators. Further empirical research on the structure of the satellite

and launch industries is needed to disentangle these potential explanations.

To account for these missing factors in the historical period, we calibrate our satellite launch cost data to be con-

sistent with the simple open access model by using the estimated parameter values from the economic calibration.

Table S5 compares the calibrated data to the original series. The calibrated cost data are of the same magnitude as the

uncalibrated data, but typically smaller. This suggests that the unmodeled factors include cost efficiencies in satellite

production, launch, and management, or constraints on launch services available each period, which are consistent

with the analytical features we abstract from in our theoretical model.

Regardless of the specific factors missing from the theoretical model, we use equation 14 to recursively calibrate

the sequence of launch costs implied by the combination of open access, observed launch rates, and observed satellite

returns as

L(St ,Dt) = aL1 +aL2rst +aL3
Ft−1

Ft

+ εrt

=⇒ Lt = aL1 +aL2
πt

Ft

+aL3
Ft−1

Ft

+ εrt

=⇒ F̂t =
aL2πt +aL3Ft−1

Lt −aL1
. (15)

This “calibrated cost” accounts for these missing factors in the historical period. When it exceeds the observed

costs, the missing factors tend to reflect unobserved costs to launching satellites, such as limited launch availability.

When it is below the observed costs, the missing factors tend to reflect unobserved returns to launching satellites, such

as returns to scale.
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Table S5 shows the observed satellite returns (πt ), observed launch costs (Ft ), and implied launch costs (F̂t ). The

calibrated costs can be interpreted as the costs such that observed launch patterns result from open access under a

non-binding launch constraint and with no other unmeasured factors impacting launch costs. Using the calibrated

costs instead of the observed costs in the historical sample ensures that our parameter estimates are consistent with our

model of open access.16

Year Observed aggregate cost Calibrated aggregate cost

2006 161.02 194.26

2007 185.5 178.88

2008 170 154.86

2009 137.81 131.47

2010 136.16 140.48

2011 166.99 149.09

2012 186.88 165.69

2013 215.9 170.79

2014 254.39 170.68

Table S5: Launch costs (inclusive of satellite construction, integration, and maintenance) implied by open access and observed revenues and costs.

Since aggregate launch costs do not reflect the various unmodeled frictions (changing shadow price of the launch constraint, economies of scale in

satellite launching, and the share of satellites which are in LEO), we calibrate the economic costs to the collision probability and use the calibration

to back out implied costs that reflect these frictions. All values are given in billions of nominal US dollars per year. 2015 is omitted due to the

recursive nature of equation 15.

We must still set a value for r explicitly in order to solve the planner’s problem. We set the discount rate to be

5% (r = 0.05, implying a discount factor of β = (1+ r)−1 ≈ 0.95). This is intended to be a conservative estimate of

a market rate of return, since our planner is effectively an industry planner maximizing the value of the orbit to the

satellite and launch industry.

1.3.3 Algorithms for open access and optimal policy functions

We generate two sequences of policy functions: one function for each period under consideration, and one sequence

for each management regime type. We compute each sequence through backwards induction: beginning at the final

period in our projection horizon, and iteratively working backwards to the initial period. This procedure implies “per-

fect foresight” planning under each management regime, i.e. that all agents under any management regime are able

to perfectly forecast the sequence of returns, costs, interest rates, launch rates, and other model objects. The perfect

foresight assumption is clearly unrealistic, but our purpose is not to show how uncertainty in economic parameters

propagates over time. Rather, our purpose is to show how an optimal OUF would vary over time and the time paths

of orbital aggregate stocks under different management regimes. Such assumptions are used in integrated assess-

ment models of climate change with similar rationales, e.g. the models studied in Kelly and Kolstad [13], Nordhaus

[20], Wilkerson et al. [25]. Our work here is conceptually similar to integrated assessment modeling.

To compute the open access time path, we first generate a grid of satellite and debris levels, (gridS,gridD). We

generate this grid as an expanded Chebyshev grid to reduce numerical errors from interpolation, provide higher fi-

delity near boundaries, and economize on overall computation time [4]. In contrast to a standard Chebyshev grid, an

expanded Chebyshev grid allows for computation (rather than extrapolation) at the boundary points. The formula for

the kth expanded Chebyshev node on an interval [a,b] with n points is

xk =
1

2
(a+b)+

1

2
(b−a)sec

( π

2n

)

cos

(
k

n
−

1

2n

)

We set different values of b for S and D, creating a rectangular grid. The main issue in setting b is ensuring that the

time paths we solve for (described in section 1.3.4) do not run into or beyond the boundary. To avoid this issue while

minimizing the number of points in regions the time paths never reach, we set different b bounds for open access and

16Estimating the economic parameters using an open access model with a binding launch constraint is challenging as equation 6 becomes an

inequality, giving sets of open access-consistent parameters rather than a unique combination.
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the optimal plan, with the open access grid being strictly larger in both dimensions than the optimal plan grid.

In general, computing decentralized solutions under open access is simpler than computing the planner’s solutions.

This is because open access simplifies the continuation value to the cost of launching a satellite. We use R for all simu-

lations, parallelizing where possible. To facilitate convergence of policy and value functions, we normalize the returns

and costs parameters so that π1 = 1 during computation, and rescale the parameters after the time paths have been

generated.

We compute optimal value functions by value function iteration on the grid.17 We initialize the algorithm with

a guess of the value and policy functions. Then, at each point on the grid, we solve the first-order condition for the

planner’s problem (equation 9). Since there may be multiple solutions, only one of which leads to a global maximum,

we then evaluate the value function at each solution (including zero) and select the launch rate attached to the largest

level of the value function. Algorithm 1 describes how we compute the optimal policy and value functions for a given

grid and given value function guess guess(S,D), while algorithm 2 describes how we compute the open access policy

and value functions.

We construct our initial guess of the planner’s value function as the terminal value of the fleet. In the penultimate

period, we assume it is not optimal to launch any satellites (X∗T−1 = 0), making the final fleet size

ST = ST−1(1−L(ST ,DT )).

In the final period (T ), the payoff of the fleet is πT ST . Our assumption that it is not optimal to launch any satellites

in the penultimate period implies the one-period returns of a satellite do not cover the cost of building and launching

(βπT < FT−1), which we verify to hold in every period of our data. We use the implied series of Ft given the observed

πt and launch rate series in solving for open access and optimal policies.

Algorithm 1: Value function iteration

1 Set

W0(S,D) = guess(S,D),

X0 ≡ 0

for all (S,D) ∈ (gridS,gridD)
2 Set i = 1 and δ = 100 (some large initial value).

