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Abstract

Cointegration between periodically integrated (PI) processes has been analyzed by many, including
Bladen-Hovell, Chui, Osborn, and Smith (1989), Boswijk and Franses (1995), Franses and Paap (2004),
Kleibergen and Franses (1999) and del Barrio Castro and Osborn (2008), to name a few. However,
there is currently no published method that allows us to determine the cointegration rank between PI
processes. The present paper �lls this gap in the literature with a method for determining the cointegra-
tion rank between a set of PI processes based on the idea of pseudo-demodulation, as proposed in the
context of seasonal cointegration by del Barrio Castro, Cubadda, and Osborn (2020). Once a pseudo-
demodulated time series is obtained, the Johansen (1995) procedure can be applied to determine the
cointegration rank. A Monte Carlo experiment shows that the proposed approach works satisfactorily
for small samples.

Keywords: Reduced Rank Regression,Periodic Cointegration, Periodically Integrated Processes.

JEL codes: C32.

1 Introduction

There are two main ways of modeling non-stationary integration in seasonal time series: with seasonal
integration and with periodic integration (see Ghysels and Osborn (2001) for details about the main char-
acteristics and di¤erences between seasonal and periodic integration). The latter may be seen as more
attractive, as its non-stationary behavior is ruled by a common stochastic trend shared between the seasons
present in the time series. Contrarily, in the case of seasonal integration, each of the time series seasons
has its own stochastic trend (see Osborn (1993) and Ghysels and Osborn (2001) for details). Furthermore,
periodic integration serves as a suitable data-generating process for seasonal time series when the preferences
of economic agents vary along with the seasons of the year (see Hansen and Sargent (1993), Gersovitz and
McKinnon (1978), and Osborn (1988)).
In terms of long-run relationships (cointegration) that can be established between seasonal non-stationary

processes, we can also �nd seasonal and periodic cointegration. For seasonally integrated (SI) processes
it is possible to de�ne both, but in the case of periodically integrated (PI) processes, only full periodic
cointegration can be established (see del Barrio Castro and Osborn (2008a) and Ghysels and Osborn (2001)
for details). As for seasonal cointegration, methods for both single-equation and reduced-rank regressions
have been proposed to test for the presence of cointegration and to determine the cointegration rank (see for
example Hylleberg, Engle, Granger, and Yoo (1990); Engle, Granger, Hylleberg, and Lee (1993); Johansen
and Schaumburg (1998); Cubadda (2000); and Ahn and Reinsel (1994)). Periodic cointegration was proposed
by Birchenhall, Bladen-Hovell, Chui, Osborn, and Smith (1989). A single-equation method to test for the
presence of periodic cointegration was proposed by Boswijk and Franses (1995). They claim that their
method can be applied to both SI and PI processes, but del Barrio Castro and Osborn (2008a) have shown
that the asymptotic distribution of the error-correction test for periodic cointegration that they derived
does not apply to PI processes. del Barrio Castro and Osborn (2008) have also proposed a residual-based

�I acknowledge the Agencia Estatal de Investigación (AEI) for its support to the project <PID2020-114646RB-C43/ MCIN/
AEI /10.13039/501100011033>. I am grateful to Gianluca Cubadda, Javier Hualde and to two anonymous referees for their
helpful and constructive comments.
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cointegration test for periodic cointegration between PI processes. But to the best of our knowledge, only
the working paper by Kleibergen and Franses (1999) has tried to come up with a method for determining
the cointegration rank between sets of PI processes, (see also Franses and Paap (2004) for details). The
method proposed by Kleibergen and Franses (1999) relies on periodic vector autoregressive (VAR) models and
implies the use of GMM and reduced-rank regression techniques. Finally, a full dynamic systems approach,
in which equations are estimated jointly for observations relating to each season, can theoretically be applied
(Ghysels and Osborn (2001) pp 171�176)�as was done in the application of Haldrup, Hylleberg, Pons, and
Sansó (2007)�but the VAR becomes over-parameterized. Hence, this approach is feasible in practice, but
only when data of a relatively high frequency is available.
In this paper, we propose a simple method for determining the cointegration rank between PI processes,

inspired by the demodulation method suggested by del Barrio Castro, Cubadda and Osborn (2022) that
merely requires the use of the procedure proposed by Johansen (1995) once the PI processes or time series
are "�ltered" or "demodulated."
The paper is organized as follows, in the next section, we describe and summarize the main characteristics

of PI processes and the consequences of cointegration between them. After that, we present our reduced-
rank approach for determining the cointegration rank between PI processes, followed by a Monte Carlo
section where we show that our approach works well on small samples. Finally, the last section concludes.
It is useful to introduce some notation at this stage. Our analysis is concerned with seasonal processes

that have S observations per year; for example, S = 4 for quarterly seasonal data. In the paper, the vector
of seasons representation indicating a speci�c observation within the year is used, as is double subscript
notation. It is important to appreciate that, in this vector notation, xs� indicates the s

th observation within
the � th year. For example, with quarterly data, xs� is the s

th quarter of year � in the available sample.
Assuming that t = 1 represents the �rst period within a cycle, the identity t = S(� � 1) + s provides a link
between the usual time index and the vector notation. Finally it is understood that xs�i;� = xS�(s�i);��1
for s� i � 0.

2 Periodic Integration and Cointegration between Periodically In-

tegrated Processes

First, we will focus on the main characteristics of PI processes. One of these characteristics is going to
be critical to the approach suggested in this paper, as it will allow us to determine the cointegration rank
between PI processes. Secondly, we will consider possible cointegration between PI processes.

2.1 Periodic Integration

A periodic autoregressive process of order p (PAR(p)), is a generalization of an autoregressive process in
which the parameters are allowed to vary with the season of the year, hence we have:

ys� = �1sys�1;� + �2sys�2;� + � � �+ �psys�p;� + "s� (1)

s = 1; 2; � � � ; S � = 1; 2; � � � ; N

where "s� is the innovation of the process and we assume that "s� � iid
�
0; �2"

�
. PAR(p) processes like (1)

can be rewritten as a Vector Autoregressive model of order (P ) (VAR(P )), also known as vector of seasons
representation of a PAR process (see Franses and Paap (2004) and Ghysels and Osborn (2001) for more
details), where the S seasons of the time series are stacked in an S � 1 vector Y� = [y1� ; y2� ; : : : ; yS� ]0 and

A0Y� = A1Y��1 +A2Y��2 + � � �+APY��P + E� (2)

where, E� = ["1� ; "2� ; :::; "S� ]
0
, Ak for k = 0; 1; : : : ; P are S � S matrices with generic elements

A0(i;j) =

8
<

:

1 i = j;
��i�j;i i < j;
0 i > j

Ak(i;j) = �i+Sk�j;i;

for i = 1; 2; : : : ; S, j = 1; 2; : : : ; S and P = 1 + [(p� 1) =S], with [a] denotes the integer part of a. The
subscript (i; j) indicates the (i; j)th element of the respective matrix. The stationarity of (2)-(1) requieres
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that all the roots of
��A0 �A1z �A2z � � � � �AP z

P
�� = 0 lie outside of the unit circle. In order to understand

the concept of periodic integration, let us focus on the PAR process of order one:

ys� = �sys�1;� + us� : (3)

In (3) we assume that us� is a stationary innovation, this assumption will help us later on to connect (3)

with (1)1 . The condition of periodic integration in (3) is
SY

s=1

�s = 1, and it implies that between the seasons

of the time series we have S � 1 cointegration relationships, or equivalently, that the seasons of the process
share a common stochastic trend. This situation is clearly shown in previously mentioned vector of seasons
representation of process (3):

A0Y� = A1Y��1 + U� (4)

where, U� = [u1� ; u2� ; :::; uS� ]
0
, A0, and A1 are S � S matrices with generic elements

A0(h;j) =

8
<

:

1 h = j; j = 1; :::; S
��h h = j + 1; j = 1; :::; S � 1
0 otherwise

(5)

A1(h;j) =

�
�1 h = 1; j = S
0 otherwise

:

Note that for (4) we have jA0 �A1zj = 1� �1�2�3�4z, and we have a unit root when �1�2�3�4 = 1, that
is the Periodic Integration condition. In the following lemma we summarize the stochastic behavior of Y� in
(4).

Lemma 1 For Y� = [y1� ; y2� ; y3� ; : : : ; yS� ]
0
with ys� s = 1; 2; � � � ; S de�ned in (3-4) with

SY

s=1

�s = 1 and

with (1�  1sL� � � � � p�1;sLp�1
�
us� = "s� and "s� � iid

�
0; �2

�
, then

Y� = A
�1
0 A1Y0 +A

�1
0 U� + ab

0
��1X

j=1

U��j (6)

1p
T
YbTrc ) �A�1

0 A1A
�1
0 	(1)

�1
W (r) = �ab0	(1)�1W (r) (7)

= !aw (r)

where a and b are de�ned in (47) in the appendix, W (r) is an S � 1 multivariate Brownian vector, w (r)
is a scalar Brownian motion, and the scalar ! is de�ned by (49) in the appendix. The de�nition of matrix
	(1) can also be found in the appendix.

The fact that the stochastic behavior of the vector Y� is ruled by the scalar Brownian motion w (r), clearly
shows that there is a common stochastic trend shared by the seasons of the process ys� that is gathered
in vector Y� and identi�ed by the scalar Brownian motion w (r) in (7). Or equivalently, we have S � 1
cointegration relationships between the seasons of (4). If we rewrite (4) as:

Y� = A
�1
0 A1Y��1 +A

�1
0 U�

Y� � Y��1 =
�
A
�1
0 A1 � I

�
Y��1 +A

�1
0 U� ; (8)

1 If we write (1) as: �
1� �1sL� �2sL

2
� � � � � �psL

p
�
ys� = "s�

and factorize the polynomial
�
1� �1sL� �2sL2 � � � � � �psLp

�
as

�
1� �1sL� �2sL

2
� � � � � �psL

p
�
= (1� �sL)

�
1�  1sL� � � � �  �p�1;sL

p�1
�

(see Franses (1996), Boswijk and Franses (1996), and del Barrio Castro and Osborn (2008a)) then (1) is connected to (3) as
us� in (3) is de�ned as follows: �

1�  1sL� � � � �  p�1;sL
p�1

�
us� = "s� ;

hence as we assume that us� is a stationary innovation in (3), us� should follow a PAR(p� 1) stationary process. Hence for its
vector of seasons representation with U� = [u1� ; u2� ; :::; uS� ]

0:

	0U� = 	1U��1 +	2U��2 + � � �+	KU��K + E�

with K = 1 + [(p� 2) =S], all the roots of
��	0 �	1z �	2z2 � � � � �	Kz

K
�� = 0 should lie outside of the unit circle.
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matrix
�
A
�1
0 A1 � I

�
has rank S � 1. Clearly

�
A
�1
0 A1 � I

�
= ��0, where both � and � have dimension

S � (S � 1) and one possible choice for the columns of � are the last S � 1 rows of A0.
2 Finally, it is clear

that we have cointegration between the seasons of Y� . If we left-multiply expression (6) by �
0 we obtain:

�0Y� = �0A�1
0 A1Y0 + �

0
A
�1
0 U� + �

0
ab

0
��1X

j=1

U��j :

With the de�nition of a in (47) and �0 de�ned as the last S� 1 rows of A0 (or as in footnote 2), it is evident
that �0a = 0. We clearly show that �0Y� � I (0) and that we have S � 1 cointegration relationships between
the S seasons of ys� (or Y� ).
If we compare Lemma 1 expression (A2) in del Barrio Castro, Cubadda, and Osborn (2022) (BCCO

hereafter) with Lemma 1 expression (7) in this paper, it is clear that the role played in our Lemma 1 by the
S � 1 vectors a and b is equivalent to the role played by the S � 1 vectors v�j and v+j in BCCO. Note that,
in BCCO, v�j collects the sequence of the S possible values of the complex demodulator operator e

�ti!k =

e�[S(��1)+s]i!k , which is clearly a periodic function, as !k = 2�k=S with k = 1, 2, . . . ,(S � 1) =2. The
complex demodulator operator appears after recursive substitution in the complex-valued process integrated
at frequency !k, x

�
s� = e�i!kx�s�1;� + "s� , which yields:

x�s� = e�i!kx�s�1;� + "s� (9)

x�s� = e�[S(��1)+s]i!k

2

4x�0 +
[S(��1)+s]X

j=1

e�[S(��1)+s�j]i!k"j

3

5 :

Hence, in (9) there are two parts: a complex-valued random walk integrated at the zero frequency
�
x�0 +P[S(��1)+s]

j=1 e�[S(��1)+s�j]i!k"j
i
, and the demodulator operator e�[S(��1)+s]i!k that shifts the previous

complex-valued random walk from the zero frequency to frequency !k. Thus, multiplying each observa-
tion of x�s� by the complex conjugate of the demodulator operator e

�[S(��1)+s]i!k (that is, e[S(��1)+s]i!k) we
obtain a complex value integrated at the zero frequency.
In this paper, there is an equivalent situation where in (7) the zero-frequency stochastic trend is associated

with the scalar Brownian motion w (r), and the S � 1 vector a plays a role similar to the demodulator
operator. But in the case of a PI process the periodic sequence of values collected in vector a causes spectral
power at the zero frequency and at the seasonal frequencies. Figure 1 illustrates this situation, where

2Note that we have S�1 cointegration relationships between the seasons of (3) in the form ys� ��sys�1;� , which are clearly
identi�ed with the last S � 1 rows of matrix A0, that is:

�0 =

2

666
4

��2 1 0 � � � 0 0
0 ��3 1 � � � 0 0
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
0 0 0 � � � ��S 1

3

777
5
:

See Paap and Franses (1999) for more details. And for � (with
h
A
�1
0 A1 � I

i
= ��0) we will have:

� =

2

66666666666666
4

��12 (�2�3)
�1

� � �

0

@
SY

j=2

�j

1

A
�1

0 ��13 � � �

0

@
SY

j=3

�j

1

A
�1

.

.

.
.
.
.

. . .
.
.
.

0 0 � � � ��1
S

0 0 � � � 0

3

77777777777777
5

:

Note also, that equivalently, we can use the normalized version of �0

��0 =

2

6666666
4

1 0 0 � � � 0 ��1
0 1 0 � � � 0 ��1�2
...

...
...

. . .
...

...

