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Abstract

Cointegration between periodically integrated (PI) processes has been analyzed by many, including
Bladen-Hovell, Chui, Osborn, and Smith (1989), Boswijk and Franses (1995), Franses and Paap (2004),
Kleibergen and Franses (1999) and del Barrio Castro and Osborn (2008), to name a few. However,
there is currently no published method that allows us to determine the cointegration rank between PI
processes. The present paper fills this gap in the literature with a method for determining the cointegra-
tion rank between a set of PI processes based on the idea of pseudo-demodulation, as proposed in the
context of seasonal cointegration by del Barrio Castro, Cubadda, and Osborn (2020). Once a pseudo-
demodulated time series is obtained, the Johansen (1995) procedure can be applied to determine the
cointegration rank. A Monte Carlo experiment shows that the proposed approach works satisfactorily
for small samples.

Keywords: Reduced Rank Regression,Periodic Cointegration, Periodically Integrated Processes.

JEL codes: C32.

1 Introduction

There are two main ways of modeling non-stationary integration in seasonal time series: with seasonal
integration and with periodic integration (see Ghysels and Osborn (2001) for details about the main char-
acteristics and differences between seasonal and periodic integration). The latter may be seen as more
attractive, as its non-stationary behavior is ruled by a common stochastic trend shared between the seasons
present in the time series. Contrarily, in the case of seasonal integration, each of the time series’ seasons
has its own stochastic trend (see Osborn (1993) and Ghysels and Osborn (2001) for details). Furthermore,
periodic integration serves as a suitable data-generating process for seasonal time series when the preferences
of economic agents vary along with the seasons of the year (see Hansen and Sargent (1993), Gersovitz and
McKinnon (1978), and Osborn (1988)).

In terms of long-run relationships (cointegration) that can be established between seasonal non-stationary
processes, we can also find seasonal and periodic cointegration. For seasonally integrated (ST) processes
it is possible to define both, but in the case of periodically integrated (PI) processes, only full periodic
cointegration can be established (see del Barrio Castro and Osborn (2008a) and Ghysels and Osborn (2001)
for details). As for seasonal cointegration, methods for both single-equation and reduced-rank regressions
have been proposed to test for the presence of cointegration and to determine the cointegration rank (see for
example Hylleberg, Engle, Granger, and Yoo (1990); Engle, Granger, Hylleberg, and Lee (1993); Johansen
and Schaumburg (1998); Cubbada (2000); and Ahn and Reinsel (1994)). Periodic cointegration was proposed
by Birchenhall, Bladen-Hovell, Chui, Osborn, and Smith (1989). A single-equation method to test for the
presence of periodic cointegration was proposed by Boswijk and Franses (1995). They claim that their
method can be applied to both SI and PI processes, but del Barrio Castro and Osborn (2008a) have shown
that the asymptotic distribution of the error-correction test for periodic cointegration that they derived
does not apply to PI processes. Del Barrio Castro and Osborn (2008) have also proposed a residual-based
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cointegration test for periodic cointegration between PI processes. But to the best of our knowledge, only
the working paper by Kleibergen and Franses (1999) has tried to come up with a method for determining
the cointegration rank between sets of PI processes, (see also Franses and Paap (2004) for details). The
method proposed by Kleibergen and Franses (1999) relies on periodic vector autoregressive (VAR) models and
implies the use of GMM and reduced-rank regression techniques. Finally, a full dynamic systems approach,
in which equations are estimated jointly for observations relating to each season, can theoretically be applied
(Ghysels and Osborn (2001) pp 171-176)—as was done in the application of Haldrup, Hylleberg, Pons, and
Sansé (2007)-but the VAR becomes over-parameterized. Hence, this approach is feasible in practice, but
only when data of a relatively high frequency is available.

In this paper, we propose a simple method for determining the cointegration rank between PI processes,
one inspired by the demodulation method suggested by del Barrio Castro, cubadda and Osborn (2022) that
merely requires the use of the procedure proposed by Johansen (1995) once the PI processes or time series
are "filtered" or "demodulated."

The paper is organized as follows, in the next section, we describe and summarize the main characteristics
of PI processes and the consequences of cointegration between them. After that, we present our reduced-
rank approach for determining the cointegration rank between PI processes, followed by a Monte Carlo
section where we show that our approach works well on small samples. Finally, the last section concludes.

It is useful to introduce some notation at this stage. Our analysis is concerned with seasonal processes
that have S observations per year; for example, S = 4 for quarterly seasonal data. In the paper, the vector
of seasons representation indicating a specific observation within the year is used, as is double subscript
notation. It is important to appreciate that, in this vector notation, z,. indicates the s** observation within
the 7" year. For example, with quarterly data, z,, is the s’ quarter of year 7 in the available sample.
Assuming that ¢t = 1 represents the first period within a cycle, the identity t = S(7 — 1) + s provides a link
between the usual time index and the vector notation.

2 Periodic Integration and Cointegration between Periodically In-
tegrated Processes

First, we will focus on the main characteristics of PI processes. One of these characteristics is going to
be critical to the approach suggested in this paper, as it will allow us to determine the cointegration rank
between PI processes. Secondly, we will consider possible cointegration between PI processes.