3 while δ > ε do

4 At each grid point in (gridS,gridD), use a numerical rootfinder to obtain

Xi : WD(S,D)+SLD(S,D)F̂−β [1−δ +GD(S,D)+mSLD(S,D)]WD(S
′,D′) = 0,

where WD(S,D) is given by equation 51.

5 Evaluate Wi(S,D) = πS− F̂Xi +βWi−1(S
′,D′) at Xi∪{0}, and select whichever value of Xi∪{0}

maximizes Wi(S,D). Wi−1(S
′,D′) is computed by linear interpolation.

6 δ ← ||Wi(S,D)−Wi−1(S,D)||∞.

7 i← i+1

8 end

1.3.4 Projected time paths

We use algorithms 1 and 2 to compute policy and value functions in each period, and run them sequentially from

the final period to the first period to generate a series of policy and value functions for each period’s set of economic

17We prefer value function iteration over straightforward nonlinear programming here for two reasons. First, value function iteration allows us

to exploit the parallel structure of the dynamic programming problem to reduce computation time. Second, value function iteration allows us to

concentrate computational effort in periods and regions of the state space where it is most useful, avoiding wasted computation time.
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Algorithm 2: Open access launch plan computation

1 Use a numerical rootfinder to find the Xo
t−1 which solves

L(St ,Dt) = aL1 +aL2r̂st +aL3
F̂t−1

F̂t

,

using the estimated laws of motion for St and Dt as functions of Xt−1, and the estimated function for

L(St ,Dt).
2 Approximate W ∞

i (S,D) = ∑
∞
t=1 β t−1(πSt − F̂Xo

t ) as W T
i (S,D) = ∑

T−1
t=1 β t−1(πSt − F̂X∗t ) by backwards

induction, using the estimated laws of motion for St+1 and Dt+1 and the estimated function for L(St ,Dt). We

use T = 500.

parameters. Algorithm 3 describes this process.

Algorithm 3: Generating a perfect-foresight sequence of policy functions

1 Set economic parameters to final period values.

2 Run algorithm 1 (for an optimal path) or 2 (for an open access path) to obtain WT (ST ,DT ).
3 for t in T-1:1 do

4 Set i = 1 and δ = 100 (some large initial value). Set X0t = XT . while δ > ε do

5 Using the value function from the previous time step as Wt+1(St+1,Dt+1), calculate

X∗it : WDt(St ,Dt)+StLD(St ,Dt)F̂t−

β [1−δ +GD(St ,Dt)+mStLD(St ,Dt)]WDt(St+1,Dt+1) = 0,

(for an optimal path, where WDt(S,D) is given by equation 51),

or

Xo
it : L(St+1,Dt+1) = aℓ1 +aℓ2r̂st +aℓ3

F̂t−1

F̂t

(for an open access path),

using the estimated laws of motion for St+1 and Dt+1, the estimated function for L(St ,Dt), linearly

interpolating to compute Wt+1(St+1,Dt+1).
6 δ ← ||Xit −Xi−1t ||∞
7 end

8 If calculating an optimal path, set Wt(St ,Dt) = πtS− F̂tX
∗+Wt(S

∗
t+1,D

∗
t+1). If calculating an open access

path, set Wt(St ,Dt) = πtS− F̂tX
o +Wt(S

o
t+1,D

o
t+1).

9 end

It is important to note that when obtaining the sequence of policy functions we do not do backwards induction

within each economic time period prior to the final period. Instead, we hold the continuation value (W (St+1,Dt+1))
fixed and iterate on the policy functions, using previous iterations’ policies as starting points. This ensures that the

continuation value incorporates each period’s returns and costs only once until the final period, while allowing for any

numerical errors in initial policy solves to be corrected. This type of “policy iteration” typically takes 1-2 iterations to

converge to within 1e-3. Backwards induction on the value function in the final period treats that period’s costs and

returns as steady state values. This is why we change the notation for the fleet value function for algorithm 3, indexing

by time to indicate that the launch cost and satellite per-period return are changing in each period.

Once we have a sequence of policy functions for each period’s economic parameters, we generate time paths by

picking a starting condition (S0,D0), computing the launch rate X0 by thin-plate smoothing spline interpolation of

the policy function, using the launch rate to compute the next-period state variables, and repeating the process until

the terminal period [7].18 Figure 3 of the main text shows the simulated open access and optimal paths of launches,

18Thin-plate smoothing splines are a generalization of cubic splines for multiple dimensions. They are used as multidimensional interpolants,
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satellites, debris, and collision risk over the in-sample period, 2005-2015, as well as projections from 2016-2040.

1.3.5 Projecting launch availability constraints

The maximum number of satellites which can be launched in a year are limited by a variety of factors, including

weather, availability of rockets, and availability of launch sites. To prevent the model from violating the limited avail-

ability of launches, we estimate the launch constraint from the observed historical data and then project it forward.

In each historical period, we calculate the maximum number of satellites which can be launched as the cumulative

maximum of launch attempts (successes+failures). From the historical calculation, we project the launch constraint

forward with a linear time trend and an intercept. Table S6 shows the estimated coefficients, and Figure S2 shows the

projected launch constraint time path.

Launch constraint model parameters Intercept Time trend

Parameter values 30.13 12.5

Standard errors 16.43 2.65

Table S6: Parameter values from linear model of launch constraint. All values are rounded to two decimal places. We estimate these coefficients

using OLS on the historical launch constraint.

In the historical period, we use the adjusted launch costs (described in section 1.3.2) When the zero-profit or

optimal number of launches exceeds the launch constraint in the projection period, we impose the constraint. If the

constraint binds for both the planner and open access firms, then the estimated optimal OUF will be zero. If the

constraint binds on open access firms but not on the planner, the optimal OUF will be lower than if the constraint had

not bound open access firms. If we impose the constraint when in reality it would not bind, we will underestimate the

optimal OUF.

1.4 Sensitivity analyses of physical equation calibration

To study the sensitivity of our conclusions to uncertainty in our physical parameter estimates, we conduct a sensitivity

analysis of the model simulations given different physical parameter values. We use a residual bootstrap procedure to

obtain sets of alternative parameter values.

First, we estimate equations 12 and 13 as described above. Then, we sample from the distribution of residuals

to generate “bootstrap worlds”. We add these residuals to the estimated models to generate bootstrap world outcome

variables. Finally, we re-estimate equations 12 and 13 using the bootstrap world outcomes to generate alternate sets

of physical parameter estimates, and simulate the open-access and optimal models under a random sample of those

estimates. Algorithm 4 describes our procedure precisely.