0 0 0 � � � 1 �

S�1Y

i=1

�i

3

7777777
5

:

4



part (a) shows the average periodogram based on 10,000 replications of simulated PI process (3), in which
ys� = �sys�1;� + us� , where S = 4, �1 = 0:8, �2 = 1, �3 = 0:5, �4 = 1= (�1�2�3) ; and us� � Niid (0; 1). In
panel (b) of Figure 1 we present the average periodogram of a�1s ys� , where as is the element with s

th position
in vector a. Clearly, part (a) shows spectral power at the zero, �=2, and � frequencies. Hence, ys� in (3) has
zero frequency and seasonal behavior while the pseudo-demodulated process a�1s ys� has only zero-frequency
spectral power, as seen in panel (b). This situation is explained by the misspeci�ed constant parameter
representation of the PI process (see Osborn (1991), Ghysels and Osborn (2001), and del Barrio Castro and
Osborn (2008b)). As pointed out by del Barrio Castro and Osborn (2008b) "This representation provides
the conventional non-periodic ARMA process that has autocovariance properties identical to those that
result from analyzing a periodic process as a conventional non-periodic one." The misspeci�ed constant-
parameter representation of ys� = �sys�1;� + us� , with S = 4 and �1�2�3�4 = 1, is ys� � ys��1 =�
1 + �1L+ �2L

2 + �3L
3
�
�s� (see section 2.2 in del Barrio Castro and Osborn (2008b) for details on how to

obtain �1, �2, �3, and �
2
� for a given combination of values for �1, �2, �3; �4 = 1= (�1�2�3) and �

2
u). Following

section 2.2 in del Barrio Castro and Osborn (2008b) it is possible to see that the invertible constant-parameter
representation associated with ys� = �sys�1;� + us� , where �1 = 0:8; �2 = 1; �3 = 0:5; �4 = 1= (�1�2�3) ;
and �2u = 1, is ys� � ys��1 =

�
1 + �1L+ �2L

2 + �3L
3
�
�s� , with

3 �1 = 0:8497, �2 = 0:5976, �3 = 0:4133,

and �2� = 2:8139. The moving average polynomial of order 3
�
1 + 0:8497L+ 0:5976L2 + 0:4133L3

�
can

be factorized as follows:
�
1 + 0:8497L+ 0:5976L2 + 0:4133L3

�
= (1 + 0:7703L) (1 + [0:0397 + 0:7314i]L)

(1 + [0:0397� 0:7314i]L). On the other hand, the seasonal di¤erence operator
�
1� L4

�
can be factorized as�

1� L4
�
= (1� L) (1 + L) (1� iL) (1 + iL). The spectral power in Figure 1 part (a) at the zero frequency is

higher than at frequencies �=2 and �. Clearly, in the MA(3) process with constant-parameter representation
we do not have a factor associated with the zero frequency, and the spectral power at the Nyquist frequency
in Figure 1 part (a) is lowered by the factor (1 + 0:7703L). In the case of frequency �=2 it is lowered by the
complex conjugate factors (1 + [0:0397� 0:7314i]L). Finally, note that expression (6) is very similar to (9).
In particular, for a speci�c season s of vector Y� , say ys� , we have:

ys� = as

2

4�1yS;0 +
SX

j=1

bj

��1X

i=1

uj;��i

3

5+ us� +
s�1X

j=1

0

@
sY

i=s�j+1
�i

1

Aus�j;� (10)

= asy
(0)
s� + Stationary terms;

where bj is the element with j
th position in vector b of Lemma 1 (de�ned in (47)). The common stochastic

trend shared by the seasons is y
(0)
s� =

h
�1yS;0 +

PS
j=1 bj

P��1
i=1 uj;��i

i
4 . Finally note that from (10) it is also

possible to see that y
(0)
s� is an standard random walk behavior with initial condition y

(0)
S0 equal to y

(0)
S0 = �1yS;0

and periodic innovation bsus� :

y(0)s� =

2

4�1yS;0 +
SX

j=1

bj

��1X

i=1

uj;��i

3

5

y(0)s� = y
(0)
s�1� + bsus� (11)

y
(0)
S0 = �1yS;0:

In this paper we propose the use of a�1s ys� to extract the zero-frequency stochastic trend y
(0)
s� . Hence, we

use the previous pseudo-demodulation of PI processes to extract the common zero-frequency trend of each
PI process, include these pseudo-demodulated times series in the standard Johansen (1996) procedure, and
test for the cointegration rank between the pseudo-demodulated time series obtained from the PI processes.
In the following section the possibilities of cointegration between PI processes are explored.

2.2 Cointegration between PI processes

Periodic cointegration was introduced by Birchenhall, Bladen-Hovell, Chui, Osborn, and Smith (1989), and
it implies that long-run relationships are considered season by season. Hence, we have di¤erent cointegration

3Rounding to the fourth decimal place.

4Note that the term us� +
Ps�1
j=1

0

@
sY

i=s�j+1

�i

1

Aus�j;� in (10) is a �nite sums of us� and its �rst s� 1 lags and hence it is

stationary.
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vectors for each season. Periodic cointegration can be established for both seasonally integrated processes and
periodically integrated processes. Boswijk and Franses (1995) distinguished between full and partial periodic
cointegration. The latter applies when stationary linear combinations between seasonal non-stationary time
series can be established for only some seasons s = 1; 2; : : : ; S. And full periodic cointegration implies that
stationary linear combinations exit for all the seasons. Finally, full non-periodic cointegration implies that
the same cointegration vectors are shared by all seasons.
Ghysels and Osborn (2001) and del Barrio Castro and Osborn (2008a) analyze cointegration between PI

processes and show that the only possibilities are full periodic cointegration or full non-periodic cointegration.
In this paper, we follow the de�nition of periodic cointegration proposed by del Barrio Castro and Osborn

(2008a) (see de�nition 1 in section 2.2), but we introduce an equivalent way of de�ning cointegration between
PI processes that is more closely connected with the usual de�nition of cointegration at the zero frequency.
First, we focus on the bivariate case, followed by an extension to the multivariate.

2.3 The bivariate case

In Ghysels and Osborn (2001), the following example is used to show that the only possibility of cointegration
between two PI processes is fully periodic (Ghysels and Osborn (2001) page 169). Let us assume that we
have two PI processes ys� = �ysys�1;� + "ys� and xs� = �xsxs�1;� + "xs� , with stationary innovations "

y
s� and

"xs� , and that the PI condition
SY

s=1

�js = 1 for j = y and x holds. If we assume that there is cointegration

between ys� and xs� in the last season, say S, the linear combination yS� � �xS� should be stationary.
Hence, by recursive substitution of ys� and xs� in yS� � �xS� , we �nd that:

yS� � �xS� =

yS�1� � �
�xS
�yS
xS�1� +

"yS�
�yS

�
�"xS�1;�
�yS

=

yS�2� � �
�xS�

x
S�1

�yS�
y
S�1

xS�2� +
"yS�

�yS�
y
S�1

�
�"xS�1;�
�yS�

y
S�1

+
"yS�1�
�yS�1

�
��xS"

x
S�1;�

�yS�
y
S�1

=

yS�3� � �
�xS�

x
S�1�

x
S�2

�yS�
y
S�1�

y
S�2

xS�3� + Stationary terms = (12)

...

y1� � �

S�2Y

j=0

�xS�j

S�2Y

j=0

�yS�j

x1� + Stationary terms:

From (12), we see that in order to have full non-periodic cointegration between ys� and xs� , it must hold
that �xj = �yj for j = 1; 2; : : : ; S. In Lemma 1 in del Barrio Castro and Osborn (2008a) the result from
(12) is extended to the general case of more than two variables, say n variables or n PI processes. They
show that between a set of n PI processes the only possibilities are fully periodic cointegration and fully
non-periodic cointegration. The intuition behind this result is that, as shown in Lemma 1 of the previous
subsection, the S seasons of a PI process are driven by the same common stochastic trend. Hence, if we have
cointegration between one of the seasons of a PI process, recursive substitution implies that cointegration
will hold for the rest of the seasons, with a cointegration vector that will change for each season unless all

the PI processes have the same coe¢cients associated with the PI condition
SY

s=1

�ks = 1, that is, �
k
s = �s for

k = 1; 2; : : : ; n and s = 1; 2; : : : ; S. And precisely in this latter case, when all the PI processes share the same
coe¢cients �ks = �s with the PI condition, we have full non-periodic cointegration. Finally, note that in (12),
moving to the relationship between yS;��1 and xS;��1, by recursion in the last expression of (12), we have

yS;��1��

0

@
S�1Y

j=0

�xS�j

1

A

0

@
S�1Y

j=0

�yS�j

1

A

�1

xS;��1+Stationary terms = yS;��1��xS;��1+Stationary terms,

and hence, the periodic sequence of values in the cointegration vector is completed.
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The approach used in Ghysels and Osborn (2001), and in (12) above, is a little bit di¤erent from the
usual approach to cointegration at the zero frequency. Following the lines of BCCO, here, we provide a
di¤erent but equivalent approach to showing the possibility of cointegration between PI processes, one that
is more related to the usual approach to zero-frequency cointegration.
First note, based on equations (6) and (7) from Lemma 1 and equation (10), that for a PI process

xs� = �xsxs�1;� + "xs� with
SY

s=1

�xs = 1, it is possible to write xs� = axsx
(0)
s� + Stationary terms, where axs

is the element with the sth position in the S � 1 vector ax de�ned in (47) but with �s replaced by �xs for
s = 1; 2; : : : ; S, and �nally x

(0)
s� is the common stochastic trend5 shared by the seasons of the process PI

process xs� = �xsxs�1;� + "
x
s� . From this, we can de�ne the zero-frequency cointegration relationship:

y(0)s� = ��x(0)s� + "
y
s� (13)

x(0)s� = (a
x
s )
�1
xs� + Stationary terms

xs� = �xsxs�1;� + "
x
s�

SY

s=1

�xs = 1:

System (13) is the usual cointegration system between two processes integrated at the zero frequency

y
(0)
s� and x

(0)
s� , with cointegration vector [1;���]. Note that if we use the fact that x(0)s� = (axs )

�1
xs� +

Stationary terms in y
(0)
s� = ��x(0)s� +"ys� (13), we will obtain y

(0)
s� = �� (axs )

�1
xs�+"

y
s�+Stationary terms,

that is, a periodic cointegration relationship between a PI process xs� and a standard I(1) associated with

the zero frequency y
(0)
s� :

y(0)s� = �� (axs )
�1
xs� + Stationary terms (14)

xs� = �xsxs�1;� + "
x
s�

SY

s=1

�xs = 1:

Finally if we multiply (14) by ays , the following system is obtained:

ys� = ays�
� (axs )

�1
xs� + Stationary terms (15)

xs� = �xsxs�1;� + "
x
s�

ys� = aysy
(0)
s� + Stationary terms:

Hence, we move to a cointegrated system between two PI processes ys� and xs� . The coe¢cients associated

with the periodic integration condition in the case of xs� are gathered in a
x =

�
1; �x2 ; �

x
2�

x
3 ; : : : ;

YS

s=2
�xs

�0
,

and axs is the s
th element of the S � 1 vector ax. In the case of ys� , the coe¢cients are gathered in

a
y =

�
1; �y2; �

y
2�

y
3; : : : ;

YS

s=2
�ys

�0
, and ays is the s

th element of the S � 1 vector ay. Clearly, in (15), the
cointegration vector is periodic, as in (12). In the case of (12), it is possible to see that the periodic coe¢cients

5From (10) we will have x
(0)
s� =

h
�x1xS;0 +

PS
j=1 b

x
j

P��1
i=1 "

x
j;��i

i
.
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of the cointegration vector [1;��s] evolve as follows:

�S = � = �
�y1�

y
2�

y
3 � � ��yS

�x1�
x
2�

x
3 � � ��xS

�S�1 = �
�xS
�yS

= �
�y1�

y
2�

y
3 � � ��yS�1

�x1�
x
2�

x
3 � � ��xS�1

�S�2 = �
�xS�

x
S�1

�yS�
y
S�1

= �
�y1�

y
2�

y
3 � � ��yS�2

�x1�
x
2�

x
3 � � ��xS�2

�S�3 = �
�xS�

x
S�1�

x
S�2

�yS�
y
S�1�

y
S�2

= �
�y1�

y
2�

y
3 � � ��yS�3

�x1�
x
2�

x
3 � � ��xS�3

... (16)

�2 = �
�xS�

x
S�1�

x
S�2 � � ��x3

�yS�
y
S�1�

y
S�2 � � ��

y
3

= �
�y1�

y
2

�x1�
x
2

�1 = �
�xS�

x
S�1�

x
S�2 � � ��x2

�yS�
y
S�1�

y
S�2 � � ��

y
2

= �
�y1
�x1
;

where we use the fact that
YS

i=1
�ji = 1 for j = y and j = x. And in the case of (15), the periodic coe¢cients

of the cointegration vector [1;���s ] evolve as follows:

��S = ��ayS (a
x
S)
�1
= ��

�y2�
y
3 � � ��yS

�x2�
x
3 � � ��xS

��S�1 = ��ayS�1
�
axS�1

��1
= ��

�y2�
y
3 � � ��yS�1

�x2�
x
3 � � ��xS�1

��S�2 = ��ayS�2
�
axS�2

��1
= ��

�y2�
y
3 � � ��yS�2

�x2�
x
3 � � ��xS�2

��S�3 = ��ayS�3
�
axS�3

��1
= ��

�y2�
y
3 � � ��yS�3

�x2�
x
3 � � ��xS�3

... (17)

��2 = ��ay2 (a
x
2)
�1
= ��

�y2
�x2

��1 = ��ay1 (a
x
1)
�1
= ��:

Hence, it is clear that �� = ��y1=�
x
2 , and that (12)&(16) and (15)&(17) are two alternative and equivalent

ways of representing full periodic cointegration between two PI processes.

2.4 The multivariate case

Let us consider the n�1 vector process Y (n)s� =
�
y1s� y2s� : : : yns�

�0
=
�
Y 1

0

s� Y 2
0

s�

�0
in which Y 1s� is r�1,

that is, Y 1s� =
�
y1s� y2s� : : : yrs�

�0
, and Y 2s� is (n� r)�1, that is, Y 2s� =

�
yr+1s� yr+2s� : : : yns�

�0
. Our

objective is to de�ne a triangular system for n PI processes with r cointegration relationships, or equivalently,
n� r common stochastic trends between the n PI processes. The elements of Y 2s� can be identi�ed with the
n� r common stochastic trends of the triangular system. Hence, the elements of Y 2s� are such that:

yks� = �ksy
k
s�1;� + u

k
s�

SY

s=1

�ks = 1; s = 1; 2; : : : ; S; k = r + 1; r + 2; : : : ; n; (18)

where each uks� is a stationary periodic autoregressive process
6 :

�
1�  k1sL� � � � �  kp�1;sLp�1

�
uks� = "ks� : (19)

6Then the for the vector of seasons representation of each uks� , that is U
k
� =

�
uk1� ; u

k
2� ; :::; u

k
S�

�
0
:

	
j
0U

k
� = 	

k
1U

k
��1 +	

k
2U

k
��2 + � � �+	

k
GU

k
��G + Ek�

with G = 1 + [(p� 2) =S], all the roots of all the roots of
��	k

0 �	
k
1z �	

k
2z
2
� � � � �	

k
Gz

G
�� = 0 should lie outside of the unit

circle.