2.1 Periodic Integration

A periodic autoregressive (PAR) process of order p is a generalization of an autoregressive process in which
the parameters are allowed to vary with the season of the year, hence we have:

Ysr = (blsysfl,r + ¢25y572,r +--+ ¢psysfp,7' + €sr (1)
s=1,2,---,8 r=1,2,---,N

where e, is the innovation of the process and we assume that €4, ~ iid (07 Ug). In order to understand the
concept of periodic integration, let us focus on the PAR process of order one:

Ysr = ¢sys—1,7— + Usr- (2)

In (2) we assume that ug, is a stationary innovation, this assumption will help us later on to connect (2) with
s

(1).! The condition of periodic integration in (2) is H@ =1, and it implies that between the seasons of the

s=1
time series we have S — 1 cointegration relationships, or equivalently, that the seasons of the process share a

UIf we write (1) as:
(1 — 1L — ¢2$L2 — = ¢P5Lp) YsT = EsT
and factorize the polynomial (1 — p1sL — o L% — - — ¢pst) as
(1= ¢15L = d2sL® — -+ = §paLP) = (1= ¢sL) (1 = ¢prsL — - —h 4 (LP7Y)

then (1) is connected to (2) as usr in (2) is defined as follows:

(1 - wlsL — wpfl,st_l) Usr = EgT1-



common stochastic trend. This situation is clearly shown in the so-called vector of seasons representation of
a PAR process, where the S seasons of the time series are stacked in an S x 1 vector Y = [y1+, Yar, - . - 7y57]/
and

AyY, =AY, 1+ U; (3)

/ . . .
where, U, = [u17, Uar, ..., usr| , Ao, and Aj are S x S matrices with generic elements

1 h=j4,7=1,..,8
Ao(h,j) = —on h=j5+1,7j=1,..,5-1 (4)
0 otherwise
A N = d)l h= 1; ] =9
Hhd) =) 0 otherwise

in which the subscript (h, ) indicates the (h, j)!" element of the respective matrix. In the following lemma
we summarize the stochastic behavior of Y in (3).

Lemma 1 ForY; = [yir,Y2r, Ysr: - - -, Ys+| withyey s =1,2,---, S defined in (2-3) and with (1 — 1 L — - -
—wp,lﬁst_l) Ugr = Egr and g7 ~ 1id (07 02), then

T—1

Y, = A ALY + AU, +ab’ ) Us (5)
j=1
%YL}” = oASTAL AT (1) W () = cab/W (1)L W (1) (6)

= waw (r)

where a and b are defined in (46) in the appendiz, W (r) is an S x 1 multivariate Brownian vector, w (1)
is a scalar Brownian motion, and the scalar w is defined by (48) in the appendiz. The definition of matric
U (1) can also be found in the appendiz.

The fact that the stochastic behavior of the vector Y- is ruled by the scalar Brownian motion w (r), clearly
shows that there is a common stochastic trend shared by the seasons of the process y,, that is gathered
in vector Y; and identified by the scalar Brownian motion w(r) in (6). Or equivalently, we have S — 1
cointegration relationships between the seasons of (3). If we rewrite (3) as:

Y, = ATAY, o+ AU
Y, — Y1 = [AgtAL — 1| Yooy + AU, (7)
matrix [AalAl — I] has rank S — 1. Clearly [AglAl — I] = «af’, where both o and 8 have dimension

S x (S — 1) and one possible choice for the columns of 3 are the last S — 1 rows of Ay.? Finally, it is clear
that we have cointegration between the seasons of Y;. If we left-multiply expression (5) by 8’ we obtain:

T—1
BY, =B A ALYy + BAGTU, + Bab’ Y Us ;.

Jj=1

2Note that we have S — 1 cointegration relationships between the seasons of (2) in the form ysr — ¢sys—1,r, which are clearly
identified with the last S — 1 rows of matrix Ag, that is:

— o 1 o --- 0 0

/ 0 —¢3 1 -+ 0 0
B = . .

0 0 0 - —¢g 1

Note also, that equivalently, we can use its normalized version

1 0 0 0 —¢1
01 0 -+ 0 —¢1¢2
/8*/ — . . .
S—1
0 0 0 1 —]]#

i=1



With the definition of a in (46) and 3’ defined as the last S — 1 rows of Ay (or as in footnote 2), it is evident
that ’a = 0. We clearly show that 5'Y; ~ I (0) and that we have S — 1 cointegration relationships between
the S seasons of ys, (or Y;).

If we compare Lemma 1 expression (A2) in del Barrio Castro, Cubadda, and Osborn (2022) (BCCO
hereafter) with Lemma 1 expression (6) in this paper, it is clear that the role played in our Lemma 1 by the
S x 1 vectors a and b is equivalent to the role played by the S x 1 vectors v} and vj+ in BCCO. Note that,
in BCCO, v; collects the sequence of the S possible values of the complex demodulator operator e twE =
e [S(r=D+sliwr which is clearly a periodic function, as wy = 27k/S with & = 1, 2, ...,(S —1) /2. The
complex demodulator operator appears after recursive substitution in the complex-valued process integrated

at frequency wg, ., = e’i‘*’kx;LT + €47, which yields:

:E;T = eiiwkms_fl,f + Esr (8)
[S(r—1)+s]
mS—T — e—[S(T—1)+S]iwk xa + Z e—[S(T—l)—&-s—j]iwkEj
j=1

Hence, in (8) there are two parts: a complex-valued random walk integrated at the zero frequency [.’Ea +

ZBSZ(IT_DH] e*[S(T*U*S*ﬂi“’ksj], and the demodulator operator e~!¥(7=1+sliws that shifts the previous

complex-valued random walk from the zero frequency to frequency wyg. Thus, multiplying each observa-
tion of z, by the complex conjugate of the demodulator operator e [S(r=1)+s]iw (that is, e[S(T’le]iwk) we
obtain a complex value integrated at the zero frequency.