One issue to note is that, because we estimate equation 12 with a constrained procedure and the coefficients are

near one of the constraint boundaries, the asymptotic properties of our main model estimates are difficult to obtain

[14].19

and are well-suited for cases where the data are obtained from non-uniformly distributed sites. In the two-dimensional case used here, thin-plate

splines arise as minimizers of the following objective function with n observations, yi being the outcomes, and (S,D)i being the predictors:

E( f ) =
n

∑
i=1

||yi− f ((S,D)i)||
2
2 +λ

∫ ∫

||H f ||22dSdD,

where H f is the matrix of second-order partial derivatives of f , and || · ||22 is the sum of squares of the argument (squared L2-norm). Thin-plate

splines can be interpreted by physical analogy as bending a thin plate of metal to fit an underlying surface without allowing it to move at the

sample points. In two dimensions, the λ
∫ ∫
||H f ||22dSdD term can be viewed as the bending energy of the plate. The objective function therefore

balances the goodness-of-fit (the first term in the objective function) against the amount of bending energy (the second term). We choose the penalty

parameter λ by cross-validation. Thin-plate splines are a convenient multidimensional interpolator here because they are infinitely differentiable

and preserve shape properties of the underlying function. For more the use of on shape-preserving methods in economic dynamic programming

problems, see [4].
19The issues described in [14] make straightforward sampling from the estimated covariance matrix inappropriate for our setting. This would mo-

tivate a non-parametric approach, but our small sample size precludes fully non-parametric bootstrapping. We opt for a semi-parametric procedure
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Algorithm 4: Bootstrap procedure

1 Estimate equations 12 and 13 to obtain base parameter estimates, Φ, and residuals, {(εLt ,εDt)}t .

2 Draw from {(εLt ,εDt)}t with replacement to generate b = 1, . . . ,B bootstrap resamples {(εLt ,εDt)
b}t .

3 Generate B bootstrap time series, Lb(St ,Dt) and Db
t+1, using equations 12 and 13 with base estimates Φ and

resampled residuals {(εLt ,εDt)
b}t .

4 Re-estimate equations 12 and 13 using Lb(St ,Dt) and Db
t+1 as dependent variables to obtain bootstrap

parameter estimates {Φb}B
1 .

1.5 Projecting the optimal OUF path

With the calibrated parameter values, we turn to projecting the optimal OUF path. We split this process into two

stages. In the first stage, we compute the time paths of the satellite stock, debris stock, and launch rate, given the open

access and fleet planner models of orbit use. These describe the projected evolution of the orbital aggregates. In the

second stage, we use the computed time paths with the estimated collision probability function and launch cost path to

calculate the optimal OUF. The OUF is derived from the same open access and fleet planner models. It describes the

amount which a satellite owner would have to be charged every year, beginning from the projection horizon’s initial

conditions, in order to align their incentives with the fleet planner’s.20 We show the in-sample fit of our open access

projections to establish that our approach can approximate the observed history, and then use predictions of space

economy revenues and costs from Jonas et al. [12] to project out the open access and optimal launch rates given those

predictions.

We calculate the time path of an optimal OUF from equation 16. Letting Xo
t denote the open-access launch rate in

period t, X∗t denote the optimal launch rate in period t, and τt denote the optimal OUF,

τt : Xo
t = X∗t .

In general, the optimal Pigouvian tax on a variable is the marginal external cost of that variable. For satellites

being launched in period t, this means

τt = ξ (S∗t+1,D
∗
t+1).

The equilibrium and optimal relationships from equations 7 and 9 offer a convenient way to compute the marginal

external cost from the observable collision probability under open access and the counterfactual collision probability

under optimal management:

L(S∗t+1,D
∗
t+1) = 1+ rs,t+1− (1+ r)

Ft

Ft+1
−ξ (S∗t+1,D

∗
t+1)

L(So
t+1,D

o
t+1) = 1+ rs,t+1− (1+ r)

Ft

Ft+1

=⇒ τt =(L(So
t+1,D

o
t+1)−L(S∗t+1,D

∗
t+1))Ft+1, (16)

where So
t+1 and Do

t+1 are satellite and debris stocks in t + 1 under open access management, and S∗t+1 and D∗t+1

are satellite and debris stocks in t +1 under optimal management. The difference in collision probabilities provides a

dimensionless “rate” of marginal external cost, so re-scaling the rate by Ft+1 converts the rate back into the appropriate

monetary units. After the initial period of optimal management, the optimal trajectories of satellite and debris stocks

diverges from the open-access trajectories. The OUF reflects the additional rents accruing to satellite owners because

of management, which would be dissipate under open access.

As we stated earlier, the optimal OUF is the marginal external cost of launching another satellite. As such, it is

positive whenever the planner would maintain a lower collision probability than firms under open access would. The

planner, in turn, will maintain a lower collision probability if the lifetime returns from another satellite in orbit are

to split this difference and account for our model structure without imposing overly-restrictive conditions on the asymptotic coefficient distributions.

The residual bootstrap is a particular semi-parametric bootstrap method developed for AR(1) models, making it more appropriate for equation 13

[16].
20This can also be thought of as “How much of the profits from orbit use currently reflect resource rents which should not have been dissipated?”
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less than that satellite’s expected future damages to other satellites in the fleet. By charging open access firms the

marginal external cost of their satellite as an OUF, their incentives are aligned with those of the planner despite the

institutional differences. With their incentives aligned, their decisions to launch or not are shifted to optimize the total

intertemporal economic value from orbit use rather than their own individual profit.

Formally, equation 16 can be derived by comparing the open access equilibrium condition (equation 7) to the fleet

planner’s optimality condition for launching (the first-order condition of system of equations 8).21 These conditions

can be written to express the expected loss in satellite value (collision probability multiplied by replacement cost) in

terms of economic and, in the case of the optimality condition, physical parameters. Those economic parameters in-

clude terms for the current excess return on a satellite in addition to the capital gain or loss from changes in the cost of

a replacement satellite. By subtracting the optimal expected collision probability from the open-access expected col-

lision probability, we recover the additional physical and economic term the fleet planner accounts for—the marginal

external cost of a satellite. The marginal external cost is the optimal OUF value to levy on each satellite.

1.6 Projecting the effects of active debris removal under open access

Finally, we consider the effects of active debris removal technologies on the NPV losses due to open access, shown

in Figure 4 of the main text. We assume that debris removal is available for zero cost, and that 50% of all debris is

removed from orbit each period once the technology is available. For example, in a scenario where removal begins in

2030, we assume that 50% of all debris in orbit is removed every year beginning in 2030. We assume debris is removed

before it collides with any other orbiting object, and that implementing the removal technology does not require any

additional satellites.