8



We start by de�ning the zero-frequency triangular system as follows:

Y 1(0)s� = �Y 2(0)s� + U1(0)s�

Y 2(0)s� =
�
D
2
s

��1
Y 2s� + Stationary terms (20)

where Y
1(0)
s� is an r � 1 vector, � is an r � (n� r) matrix, and U1(0)s� is an r � 1 vector of innovations

where each innovation follows a stationary PAR(p-1) process like in (19). Clearly, the cointegration vector
in (20) is [Ir � �]. Finally, D2

s is an (n� r)� (n� r) diagonal matrix such that:

D
2
s = diag

�
ar+1s ar+2s ar+2s � � � ans

�
; (21)

where aks , for k = r+1; r+2; : : : ; n, are the sth elements of the S � 1 vectors ak, for k = r+1; r+2; : : : ; n,

associated with process (18), that is, ak =

�
1; �k2 ; �

k
2�

k
3 ; : : : ;

YS

s=2
�ks

�0
for k = r + 1; r + 2; : : : ; n. Note

that (20) is the multivariate equivalent to (13) in the bivariate context. Finally, the triangular system for
PI processes with n variables, r periodic cointegration relationships, or n � r common stochastic trends

between the seasons of the n PI processes, can be obtained by replacing Y
2(0)
s� =

�
D
2
s

��1
Y 2s� with Y

1(0)
s� =

�Y
2(0)
s� + U

1(0)
s� and left-multiplying Y

1(0)
s� = �Y

2(0)
s� + U

1(0)
s� by D1

s, a r � r diagonal matrix:

D
1
s = diag

�
a1s a2s a2s � � � ars

�
; (22)

where ajs, for j + 1; 2; : : : ; r, are the s
th elements of the S � 1 vectors aj , for j = 1; 2; : : : ; r, de�ned as

a
j =

�
1; �j2; �

j
2�
j
3; : : : ;

YS

s=2
�js

�0
, such that

YS

s=1
�js = 1 for j = 1; 2; : : : ; r, in order to have PI processes:

Y 1s� = D
1
s�
�
D
2
s

��1
Y 2s� +D

1
sU

1(0)
s�

Y 2(0)s� =
�
D
2
s

��1
Y 2s� + Stationary terms (23)

Y 1s� = D
1
sY

1(0)
s� :

De�nition 1 in del Barrio Castro and Osborn (2008a) establishes periodic cointegration for an n�1 vector,
Y
(n)
s� , of PI processes if there exist n � r matrices, �s, of rank r such that the linear combinations �

0
sY

(n)
s�

are (periodically) stationary for each season s = 1; 2; : : : ; S. In our case, we use the usual normalization

for triangular systems (see Lütkepohl (2006)). Hence, we have �0s =
h
Ir �D1

s�
�
D
2
s

��1 i
. Boswijk and

Franses (1995) de�ne partial periodic cointegration when stationary linear combinations, �0sY
(m)
s� , exist in

only some seasons, and full periodic cointegration when the linear combinations exist for all of the seasons.
Full non-periodic cointegration is a particular case of full periodic cointegration in which the same n � r
matrix, �, allows us to obtain stationary linear combinations for all of the seasons. Clearly, in order to have
full non-periodic cointegration, we need all of the PI processes in the triangular system to have the same
coe¢cients associated with the PI condition, that is, �js = �s for j = 1; 2; : : : ; n and s = 1; 2; : : : ; S.
Note that for (23) it is possible to write:

�
I �D1

s�
�
D
2
s

��1

0 I

� �
Y 1s�
Y 2s�

�
=

�
0 0
0 �2s

� �
Y 1s�1;�
Y 2s�1;�

�
+

�
U1s�
U2s�

�
(24)

�2s = diag
�
�r+1s �r+2s � � � �ns

�
;

using the fact that
�
ajs
��1

= bjs and bjs�
j
s = bjs�1 it is possible to write

�
ajs
��1

�js =
�
ajs�1

��1
, hence

�
D
2
s

��1
�2s =

�
D
2
s�1
��1

and using results from the inverse of a partitioned matrices, we could re-write (24)
as: �

Y 1s�
Y 2s�

�
=

�
0 D

1
s�
�
D
2
s�1
��1

0 �2s

� �
Y 1s�1;�
Y 2s�1;�

�
+

�
I D

1
s�
�
D
2
s

��1

0 I

� �
U1s�
U2s�

�
(25)

Note that (25) is quite similar to the Periodic Vector Autoregressive model of order 1 (PVAR(1)) (expression
(2.1)) in Kleibergen and Franses (1999), that is yn = 'syn�1 + un, in our case equivalently to 's, we also
have a n�n matrix that varies across the seasons s = 1; 2; : : : ; S. But, it is clear from (25) that contrary to
what it is stated for 's in (2.1) in Kleibergen and Franses (1999), our n�n matrix does not have full column
rank. To have a full rank matrix, in a PVAR(1) like Y

(n)
s� = �

(n)
s Y

(n)
s�1� +U

(n)
s� , cointegration between the PI

9



processes collected in Y
(n)
s� must not hold, that is, for example with �

(n)
s = diag

�
�1s �2s �3s � � � �ns

�
,

precisely the case of Lemma 3 in del Barrio Castro and Osborn (2008a) (for the quarterly case), where we
have cointegration across the seasons of each PI process, but we do not cointegration between the seasons

of di¤erents PI processes in Y
(n)
s� .In what follows, Lemma 3 of del Barrio Castro and Osborn (2008a) will

be extended from the particular case of S = 4, to the general case of S seasons per year7 .Hence, we have:

Y (n)s� = �(n)s Y
(n)
s�1� + U

(n)
s� (26)

�(n)s = diag
�
�1s �2s �3s � � � �ns

�

U (n)s� =
�
u1s� u2s� u3s� � � � uns�

�0

Y (n)s� =
�
y1s� y2s� y3s� � � � yns�

�0
:

With uks� for k = 1; 2; . . . ; n as in (19) (that is following stationary periodic PAR processes. see also footnote
6 above). The Vector of Seasons representation associated to (26) will be as follows:

A
(n)
0 Y (n)� = A

(n)
1 Y

(n)
��1 + U

(n)
� (27)

Y (n)� =
�
y11� ; : : : ; y

1
S� y21� ; : : : ; y

2
S� � � � y31� ; : : : ; y

3
S�

�0

=

2

666
4

Y 1�
Y 2�
...
Y n�

3

777
5

U (n)� =
�
u11� ; : : : ; u

1
S� u21� ; : : : ; u

2
S� � � � u31� ; ; : : : ; u

3
S�

�0

=

2

666
4

U1�
U2�
...
Un�

3

777
5
:

The matrices A
(n)
0 and A

(n)
1 are square block diagonal matrices of dimension (n� S)� (n� S) such that:

A
(n)
0 = diag

�
A
1
0;A

2
0; � � � ;An

0

�
(28)

A
(n)
1 = diag

�
A
1
1;A

2
1; � � � ;An

1

�
;

with the following S � S submatrices:

A
j
0 =

2

6666666
4

1 0 0 0 � � � 0

��j2 1 0 0 � � � 0

0 ��j3 1 0 � � � 0

0 0 ��j4 1 � � � 0
...

...
...

...
. . .

...

0 0 0 � � � ��jS 1

3

7777777
5

j = 1; 2; : : : ; n (29)

A
j
1 =

2

6666666
4

0 0 0 � � � 0 �j1
0 0 0 � � � 0 0
0 0 0 � � � 0 0
0 0 0 � � � 0 0
...
...
...

. . .
...

...
0 0 0 � � � 0 0

3

7777777
5

j = 1; 2; : : : ; n: (30)

The stochastic behavior of the system is summarized in the following lemma.

Lemma 2 For Y
(n)
� =

h
Y 10� ; Y

20

� ; ; : : : Y
3
�

i0
de�ned in (27-28-29-30); with

�
1�  j1sL� � � � � jp�1;sLp�1

�
ujs� =

"js� , for j = 1; 2,. . . n; and E
(n)
s� =

�
"1s� "2s� � � � "ns�

�0
is a white noise vector with the positive de�nite

7As Lemma 1 extend Lemma 1 of Boswijk and Franses from S = 4 to a generic case of S seasons per year.
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variance-covariance matrix E
h
E
(n)
s� E

(n)0
s�

i
= �, then

1p
T
Y
(n)
bTrc )

�
A
(n)
0

��1
A
(n)
1

�
A
(n)
0

��1
	(n) (1)

�1
[P
 IS ]W (n) (r) (31)

=

2

666
4

a1b
0
1 0S�S � � � 0S�S

0S�S a2b
0
2 � � � 0S�S

...
...

. . .
...

0S�S 0S�S � � � anb
0
n

3

777
5
	(n) (1)

�1
[P
 IS ]W (n) (r)

=

2

666
4

!1a1w1 (r)
!2a2w2 (r)

...
!nanwn (r)

3

777
5
;

1where aj and bj, for j = 1; 2; : : : ; n, are de�ned in (53), W (n) (r) is a (n� S)� 1 multivariate Brownian
Vector, and wj (r) ; for j = 1; 2; : : : ; n, are scalar Brownian motions de�ned in the appendix. Finally, the
de�nition of matrix 	(n) (1) and the scalar terms !j, for j = 1; 2; : : : ; n, can also be found in the appendix,
and P is a n� n matrix such that � = PP0.

It is clear from (31) that each PI process has is own stochastic trend identi�ed with the scalar Brownian

motions wj (r) for j = 1; 2; : : : ; n. Note also that for Y
(n)
s� in (26), it is possible write (based on (31)):

1p
T
Y
(n)
sbTrc )

2

666
4

!1a
1
sw1 (r)

!2a
2
sw2 (r)
...

!na
n
swn (r)

3

777
5
= D(n)

s

2

666
4

!1w1 (r)
!2w2 (r)

...
!nwn (r)

3

777
5

(32)

D
(n)
s = diag

�
a1s a2s � � � ans

�
:

In the case of cointegration between the PI processes collected in Y
(n)
s� for (24) and (25) it is possible to

write:
�
Y 1s�
Y 2s�

�
�
�
�1s 0
0 �2s

� �
Y 1s�1;�
Y 2s�1;�

�
=

�
��1s D

1
s�
�
D
2
s�1
��1

0 0

� �
Y 1s�1;�
Y 2s�1;�

�
+

�
I D

1
s�
�
D
2
s

��1

0 I

� �
U1s�
U2s�

�
:

Where we just subtract the same term in both sides of (25). Note also, that it is possible to write D1
s =

�1sD
1
s�1, and hence obtain:

�
Y 1s�
Y 2s�

�
�
�
�1s 0
0 �2s

� �
Y 1s�1;�
Y 2s�1;�

�
=

�
��1s
0

� h
I �D1

s�1�
�
D
2
s�1
��1 i

�
Y 1s�1;�
Y 2s�1;�

�
+

�
I D

1
s�
�
D
2
s

��1

0 I

� �
U1s�
U2s�

�
:

(33)
Hence (33) is a Periodic Vector Error Correction Model, expressed in terms of the periodic di¤erence

needed to achive stationarity for each of the elements of Y
(n)
� =

�
Y 1

0

s� Y 2
0

s�

�0
, say yks� � �ksy

k
s�1;� for k =

1; 2; : : : ; n. Furthermore, as the innovations uks� collected in both U
1
s� and U

2
s� follow stationary PAR(p� 1)

processes, see (19), the Periodic Vector Error Correction Model (33) could to be augmented with p� 1 lags
of the periodic di¤erences:

�
Y 1s�
Y 2s�

�
�
�
�1s 0
0 �2s

� �
Y 1s�1;�
Y 2s�1;�

�
=

�
��1s
0

� h
I �D1

s�1�
�
D
2
s�1
��1 i

�
Y 1s�1;�
Y 2s�1;�

�
+

�
I D

1
s�
�
D
2
s

��1

0 I

�
�

(34)

�
p�1X

j=1

��
	1j;s 0
0 	2j;s

���
Y 1s�j;�
Y 2s�j;�

�
�
�
�1s�j 0
0 �2s�j

� �
Y 1s�1�j;�
Y 2s�1�j;�

���

+

�
E1s;�
E2s;�

�
:

With 	1j;s and 	
1
j;s been diagonal matrix de�ned as 	

1
j;s = diag

�
 1js  2js  3js � � �  rjs

�
and 	2j;s =

diag
�
 r+1js  r+2js  r+3js � � �  njs

�
with  kjs been the coe¢cients in (19) for k = 1; 2; : : : ; n.
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As can be seen in subsection 2.1 and in lemma 2, the vector of seasons representation is a very convenient
tool for representing PI processes. This representation allows us to clearly appreciate that the non-stationary
stochastic behavior of the seasons of a PI process is ruled by a common stochastic trend. In the case of
cointegration between the PI processes, we could also use the vector of seasons representation, in particular

for (34) or (24) we a representation like in (27) but with the (n� S) � (n� S) matrices A(n)
0 and A

(n)
1

de�ned as follows:

A
(n)
0 =

�
I(r�S) �D1 (� 
 IS)

�
D
2
��1

0([n�r]�S)�(r�S) A
2
0

�

A
(n)
0 =

�
0(r�S)�(r�S) 0(r�S)�([n�r]�S)

0([n�r]�S)�(r�S) A
2
1

�
(35)

A
(2)
0 = diag

�
A
r+1
0 ;Ar+2

0 ; � � � ;An
0

�

A
(2)
1 = diag

�
A
r+1
1 ;Ar+2

1 ; � � � ;An
1

�

D
1 = diag [diag(a1); diag(a2); � � � ; diag(ar)]

D
2 = diag [diag(ar+1); diag(ar+2); � � � ; diag(an)] :

Where I(r�S) and IS are identity matrices of dimension (r � S) and S respectively. And 0([n�r]�S)�(r�S),
0(r�S)�(r�S) and 0(r�S)�([n�r]�S) are matrices of zeros with dimensions ([n� r]� S) � (r � S), (r � S) �
(r � S) and (r � S)�([n� r]� S) respectively. Finally, the submatrices Aj

0 and A
j
1 for j = r+1; r+2; : : : ; n

are de�ned as in (29) and (30) but only for j = r + 1; r + 2; : : : ; n. The following lemma summarizes the
stochastic behavior of the vector of seasons when we have r cointegration relationships between a set of n
PI processes:

Lemma 3 For Y
(n)
� =

h
Y 10� ; Y

20

� ; ; : : : Y
3
�

i0
de�ned in (27-35) associated to (34); with

�
1�  j1sL� � � �

� jp�1;sLp�1
�
ujs� = "js� , for j = 1; 2,. . . n; and E

(n)
s� =

�
"1s� "2s� � � � "ns�

�0
is a white noise vec-

tor with the positive de�nite variance-covariance matrix E
h
E
(n)
s� E

(n)0
s�

i
= �, then

1p
T
Y
(n)
bTrc )

2

666666666666
4

0S�S � � � 0S�S �11a1b
0
r+1 �12a1b

0
r+2 � � � �1na1b

0
n

0S�S � � � 0S�S �21a2b
0
r+1 �22a2b

0
r+2 � � � �2na2b

0
n

...
. . .