In this paper, there is an equivalent situation where in (6) the zero-frequency stochastic trend is as-
sociated with the scalar Brownian motion w (r), and the S x 1 vector a plays a role similar to the de-
modulator operator. But in the case of a PI process the periodic sequence of values collected in vector a
causes spectral power at the zero frequency and at the seasonal frequencies. Figure 1 illustrates this situ-
ation, where part (a) shows the average periodogram based on 10,000 replications of simulated PI process
(2), in which ysr = @sYs—1,r + Usr, Wwhere S = 4, ¢1 = 0.8, ¢2 = 1, ¢3 = 0.5, ¢4 = 1/ (d1¢2¢3) , and
usr ~ Niid (0,1). In panel (b) of Figure 1 we present the average periodogram of ajly,,, where a; is
the element with s*" position in vector a. Clearly, part (a) shows spectral power at the zero, 7/2, and
7 frequencies. Hence, ys, in (2) has zero frequency and seasonal behavior while the pseudo-demodulated
process a; 'ys, has only zero-frequency spectral power, as seen in panel (b). This situation is explained
by the misspecified constant parameter representation of the PI process (see Osborn (1991), Ghysels and
Osborn (2001), and del Barrio Castro and Osborn (2008b)). As pointed out by del Barrio Castro and
Osborn (2008b) "This representation provides the conventional non-periodic ARMA process that has au-
tocovariance properties identical to those that result from analyzing a periodic process as a conventional
non-periodic one." The misspecified constant-parameter representation of ys; = ¢sys—1,+ + usr, with S =4
and ¢1pad3ds = 1, IS Ysr — Ysr—1 = (1 +601L+ 0,12 + 93L3) Nsr (see section 2.2 in del Barrio Castro and
Osborn (2008b) for details on how to obtain 6, 62, 03, and 0727 for a given combination of values for ¢1, ¢,
b3, 04 = 1/ (p102¢3) and o2). Following section 2.2 in del Barrio Castro and Osborn (2008b) it is possible
to see that the invertible constant-parameter representation associated with ys; = ¢sys—1,+ + usr, Where
¢1 = 0.8; g2 = 1; ¢3 = 0.5; ¢s = 1/ (¢162¢3); and 07 = 1,18 ysr — Ysr—1 = (1 + 61 L + 2L + 03L%) 7,
with 67 = 0.849685535, 6, = 0.597593261, 03 = 0.413269551, and 0727 = 2.812934028. The moving average
polynomial of order 3 (1 + 0.849685535L + 0.597593261L* + 0.413269551L3) can be factorized as follows:
(1 + 0.849685535L + 0.597593261L2 + 0.413269551L3) = (1+0.77034475L) (1 + [0.039670391 + 0.731368421] L)
(1 +[0.039670391 — 0.73136842¢] L). On the other hand, the seasonal difference operator (1 — L*) can be
factorized as (1 — L*) = (1 — L) (1 + L) (1 — L) (1 +iL). The spectral power in Figure 1 part (a) at the zero
frequency is higher than at frequencies 7/2 and 7. Clearly, in the MA(3) process with constant-parameter
representation we do not have a factor associated with the zero frequency, and the spectral power at the
Nyquist frequency in Figure 1 part (a) is lowered by the factor (1 + 0.77034475L). In the case of frequency
/2 it is lowered by the complex conjugate factors (1 + [0.039670391 F 0.731368424] L). Finally, note that
expression (5) is very similar to (8). In particular, for a specific season s of vector Y, say ys,, we have:

s—

H ¢i Us—j,15 (9)

1
j=1 \i=s—j+1

S T—1
Ysr = As ¢51ys,0 + Zb] Z Uj,r—1 + Usr +
j=1  i=1

where the common stochastic trend shared by the seasons is ygg) = {d’lys,o + Zle b; ZZ;I Ujr—1|. In

this paper we propose the use of a;lys, to extract the zero-frequency stochastic trend ygg). Hence, we use



the previous pseudo-demodulation of PI processes to extract the common zero-frequency trend of each PI
process, include these pseudo-demodulated times series in the standard Johansen (1996) procedure, and test
for the cointegration rank between the pseudo-demodulated time series obtained from the PI processes. In
the following section the possibilities of cointegration between PI processes are explored.

2.2 Cointegration between P processes

Periodic cointegration was introduced by Birchenhall, Bladen-Hovell, Chui, Osborn, and Smith (1989), and
it implies that long-run relationships are considered season by season. Hence, we have different cointegration
vectors for each season. Periodic cointegration can be established for both seasonally integrated processes and
periodically integrated processes. Boswijk and Franses (1995) distinguished between full and partial periodic
cointegration. The latter applies when stationary linear combinations between seasonal non-stationary time
series can be established for only some seasons s = 1,2,...,5. And full periodic integration implies that
stationary linear combinations exit for all the seasons. Finally, full non-periodic cointegration implies that
the same cointegration vectors are shared by all seasons.

Ghysels and Osborn (2001) and del Barrio Castro and Osborn (2008a) analyze cointegration between PT
processes and show that the only possibilities are full periodic cointegration or full non-periodic cointegration.

In this paper, we follow the definition of periodic cointegration proposed by del Barrio Castro and Osborn
(2008a) (see definition 1 in section 2.2), but we introduce an equivalent way of defining cointegration between
P1I processes that is more closely connected with the usual definition of cointegration at the zero frequency.

First, we focus on the bivariate case, followed by an extension to the multivariate, and finally, we discuss
the system with three PI processes that we used in the Monte Carlo section, considering no cointegration,
one single common stochastic trend, and two common stochastic trends between the seasons of the three
processes.