These assumptions help us bound a “best case” removal scenario. In reality, removal will cost more than $0 per

unit removed, will require some additional satellites on orbit to implement, and will not be guaranteed to be successful

in all cases. Since debris removal in LEO is not commercially available yet, we experiment with different removal

start years between 2021–2034.

The laws of motion with debris removal are

St+1 = St(1−L(St ,Dt(1−Rt)))µ +Xt (17)

Dt+1 = Dt(1−Rt)(1−δ )+G(St ,Dt(1−Rt))+ γAt +mXt , (18)

where Rt = 0.5 if removal technologies are available and 0 otherwise.

The open access equilibrium condition is unchanged from the condition without debris removal(equation 7). The

planner’s optimality condition with freely-provided debris removal is similar to the condition without debris removal

(equation 9), but with (1−Rt) terms scaling the debris variable and all derivatives with respect to debris:

WD,t(St ,Dt(1−Rt)) =−StLD(St ,Dt(1−Rt))(1−Rt)Ft+

β [1−δ +GD(St ,Dt(1−Rt))(1−Rt)+

mStLD(St ,Dt(1−Rt))(1−Rt)]WD,t+1(St+1,Dt+1(1−Rt+1)), (19)

21The traditional way to calculate the marginal external cost of another launch in this setting would be to derive the marginal value of a satellite

(WS) and the marginal value of debris (WD), then determine which (if any) of those marginal values were already being internalized by firms, then

assess the remainder on firms as a fee. The calculation in equation 16 implements this calculation, but is more convenient in that it allows us to do

a simple comparison of observable variables rather than calculate the derivatives of the planner’s value function and the open-access fleet value and

take differences.
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where

WD,t(St ,Dt(1−Rt)) =

[
Ft−1

β
−πt − (1−L(St ,Dt(1−Rt))−StLS(St ,Dt(1−Rt)))Ft−

(
GS(St ,Dt(1−Rt))−m(1−L(St ,Dt(1−Rt))−StLS(St ,Dt(1−Rt)))

1−δ +GD(St ,Dt(1−Rt))(1−Rt)+mLD(St ,Dt(1−Rt))(1−Rt)

)

·

LD(St ,Dt(1−Rt))(1−Rt)StFt

]

·

[
GS(St ,Dt(1−Rt))−m(1−L(St ,Dt(1−Rt))−StLS(St ,Dt(1−Rt)))

1−δ +GD(St ,Dt(1−Rt))(1−Rt)+mLD(St ,Dt(1−Rt))(1−Rt)
+m

]−1

. (20)

1.7 Derivation of the open-access launch rate

In this section we derive equations characterizing the interior open-access launch rate under constant and time-varying

parameters and infinite lifetimes, equations 6 and 7.22 These results are shown in [21], and included here for interested

readers. We begin with the case where parameters are constant over time, equation 6.

A firm, i, deciding whether to launch or not solves

Vi(St ,Dt ,Xt) = max
xit∈{0,1}

{(1− xit)βVi(St+1,Dt+1,Xt+1)+ xit [βQ(St+1,Dt+1,Xt+1)−F ]}

s.t. St+1 = St(1−L(St ,Dt))+Xt

Dt+1 = Dt(1−δ )+G(St ,Dt)+ γAt +mXt ,

with the value of a satellite being

Q(St ,Dt ,Xt) = π +β (1−L(St ,Dt))Q(St+1,Dt+1,Xt+1). (21)

In an open-access equilibrium, firms are indifferent between launching or not launching because the profits from

owning a satellite have been driven to zero. This gives us the following:

Xt ∈ [0, X̄ ] : Vi(St ,Dt ,Xt) = 0 (22)

=⇒ βQ(St+1,Dt+1,Xt+1) = F (23)

=⇒ Q(St ,Dt ,Xt) = π +(1−L(St ,Dt))F (24)

=⇒ π = rF +L(St+1,Dt+1)F (25)

=⇒ L(St+1,Dt+1)F = π− rF (26)

=⇒ L(St+1,Dt+1) = rs− r. (27)

Equation 25 follows from substituting equation 24 into equation 21. Equation 26 follows from iterating equation

25 one period forward and and substituting it into equation 24. The final line (which is equation 6) follows from the

definition rs ≡ π/F , with the right-hand side being defined as the excess return on a satellite.

Note that equation 6 does not imply a constant launch rate or a steady state in orbit. Any pattern of dynamics such

that equation 6 holds is consistent with an open-access equilibrium. Such patterns include paths where the satellite

stock is increasing while the debris stock is decreasing, or paths where the satellite stock is decreasing while the debris

stock is increasing. While the system defined by equations 6, 2, and 3 will eventually converge to an attracting fixed

point in (S,D) space whenever such a fixed point exists, the dynamics of the system will be governed by the properties

of L and G. While our calibrations ensure the existence of a unique stable steady state, such properties are not guaran-

teed in systems where Kessler Syndrome is possible.

22Including finite lifetimes scales the collision risk by the probability of natural satellite end-of-life occurring, but does not change any qualitative

properties.
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The derivation of equation 7 follows much as the derivation of equation 6. Beginning from the same equilibrium

condition and net present value of a satellite (both value functions augmented with time subscripts), and allowing π
and F to vary over time,

Xt ∈ [0, X̄ ] : Vit(St ,Dt ,Xt) = 0 (28)

=⇒ βQt+1(St+1,Dt+1,Xt+1) = Ft (29)

=⇒ Qt(St ,Dt ,Xt) = πt +(1−L(St ,Dt))Ft (30)

=⇒ πt+1 = (1+ r)Ft +L(St+1,Dt+1)Ft+1 (31)

=⇒ L(St+1,Dt+1) = 1+
πt+1− (1+ rt)Ft

Ft+1
(32)

=⇒ L(St+1,Dt+1) =

(

rs,t+1− r
Ft

Ft+1

)

+

(

1−
Ft

Ft+1

)

. (33)

Note that giving firms the option to deorbit a satellite does not affect the equilibrium collision probability. To see

this, consider a firm which owns a satellite and must decide whether or not to deorbit it. Let V d
t denote the net payoff

from deorbiting a satellite. V d
t includes any liquidation revenues or costs from deorbiting, e.g. revenues from selling

equipment or costs incurred due to service disruptions, and may be positive, negative, or zero. At the beginning of

a period, satellite-owning firms decide whether to keep their satellite operational and collect revenues, or deorbit the

satellite.