...
...

...
. . .

...
0S�S � � � 0S�S �r1arb

0
r+1 �r2arb

0
r+2 � � � �rnarb

0
n

0S�S � � � 0S�S ar+1b
0
r+1 0S�S � � � 0S�S

0S�S � � � 0S�S 0S�S ar+2b
0
r+2 � � � 0S�S

...
. . .

...
...

...
. . .

...
0S�S � � � 0S�S 0S�S 0S�S � � � anb

0
n

3

777777777777
5

	(n) (1)
�1
[P
 IS ]W (n) (r)

=

2

666666666666
4

a1

Pn
j=1 �1j!j+1wj+1 (r)

a2

Pn
j=1 �2j!j+1wj+1 (r)

...
ar

Pn
j=1 �rj!j+1wj+1 (r)

!r+1ar+1wr+1 (r)
!r+2ar+2wr+2 (r)

...
!nanwn (r)

3

777777777777
5

: (36)

where aj for j = 1; 2; : : : ; n and bj, for j = r + 1; r + 2; : : : ; n, W (n) (r) is a (n� S) � 1, wj (r) ; for
j = r + 1; r + 2; : : : ; n, matrix 	(n) (1) and the scalar terms !j, for j = r + 1; r + 2; : : : ; n are de�ned as in
Lemma 2.
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As in Lemma 2 note that based on (36) it is possible to write for Y
(n)
s� in (24):

1p
T
Y
(n)
sbTrc )

2

66666666
4

a1s
Pn

j=1 �1j!j+1wj+1 (r)
...

ars
Pn

j=1 �rj!j+1wj+1 (r)

!r+1a
r+1
s wr+1 (r)
...

!na
n
swn (r)

3

77777777
5

= D(n)
s

2

66666666
4

Pn
j=1 �1j!j+1wj+1 (r)

...Pn
j=1 �rj!j+1wj+1 (r)

!r+1wr+1 (r)
...

!nwn (r)

3

77777777
5

(37)

D
(n)
s = diag

�
a1s � � � ars ar+1s � � � ans

�
:

Hence from (32) and (37) we could say that our approach of using ~yjs� =
�
ajs
��1

yjs� , as an input in the
Johansen standard procedure will work without problems, if the parameters associated to the PI condition
are known for each time series yjs� j = 1; 2; : : : ; n. In the following section we present our proposal for
determining the cointegration rank with reduced-rank regression techniques in systems of PI processes.

3 Econometric Methodology

As mentioned previously our proposal is based on the demodulation approach used in BCCO (2020). In the
previous section, we clearly show that for a particular PI process we have S � 1 cointegration relationships
between the seasons, or equivalently, there is a common stochastic trend shared by the seasons of the PI
process. In Lemmas 1 to 3, the common stochastic trends are identi�ed with scalar Brownian motions that
drive the long-run behavior of the seasons in each PI process in the systems. For example, in Lemma 2 we
have n common stochastic trends identi�ed with the scalar Brownian motions wj (r) j = 1; 2; : : : ; n. These
stochastic trends are adjusted to each season in the PI process by the elements of the S � 1 vectors aj ,
for j = 1; 2; : : : ; n. Note that the elements of the vector are the coe¢cients associated with the restriction

of being PI, that is,
SY

s=1

�js = 1, for j = 1; 2; : : : ; n. In Lemma 3, the stochastic non-stationary behavior

of the seasons of the n PI processes is ruled by n � r common stochastic trends identi�ed with wj (r) for
j = r + 1; r + 2; : : : ; n adjusted to each season of the PI processes by the elements of the S � 1 vectors aj ,
for j = 1; 2; : : : ; n.
Hence, our approach is based on the simple idea of demodulating each time series by multiplying each

season by the reciprocal (or inverse) of the corresponding element of vector aj =
�
aj1 aj2 aj3 � � � ajS

�0
=

"

1 �j2 �j2�
j
3 � � �

SY

s=2

�js

#0
, that is, we work with the new time series ~yjs� =

�
ajs
��1

yjs� . Clearly, our

approach implies knowledge of the coe¢cients associated with the PI restriction
SY

s=1

�js = 1. This limitation

can be easily resolved with a test for periodic integration, such as the likelihood ratio test proposed by
Boswijk and Franses (1996) or the multivariate approach taken by Franses (1994).8 In this paper, we use the
Boswijk and Franses (1996) test rather than the one proposal by Franses (1994), as the latter has problems
concerning over-parametrization (for quarterly data you need to run the Johansen procedure with four time
series, i.e., each quarter is treated as a di¤erent time series). If we want to determine the cointegration rank
between PI processes, a previous and necessary condition is to test (or be sure) that all the analyzed time
series behave like PI processes. Furthermore, we can take advantage of this initial step and use it to obtain

information about the values of the parameters associated with the PI condition (that is,
SY

s=1

�js = 1).

To summarize, our approach consists of the following steps:

� Testing for periodic integration using the Boswijk and Franses (1996) likelihood ratio test and re-
taining the values of the �tted coe¢cients associated with vector aj =

�
aj1 aj2 aj3 � � � ajS

�0
=

"

1 �j2 �j2�
j
3 � � �

SY

s=2

�js

#0
,

8Although non-parametric tests of the null of periodic integration were proposed by del Barrio Castro and Osborn (2011,
2012), these tests are not valid here as they do not require an estimation of the coe¢cients associated with the restriction of
being periodically integrated.
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� Obtaining ~yjs� =
�
ajs
��1

yjs� based on the estimation of the elements of a
j in the previous step, and

�nally,

� Including the demodulated time series ~yjs� in the usual Johansen procedure and determining the coin-
tegration rank.

Note that we can use the standard critical values of the Johansen procedure. Also, it is important
to highlight that our approach has a clear advantage over the Boswijk and Franses (1995) and del Barrio
Castro and Osborn (2008a) approaches, as these methods do not allow us to determine the cointegration
rank between a set of PI time series. Finally, we do not need to use a periodic VAR framework or GMM
jointly with reduced-rank regression techniques as in Kleibergen and Franses (1999).

The canonical correlation procedure by Johansen works with the demodulated time series ~yjs� =
�
a
j
s

��1
yjs� ,

based on the true unknown parameters associated with the PI condition (
SY

s=1

�js = 1), collected in the S � 1

vectors aj , for j = 1; 2, and 3. But, in order to implement our approach, we use âj =

"

1 �̂j2 �̂j2�̂
j
3 � � �

SY

s=2

�̂js

#0
=

�
âj1 âj2 âj3 � � � âjS

�0
. From Boswijk and Franses (1996) and Boswijk, Franses, and Haldrup (1997) we

know that the estimators of �js obtained from their test procedures are super-consistent. They show that

T
�
�̂js � �js

�
= Op (1), and hence, �̂

j
s = �js + op (1).

In the quarterly case, for example, from Lemma 1 and Lemma 2, it is possible to write:

T�1=2y1;bTrc ) �aj1wj (r) = �wj (r)

T�1=2y2;bTrc ) �aj2wj (r) = �j2�wj (r) =
�
�j1�

j
3�
j
4

��1
�wj (r)

T�1=2y3;bTrc ) �aj3wj (r) = �j2�
j
3�wj (r) =

�
�j1�

j
4

��1
�wj (r)

T�1=2y4;bTrc ) �aj4wj (r) = �j2�
j
3�
j
4�wj (r) =

�
�j1

��1
�wj (r) :

Hence, clearly T�1=2
�
ajs
��1

ys;bTrc ) �
�
ajs
��1

ajswj (r) = �wj (r). But what happens if we use
�
âsj
��1

ys;t?
We can evaluate the e¤ects of using âsj instead of the true values of a

s
j by paying attention to expression (6):

Y� = A
�1
0 A1Y0 +A

�1
0 U� + ab

0
��1X

j=1

U��j = ab
0
�X

j=1

Uj +Op (1) (38)

after premultiplying by D̂�1 = diag
�
â�11 ; â�12 ; � � �; â�1S

�
. Note that D̂�1Y� = D̂�1

ab
0P�

j=1 Uj +Op (1), and
for example, in the quarterly case:

D̂
�1
a=

h
1 �2

�̂2

�2�3
�̂2�̂3

�2�3�4
�̂2�̂3�̂4

i0

as �1�2�3�4 = 1 and �̂1�̂2�̂3�̂4 = 1

D̂
�1
a=

h
1 �̂1�̂3�̂4

�1�3�4

�̂1�̂4
�1�4

�̂1
�1

i0

=

2

666
4

1
(�1+op(1))(�3+op(1))(�4+op(1))

�1�3�4
(�1+op(1))(�4+op(1))

�1�4
�1+op(1)

�1

3

777
5

= 14�1 + op (1) : (39)

Hence, we can conclude that D̂�1Y� = 1S�1b0
P�

j=1 Uj+Op (1), and anticipate that the canonical correlation
procedure by Johansen for determining the cointegration rank will provide similar results whether we work
with the true values collected in aj (that is, ajs for s = 1; 2; : : : ; S) or the �tted ones (that is, âjs for
s = 1; 2; : : : ; S) obtained in the Boswijk and Franses (1996) test of periodic integration. In the following
section, this claim is supported with a Monte Carlo experiment (see Tables 2.a to 2.d and Table 2.e). To
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�nish with the issue of using �tted values of ajs for s = 1; 2; : : : ; S rather than true ones, in our discussion
above, we have follow the same kind of arguments used by Xiao and Phillips (1999) (see Remark 9) and
show that from (32) and (37) we could obtain the same results from the true and �tted values as we show in
(38) and (39) that with the �tted and true values the asymtotic behaviour of (32) and (37) will be exactly
the same.
Another relevant issue is how to treat the deterministic part. In the case of periodic integration the usual

two speci�cations for the deterministic part are either seasonal dummies or seasonal dummies and trends,
see Boswijk and Franses (1996) and Paap and Franses (1999), the latter of which, in particular, show that
other possible speci�cations for the deterministic part (like including a constant, a constant and a trend,
or seasonal dummies and trend) are not relevant in the case of periodic integration as the addition of an
intercept to (3) leads to a seasonally varying trend in E [ys� ], and hence, an annual growth rate

�
1� LS

�
ys�

that varies over seasons. Furthermore, excluding the special case of an I (1) process, these authors show that
a PI process with an intercept cannot have a trend that is common over the seasons, regardless of whether
the intercept is constant over the seasons or varies. Additionally, as shown in Lee (1992), Lee and Siklos
(1995), Johansen and Schaumburg (1998), and Cubadda (2001), when including seasonal dummies, we have
a distribution of critical values like in the Johansen procedure when testing with a constant. Hence, in our
case the relevant critical values with seasonal dummies are those from the standard Johansen trace test with
a constant. And when dealing with seasonal dummies and trends we use the critical values of the Johansen
procedure with a constant and a linear trend (see also Tables 2.a to 2.e ).
Finally, note that for periodic autoregressive processes like (1), we can use periodic polynomials in the

lag operator to obtain
�
1� �1sL� �2sL2 � � � � � �psLp

�
ys� = "s� . And as in Note 1, we can use the follow-

ing factorization:
�
1� �1sL� �2sL2 � � � � � �psLp

�
= (1� �sL)

�
1�  1sL� � � � �  �p�1;sLp�1

�
;where the

coe¢cients �s, for s = 1; 2; : : : ; S, are those associated with the PI restriction
YS

s=1
�s = 1. The standard

augmentation in the Johansen procedure satisfactorily handles non-periodic dynamic behavior and non-
periodic stationarity, but in the presence of periodic stationary dynamics, it is convenient to use periodic
augmentation in the canonical correlation procedure to test for the cointegration rank. Hence, with periodic
augmentation the VAR model used when testing for cointegration is as follows:

Y
(n)
t =

�
~y1t ; ~y

2
t ; : : : ; ~y

n
t

�0

�Y
(n)
t = ��0Y (n)t�1 +

p�1X

j=1

SX

s=1

�sjdst�Y
(n)
t�j + Et;

where dst, for s = 1; 2; : : : ; S, are the usual seasonal dummies. In the following Monte Carlo section we
present the results of the performance of the canonical correlation procedure with periodic augmentation
compared to standard augmentation, and we show that periodic augmentation clearly performs well.