2.3 The bivariate case

In Ghysels and Osborn (2001), the following example is used to show that the only possibility of cointegration
between two PI processes is fully periodic (Ghysels and Osborn (2001) page 169). Let us assume that we

have two PI processes Ysr = ¢¥ys—1,- + €4, and v4r = ¢Tx5_1 + + €%, with stationary innovations €, and
s

e?_ and that the PI condition Hcﬁ{, =1 for j = y and x holds. If we assume that there is cointegration

ST
s=1

between ys; and x,, in the last season, say S, the linear combination ys, — fxg, should be stationary.
Hence, by recursive substitution of ys, and zs, in ys, — Bxs,, we find that:

Ysr — ﬁ:r'ST
o3 e B,
Ys—1ir — /Bigxsfl'r + % - 7y‘r
¢S ¢S d)S
Ys—2 _B%xs 9r + 5%7’ _ Beg—lﬂ' 8%717— _ /B(ZSE’&%_LT
—4T —&T
T T S T
xr 4T xr
YS—3r — ﬁst_gT + Stationary terms (10)
SYS—-1¥YS5-2
S—2
15,
0 '
Yir — 5';7273617 + Stationary terms.
[1%-,
§=0

From (10), we see that in order to have full non-periodic cointegration between ys, and z,,, it must hold
that o = of]{ for 5 =1,2,...,5. In Lemma 1 in del Barrio Castro and Osborn (2008a) the result from
(10) is extended to the general case of more than two variables, say n variables or n PI processes. They
show that between a set of n PI processes the only possibilities are fully periodic cointegration and fully
non-periodic cointegration. The intuition behind this result is that, as shown in Lemma 1 of the previous
subsection, the S seasons of a PI process are driven by the same common stochastic trend. Hence, if we have



cointegration between one of the seasons of a PI process, recursive substitution implies that cointegration

will hold for the rest of the seasons, with a cointegration vector that will change for each season unless all
s

the PI processes have the same coeflicients associated with the PI condition H(b’; = 1, that is, ¢¥ = ¢, for

s=1
k=1,2,...,nand s =1,2,...,5. And precisely in this latter case, when all the PI processes share the same
coefficients ¢* = ¢4 with the PI condition, we have full non-periodic cointegration. Finally, note that in (10),

moving to the relationship between ys r_1 and xg._1, by recursion in the last expression of (10), we have
-1

Ys,r—1—5 H ¢§7j H qb‘f.’;ij g, r—1+Stationary terms = yg .—1—Prsr—1+Stationary terms,

and hence, the periodic sequence of values in the cointegration vector is completed.

The approach used in Ghysels and Osborn (2001), and in (10) above, is a little bit different from the
usual approach to cointegration at the zero frequency. Following the lines of BCCO, here, we provide a
different but equivalent approach to showing the possibility of cointegration between PI processes, one that
is more related to the usual approach to zero-frequency cointegration.

First note, based on equations (5) and (6) from Lemma 1 and equation (9), that for a PI process

s

Tor = PETs_1,r + €5, With H¢§ = 1, it is possible to write x,, = a“ng + Stationary terms, where a¥

s=1
is the element with the s position in the S x 1 vector a® defined in (46) but with ¢, replaced by ¢* for
s=1,2,...,5. From this, we can define the zero-frequency cointegration relationship:
y = 52l + el (11)
xgg—) = (a§)71 Lst

— T xT
Tsr = ¢sxs—l,7 + Esr

System (11) is the usual cointegration system between two processes integrated at the zero frequency y( )

and 22, with cointegration vector [1,—B*]. Note that if we replace 2 Quwith (a%) " x4y in ygg) ﬂ*xi@ +e¥.

(11) and multiply it by a¥, the following system is obtained:

—1
r=alf" (ay)  wsr +alel; (12)
Tsr = ¢x$5 1,7 + EJSUT

ysr = aly).

Hence, we move to a cointegrated system between two PI processes ys- and zs-. The coefficients associated
with the periodic integration condition in the case of x4, are gathered in a® = [ 5, 0503, .. H ¢I]

and a? is the s*"

element of the S x 1 vector a®. In the case of ys, the coefficients are gathered in
a¥ = [ 0504, .. H qﬁy} , and a¥ is the s element of the S x 1 vector a¥. Clearly, in (12), the

cointegration vector is periodic, as in (10). In the case of (10), it is possible to see that the periodic coefficients



of the cointegration vector [1, —3;] evolve as follows:
PYP55 - - 9%
PTP30% - - b
oo
PIOTP5 - P54

R 7 S

sPs-1 PIP5P5 - g o
595 1952 PLP50% -+ DLy

Bs=p=p

¢

ﬂS—l = qug

Pos =0 e ot D oreses o s
(13)
N T
b=l e, e
. R
L Sy

S )
where we use the fact that H‘_lqﬂ = 1for j =y and j = z. And in the case of (12), the periodic coefficients

of the cointegration vector [1, — (%] evolve as follows:

P305 - - &%
T T
5571 5 ag 1 (asfl) ﬁ ¢§¢§ g_l
T Mt
Bs_o =Pag (3572) B PEPE - L,
* * T - *¢y¢y y—
Bs_s = Ba% 4 (a%_y) ' =0 WE_;
(14)
Yy
G5 =Bray(as) " = 5"
2

By = pray(a) " =B,
Hence, it is clear that 8* = 3¢Y/¢%, and that (10)&(13) and (12)&(14) are two alternative and equivalent
ways of representing full periodic cointegration between two PI processes.