The ability of a satellite owner to deorbit does not change the problem facing an open-access launcher, so equation

30 still characterizes the continuation value of owning a satellite. Under open access, the satellite-owning firm solves

Qt(St ,Dt ,Xt) = max{πt +(1−L(St ,Dt))Ft ,V
d

t }. (34)

This implies a satellite-owning firm will deorbit their satellite in t if

V d
t > πt +(1−L(St ,Dt))Ft (35)

L(St ,Dt)> 1+
πt −V d

t

Ft

. (36)

Since L is a probability and bounded in [0,1], as long as the satellite is expected to produce more profit in t than

can be obtained by deorbiting it a firm will never choose to deorbit it. Even if V d
t > πt , it may still be more profitable

to leave it in orbit if the collision risk is sufficiently low that the expected continuation value of leaving the satellite in

orbit exceeds the returns to deorbiting it.

Since we do not observe V d in our data, we simply assume a constant fraction µ of satellite owners choose to

deorbit their satellites each period and calibrate that fraction to the data.

1.8 Derivation of the optimal launch rate

In this section we derive the equations characterizing the planner’s interior launch rule, equations 9 and 10. Period

t values are shown with no subscript, and period t + 1 values are marked with a ′, e.g. St ≡ S,St+1 ≡ S′. The fleet

planner’s problem is

W (S,D) =max
X≥0
{πS−FX +βW (S′,D′)} (37)

s.t. S′ = S(1−L(S,D))µ +X (38)

D′ = D(1−δ )+G(S,D)+ γA+mX . (39)

The fleet planner’s launch plan will satisfy

X∗ : β [WS(S
′,D′)+mWD(S

′,D′)] = F, (40)
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that is, the planner will launch until the marginal value to the fleet of a new satellite plus the marginal value to the

fleet of its launch debris is equal to the launch cost.

Assuming an optimal policy function X∗ = H(S,D) exists and applying the envelope condition, we have the fol-

lowing expressions for the fleet’s marginal value of another satellite and another piece of debris:

WS(S,D) = π +β [WS(S
′,D′)(1−L(S,D)−SLS(S,D))µ +WD(S

′,D′)GS(S,D)] (41)

WD(S,D) = β [WD(S
′,D′)(1−δ +GD(S,D))+WS(S

′,D′)(−SLD(S,D)µ)] (42)

Rewriting equation 40, we have

WS(S
′,D′) =

[
F

β
−mWD(S

′,D′)

]

(43)

Plugging equation 43 into equations 41 and 42,

WS(S,D) = π +F(1−L(S,D)−SLS(S,D))µ−βWD(S
′,D′)[m(1−L(S,D)−SLS(S,D)µ)−GS(S,D)] (44)

WD(S,D) = (−SLD(S,D))F +βWD(S
′,D′)[1−δ +GD(S,D)−m(−SLD(S,D)µ)] (45)

Define the following quantities:

α1(S,D) = π +(1−L(S,D)−SLS(S,D))µF

α2(S,D) =−SLD(S,D)µF

Γ1(S,D) = GS(S,D)−m(1−L(S,D)−SLS(S,D))µ

Γ2(S,D) = 1−δ +GD(S,D)+mSLD(S,D)µ.

These allow us to rewrite equations 44 and 45 as

WS(S,D) = α1(S,D)+βΓ1(S,D)WD(S
′,D′) (46)

WD(S,D) = α2(S,D)+βΓ2(S,D)WD(S
′,D′). (47)

As long as δ < 1, Γ2(S,D) 6= 0 ∀(S,D), allowing us to rewrite equation 47 as

WD(S
′,D′) =

WD(S,D)−α2(S,D)

βΓ2(S,D)
. (48)

Plugging equation 48 into equation 46, we get

WS(S,D) = α1(S,D)+βΓ1(S,D)
WD(S,D)−α2(S,D)

βΓ2(S,D)

= α1(S,D)+
Γ1(S,D)

Γ2(S,D)
(WD(S,D)−α2(S,D))

=⇒ WS(S,D) = α1(S,D)−
Γ1(S,D)

Γ2(S,D)
α2(S,D)+

Γ1(S,D)

Γ2(S,D)
WD(S,D) (49)

Iterating equation 43 one period backwards and plugging it into equation 48, we get

′F

β
−mWD(S,D) = α1(S,D)−

Γ1(S,D)

Γ2(S,D)
α2(S,D)+

Γ1(S,D)

Γ2(S,D)
WD(S,D)

=⇒ WD(S,D) =

[
′F

β
−α1(S,D)−

Γ1(S,D)

Γ2(S,D)
α2(S,D)

][
Γ1(S,D)

Γ2(S,D)
+m

]−1

. (50)

Substituting in the forms for α1(S,D),α2(S,D),Γ1(S,D), and Γ2(S,D), equation 50 yields

WD(S,D) =

[
′F

β
−π− (1−L(S,D)−SLS(S,D))µF−

GS(S,D)−m(1−L(S,D)−SLS(S,D))µ

1−δ +GD(S,D)+mLD(S,D)µ
LD(S,D)µSF

]

·

[
GS(S,D)−m(1−L(S,D)−SLS(S,D))µ

1−δ +GD(S,D)+mLD(S,D)µ
+m

]−1

. (51)
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Combining equation 51 with equation 50 iterated one period forwards, we obtain

L(S′,D′) = 1+ r′s− (1+ r)
F

F ′
−ξ (S′,D′),

where

ξ (S′,D′) = S′LS(S
′,D′)µF ′+

π− rF−L(S,D)µF−SLS(S,D)µF

β (1−δ +GD(S′,D′)+mLD(S′,D′)µS′)

−
βGS(S

′,D′)+m(1−L(S′,D′)−S′LS(S
′,D′))µ

β (1−δ +GD(S′,D′)+mLD(S′,D′)µS′)
LD(S

′,D′)µS′F ′.

1.9 Discussion

1.9.1 Interpreting the optimal OUF and long-run industry value paths

Figure 2 in the main text shows the NPV gains from beginning optimal management in different years, and the per-

manent orbit use value losses in 2040 from delaying optimal management. The permanent orbit use value is the

discounted value of the satellite fleet over the long-run, accounting for losses and replacements.

As mentioned in the main text, the discontinuous jumps in NPV in Figure 2 reflect the immediate effect of reducing

launch activity while the satellite and debris stocks are suboptimally high. The change in launch activity increases the

NPV by reducing the cost outflows each year. Since open access launching results in excess satellites and debris, the

benefits of optimal management continue to accrue gradually as the satellite and debris stocks draw down. Figure 3 in

the main text shows these launch rate dynamics for a 2006 optimal management start.

The fact that the optimal OUF, shown in Figure 2 of the main text, rises over time is an indication of the restored

value of orbit use due to optimal management (orbital rents). Intuitively, firms fully dissipate orbital rents in an open

access equilibrium, as those rents act as an incentive to enter. To counter the growth in the incentive to enter due to

restored orbital rents, the OUF must also rise over time. A firm which enters the commons early on (say, 2020) will

pay a lower initial fee than a firm which enters later on (say, 2030) because the early entrant is paying to use a more

congested environment.