4 Monte Carlo

For our Monte Carlo experiment, we take a three-variable approach and explore the three possible situations
that we could face with three PI processes. That is, no cointegration between three PI processes, a situ-
ation with one common stochastic trend shared by three PI processes (that is, two periodic cointegration
relationships between three PI processes), and a �nal situation with two common stochastic trends shared
by three PI processes (that is, one periodic cointegration relationship between three PI processes).
As mentioned in the previous section, we compare the results obtained when using the Johansen cointe-

gration rank test with the true parameters versus the �tted ones (based on the Boswijk and Franses (1996)
test), in order to obtain the pseudo-demodulated time series. We also assess the adequacy of the critical
values of the Johansen trace test in our case, in terms of the deterministic part (see Hamilton (1994) Table
B.10 and Johansen (1995) Tables 15.1, 15.2, and 15.4). All of these issues will be present in the following
subsection on the case of no cointegration.
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4.1 No cointegration

We consider three PI processes with no cointegration, like in (26), that is:

y1s� = �1sy
1
s�1;� + u

1
s�

y2s� = �2sy
2
s�1� + u

2
s� (40)

y3s� = �3sy
3
s�1;� + u

3
s�

s = 1; 2; 3 and 4

� = 1; 2; : : : ; N

with the following combinations of the parameters:

Table 1
�11 �12 �13 �21 �22 �23 �31 �32 �33

i 1.05 1.1 0.9 1.05 0.9 1.1 0.9 1.05 1.1
ii 1.2 0.8 1 1.2 1 0.8 1 1.2 0.8

Note that in Table 1 we only provide the value of the �rst three parameters for each process. The
unreported parameter, that is, �j4, for j = 1; 2, and 3, will be such that the PI condition holds. Hence we

will have �j4 = 1=
�
�j1�

j
2�
j
3

�
. Also, for the innovations ujs� we consider the following four possibilities:

(1) ujs� = "js� "js� � Niid (0; 1)

(2) ujs� = "js� � 0:5"js�1;� (41)

(3) ujs� = 'ujs�1;� + "
j
s� ' = f0:8; 0:95g

(4) ujs� = 'su
j
s�1;� + "

j
s� '1 = 0:8; '2 = 1; '3 = 0:5

and '4 = 0:8= ('1'2'3) '4 = 0:95= ('1'2'3)

j = 1; 2; 3;

where E
(3)
s� =

�
"1s� "2s� "3s�

�0
is a white noise vector with the positive de�nite variance-covariance matrix

E
h
E
(3)
s� E

(3)0
s�

i
= �, with the following three possibilities for �:

(a) �1 =

2

4
1 0 0
0 1 0
0 0 1

3

5

(b) �2 =

2

4
1 0:8 0:3
0:8 1 0:5
0:3 0:5 1

3

5 (42)

(b) �3 =

2

4
1 0:8 0:95
0:8 1 0:8
0:95 0:8 1

3

5 :

We consider quarterly data, that is S = 4, and the following possibilities for the total number of years:
N = 50; 100, and 250. Finally, all of the results are obtained with 10:000 replications.
In Tables 2.a to 2.d, we collect the quantiles of the Johansen trace test when applied to the pseudo-

demodulated time series associated with the three PI processes of (40) with the combinations of parameters
in Table 1 for a sample size of N = 500. In each table the results obtained with the true values associated
with the PI processes and the �tted values obtained from the Boswijk and Franses test (1996) are reported.
Table 2.a shows the results obtained with a constant, Table 2.b with seasonal dummies, Table 2.c with a
constant and a trend, and �nally, Table 2.d with seasonal dummies and trends. From Tables 2.a to 2.d it is
possible to conclude that we obtain almost the same quantiles when the true �tted values of the coe¢cients
associated with the PI restriction are used. Also, the quantiles in Tables 2.a and 2.b are very similar to each
other, and to those in Table B.10 case 2 in Hamilton (1994) and Table 15.2 in Johansen (1995). Finally,
the quantiles of Tables 2.c and 2.d are very similar to each other, and to those reported in Table 15.4 in
Johansen (1995).
Additionally, in Table 2.e we report the empirical size for situation (40) with the combinations from Table

1 with seasonal dummies, using true and �tted values to obtain the pseudo-demodulation process, and with
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white noise innovations. These results con�rm that we do not have important di¤erences in the performance
of the Johansen trace test when using true �tted values of the coe¢cients associated with the PI restriction.
The results concerning the size performance of the test are presented in Tables 3.a and 3.b. Table 3.a

shows the results obtained with a white noise innovation, an AR(1) innovation with � = 0:8 and � = 0:95,
and �nally with an MA(1) innovation with � = 0:5. Table 2.b shows the results obtained from a PAR(1)
innovation with '1'2'3'4 = 0:8 and '1'2'3'4 = 0:95 and with non-periodic and periodic augmentation.
The columns labelled i and ii refer to the values of the coe¢cients �j1, �

j
2, and �

j
3, for j = 1; 2; 3, shown

in Table 1. Finally, the labels �1, �2, and �3 refer to three options for the variance-covariance matrix

E
h
E
(3)
s� E

(3)0
s�

i
(42) used in the Monte Carlo experiments.

As mentioned in the Econometric Methodology section, we �rst apply the Likelihood Ratio test by
Boswijk and Franses (1996) to all the time series and retain the �tted values of �̂j1, �̂

j
2, �̂

j
3, and �̂

j
4, for

j = 1; 2; 3, under the restriction
4Y

s=1

�̂js = 1. For case (1) in (41), to compute the Likelihood Ratio test we �t

a restricted and unrestricted PAR(1). For case (2) in (41), the order of the PAR is 5, and �nally, for cases
(3) and (4) in (41), the PAR is of order 2. However, in the case of the VAR used to test the cointegration
rank, the order is determined using the AIC criteria with a maximum order of augmentation of 9 lags. In
the two remaining sections, the orders of the �tted PAR and VAR models are as de�ned here. Finally, all of
the results are obtained including seasonal dummies.
Clearly, the results of Table 3.a, show that with the white noise innovation the Johansen method applied

to the demodulated time series works adequately at detecting that we do not have cointegration between
the three PI processes, and the results are very similar in the three scenarios about the variance-covariance

matrix of E
h
E
(3)
s� E

(3)0
s�

i
= �. In the the case of the AR(1) innovation ' = 0:8 and ' = 0:95, we observe

an oversized Johansen test for r0 = 0 compared to the white noise innovation. The oversizing tends to be
resolved as the sample size increases. In the case of � = 0:8, the size r0 = 0 moves from around 0:15 when
N = 50 to 0:07 when N = 250, and in the case of ' = 0:95 the oversizing becomes more relevant, moving
from around 0:40 when N = 50 to 0:12 when N = 250. The last case reported in Table 2.a is that of the
MA(1) innovation with � = 0:5. Performance here in terms of size is very similar to what was observed with
the AR(1) innovation with ' = 0:8; the oversizing is less pronounced. Finally, Table 3.b presents the results
of a PAR(1) innovation with '1'2'3'4 = 0:8 and '1'2'3'4 = 0:95 and with non-periodic and periodic
augmentation. As in the case of the AR innovations, here we also observe much more relevant oversizing than
in the case of '1'2'3'4 = 0:95, and the oversizing clearly tends to be reduced as the sample size increases.
Note that with periodic augmentation the results improve a great deal and are in line with the results present
with the AR(1) innovation. We have run a Monte Carlo experiment using standard integrated processes with
the same innovations as in Tables 3.a and 3.b, and we can say that the results reported in Tables 3.a and
3.b are quite similar to those obtained with the standard integrated processes in the Johansen trace test.
Hence we can say that, overall, the Johansen procedure applied to pseudo-demodulated time series does a
good job of detecting the absence of cointegration between the three PI processes.

4.2 One periodic cointegration relationship

Compatible with (24), here we explore the situation with three PI processes with one periodic long-run
relationship, or equivalently, a system of three PI processes ruled by two common stochastic trends, see

Lemma 3. As in the previous subsection the values for �j1, �
j
2, and �

j
3, for j = 1; 2; 3, and �

j
4 = 1=

�
�j1�

j
2�
j
3

�
,
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for j = 1; 2; 3, are shown in Table 1. Hence, we have:

y1s� = �1;sy
2
s� + �2;sy

3
s� + u

1
s�

y2s� = �3sy
2
s�1;� + u

2
s�

y3s� = �3sy
3
s�1;� + u

3
s�

s = 1; 2; : : : ; 4: (43)

�1;4 = 1 �2;4 = 1

�1;3 =
�24
�14

�2;3 =
�34
�14

�1;2 =
�24�

2
4

�4�14
�2;S�2 = �2

�34�
3
3

�14�
1
3

�1;1 =
�24�

2
3�
2
2

�14�
1
3�
1
2

�2;S�2 = �2
�34�

3
3�
3
2

�14�
1
3�
1
2

;

with u1s� , u
2
s� , and u

3
s� as in (41) and also with the three cases considered in (42) for E

h
E
(3)
s� E

(3)0
s�

i
= �.

Finally, we use the same sample sizes and replication numbers as in the previous subsection. The results
are presented in Tables 4.a and 4.b, with the same organization in terms of the di¤erent schemes of serial
correlation as the previous section. Overall we can say that the Johansen procedure does a good job of
determining that the three PI processes share two common stochastic trends. In tables 3.a to 3.c, on the
white noise innovation, we observe that the proportion of times that the null hypothesis of r0 = 0 is rejected
is always one, except in three cases when the sample size of N = 50, but it is very close to one. And in the
case of r0 = 1, the proportion of times that the null is rejected is very close to that which can be seen in
Table 3.a. For the AR(1) innovation, the proportion of times that the null is rejected is lower than it is in
the white noise innovation for the sample sizes of N = 50 and N = 100, but when N = 250, the proportion
of times that the null is rejected is one when ' = 0:8 and very close to one when ' = 0:95. Hence, we
can say that with the AR(1) innovation the power issue at r0 = 0 tends to be resolved as the sample size
increases. In the case of r0 = 1 with an AR(1) innovation, we obtain proportions of rejection of the null that
are in line with those seen with the white noise innovation. To �nish, in Table 4.a, in the case of the MA(1)
innovation, the proportion of times that the null is rejected for r0 = 0 is always one, except in two cases
with a sample size of N = 50. And, we observe a small oversizing e¤ect when r0 = 1, but it is resolved as
the sample size increases. In Table 4.b the results for the PAR innovations with non-periodic and periodic
augmentation are presented. Clearly, the results achieved with periodic augmentation help to largely resolve
the problems observed in terms of power when r0 = 1 with non-periodic augmentation.

4.3 Two periodic cointegration relationships

Finally, compatible with (24), here we explore the situation of three PI processes with two periodic long-run
relationships, or equivalently, a system of three PI processes ruled by one common stochastic trend, see

Lemma 3. As in the previous two cases, the values for �j1, �
j
2, and �

j
3, for j = 1; 2; 3, and �

j
4 = 1=

�
�j1�

j
2�
j
3

�
;

for j = 1; 2; 3, are shown in Table 1. Hence, we have the following:

y1s� = �sy
3
s� + u

1
s�

y2s� = �sy
3
s� + u

2
s�

y3s� = �3sy
3
s�1;� + u

3
s�

s = 1; 2; : : : ; 4:

�4 = 1 �4 = 1 (44)

�3 =
�34
�14

�3 =
�34
�24

�2 =
�34�

3
3

�14�
1
3

�2 =
�34�

3
3

�24�
2
3

�1 =
�34�

3
3�
3
2

�14�
1
3�
1
2

�1 =
�34�

3
3�
3
2

�24�
2
3�
2
2
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We consider the same options for the innovations u1s� , u
2
s� , and u

3
s� , as well as the variance-covariance

matrix E
h
E
(3)
s� E

(3)0
s�

i
= �, from the two previous subsections; we also use the same the sample sizes and

number of replications. The results are shown in Tables 5.a and 5.b, following the same structure about
serial correlation as in the sets of tables of the two previous subsections. In general, we can say that in
Tables 5.a and 5.b the performance of the Johansen procedure with the pseudo-demodulated approach does
a good job of determining the cointegration rank. Clearly, the Johansen procedure detects that there is a
common stochastic trend shared by the three PI processes. Hence the procedure correctly detects that we
have two periodic cointegration relationship between the three PI processes. The power problems observed
in Tables 4.a and 4.b when r0 = 0 are equivalent to those reported for r0 = 1 in Tables 5.a and 3.b.

5 Conclusion

In this paper, we propose a easily implementable method for determining the cointegration rank between a
set of PI processes. Our method relies on the use of pseudo-demodulated time series that can be obtained

from an estimation of the parameters associated with the periodic integration restriction
SY

s=1

�js = 1 from the

Likelihood Ratio test for periodic integration proposed by Boswijk and Franses (1996). Once we have these
pseudo-demodulated time series, they can be introduced into Johansen�s reduced-rank regression procedure.
In the Monte Carlo section, we show that our approach to determining the cointegration rank between a set
of periodically integrated processes performs adequately with small samples.
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Table 2.a Empirical Quantiles of Trace Test with Constant
mod as rank 0,5 0,8 0,9 0,95 0,975 0,99

i TRUE r0 = 0 2,4731 4,9076 6,5465 8,1347 9,8126 11,9604
i TRUE r0 = 1 9,4428 13,4194 15,9128 18,1357 20,2987 23,2025
i TRUE r0 = 2 20,5283 25,8922 29,0984 31,8603 34,6723 37,9846
i FITTED r0 = 0 2,4710 4,9044 6,5420 8,1312 9,8093 11,9608
i FITTED r0 = 1 9,4373 13,4186 15,9161 18,1309 20,2920 23,2116
i FITTED r0 = 2 20,5241 25,8779 29,0954 31,8547 34,6680 38,0068

0,5000 0,8000 0,9000 0,9500 0,9750 0,9900
ii TRUE r0 = 0 2,5062 4,9281 6,6289 8,1455 9,8923 12,1150
ii TRUE r0 = 1 9,4657 13,4303 15,8785 17,9800 20,2643 23,1774
ii TRUE r0 = 2 20,5718 25,8057 29,0293 31,9314 34,6087 37,7776
ii FITTED r0 = 0 2,5066 4,9247 6,6252 8,1430 9,9012 12,0929
ii FITTED r0 = 1 9,4669 13,4277 15,8823 17,9727 20,2471 23,1829
ii FITTED r0 = 2 20,5691 25,8037 29,0246 31,9100 34,6064 37,8231

Note: Based on 10.000 replication with N = 500and S = 4. Mod refers to the parameters values in Table 1. TRUE
and FITTED to the results obtained with the true coe¢cents or the �tted one obtained from the Boswijk and

Franses (1996) test. The DGPs are de�ned in (40) with the innovations as (1) in (41). And r0is the number of
cointegrating vectors under the null hypothesis.