2.4 The multivariate case

Let us consider the n.x 1 vector process Ys(Tn) = [ yloowioo oy }’ = [ Y;lrl YSQ; }/ in which Y.L isrx1,
thatis, Vi = [ wi, 92 ... i, ]/, and Y2 is (n —r) x 1, that is, Y2 = [ yift y0if2 ...y ]/. Our
objective is to define a triangular system for n PI processes with r cointegration relationships, or equivalently,
n —r common stochastic trends between the n PI processes. The elements of Y2 can be identified with the
n — r common stochastic trends of the triangular system. Hence, the elements of Y2 are such that:

s
Yk = d)’jyf_lﬁ +uk quﬁf =1, s=12,....,5 k=r+1Lr+2...,n, (15)
s=1
where each ug’i) is a stationary periodic autoregressive process:
(1 - qullesL - ws—l,stil) uf‘r = 5?7" (16)

We start by defining the zero-frequency triangular system as follows:
Y0 = BYA0 1 U0
Y20 — (a2)7'v2 (17)



1(0) . . . 1(0) . . .
where Y;T( ) is an 7 x 1 vector, 8 is an r X (n — r) matrix, and UST( ) is an r x 1 vector of innovations

where each innovation follows a stationary PAR(p-1) process like in (16). Clearly, the cointegration vector
in (17) is [I, — B]. Finally, A% is an (n —r) x (n — r) diagonal matrix such that:

A =diag | alt' alt? alt? ... a’ ], (18)
where a¥ for k =r+1,7+2,...,n, are the s'" elements of the S x 1 vectors a¥, for k =7 +1,r+2,...,n,

S /
associated with process (15), that is, a¥ = 1,¢’§,¢§¢’§,...,H 2¢’§ fork=r+1,r+2,...,n. Note
S=

that (17) is the multivariate equivalent to (11) in the bivariate context. Finally, the triangular system for
PI processes with n variables, r periodic cointegration relationships, or n — r common stochastic trends

between the seasons of the n PI processes, can be obtained by replacing Y;QT(O) = (Ag)f1 Y2 with YslT(O) =
BYSQT(O) + UslT(o) and left-multiplying YSlT(O) = BYSZT(O) + UslT(O) by Ai, an r X r diagonal matrix, such that:

Al =diag| a} a2 a? ... aJ ], (19)

S S

th

where al, for j + 1, 2,...,7, are the s elements of the S x 1 vectors a’, for j = 1, 2,...,r, defined as

) o s 1 s
al = {1, 2, PhPl, .. .,Hs_zqﬁg] , such that HS:1¢‘]9 =1forj=1,2,...,r, in order to have PI processes:

YL = Alg(A2) Y2 4 ALULY

V2O = (A2) 7'y (20)
v = A

Definition 1 in del Barrio Castro and Osborn (2008a) establishes periodic cointegration for an n x 1 vector,

V™| of PI processes if there exist n x r matrices, (s, of rank 7 such that the linear combinations ﬁ;)@(f)
are (periodically) stationary for each season s = 1,2,...,5. In our case, we use the usual normalization

for triangular systems (see Liitkepohl (2006)). Hence, we have . = { I, —Alp (Ag)_l } Boswijk and

Franses (1995) define partial periodic cointegration when stationary linear combinations, B;Ys(Tm), exist in
only some seasons, and full periodic cointegration when the linear combinations exist for all of the seasons.
Full non-periodic cointegration is a particular case of full periodic cointegration in which the same n x r
matrix, 3, allows us to obtain stationary linear combinations for all of the seasons. Clearly, in order to have
full non-periodic cointegration, we need all of the PI processes in the triangular system to have the same
coefficients associated with the PI condition, that is, Hil(bz = Hilqﬁs =1lforj=1,2,...,n.

As can be seen in subsection 2.1, the vector of seasons representation is a very convenient tool for repre-
senting PI processes. This representation allows us to clearly appreciate that the non-stationary stochastic
behavior of the seasons of a PI process is ruled by a common stochastic trend. In the case of more than one
variable we can also use the vector of seasons representation to explore the links between the non-stationary
stochastic behavior of the seasons of PI processes in the presence of full periodic cointegration and/or with
no cointegration between the processes. In order to focus on the main issues, in the next section we focus
on the particular case of three PI processes, that is n = 3.2 Between three PI processes we can have the
following situations: (a) no cointegration, each PI process, has its own stochastic trend; (b) one common
stochastic trend shared by the three PI processes; or (¢) two common stochastic trends shared by the three
P1I processes.

2.5 The case of three P[] processes

Let us focus on vector Ys(f) = [ ylooyi oyl ]I with the elements y* | for k = 1,2, and 3, being periodically
integrated. In order to understand possible cointegration in this 3-variate PI system, we use the following 3-
variate vector of seasons YT(?’) = [ YlrsYnrs oo Ybr YbrsUsrs oo Yo Y Usree Y2, }/. For the scenarios
with (a) no cointegration, (b) one common stochastic trend shared by the 3 PI processes, and (c) two

3Note also that in our Monte Carlo section we focus on the case of three PI processes.



common stochastic trends shared by the 3 PI processes, we have the following VAR(1):

APY® = APYS) L u®

YT(S) = [ y%‘ﬂy%‘r""

3) __ 1 1
U = [l

1
yYsr

1
- Usy

(21)
2 2 2 3 .3 3 !
YieY2r--5Ysr YirsY2rr-- -5 Yss ]
2 2 2 3 3 3 /
UTyy Uy o v s Wy ULy, Unrs oo, UGy }

(22)

The matrices Aés) and A§3) are square matrices of dimension (35) x (3S5) and will take different forms in

the three scenarios.