Though our modeling procedure abstracts from many economic and physical complications, our optimal OUF and

long-run industry value estimates are likely robust to these limitations and on the correct order of magnitude with

the correct qualitative features. On the OUF side, given that the projected optimal launch path beginning from the

projected 2020 state of LEO involves cessation of launch activity, the estimated OUF in 2020 needs only to be large

enough to deter launches, particularly those likely to generate large and suboptimal increases in collision risk. While

satellite operators in LEO are heterogeneous and represent diverse interests, we estimate an optimal averaged-across-

LEO-use-cases per-satellite-year fee beginning at approximately $14,849 USD (0.7% of the average annual profits

of owning a satellite in 2015) and growing over time. [17] identify that the majority of collision risk increases in

the near future will be driven by satellite constellation operators. For an entity planning to launch a constellation of

600 satellites, our OUF amounts to an additional yearly expenditure beginning at roughly $8.91 million USD—likely

enough to prompt serious reconsideration of the size and nature of the constellation. On the industry value side, the

global satellite sector currently produces approximately $0.15 trillion USD in revenues, and is anticipated to grow to $2

trillion USD in revenues and costs by 2040 [12]. A decrease in collision risk which leads to a 10% increase in the per-

year economic value of the satellite sector would immediately add 10% to the sector’s NPV. Our model projects that

collision risk in 2040 will decrease by roughly 33% (compared to BAU) under an optimal management plan beginning

in 2020. This reduction in collision risk would cut collision-related replacement costs, increase the expected lifespan

of satellites in orbit, and reduce collision-related disruptions in the stream of satellite-related economic returns. Given

this, long-run industry value in 2040 on the order of single-digit trillions of USD seems plausible.

1.9.2 Open access and active debris removal

The introduction of debris removal makes both open access firms and the planner launch additional satellites. How-

ever, the planner launches considerably fewer additional satellites than open access firms. The immediate decrease in
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debris when removal becomes available induces new launches under open access until the collision risk is once again

equated with the excess return on a satellite. Figure 4 of the main text shows the effects of debris removal beginning in

2029 on satellite and debris accumulation under open access and a range of optimal management paths. The removal-

induced additional launching leads to a higher steady-state satellite stock and a lower steady-state debris stock under

open access and optimal management. The amount of debris removed in our “50% removal” scenario is substantially

larger under open access than the optimal plan as there is more debris in orbit under open access.

Though debris removal allows open access to sustain more satellites in orbit, over time collision risk returns to the

equilibrium level. The costs of additional launches erodes some of the NPV gains due to reduced risk. Figure 4e in the

main text shows the percentage change in open-access NPV loss due to the introduction of debris removal in 2029, as

a fraction of the potential gain from implementing the optimal plan in 2020. Figure 4f in the main text summarizes the

minimum, mean, and maximum changes in long-run industry value losses due to open access with removal beginning

in each year in 2021–2034. On average, debris removal beginning in the 2021–2034 window reduces open access NPV

losses by about 1.74% relative to a counterfactual world without removal. When optimal management begins ahead of

debris removal, the NPV losses tend to be reduced (negative changes). When optimal management begins after debris

removal, the NPV losses tend to be increased (positive changes). The increase in NPV losses in the latter scenario is

driven by the costs of additional launching under open access, both immediately following the initial debris reduction

and to sustain the larger satellite population. Due to open access, firms will take advantage of lower collision risk

due to debris removal by launching satellites until there are no more profits from launching new satellites. When the

planner is in charge of launching before debris removal begins, they do not waste resources by launching to dissipate

the gains from debris removal.

Eventually, it seems likely that debris removal will become technologically feasible at a unit price low enough to be

economically viable (but greater than the zero dollars we consider here). Some existing studies which have estimated

bounds on willingness-to-pay for debris removal, highlighted strategic issues in debris removal which threaten to

limit the value of a removal industry, suggested financing mechanisms, or detailed the legal and policy landscape

[19, 15, 5, 23, 1]. There are many more interesting questions about the as-yet nonexistent debris removal industry.

Should it be private? Public? How should it be funded? The OUF we calculate is not the marginal willingness-to-

pay for debris removal, and does not provide guidance on the potential value or structure of a future debris removal

industry.23 These questions are important for future research to address in detail.

1.9.3 Unmodeled physical and economic factors

In addition to the limitations imposed by modeling spatially and temporally heterogeneous physical and economic

processes at an aggregated level, there are three main analytical limitations pertaining to unobservables in the past

and present and unknowables in the future: launch market frictions, constellations (coordinated systems of satellites

intended to serve a common purpose), and satellite placement. These limitations may make our OUF estimates lower

bounds on the true values required to induce optimal orbit use, as we describe below.

Our conclusions about the suboptimality of open access to orbit and the necessity of a globally-coordinated OUF

(or policies equivalent to one) are robust to these limitations. The fundamental problem creating the need for policies

equivalent to a globally-coordinated OUF is the lack of legally-enforceable property rights over orbits.24 The lack of

property rights prevents satellite owners from internalizing the costs they impose on others through collision risk and

debris creation. The same issue manifests in other common-resource settings, such as fisheries [9].

Our economic model is founded on the assumption that all agents who want to launch satellites are able to do so

with no frictions. In practice, there are factors other than orbital property rights and willingness-to-pay which limit

agents’ access to orbit, such as limited availability of launch windows and rockets. These factors constrain humanity’s

ability to launch satellites. To ensure that our simulations do not violate this launch constraint in observed years, we

23The OUF is the marginal external cost of another satellite at the optimum, accounting for that satellite’s dynamic effect on collision risk through

debris and other satellites. It is not the marginal external cost of another piece of debris at the optimum, as the external cost of another satellite

entering orbit is not the same as the external cost from another piece of debris. This is related to the point on lines 269-273 of the main text about

computing an OUF for a ’standard unit’ of risk—active satellites and debris would not generate the same number of standard units of risk.
24The geostationary belt is the exception to this statement. In general, however, there is no globally-coordinated procedure for allocating orbital

paths, or even a globally-agreed-upon definition of an orbital path property right.
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calculate the launch constraint in each observed period as the cumulative maximum number of launches observed so

far. The shadow value of the launch constraint is recovered in the economic parameter calibration process, but the

individual factors are not identifiable from the data. We then fit a linear time trend to the observed launch constraint,

and project it into the future. To the extent that the launch constraint will be relaxed faster than a linear trend would

predict, our estimates are economically conservative, i.e. we assume fewer launches than may occur, which biases our

estimated OUF downward.