Table 2.b Empirical Quantiles of Trace Test with Seasonal Dummies
mod as rank 0,5 0,8 0,9 0,95 0,975 0,99

i TRUE r0 = 0 2,4727 4,9064 6,5433 8,1319 9,8102 11,9671
i TRUE r0 = 1 9,4410 13,4136 15,9168 18,1430 20,3155 23,2044
i TRUE r0 = 2 20,5270 25,8886 29,0798 31,8660 34,6736 38,0473
i FITTED r0 = 0 2,4724 4,9022 6,5419 8,1302 9,8053 11,9600
i FITTED r0 = 1 9,4401 13,4168 15,9183 18,1371 20,2866 23,2089
i FITTED r0 = 2 20,5207 25,8754 29,0933 31,8508 34,6695 38,0166

0,5000 0,8000 0,9000 0,9500 0,9750 0,9900
ii TRUE r0 = 0 2,5069 4,9258 6,6216 8,1426 9,8814 12,1116
ii TRUE r0 = 1 9,4665 13,4352 15,8805 17,9773 20,2531 23,2049
ii TRUE r0 = 2 20,5704 25,7971 29,0176 31,9143 34,6061 37,7697
ii FITTED r0 = 0 2,5077 4,9250 6,6213 8,1399 9,8988 12,0945
ii FITTED r0 = 1 9,4646 13,4293 15,8734 17,9770 20,2431 23,1891
ii FITTED r0 = 2 20,5648 25,8026 29,0229 31,9129 34,6084 37,8095

Note: See the note of table 2.a.
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Table 2.c Empirical Quantiles of Trace Test withconstant and Trend
mod as rank 0,5 0,8 0,9 0,95 0,975 0,99

i TRUE r0 = 0 4,7457 7,7617 9,7202 11,7634 13,5321 15,8662
i TRUE r0 = 1 13,9358 18,4514 21,2791 23,6911 26,1444 28,8353
i TRUE r0 = 2 27,0797 33,2513 36,7054 39,9997 42,8724 46,7600
i FITTED r0 = 0 4,7419 7,7565 9,7171 11,7579 13,5260 15,8549
i FITTED r0 = 1 13,9367 18,4424 21,2782 23,6898 26,1489 28,8410
i FITTED r0 = 2 27,0699 33,2314 36,7108 39,9864 42,8834 46,7630

0,5000 0,8000 0,9000 0,9500 0,9750 0,9900
ii TRUE r0 = 0 4,8091 7,7974 9,7992 11,6816 13,6039 15,6681
ii TRUE r0 = 1 13,9003 18,6648 21,4928 23,9217 26,1132 28,9832
ii TRUE r0 = 2 27,0189 33,2001 36,7969 40,0044 42,8102 46,4758
ii FITTED r0 = 0 4,8056 7,7927 9,7992 11,6722 13,5869 15,6694
ii FITTED r0 = 1 13,8900 18,6671 21,4765 23,9346 26,0939 28,9880
ii FITTED r0 = 2 27,0008 33,1834 36,8049 39,9706 42,7710 46,4735

Note: See the note of table 2.a.

Table 2.d Empirical Quantiles of Trace Test with Seasonal Dummies and Trends
mod as rank 0,5 0,8 0,9 0,95 0,975 0,99

i TRUE r0 = 0 4,7432 7,7518 9,7177 11,7490 13,5247 15,8137
i TRUE r0 = 1 13,9308 18,4375 21,2623 23,6894 26,1400 28,8139
i TRUE r0 = 2 27,0665 33,2482 36,6841 39,9596 42,8916 46,7446
i FITTED r0 = 0 4,7439 7,7511 9,7209 11,7482 13,5231 15,8321
i FITTED r0 = 1 13,9283 18,4335 21,2587 23,6818 26,1453 28,8059
i FITTED r0 = 2 27,0635 33,2485 36,6881 39,9759 42,8657 46,7518

0,5000 0,8000 0,9000 0,9500 0,9750 0,9900
ii TRUE r0 = 0 4,8071 7,7889 9,7934 11,6648 13,5801 15,6767
ii TRUE r0 = 1 13,8872 18,6679 21,4583 23,9272 26,1060 28,9560
ii TRUE r0 = 2 27,0079 33,1957 36,7767 39,9534 42,7393 46,4956
ii FITTED r0 = 0 4,8056 7,7879 9,7943 11,6641 13,5833 15,6805
ii FITTED r0 = 1 13,8816 18,6629 21,4543 23,9444 26,0890 28,9466
ii FITTED r0 = 2 27,0034 33,1852 36,7901 39,9601 42,7511 46,4838

Note: See the note of table 2.a.
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Table 2.e Size
�1

PI FITTED FITTED TRUE TRUE
Variables Rank N i ii i ii

3 r0= 0 50 0,0698 0,0671 0,0702 0,0665
3 r0= 0 100 0,0624 0,0631 0,0627 0,0627
3 r0= 0 250 0,0561 0,0582 0,0564 0,0581
3 r0= 1 50 0,0065 0,0037 0,0062 0,0039
3 r0= 1 100 0,0045 0,0042 0,0044 0,0041
3 r0= 1 250 0,0037 0,0032 0,0037 0,0033
3 r0= 2 50 0,0010 0,0002 0,0010 0,0002
3 r0= 2 100 0,0010 0,0004 0,0010 0,0005
3 r0= 2 250 0,0009 0,0002 0,0009 0,0002
2 r0= 0 50 0,0602 0,0566 0,0607 0,0571
2 r0= 0 100 0,0563 0,0559 0,0562 0,0557
2 r0= 0 250 0,0541 0,0524 0,0541 0,0527
2 r0= 1 50 0,0055 0,0048 0,0056 0,0049
2 r0= 1 100 0,0045 0,0051 0,0047 0,0050
2 r0= 1 250 0,0034 0,0034 0,0034 0,0034
1 r0= 0 50 0,0536 0,0524 0,0545 0,0528
1 r0= 0 100 0,0546 0,0473 0,0548 0,0474
1 r0= 0 250 0,0540 0,0496 0,0542 0,0497

Note: Based on 10.000 replication with S = 4, iand ii refers to the parameters values in Table 1. TRUE and
FITTED to the results obtained with the true coe¢cents or the �tted one obtained from the Boswijk and Franses

(1996) test. The DGPs are de�ned in (40) with the innovations as (1) in (41). r0is the number of cointegrating
vectors under the null hypothesis. The Trace test is conducted at a nominal 5% level of signi�cance. Finally �1

refers to (42).
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Table 3.a No Cointegration
rank �1 �2 �3

N i ii i ii i ii
White Noise (1) in (41).

r0= 0 50 0.0799 0.0786 0.0767 0.0769 0.0783 0.0721
r0= 0 100 0.0641 0.0671 0.0647 0.0662 0.0633 0.0676
r0= 0 250 0.0611 0.0577 0.0623 0.0643 0.0615 0.0613
r0= 1 50 0.0052 0.0059 0.0054 0.0052 0.0062 0.0058
r0= 1 100 0.0046 0.0062 0.0055 0.0045 0.0041 0.0053
r0= 1 250 0.0041 0.0041 0.0044 0.0039 0.0046 0.0055
r0= 2 50 0.0003 0.0008 0.0005 0.0007 0.0009 0.0012
r0= 2 100 0.0008 0.0009 0.0008 0.0010 0.0005 0.0012
r0= 2 250 0.0004 0.0005 0.0009 0.0005 0.0002 0.0007

AR (1) ' = 0:8 (3) in (41).
r0= 0 50 0,1620 0,1602 0,1551 0,1654 0,1569 0,1621
r0= 0 100 0,1015 0,1032 0,0993 0,1081 0,1001 0,0936
r0= 0 250 0,0753 0,0708 0,0767 0,0721 0,0700 0,0757
r0= 1 50 0,0168 0,0167 0,0147 0,0165 0,0175 0,0177
r0= 1 100 0,0092 0,0094 0,0081 0,0094 0,0095 0,0086
r0= 1 250 0,0052 0,0060 0,0059 0,0067 0,0048 0,0074
r0= 2 50 0,0021 0,0020 0,0022 0,0015 0,0022 0,0017
r0= 2 100 0,0013 0,0010 0,0015 0,0012 0,0014 0,0013
r0= 2 250 0,0005 0,0006 0,0007 0,0007 0,0005 0,0011

AR (1) ' = 0:95 (3) in (41).
r0= 0 50 0.4071 0.4066 0.4113 0.4083 0.6811 0.6089
r0= 0 100 0.2323 0.2442 0.2474 0.2464 0.3981 0.3754
r0= 0 250 0.1233 0.1168 0.1285 0.1121 0.1818 0.1825
r0= 1 50 0.0842 0.0817 0.0811 0.0817 0.2161 0.1785
r0= 1 100 0.0291 0.0319 0.0333 0.0344 0.0801 0.0744
r0= 1 250 0.0124 0.0124 0.0106 0.0101 0.0224 0.0245
r0= 2 50 0.0173 0.0146 0.0120 0.0138 0.0463 0.0360
r0= 2 100 0.0047 0.0053 0.0054 0.0060 0.0131 0.0135
r0= 2 250 0.0017 0.0013 0.0009 0.0011 0.0030 0.0037

MA (1) � = 0:5 (2) in (41).
r0= 0 50 0.1050 0.1012 0.1018 0.1035 0.1037 0.1015
r0= 0 100 0.0769 0.0754 0.0792 0.0788 0.0779 0.0761
r0= 0 250 0.0658 0.0695 0.0737 0.0711 0.0721 0.0686
r0= 1 50 0.0073 0.0088 0.0081 0.0093 0.0076 0.0065
r0= 1 100 0.0057 0.0048 0.0045 0.0069 0.0040 0.0057
r0= 1 250 0.0058 0.0049 0.0045 0.0056 0.0052 0.0042
r0= 2 50 0.0010 0.0009 0.0006 0.0016 0.0007 0.0006
r0= 2 100 0.0010 0.0004 0.0006 0.0010 0.0011 0.0011
r0= 2 250 0.0005 0.0009 0.0007 0.0005 0.0010 0.0011

Note: Based on 10.000 replication with S = 4, iand ii refers to the parameters values in Table 1. The DGPs are
de�ned in (40) with the innovations de¢ned in (41). r0is the number of cointegrating vectors under the null

hypothesis. The Trace test is conducted at a nominal 5% level of signi�cance. Finally �1, �2 and �3 refers to
(42).

24



Table 3.b No Cointegration
rank �1 �2 �3

N i ii i ii i ii
PAR(1) '1'2'3'4 = 0:8 (4) in (41).

r0= 0 50 0.6025 0.4876 0.5645 0.4849 0.5706 0.4693
r0= 0 100 0.3486 0.2254 0.2710 0.2268 0.2799 0.2194
r0= 0 250 0.1030 0.1055 0.1024 0.1093 0.1072 0.1130
r0= 1 50 0.1555 0.1100 0.1318 0.1015 0.1345 0.1012
r0= 1 100 0.0566 0.0327 0.0395 0.0295 0.0413 0.0288
r0= 1 250 0.0092 0.0104 0.0110 0.0107 0.0121 0.0105
r0= 2 50 0.0268 0.0185 0.0229 0.0192 0.0233 0.0185
r0= 2 100 0.0077 0.0047 0.0060 0.0055 0.0057 0.0038
r0= 2 250 0.0014 0.0019 0.0015 0.0017 0.0011 0.0019

PAR(1) '1'2'3'4 = 0:8 (4) in (41).
Periodic Augmentation

r0= 0 50 0.3582 0.3782 0.3597 0.3762 0.3554 0.3663
r0= 0 100 0.1837 0.1954 0.1799 0.1983 0.1852 0.1936
r0= 0 250 0.0805 0.0883 0.0871 0.0971 0.0874 0.0931
r0= 1 50 0.0642 0.0719 0.0609 0.0712 0.0607 0.0682
r0= 1 100 0.0195 0.0261 0.0204 0.0211 0.0205 0.0216
r0= 1 250 0.0061 0.0074 0.0074 0.0081 0.0075 0.0088
r0= 2 50 0.0112 0.0107 0.0111 0.0122 0.0096 0.0100
r0= 2 100 0.0031 0.0037 0.0040 0.0031 0.0023 0.0035
r0= 2 250 0.0010 0.0010 0.0006 0.0009 0.0012 0.0011

PAR(1) '1'2'3'4 = 0:95 in (41).
r0= 0 50 0.7380 0.6211 0.6775 0.6109 0.6811 0.6089
r0= 0 100 0.5065 0.3707 0.4009 0.3665 0.3981 0.3754
r0= 0 250 0.1886 0.1854 0.1898 0.1766 0.1818 0.1825
r0= 1 50 0.2599 0.1797 0.2148 0.1743 0.2161 0.1785
r0= 1 100 0.1310 0.0728 0.0829 0.0696 0.0801 0.0744
r0= 1 250 0.0268 0.0225 0.0209 0.0213 0.0224 0.0245
r0= 2 50 0.0536 0.0395 0.0439 0.0408 0.0463 0.0360
r0= 2 100 0.0237 0.0121 0.0144 0.0125 0.0131 0.0135
r0= 2 250 0.0046 0.0036 0.0024 0.0027 0.0030 0.0037

PAR(1) '1'2'3'4 = 0:95 in (41).
Periodic Augmentation

r0= 0 50 0.4401 0.4660 0.4489 0.4852 0.4342 0.4721
r0= 0 100 0.2751 0.3051 0.3197 0.3321 0.2734 0.2999
r0= 0 250 0.1219 0.1409 0.1606 0.1685 0.1295 0.1428
r0= 1 50 0.0992 0.1040 0.0951 0.1064 0.0946 0.1069
r0= 1 100 0.0420 0.0494 0.0511 0.0598 0.0385 0.0496
r0= 1 250 0.0125 0.0139 0.0168 0.0188 0.0124 0.0155
r0= 2 50 0.0175 0.0178 0.0205 0.0192 0.0168 0.0184
r0= 2 100 0.0070 0.0080 0.0065 0.0102 0.0058 0.0074
r0= 2 250 0.0019 0.0020 0.0028 0.0024 0.0020 0.0017

Note: See the note of table 3.a.
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Table 4.a One Periodic Cointegration Relationship
rank �1 �2 �3

N i ii i ii i ii
White Noise (1) in (41).

r0= 0 50 1.0000 0.9987 1.0000 0.9992 1.0000 0.9947
r0= 0 100 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
r0= 0 250 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
r0= 1 50 0.0620 0.0636 0.0623 0.0649 0.0651 0.0713
r0= 1 100 0.0591 0.0593 0.0559 0.0611 0.0581 0.0581
r0= 1 250 0.0557 0.0584 0.0556 0.0594 0.0558 0.0538
r0= 2 50 0.0058 0.0045 0.0050 0.0055 0.0055 0.0060
r0= 2 100 0.0047 0.0040 0.0051 0.0043 0.0042 0.0054
r0= 2 250 0.0044 0.0044 0.0046 0.0038 0.0040 0.0040

AR (1) ' = 0:8 (3) in (41).
r0= 0 50 0.5043 0.8068 0.6357 0.7834 0.5462 0.6018
r0= 0 100 0.9551 0.9958 0.9834 0.9971 0.9957 0.9767
r0= 0 250 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
r0= 1 50 0.0560 0.0849 0.0688 0.0826 0.0631 0.0748
r0= 1 100 0.0681 0.0702 0.0654 0.0698 0.0689 0.0698
r0= 1 250 0.0581 0.0676 0.0610 0.0611 0.0601 0.0652
r0= 2 50 0.0054 0.0088 0.0052 0.0085 0.0052 0.0075
r0= 2 100 0.0049 0.0055 0.0047 0.0052 0.0054 0.0054
r0= 2 250 0.0050 0.0040 0.0040 0.0041 0.0037 0.0048