2.5.1 No cointegration

In scenario (a), with no cointegration between the three PI processes, the (35) x (35) matrices A(()g) and
AgS) in (21) will be block diagonal matrices:
A = diag [AL, AZ, AY] (23)
A = diag [AT, A2, A3],
with the following S x S submatrices:
r1 0 0 0 0 7
¢, 1 0 0 0
; 0 —-¢3 1 0 0 ‘
L 0o 0 0 ¢k 1]
[0 0 0 0 ¢ ]
0 0 O 0 O
i 0 0O 0 0 .
Ai=10 0 0 0 0 7=1,2,3. (25)
L0 0 0 0 0 |
The stochastic behavior of the system is summarized in the following lemma.
, / . . .
Lemma 2 For V¥ = [Y}’,YTQ ,YE} defined in (21-23-24-25); with (1 I L~ —wg_lyst—l) Wl =
gl_, for j = 1,2, and 3; and Egi) = [ el g2 & ]/ is a white noise vector with the positive definite

T’

ST

ST

ST

vartance-covariance matriz E {Egi)Egi)/} =3, then

1 -1 -1 _
\FY@J = (Ag3>) AP (Ag?’)) 7@ (1) P oI W® (1) (26)

[ a;b] Osxs Osxs

= | Ogxs asby Ogxs | U@ ) ' PRI )W (1)
| Osxs Osxs azbj
[ wiajw; (r) Osxs Osxs

= Osxs waagwsy (1) Osxs

Osxs Osxs wzazws (1) ,




where a; and bj, for j = 1,2, and 3, are defined in (51), W®) (r) is a (3S) x 1 multivariate Brownian
Vector, and wj (), for j = 1,2, and 3, are scalar Brownian motions defined in the appendiz. Finally, the
definition of matriz ¥®) (1) and the scalar terms w;, for j = 1,2, and 3, can also be found in the appendiz,
and P is a 3 x 3 matriz such that ¥ = PP’.

Lemma 2 above is a particular case of Lemma 3 in del Barrio Castro and Osborn (2008a) in the sense
that here, we only have three PI processes. On the other hand, however, Lemma 2 is defined for a general
number of seasons and the results in del Barrio Castro and Osborn (2008a) are for quarterly data. We clearly
show, in Lemma 2, that between the S seasons of each PI process we have S — 1 cointegration relationships.
The common stochastic trend shared by the seasons of each PI process is identified with the three scalar
Brownian motions w; (1), ws (r), and w3 (7).

Finally, note that in (26) we observe that the use of the pseudo-demodulated time series (ag)fl yl_, for
j=1,2 and 3, will clearly extract, for each PI process, the common stochastic trend shared by the seasons
the processes.

2.5.2 One common stochastic trend shared between the three PI processes

In the case of cointegration between PI processes we know from Lemma 1 in del Barrio Castro and Osborn
(2008a) that we should have full periodic cointegration or full non-periodic cointegration, the latter being
restricted to the case in which all the PI processes share the value for the coeflicients associated with the
periodic integration restriction. In the three-PI system, a common stochastic trend implies the existence of
two periodic cointegration relationships. Let us consider the following situation:*

1 _ 3 1
Ysr = OsYsr + Ugr

sz = 55y§‘r + uiT (27)
ygr = ¢§y§71,7 + ug‘r
s=1,2,...,8

with o and 5 such that:

S—1 S—1
3 3
[Te% [To
o 1=0

as=o=at Bs =B =pBe-r
[Te%- II¢%-
1=0 =0
3 3
ag_1 = azg Bs—1 = 52‘22 (28)
noy — o235 By = 325%51
B POk, T2,
s — L% 0%, Be o f §0% 105,

~ YLl oL, 6262162,

S—2 S—2

1143 1145
S5 A —
[Ie5 [1#%.
1=0 1=0

The system (27)-(28) allows for a vector of seasons representation like in (21), but with the following definition
of the (35) x (35) matrices AE)?’) and A(lg):

] =«

4Troughout the paper, we use the normalization seen in Liitkepohl (2005) pp 250.
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Is Osxs A(()yl) |
AéB) =1 Ogxs Is A(()‘W) (29)
Osxs Osxs Aéys) i
Osxs 0Osxs Osxs
Af) = | Osxs Osxs Osxs
| Osxs Osxs A |

with the S x S submatrices Agy?’) and A§y3), defined as in (24) and (25), that is:

1 0 0 0 - 0] [0 0 0 -~ 0 ¢ ]
—¢3 1 0 0 - 0 000 -~ 0 0

o) 0 —¢3 1 0 0 o) 00 0 0 0

AgV =1 0 0 —¢ 1 0 A7 =100 0 0 0 (30)
L0 0 0 - —¢} 1| (000 - 0 0 |

But the two the S x S submatrices A(()yl) and Ang) are diagonal matrices with the following form:

Aéyl) = diag [—a1, —ag, —as, ..., —ag]
r S—2 S—3 S—4
I | . |
= diag —04;:_02 , —a;:_% , —oz;:_[jl e, —O (31)
| [ . |
L =0 i=0 i=0
AW = diag [~Br, — B2, —Bs, ..., —Bs]
r S—2 S—-3 S—4
| | . |
= diag | —fe5—— B BB
| - | - |
L i=0 =0 =0

As in the previous subsection, the following lemma summarizes the stochastic behavior of the vector of
seasons.

, / . . .
Lemma 3 Forfwhen Y®) = [Y;', V. ,Yf} defined in (21-29-30-31); with (1 —pf L —z/zg,,l’st*l) wl

gl_, for j = 1,2, and 3; and EY = [ el &2 & ]/ is a white noise vector with the positive definite

variance-covariance matriz E {Egi) ES—’)/] =3, then

1 —1
=Yy = (A5) AP (AF) w0 )T PeIwe () (32)
[ 0sxs Osxs a(aibb) ) ) .
= | Osxs Osxs [ (azbh) v )T P oL W (r)
| Osxs Osxs  asbj
[ Osxs Osxs awsajws(r)
= | Osxs Osxs Pwsagws(r) |,
| Osxs Osxs wsazws(r)

where aj, for j = 1,2, and 3, and by are defined in (61), W) (r) is a (3S) x 1 multivariate Brownian
Vector, and w3 (r) is a scalar Brownian motion defined in the appendiz. Finally, the definition of matrix
U (1) can also be found in the appendiz, and P is a 3 X 3 matriz as in the previous lemma.