Our economic model is also founded on the simplifying assumption of “one satellite per firm”.25 In practice, there

are a number of firms which own constellations or fleets of satellites. However, unless a single firm owned all satellites

in orbit, orbit users would not internalize the full scope of the externality they impose on others. To the extent that

the observed data reflects agents internalizing those externalities due to ownership of multiple satellites, our economic

parameter estimates would entangle those factors with the estimated launch constraint shadow value. Our projections

of single-satellite-owning firms’ responses to increases in satellite profitability would therefore be attenuated toward

zero, making our projections environmentally conservative, i.e. closer to an environmental “worst-case” analysis.

However, the same assumption also increases the optimal OUF we estimate.

Lastly, our model abstracts away entirely from the question of satellite placement. That is, two orbital objects

within a given volume shell can be placed in orbits such that at one extreme they are guaranteed to collide, or at

the other extreme they will never collide. Our projections are based on collision rate estimates which are calculated

using historical placement patterns. Thus, our projections assume that the systematic factors which resulted in current

object placements will continue into the future. While technology and constellation ownership are likely to lead

to improvements in placement patterns our collision risk projections would be biased for both the open access and

optimal launch paths. However, the magnitude of the gap between open access and optimal collision risk may actually

be understated by this issue. To the extent that economic agents have the placement margin available to them it

is induces another externality, similar in spirit but different in detail to the orbit use externality we describe in this

article, wherein firms do not account for the full magnitude of orbital-use efficiency losses due to their placement. A

fleet planner who coordinated all satellites in orbit would account for such placement-related externalities. By taking

advantage of any efficiencies in placement, the planner would be able to reduce collision rates below what open access

satellite owners would have an incentive to consider. Thus, while the inclusion of a placement margin may reduce

levels of collision risk, the differences in collision risk between open access and optimal use may increase or decrease.

If the differences in collision risk increased, our OUF estimates would be a lower bound on average.26

1.9.4 Collision avoidance by active satellites

The 1972 Convention on International Liability for Damage Caused by Space Objects (“Liability Convention”) states

that the entity which launched a satellite holds liability for any damage done by one satellite to other satellites. While

the Liability Convention has yet to be tested at scale (leaving many open questions about attribution and enforcement,

as discussed in the main text), it is reasonable to argue that satellite operators will make efforts above and beyond

simply protecting their assets to avoid collisions between their satellites and other objects. Launchers of new mega-

constellations are increasingly launching smaller satellites, and equipping them with sophisticated automated collision

avoidance protocols. While these technological shifts are quite different from increased clarity around and enforce-

ment of the Liability Convention, they are similar in reducing the probability of collision between active satellites and

other entities below what a purely statistical model might predict.

Detailed models of how these factors might affect the collision risk and other equilibrium outcomes are beyond

our scope in this article. To consider how they might affect equilibrium outcomes and the optimal OUF, we conduct

a simple counterfactual exercise. We cut the physical collision probability parameters αSS and αSD in half from their

estimated values, reflecting that the actual physical collision rates may be substantially lower than a statistical model’s

predictions, and simulate the model forward from 2006. We then plot the time paths of open access and optimal man-

agement launches, satellite and debris stocks, collision risk, as well as the relative advantage of optimal management

25Our assumption could be relaxed to assuming that only the marginal firm launching owns one satellite and would still yield the same equilibrium

condition. Since we are abstracting from firm heterogeneity, we do not apply this interpretation.
26While some regimes in a spatially-differentiated orbit model may have lower OUF values than the ones we calculate here, others may have

higher OUF values.
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and the OUF, from 2020 onwards. As in our main policy environment analysis, we assume optimal management

begins in 2020. Figure S7 shows these results.

Collision avoidance (whether due to liability concerns, smaller satellites, automated avoidance, or any combina-

tion) increases both the open access and optimal levels of satellites while reducing the collision probability. The launch

rates and debris stocks in this scenario eventually rise above the estimated scenario. The increase in launch rates is

to sustain the larger satellite population. The increase in debris stocks is in part due to greater launch debris from

those additional launches, and partly due to a larger number of collisions from larger satellite populations. However,

collision avoidance in this scenario reduces the consequences of larger debris stocks, meaning the collision probability

remains below the non-avoidance scenario levels. The smaller collision probabilities (and smaller gap between open-

access and optimal collision probabilities) imply generally lower OUFs. While the OUF in the avoidance scenario

begins at roughly the same level as in the non-avoidance scenario, by 2040 it is around 68% the non-avoidance level—

approximately $161,149 (around 7.7% of the annual profits of operating a satellite in 2015) per satellite-year with

avoidance, compared to $234,227 (around 11% of the annual profits of operating a satellite in 2015) per satellite-year

without avoidance). Even with collision avoidance, optimal management reflects at least a five-fold increase in NPV

relative to open access.

1.9.5 Discount rate sensitivity

We assume a 5% discount rate in our analysis. We chose 5% to reflect industry opportunity costs, since the planner

we study is an industry fleet manager (the sole owner benchmark used in other natural resource settings). To assess

the sensitivity of our conclusions to the chosen discount rate, we simulate the model under discount rates from 3% to

7%. Figure S8 shows these results.

Increasing the discount rate to 7% reduces the relative gain from optimal management to about 3.5 times the BAU

open access rate, while cutting the discount to 3% increases the relative gain from optimal management to nearly

10-fold BAU. There are two channels through which the discount rate affects the optimal OUF path. Decreasing the

discount rate increases the optimal OUF level by increasing the weight attached to future damages (similar to how

the discount rate affects optimal carbon taxes in the climate change context). However, there is also a countervailing

channel due to the nature of satellites as investment goods for both firms and the planner. Lower discount rates increase

both the open access and fleet planner’s target levels of satellites as alternative investment opportunities become more

attractive. This effect reduces the level of the optimal OUF, counterbalancing the damages effect. For the parameters

we estimate these two effects roughly offset each other, leading to relatively invariant optimal OUF paths across

different discount rates.

1.9.6 Sensitivity to grid resolution

The projected time paths of variables are relatively insensitive to changes in the satellite-debris grid resolution: in-

creasing the grid resolution from 64 points total (8 points in each dimension) to 900 points total (30 points in each

dimension) changes the 2040 OUF and optimal-to-BAU NPV ratio (assuming optimal management begins in 2020)

from $234,226 to $230,488 and 5.79 to 5.86. The distribution of the NPV ratio in 2040 is more sensitive, with higher-

resolution grids shifting the distribution of gains upward and concentrating it—under the 64-point grid the middle

95% of projected NPV ratios is between 4.18 and 6.53, while under the 900-point grid the middle 95% of projected

NPV ratios is between 6.05 and 6.81. Under all resolutions simulated, the distribution of optimal-to-BAU NPV in

2040 (assuming management begins in 2020) remains greater than 4. Figure S9 compares model projections under

the 64-point and 900-point grids to illustrate the sensitivity. We report numbers from the coarse grid in the main text

since it is quicker to compute, which allows us to show more bootstrap replications.