AR (1) ' = 0:95 (3) in (41).
r0= 0 50 0.3633 0.6894 0.3657 0.6041 0.5017 0.5594
r0= 0 100 0.5737 0.8214 0.6027 0.7685 0.6408 0.6887
r0= 0 250 0.9817 0.9835 0.9902 0.9885 0.9911 0.9715
r0= 1 50 0.0673 0.1180 0.0675 0.1039 0.0915 0.0995
r0= 1 100 0.0713 0.0912 0.0739 0.0815 0.0741 0.0800
r0= 1 250 0.0668 0.0693 0.0690 0.0719 0.0647 0.0710
r0= 2 50 0.0122 0.0158 0.0094 0.0133 0.0156 0.0141
r0= 2 100 0.0083 0.0097 0.0075 0.0091 0.0087 0.0084
r0= 2 250 0.0051 0.0062 0.0059 0.0057 0.0064 0.0058

MA (1) � = 0:5 (2) in (41).
r0= 0 50 1.0000 1.0000 1.0000 0.9999 1.0000 0.9994
r0= 0 100 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
r0= 0 250 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
r0= 1 50 0.0881 0.0857 0.0904 0.0817 0.0814 0.0789
r0= 1 100 0.0710 0.0687 0.0662 0.0609 0.0720 0.0661
r0= 1 250 0.0633 0.0678 0.0611 0.0629 0.0658 0.0587
r0= 2 50 0.0084 0.0071 0.0069 0.0056 0.0086 0.0090
r0= 2 100 0.0062 0.0059 0.0047 0.0052 0.0061 0.0043
r0= 2 250 0.0045 0.0052 0.0067 0.0037 0.0051 0.0035

Note: See the note of table 3.a, but with DPGs de�ned in (43).
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Table 4.b One Periodic Cointegration Relationship
rank �1 �2 �3

N i ii i ii i ii
PAR(1) '1'2'3'4 = 0:8 (4) in (41).

r0= 0 50 0.4095 0.4903 0.4099 0.5486 0.5030 0.4548
r0= 0 100 0.5318 0.5913 0.5346 0.7208 0.6804 0.6029
r0= 0 250 0.9599 0.9446 0.9872 0.9792 0.9959 0.9285
r0= 1 50 0.0694 0.0744 0.0676 0.0848 0.0809 0.0710
r0= 1 100 0.0559 0.0646 0.0628 0.0711 0.0674 0.0615
r0= 1 250 0.0614 0.0630 0.0600 0.0644 0.0585 0.0639
r0= 2 50 0.0114 0.0093 0.0111 0.0123 0.0126 0.0088
r0= 2 100 0.0073 0.0081 0.0075 0.0052 0.0078 0.0052
r0= 2 250 0.0070 0.0058 0.0053 0.0055 0.0057 0.0067

PAR(1) '1'2'3'4 = 0:8 (4) in (41).
Periodic Augmentation

r0= 0 50 0.5849 0.7801 0.5301 0.5921 0.4668 0.4909
r0= 0 100 0.9018 0.9727 0.8157 0.9199 0.8135 0.8637
r0= 0 250 0.9999 0.9985 0.9994 0.9987 0.9995 0.9683
r0= 1 50 0.0446 0.0202 0.0367 0.0164 0.0227 0.0138
r0= 1 100 0.0326 0.0075 0.0278 0.0089 0.0243 0.0096
r0= 1 250 0.0195 0.0032 0.0251 0.0043 0.0183 0.0031
r0= 2 50 0.0034 0.0003 0.0030 0.0005 0.0008 0.0003
r0= 2 100 0.0013 0.0002 0.0013 0.0000 0.0009 0.0003
r0= 2 250 0.0007 0.0001 0.0005 0.0002 0.0003 0.0000

PAR(1) '1'2'3'4 = 0:95 (4) in (41).
r0= 0 50 0.4727 0.5637 0.4699 0.6244 0.5025 0.5459
r0= 0 100 0.4113 0.5424 0.4289 0.6542 0.4902 0.6506
r0= 0 250 0.4077 0.5646 0.4892 0.7793 0.7821 0.8555
r0= 1 50 0.0987 0.1094 0.0961 0.1244 0.0917 0.1072
r0= 1 100 0.0795 0.0880 0.0791 0.1097 0.0698 0.0803
r0= 1 250 0.0574 0.0586 0.0591 0.0811 0.0648 0.0676
r0= 2 50 0.0178 0.0196 0.0205 0.0223 0.0147 0.0150
r0= 2 100 0.0102 0.0141 0.0137 0.0174 0.0086 0.0094
r0= 2 250 0.0089 0.0060 0.0074 0.0090 0.0067 0.0067

PAR(1) '1'2'3'4 = 0:95 (4) in (41).
Periodic Augmentation

r0= 0 50 0.9399 0.9455 0.9088 0.8877 0.7976 0.7227
r0= 0 100 0.9997 0.9983 0.9993 0.9922 0.9931 0.9103
r0= 0 250 0.9998 0.9996 0.9999 0.9965 0.9999 0.9564
r0= 1 50 0.0992 0.0318 0.0993 0.0330 0.0510 0.0247
r0= 1 100 0.1240 0.0191 0.1375 0.0242 0.0478 0.0113
r0= 1 250 0.0482 0.0059 0.0822 0.0104 0.0276 0.0048
r0= 2 50 0.0037 0.0003 0.0056 0.0010 0.0021 0.0004
r0= 2 100 0.0018 0.0005 0.0023 0.0003 0.0012 0.0006
r0= 2 250 0.0015 0.0002 0.0008 0.0001 0.0004 0.0000

Note: See the note of table 3.a, but with DPGs de�ned in (43).
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Table 5.a Two Periodic Cointegration Relationship
rank �1 �2 �3

N i ii i ii i ii
White Noise (1) in (41).

r0= 0 50 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
r0= 0 100 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
r0= 0 250 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
r0= 1 50 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
r0= 1 100 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
r0= 1 250 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
r0= 2 50 0.0536 0.0492 0.0548 0.0541 0.0559 0.0529
r0= 2 100 0.0556 0.0532 0.0530 0.0507 0.0572 0.0521
r0= 2 250 0.0519 0.0579 0.0525 0.0535 0.0528 0.0487

AR (1) ' = 0:8 (3) in (41).
r0= 0 50 0.9776 0.9712 0.9817 0.9813 0.9843 0.9829
r0= 0 100 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
r0= 0 250 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
r0= 1 50 0.6379 0.6212 0.6401 0.6296 0.6563 0.6540
r0= 1 100 0.9991 0.9986 0.9987 0.9974 0.9991 0.9991
r0= 1 250 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
r0= 2 50 0.0464 0.0458 0.0478 0.0459 0.0482 0.0473
r0= 2 100 0.0481 0.0540 0.0521 0.0515 0.0492 0.0493
r0= 2 250 0.0542 0.0529 0.0520 0.0520 0.0559 0.0515

AR (1) ' = 0:95 (3) in (41).
r0= 0 50 0.3342 0.2926 0.3089 0.2713 0.3004 0.2916
r0= 0 100 0.6592 0.6445 0.6374 0.6378 0.6161 0.6701
r0= 0 250 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
r0= 1 50 0.0555 0.0546 0.0516 0.0456 0.0501 0.0447
r0= 1 100 0.1892 0.1888 0.1785 0.1817 0.1719 0.2006
r0= 1 250 0.9682 0.9804 0.9702 0.9798 0.9691 0.9858
r0= 2 50 0.0086 0.0095 0.0087 0.0061 0.0088 0.0073
r0= 2 100 0.0271 0.0272 0.0283 0.0266 0.0249 0.0270
r0= 2 250 0.0525 0.0550 0.0518 0.0530 0.0521 0.0535

MA (1) � = 0:5 (2) in (41).
r0= 0 50 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
r0= 0 100 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
r0= 0 250 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
r0= 1 50 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
r0= 1 100 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
r0= 1 250 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
r0= 2 50 0.0827 0.0808 0.0727 0.0700 0.0687 0.0659
r0= 2 100 0.0659 0.0638 0.0643 0.0684 0.0673 0.0596
r0= 2 250 0.0580 0.0593 0.0526 0.0575 0.0594 0.0581

Note: See the note of table 3.a, but with DPGs de�ned in (44).
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Table 5.b Two Periodic Cointegration Relationship
rank �1 �2 �3

N i ii i ii i ii
PAR(1) '1'2'3'4 = 0:8 (4) in (41).

r0= 0 50 0.3542 0.3415 0.4092 0.3662 0.4685 0.3903
r0= 0 100 0.7496 0.7373 0.7983 0.7979 0.8622 0.8176
r0= 0 250 1.0000 0.9999 1.0000 1.0000 1.0000 1.0000
r0= 1 50 0.0666 0.0622 0.0754 0.0681 0.0889 0.0756
r0= 1 100 0.2423 0.2543 0.2810 0.2848 0.3354 0.3114
r0= 1 250 0.9257 0.8715 0.9424 0.9970 0.9893 0.9973
r0= 2 50 0.0114 0.0096 0.0109 0.0114 0.0132 0.0118
r0= 2 100 0.0224 0.0268 0.0280 0.0306 0.0312 0.0323
r0= 2 250 0.0344 0.0485 0.0381 0.0431 0.0434 0.0488

PAR(1) '1'2'3'4 = 0:8 (4) in (41).
Periodic Augmentation

r0= 0 50 0.9419 0.9087 0.9048 0.8653 0.8343 0.8325
r0= 0 100 0.9999 0.9996 0.9993 0.9981 0.9965 0.9974
r0= 0 250 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999
r0= 1 50 0.4855 0.3939 0.3816 0.3065 0.2501 0.2624
r0= 1 100 0.9561 0.9166 0.8827 0.8490 0.7359 0.8073
r0= 1 250 0.9999 1.0000 0.9994 0.9999 0.9979 0.9998
r0= 2 50 0.0301 0.0285 0.0173 0.0233 0.0137 0.0224
r0= 2 100 0.0402 0.0483 0.0334 0.0471 0.0337 0.0432
r0= 2 250 0.0328 0.0450 0.0237 0.0480 0.0374 0.0537

PAR(1) '1'2'3'4 = 0:95 (4) in (41).
r0= 0 50 0.2795 0.2578 0.2951 0.2584 0.3339 0.2819
r0= 0 100 0.4036 0.3853 0.4049 0.4011 0.4689 0.4214
r0= 0 250 0.9261 0.9166 0.9093 0.9728 0.9688 0.9759
r0= 1 50 0.0394 0.0383 0.0447 0.0373 0.0544 0.0443
r0= 1 100 0.0716 0.0683 0.0706 0.0775 0.0902 0.0805
r0= 1 250 0.4760 0.4952 0.3908 0.5861 0.6127 0.6054
r0= 2 50 0.0060 0.0060 0.0068 0.0061 0.0082 0.0083
r0= 2 100 0.0093 0.0100 0.0113 0.0099 0.0099 0.0118
r0= 2 250 0.0261 0.0304 0.0303 0.0326 0.0310 0.0374

PAR(1) '1'2'3'4 = 0:95 (4) in (41).
Periodic Augmentation

r0= 0 50 0.9989 0.9976 0.9973 0.9953 0.9930 0.9941
r0= 0 100 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
r0= 0 250 1.0000 0.9999 1.0000 1.0000 1.0000 1.0000
r0= 1 50 0.8775 0.8420 0.8007 0.7839 0.6998 0.7473
r0= 1 100 0.9999 0.9995 0.9990 0.9978 0.9927 0.9983
r0= 1 250 0.9999 0.9999 0.9996 1.0000 0.9999 1.0000
r0= 2 50 0.0613 0.0608 0.0444 0.0603 0.0441 0.0598
r0= 2 100 0.0556 0.0672 0.0429 0.0712 0.0587 0.0697
r0= 2 250 0.0420 0.0484 0.0259 0.0580 0.0510 0.0599

Note: See the note of table 3.a, but with DPGs de�ned in (44).
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Figure 1
(a)

(b)

Part (a) Average periodogram of a PI process ys� = �sys�1;� + us�with S = 4,T = 100,�1 = 0:8, �2 = 1,
�3 = 0:5and �4 = 1= (�1�2�3)and us� � Niid (0; 1). Part (b) Average periodogram of a�1s ys�with asbeen the

s
th element of a de�ned in (47). Based in 5000 replications.
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7 Appendix

Proof of Lemma 1:

First note that, as in the quarterly case studied by Paap and Franses (1999), successively substituting in
(4) yields

Y� = [A
�1
0 A1]

�Y0 +A
�1
0 U� +

��1X

j=1

[A�1
0 A1]

j
A
�1
0 U��j

= A�1
0 A1Y0 +A

�1
0 U� +A

�1
0 A1A

�1
0

��1X

j=1

U��j : (45)

This result follows because matrixA�1
0 A1 is idempotent. First, note that the matrixA0 (see chapter 2 pp 45-

48 of Pollock (1999)) is an S�S lower-triangular Toeplitz matrix associated with the polynomial (1� �sL).
Hence the matrix A�1

0 collects the coe¢cients of the expansion of the inverse polynomial associated with
(1� �sL)9 . Based on the form of the matrices A�1

0 and A1, it is clear that the resulting matrix A
�1
0 A1

is an S � S matrix with the �rst S � 1 columns having elements equal to zero and the last column equal

to the column vector v =

"

�1 �1�2 �1�2�3 � � �
SY

s=1

�s

#0
. Finally note that the last element of v,

that is,
SY

s=1

�s; is equal to 1, as we have Periodic Integration. Also, as the �rst S � 1 columns of A�1
0 A1 are

equal to zero and the lower left element of this matrix is equal to one, implies that [A�1
0 A1]

j = A�1
0 A1 for

j = 2; 3; :::. Clearly, (45) provides a representation of (3), where the matrix A�1
0 A1A

�1
0 gives the e¤ect of

the accumulated vector of shocks
P��1

j=1 U��j (see for example Boswijk and Franses (1996), Paap and Franses

(1999) and del Barrio Castro and Osborn (2008a)). The matrix A�1
0 A1A

�1
0 has rank one and hence can be

written as
A
�1
0 A1A

�1
0 = ab0 (46)

where, for (46),

a =

"

1 �2 �2�3 � � �
SY

s=2

�s

#0

b =

"

1 �1

SY

s=3

�s �1

SY

s=4

�s � � � �1

#0
: (47)

Hence using (45) and (46) it is clear that () holds.
Now if we focus on U� , this is the S � 1 vector that collects the stacked observations of us� that we

assume that follows a stationary PAR of order P � 1. That is,
�
1�  1sL� � � � �  p�1;sLp�1

�
us� = "s�

with "s� � iid
�
0; �2"

�
. It is possible to write for U� follows VAR of order P = int [(P + S � 2) =S], that is:

	0U� �	1U��1 � � � � �	PU��P = E�

	(B)U� = E�
�
	0I �	1B � � � � �	PBP

�
= 	(B) :

With B here playing the role of the lag operator for the S� 1 vectors Y� , U� and E� . For the cumulate sumP�
j=1Ej it is possible to write

1p
T

PbTrc
j=1 Ej ) �W (r). With W (r) been a S� 1 standard vector Brownian

9That is:

A
�1
0 =

2

66666666666
4

1 0 0 0 0
�2 1 0 0 � � � 0
�2�3 �3 1 0 � � � 0
�2�3�4 �3�4 �4 1 � � � 0

.