Lemma 3 clearly shows that the common stochastic trend shared by the seasons of the three PI processes
is identified with the scalar Brownian Motion w3 (r). Hence, we have cointegration within the seasons of

11



each PI process and also between the seasons of all the PI processes in (27). The pseudo-demodulated time
series (ag)f1 yl_, for j = 1,2, and 3, in the context of Lemma 3 allows us to extract, for each PI process,

the common stochastic trend shared by all the seasons of the three PI processes identified with the scalar
Brownian Motion ws (T).

2.5.3 Two common stochastic trends shared between the three PI processes

In the system of three PI processes, two common stochastic trends imply the existence of one periodic
cointegration relationship. Let us consider the following situation:

y;‘l’ = /Bl,sygT + B275y§7 + ’LL;T

y?‘r = (bgyg—l;r —+ uzr (33)
y?‘r = ¢§y§7177 + ug'r
s=1,2,...,85,

with 81 s and B2 s such that:

S—1 51
[T¢% IT¢%

Bis=p1 =P Pas=Pr=Pri
[Tes- ITos-
i=0 i=0
2 3
Bi,5-1 = 122 B2,5-1 = ﬁziz (34)
L %05 A T
Bi,5—2 = B1 SLoL_ B2,5—2 = B2 oLoL_,

3 43 3
S¢S—1¢S—2

P5Ps-195-2

3505165

Bi,5-3 = B1 oLol oL,

B2,5—2 = B2

5-2 S—2
2 3
[Te5 [Te%
s s
51,1 = 51;_27 52,1 = /82;_27

15 15
i=0 i=0

The system (33)-(34) allows for a vector of seasons representation like in (21), with matrices A(()S) and Agg)
as follows:

Is Aéylyz) Aéy1y3)
3
A(() )= Osxs A(()yZ) Osxs (35)
| Osxs  Osxs Al
[ 0sxs Osxs Osxs
A(13) = | Osxs A§y2) Osxs |,
| Osxs Osxs AP

and the S x S submatrices A(()y3) and Ag‘%) defined as in (30) and Aéy2) and Ang) defined equivalently, that
is:

(o1 0 0 0 0] [0 0 0 0 ¢? ]
—¢2 1 0 0 0 000 0 0

(e) 0 —¢2 1 0 0 o) 000 0 0

A7 =1 o 0 —¢2 1 0 A =100 0 0 0 (36)
0 0 0 —¢% 1 | [0 0 0 0 0 |

12



Finally, the S x S sub-matrices A((Jy””) and Aéyl'%) are diagonal matrices defined as follows:

AP = diag[—Br1, — iz, — s, - -

7_ﬁ15]

S 5-3 5—4 .
| I ) SR |
=diag | ~prg g Brog— Preg—r b (37)
Ilesi  IIes  IIeb
L i=0 i=0 i=0 .
A(()ylys) = diag [*521, —Ba2, —f23, - -, *ﬂzs]
SR 5-3 5—4 .
| ] o |
= diag | ~Bris——, Bt P =B
ITet.  Iles:  IIes-
o =0 =0 =0 -

As in the previous subsection the following lemma summarizes the stochastic behavior of the vector of
seasons.

, , / . . .
Lemma 4 For Y% = [YJQYE ,Yf’} defined in (21-35-36-37); with (1 —pl L —qp;,l’st—l) wl, =
gl_, for j = 1,2, and 3; and E® = [ el &2 & ]/ is a white noise vector with the positive definite

variance-covariance matrix E {ES) Eg)/} =3, then

1 —1 s —1 -
ﬁYL(Z?”)rJ = (A7) AP (AF) w0 ) P eI W (1) (38)
[ O0sxs Bi1(aibh) B2 (arbh)
= | Osxs  agb) Osxs v )P oI WO (r)
| Osxs  Osxs azby
[ Osxs Biwsajws (1) Powsajws (r)
= | Osxs a@swows (r) Osxs )
| Osxs Osxs waazws (1)

where a;, for j = 1,2, and 3, by, and by are defined in (68), W (r) is a (3S) x 1 multivariate Brownian
Vector, and ws (r) and ws (r) are scalar Brownian motions defined in the appendiz. Finally, the definition
of matriz U®) (1) can also be found in the appendiz, and P is a 3 X 3 matrix as in the two previous lemmas.

The system of three PI processes in Lemma 4 is driven by two common stochastic trends that are clearly
identified with the two scalar Brownian motions ws (1) and ws (r). In the context of Lemma 4 the pseudo-

demodulated time series (ag)fl yl_, for j = 1,2, and 3, allows us to extract, in the case of yl , a linear
combination of the two stochastic trends that can be identified with the scalar Brownian motions ws (1) and
w3 (r), and the in the case of y2_ and y2 , we extract the stochastic trends identified with ws () and w3 (r)
respectively.

In the following section we present our proposal for determining the cointegration rank with reduced-rank
regression techniques in systems of PI processes.