1.9.7 Consequences of measurement error in satellite and debris counts

Limitations of sensor technology suggest that the debris counts we use are lower-bound estimates. To the extent

that this biases the collision probability and debris counts downward, it will bias the estimated decay rate, collision

probability parameters, fragmentation parameters, and launch debris weakly downwards. Since downward bias in the

physical parameters makes collisions and missile tests appear to cause less congestion than they actually do, the open
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access and optimal launch rates will be inflated.

Downward bias in the collision probability data will bias the economic parameter estimates weakly downwards as

well. This will to some degree offset the inflation in the launch rate caused by the physical parameter underestimation,

though the exact extent of the offset is not clear.

In general, measurement error in the collision probability data also causes the nonnegativity constraint on the

collision probability parameters (αSS and αSD) to bind in some bootstrap replications. This causes issues of the type

described in [14] in obtaining asymptotic standard errors.

1.9.8 Consequences of collision probability model misspecification

We assume that the collision probability model has constant parameters. Changes in patterns of satellite placement,

construction, and ownership structures lead to changes over time in the physical primitives reflected in αSS and αSD.

The “net” convexity or concavity of the time path of the primitives will determine whether the constant approxima-

tions over or understate the true time-varying parameters in any period on average. A convex time path—low values

initially and high values later on—will be overestimated on average, while a concave time path—high values initially,

with slow increases over time—will be underestimated on average.

The misspecification causes two problems with simulation and inference. First, underestimation will inflate launch

rate projections and overestimation will deflate them. However, because the misspecification affects both open access

and optimal launch rates in the same way, the simulated optimal OUF will not be affected. Second, underestimation

may cause the nonnegativity constraint on the collision probability parameters to bind in some bootstrap replications,

causing the same types of asymptotic issues as measurement error.

1.9.9 Consequences of measurement error in returns and costs

We take the returns and costs of satellite ownership from the data used in Wienzierl [24], which aggregate revenues

from all commercial satellites in orbit. By including more than just LEO satellites, the direct returns and costs data

overstate the returns to LEO paths. The economic parameter estimates therefore reflect a “LEO share” coefficient on

the revenue data between 0 and 1. The LEO share coefficient attenuates the estimates of aL1, aL2, and aL3.
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Figure S1: Calibrated physical model fits to historical data. The black dots show historical data points (1957–2014) for debris counts, active satellite

counts, and estimated collision rate. The blue dashed lines show the fits of the calibrated models.
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Figure S2: Projected launch constraint model. To represent the various factors constraining the number of rocket launches possible each year – e.g.

limited rocket availability, weather-induced launch cancellations, limited launch slots – we model the aggregate launch constraint as a linear time

trend based on observed launch behavior from 2006–2015. We use this constraint in our open access and optimal management model simulations

to avoid implausibly large launch rates in any given year. Panel a shows the observed and projected launch constraint. The solid black line from

2006–2015 indicates the observed cumulative maximum number of rocket launches in any given year, the dashed blue line from 2016–2050 shows

the projected maximum number of rocket launches possible in each year, and the vertical dashed black line marks the end of the in-sample period

(2006–2015). Panel b shows the estimated intercept and time trend with standard errors.
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Figure S3: Sensitivity of physical model calibration to parameter uncertainty. Panels a-b show a sensitivity analysis of the model calibrations for

the collision rate function and debris law of motion. The black lines show the underlying collision rate and debris count data from ESA, 1957–2014.

The thin darker blue lines show the fit of the models calibrated to the black lines (the same model fits shown in figure 3 of the main text). The

light blue lines show model fits from residual bootstrap-resampled data, indicating the effects of uncertainty in the model calibration. The same

procedure was used to generate Fig. 2d. We describe the residual bootstrap resampling procedure in more detail in section 1.4 of the Supporting

Information.
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Figure S4: Sensitivity of open-access paths to physical parameter uncertainty. Panels a-d show a sensitivity analysis of open-access model projec-

tions beginning in 2020 to uncertainty in the physical parameters. The thick black lines show the projection from the main model estimated on the

full 1957–2014 time series of object counts and collision rate estimates. The gray lines show projections using alternate sets of parameter estimates

generated from 1000 draws of the residual bootstrap-resampling procedure used in main text figure 2d.
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Figure S5: Sensitivity of optimal paths to physical parameter uncertainty. Panels a-d show a sensitivity analysis of optimal model projections

beginning in 2020 to uncertainty in the physical parameters. The thick black lines show the projection from the main model, where the physical

parameters were estimated on the 1957–2014 calibration time series constructed from ESA and UCS count data. The gray lines show projections

using alternate sets of parameter estimates generated from 1000 draws of the residual bootstrap-resampling procedure used in main text figure 2d.
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Figure S6: Sensitivity of optimal OUF to physical parameter uncertainty. The thick black line shows the projection from the main model, where

the physical parameters were estimated on the 1957–2014 calibration time series constructed from ESA and UCS count data. The gray lines show

projections using alternate sets of parameter estimates, generated from 1000 draws of the residual bootstrap-resampling procedure used in main text

figure 2d.
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Figure S7: Collision avoidance counterfactual. The dashed lines show model projections with the originally-estimated parameters (i.e. main model

estimates from figures S4, S5, and S6), and solid lines show model estimates with the collision-avoidance counterfactual estimates (αSS and αSD

half of the estimated values). In panels a-d, the red lines show open-access paths, and the blue lines show optimal management paths beginning in

2020 from the respective open-access levels.
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Figure S8: Discount rate sensitivity analysis. Panel a shows the ratio of optimal management NPV to BAU NPV, and panel b shows the correspond-

ing optimal OUF paths.
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Figure S9: Grid resolution sensitivity analysis. The dashed lines show model projections with the coarse grid (64 points, 8 in satellites and debris

each), and solid lines show model estimates with the fine grid (900 points, 30 in satellites and debris each). In panels a-d, the red lines show

open-access paths, and the blue lines show optimal management paths beginning in 2020 from the respective open-access levels. In panel f, the

light gray distribution is from the coarse grid (dashed line is main model estimate) and the dark gray distribution is from the fine grid (solid line is

main model estimate).
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