..
.
..

.

..
.
..

. . .
.
..

SY

j=2

�j

SY

j=3

�j

SY

j=4

�j

SY

j=5

�j � � � 1

3

77777777777
5

:
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motion. Hence for the cumulate sum
P��1

j=1 U��j in (45), it is possible to write:

1p
T

bTrcX

j=1

Uj ) �	(1)
�1
W (r) : (48)

With 	(1)
�1
, being the inverse of the polynomial matrix 	(L) evaluated at L = I. Result (7) is obtained

straightforwardly using (48), (46) and (45). Finally note that ! and w (r) are de�ned as follows:

w (r) = !�1�b0	(1)�1W (r) (49)

!=�
�
b
0	(1)�1	(1)�10 b

�1=2
:

�

Proof of Lemma 2:

First note that in model (27), by recursive substitution, we can have:

Y (n)� =

��
A
(n)
0

��1
A
(n)
1

��
Y
(n)
0 +

�
A
(n)
0

��1
U (n)� +

��1X

j=1

��
A
(n)
0

��1
A
(n)
1

�j �
A
(n)
0

��1
U
(n)
��j ; (50)

and that the inverse matrix
�
A
(n)
0

��1
will be also block diagonal, such that:

�
A
(n)
0

��1
= diag

h�
A
1
0

��1
;
�
A
2
0

��1
; : : : ; (An

0 )
�1
i

with :

�
A
j
0

��1
=

2

66666666666
4

1 0 0 0 � � � 0

�j2 1 0 0 � � � 0

�j2�
j
3 �j3 1 0 � � � 0

�j2�
j
3�
j
4 �j3�

j
4 �j4 1 � � � 0

...
...

...
...

. . .
...

SY

k=2

�jk

SY

k=3

�jk

SY

k=4

�jk

SY

k=5

�jk � � � 1

3

77777777777
5

j = 1; 2; : : : ; n: (51)

The product
�
A
(n)
0

��1
A
(n)
1 is also block diagonal, with the following form:

�
A
(n)
0

��1
A
(n)
1 = diag

h�
A
1
0

��1
A
1
1;
�
A
2
0

��1
A
2
1; : : : ; (A

n
0 )
�1
A
n
1

i

with :

�
A
j
0

��1
A
j
1 =

2

66666666666
4

0 0 0 � � � 0 �j1
0 0 0 � � � 0 �j1�

j
2

0 0 0 � � � 0 �j1�
j
2�
j
3

0 0 0 � � � 0 �j1�
j
2�
j
3�
j
4

...
...
...

. . .
...

...

0 0 0 � � � 0
SY

k=1

�jk

3

77777777777
5

j = 1; 2; : : : ; n: (52)

Clearly, as we have PI processes the lower right element of the sub-matrices
�
A
j
0

��1
A
j
1 are equal to

SY

k=1

�jk = 1. Hence, it is easy to check that matrix
�
A
(n)
0

��1
A
(n)
1 is idempotent. Then it is possible to write
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for (50):

Y (n)� =
�
A
(n)
0

��1
A
(n)
1 Y

(n)
0 +

�
A
(n)
0

��1
U (n)� +

�
A
(n)
0

��1
A
(n)
1

�
A
(n)
0

��1 ��1X

j=1

U
(n)
��j

(53)

�
A
(n)
0

��1
A
(n)
1

�
A
(n)
0

��1
=

2

666
4

a1b
0
1 0S�S � � � 0S�S

0S�S a2b
0
2 � � � 0S�S

...
...

. . .
...

0S�S 0S�S � � � anb
0
n

3

777
5

aj =

"

1 �j2 �j2�
j
3 � � �

SY

s=2

�js

#0

bj =

"

1 �j1

SY

s=2

�js �j1

SY

s=3

�js � � � �j1

#0
:

Note that, from (53), each of the n PI processes collected in the vector Y
(n)
� has his own stochastic trend,

that is b0j

��1X

k=1

U j��k for j = 1; 2; : : : ; n. And also we have cointegration between the seasons of each PI

process. In (53) we have the cumulate sum
��1X

j=1

U
(n)
��j and that we can write:

1p
T

bTrcX

j=1

U
(n)
j =

2

66666
4

1p
T

PbTrc
j=1 U

1
�

1p
T

PbTrc
j=1 U

2
�

...
1p
T

PbTrc
j=1 U

n
�

3

77777
5
) 	(n) (1)

�1
[P
 IS ]W (3) (r) : (54)

In order to prove (54) �rst note that the connection between ujs� and "
j
s� for j = 1; 2; : : : ; n is the following�

1�  j1sL� � � � �  jp�1;sLp�1
�
ujs� = "js� . Also we assume that E

(n)
s� =

�
"1s� "2s� � � � "ns�

�0
is a white

noise vector with the positive de�nite variance-covariance matrix E
h
E
(n)
s� E

(n)0
s�

i
= � then for the (n� S)�1

vector E
(n)
� =

�
E10� ; E

20
� ; : : : ; E

n0
�

�0
=
�
"11� ; : : : ; "

1
S� ; "

2
1� ; : : : ; "

2
S� ; : : : ; "

n
1� ; : : : ; "

n
S�

�0
we will have:

1p
T

bTrcX

j=1

E
(n)
j ) [P
 IS ]W (n) (r) :

Where W (n) (r) is a (n� S) � 1 multivariate Vector Brownian motion with variance covariance matrix
I(n�S)�(n�S) and P is a lower triangular matrix of order n � n such that such that � = PP

0. Hence

[P
 IS ]W (n) (r) will have a variance covariance matrix �
IS . Now note that ,as
�
1�  j1sL� � � � �  jp�1;sLp�1

�
ujs� =

"js� , there will be a vector of season representation for each u
j
s� j = 1; 2; : : : ; n, that is, a VAR representation

of order P = b(p� 2) =Sc+ 1 as follows:
�
	j0 �	j1L� � � � �	jPLP

�
U j� = Ej�

�
	j0 �	j1L� � � � �	jPLP

�
= 	j (L) :

And in the case of the n�variate vector U (n)� =
�
U10� ; U

20
� ; : : : ; U

n0
�

�0
we will have:

�
	
(n)
0 �	(n)1 L� � � � �	(n)P LP

�
U (n)� = E(n)�

�
	
(n)
0 �	(n)1 L� � � � �	(n)P LP

�
= 	(n) (L)
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such that 	
(n)
i i = 0; 1; : : : ; P are block diagonal matrices with diagonal elements 	ji j = 1; 2; : : : ; n for

i = 0; 1; : : : ; P . Hence we have U
(n)
� = 	(n) (L)

�1
E
(n)
� and it will be possible to write:

1p
T

bTrcX

j=1

U
(n)
j =

1p
T

bTrcX

j=1

	(n) (1)
�1
E
(n)
j + op (1) :

Hence (54) will come naturally. Next from (53) we have:

1p
T
Y
(n)
bTrc )

�
A
(n)
0

��1
A
(n)
1

�
A
(n)
0

��1
	(n) (1)

�1
[P
 IS ]W (n) (r) (55)

=

2

666
4

a1b
0
1 0S�S � � � 0S�S

0S�S a2b
0
2 � � � 0S�S

...
...

. . .
...

0S�S 0S�S � � � anb
0
n

3

777
5
	(n) (1)

�1
[P
 IS ]W (n) (r) :

In order to de�ne the n scalar Brownian motions of lemma 2, that is, wj (r), for j = 1; 2; : : : ; n, we call
rj the j

th row of an identity matrix of order n (that is In) hence, we could write (55) as:

1p
T
Y
(n)
bTrc )

2

666
4

a1b
0
1 0S�S � � � 0S�S

0S�S a2b
0
2 � � � 0S�S

...
...

. . .
...

0S�S 0S�S � � � anb
0
n

3

777
5
	(n) (1)

�1
[P
 IS ]W (n) (r)

=

2

666666666
4

a1

�
r1
b01

�
	(n) (1)

�1
[P
 IS ]W (n) (r)

a2

�
r2
b02

�
	(n) (1)

�1
[P
 IS ]W (n) (r)

...

aj

�
rj
b0j

�
	(n) (1)

�1
[P
 IS ]W (n) (r)

...

an

�
rn
b0n

�
	(n) (1)

�1
[P
 IS ]W (n) (r)

3

777777777
5

: (56)

Note that the generic element
�
rj
b0j

�
	(n) (1)

�1
[P
 IS ]W (n) (r) for j = 1; 2; : : : ; n, are scalar Brownian

Motions de�ned as linear combinations of the (n� S) elements of the Vector Brownian MotionW (n) (r). Note

that the variance of
�
rj
b0j

�
	(n) (1)

�1
[P
 IS ]W (n) (r) is

�
rj
b0j

�
	(n) (1)

�1
[�
IS ] 	(n) (1)0�1

�
rj
b0j

�0
.

Hence we de�ne wj (r) and !j as:

wj (r) = !�1j
�
rj
b0j

�
	(n) (1)

�1
[P
 IS ]W (n) (r) (57)

j = 1; 2; : : : ; n

with:

!j =
h�
rj
b0j

�
	(n) (1)

�1
[�
IS ] 	(n) (1)0�1

�
rj
b0j

�0i1=2
(58)

j = 1; 2; : : : ; n:

�

Proof of Lemma 3:

As in the proof of Lemma 2 it is possible by recursive substitution in (27) with A
(n)
0 and A

(n)
1 de�ned

as in (35) to arrive to expression (50), but in this case the inverse matrix
�
A
(n)
0

��1
will be as follows (note

that we use results for the inverse of partioned matrices:

�
A
(n)
0

��1
=

"
I(r�S) D

1 (� 
 IS)
�
D
2
��1 �

A
2
0

��1

0([n�r]�S)�(r�S)
�
A
2
0

��1

#

: (59)

Note thatA
(2)
0 = diag

�
A
r+1
0 ;Ar+2

0 ; � � � ;An
0

�
, hence we have that

�
A
(2)
0

��1
= diag

h�
A
r+1
0

��1
;
�
A
r+2
0

��1
; � � � ; (An

0 )
�1
i

and we know, that the speci�c expresson for
�
A
j
0

��1
will as reported in (51) for j = r+1; r+2; : : : ; n. Note
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that, for
�
A
(n)
0

��1
A
(n)
1 we will have:

�
A
(n)
0

��1
A
(n)
1 =

"
I(r�S) D

1 (� 
 IS)
�
D
2
��1 �

A
2
0

��1
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�
A
2
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#

�
�

0(r�S)�(r�S) 0(r�S)�([n�r]�S)
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2
1

�

=

"
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�
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��1 �

A
2
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��1
A
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1

0([n�r]�S)�(r�S)
�
A
2
0

��1
A
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#

: (60)

Note that for
�
A
2
0

��1
A
2
1 it is possible to see, that as is Lemma 2 above we will have

�
A
2
0

��1
A
2
1 =

diag
h�
A
r+1
0

��1
A
r+1
1 ;

�
A
r+2
0

��1
A
r+2
1 ; : : : ; (An

0 )
�1
A
n
1

i
and the speci�c expression for the

�
A
j
0

��1
A
j
1 for

j = r + 1; r + 2; : : : ; n could be found in (52). Hence it is possible to see that
�
A
(n)
0

��1
A
(n)
1 (60) is

idempotent. Hence, we will also have here:

Y (n)� =
�
A
(n)
0

��1
A
(n)
1 Y

(n)
0 +

�
A
(n)
0

��1
U (n)� +

�
A
(n)
0

��1
A
(n)
1

�
A
(n)
0

��1 ��1X

j=1

U
(n)
��j :

With
�
A
(n)
0

��1
A
(n)
1 de�ned as (60) and with

�
A
(n)
0

��1
A
(n)
1

�
A
(n)
0

��1
with the following expression:

�
A
(n)
0

��1
A
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1

�
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0
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=
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�
"

I(r�S) D
1 (� 
 IS)

�
D
2
��1 �

A
2
0

��1

0([n�r]�S)�(r�S)
�
A
2
0

��1

#

=

"
0(r�S)�(r�S) D

1 (� 
 IS)
�
D
2
��1 �

A
2
0

��1
A
2
1

�
A
2
0

��1

0([n�r]�S)�(r�S)
�
A
2
0

��1
A
2
1

�
A
2
0

��1

#

:

In the case of the sub-matrix
�
A
2
0

��1
A
2
1

�
A
2
0

��1
that is present in the two non-zero blocks of (61), it is

possible to see ,following the lines of Lemma 2 (see (53)), that we have:
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ar+1b
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For j = r + 1; r + 2; : : : ; n:

Finally in the case of D1 (� 
 IS)
�
D
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, �rst note that for
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it is possible to write:
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diag (ar+1)
�1

0S�S � � � 0S�S
0S�S diag (ar+2)

�1 � � � 0S�S
...

...
. . .

...

0S�S 0S�S � � � diag (an)
�1

3

777
5

2

666
4

ar+1b
0
r+1 0S�S � � � 0S�S

0S�S ar+2b
0
r+2 � � � 0S�S

...
...

. . .
...

0S�S 0S�S � � � anb
0
n

3

777
5

=

2

666
4

1Sb
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where 1S is a S � 1 vector of ones. And hence for D1 (� 
 IS)
�
D
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, we could write:
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:

To complete the proof of Lemma 3 we only need to proceed as in Lemma 2 from (54) onwards.�
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