3 Econometric Methodology

As mentioned previously our proposal is based on the demodulation approach used in BCCO (2020). In the
previous section, we clearly show that for a particular PI process we have S — 1 cointegration relationships
between the seasons, or equivalently, there is a common stochastic trend shared by the seasons of the PI
process. In Lemmas 1 to 4, the common stochastic trends are identified with scalar Brownian motions that
drive the long-run behavior of the seasons in each PI process in the systems. For example, in Lemma 2 we
have three common stochastic trends identified with the scalar Brownian motions w; (1), ws (r), and w3 (r).
These stochastic trends are adjusted to each season in the PI process by the elements of the S x 1 vectors a7,
for j = 1,2, and 3. Note that the elements of the vector are the coefficients associated with the restriction of
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s
being PI, that is, Hqﬁg =1, for 5 = 1,2, and 3. In Lemma 3, the stochastic non-stationary behavior of the
s=1
seasons of the three PI processes is ruled by one common stochastic trend identified with ws (r), adjusted
to each season of the PI processes by the elements of the S x 1 vectors a7, for j = 1,2, and 3. Finally, in
Lemma 4 the two common stochastic trends identified with we (1) and ws (1) are transmitted to each of the
seasons of the three PI processes through the elements of the vectors a7, for j = 1,2, and 3.
Hence, our approach is based on the simple idea of demodulating each time series by multiplying ea/tch

season by the reciprocal (or inverse) of the corresponding element of vector a7 = [ a{ a'g a?); <o aj ] =
S !
1 ¢, ¢hel - H(b?s , that is, we work with the new time series §/_ = (ai)_lygT. Clearly, our
s=2
s

approach implies knowledge of the coefficients associated with the PI restriction H¢g = 1. This limitation

can be easily resolved with a test for periodic integration, such as the likelihO(S)d1 ratio test proposed by
Boswijk and Franses (1996) or the multivariate approach taken by Franses (1994).° In this paper, we use the
Boswijk and Franses (1996) test rather than the one proposal by Franses (1994), as the latter has problems
concerning over-parametrization (for quarterly data you need to run the Johansen procedure with four time
series, i.e., each quarter is treated as a different time series). If we want to determine the cointegration rank
between PI processes, a previous and necessary condition is to test (or be sure) that all the analyzed time

series behave like PI processes. Furthermore, we can take advantage of this initial step and use it to obtain
s

information about the values of the parameters associated with the PI condition (that is, Hqﬁg =1).
s=1
To summarize, our approach consists of the following steps:

e Testing for periodic integration using the Boswijk and Franses (1996) likelihood ratio test and re-

taining the values of the fitted coefficients associated with vector ai = [ al aj

/

S
AN T |
s=2

al .. al ]’:

e Obtaining ¢/ = (ag)fl yJ_ based on the estimation of the elements of a/ in the previous step, and
finally,

e Including the demodulated time series §/_ in the usual Johansen procedure and determining the coin-
tegration rank.

Note that we can use the standard critical values of the Johansen procedure. Also, it is important
to highlight that our approach has a clear advantage over the Boswijk and Franses (1995) and del Barrio
Castro and Osborn (2008a) approaches, as these methods do not allow us to determine the cointegration
rank between a set of PI time series. Finally, we do not need to use a periodic VAR framework or GMM
jointly with reduced-rank regression techniques as in Kleibergen and Franses (1999).

The canonical correlation procedure by Johansen works with the demodulated time series 77 = (af) - vl

S
based on the true unknown parameters associated with the PI condition (H¢g = 1), collected in the S x 1
s=1 < ,
vectors a’, for j = 1,2, and 3. But, in order to implement our approach, weused; = | 1 (ﬁ% q%g%é . Hég =
s5=2
[ é{ fi% ég é% ]/. From Boswijk and Franses (1996) and Boswijk, Franses, and Haldrup (1997) we

know that the estimators of ¢/ obtained from their test procedures are super-consistent. They show that
T (81 - 61) = 0, (1), and hence, ¢} = ¢} + 0, (1).

5 Although non-parametric tests of the null of periodic integration were proposed by del Barrio Castro and Osborn (2011,
2012), these tests are not valid here as they do not require an estimation of the coefficients associated with the restriction of
being periodically integrated.
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In the quarterly case, for example, from Lemma 1 and Lemma 2, it is possible to write:
T2y 7y = oadw; (r) = ow; (7)

. . N1
T*1/2y27LTTJ = cajw; (r) = ¢how; (r) = ((i)jlgbéqﬁ) ow; (r)

. N -1
T2y, 170y = oadw; () = Gdhdlow; (r >=( 1) ow; ().

Hence, clearly 7—1/2 (ag)f1 Ys,|Tr| = O (ag)fl alw; (r) = ow; (r). But what happens if we use (éj)fl Yst?
We can evaluate the effects of using & instead of the true values of a} by paying attention to expression (5):

T—1
Y, = Ay ALY + AU, +ab’ Y UL J—ab'ZU + 0, (1)
j=1 Jj=1

after premultiplying by D = dzag( Lajt .. -,égl). Note that DY, = Dablz 1U; + O, (1), and for
example, in the quarterly case:

_ b2 gads  gadsds |’
Da—[ L e Gads  Gadeda }
as Grdad3ds =1 and G1dadsds =1

Da:{ 1 P1d3ds  d1ds b },

P1P3Ps P1da P1

1
($1+0p(1))(¢3+0p (1)) (Pat+0p (1))

P,
= (10,0t r0p(1))

D104
d1to,(1)
1

= 14><1 —|— Op (1) .

Hence, we can conclude that DY, = 1g41b’ Z;:l U; + O, (1), and anticipate that the canonical correlation
procedure by Johansen for determining the cointegration rank will provide similar results whether we work
with the true values collected in a’ (that is, al for s = 1,2,...,5) or the fitted ones (that is, &/ for
s = 1,2,...,5) obtained in the Boswik and Franses (1996) test of periodic integration. In the following
section, this claim is confirmed with a Monte Carlo experiment (see Tables 2.a to 2.d and Table 2.e).

Another relevant issue is how to treat the deterministic part. In the case of periodic integration the usual
two specifications for the deterministic part are either seasonal dummies or seasonal dummies and trends,
see Boswijk and Franses (1996) and Paap and Franses (1999), the latter of which, in particular, show that
other possible specifications for the deterministic part (like including a constant, a constant and a trend,
or seasonal dummies and trend) are not relevant in the case of periodic integration as the addition of an
intercept to (2) leads to a seasonally varying trend in F [ys,], and hence, an annual growth rate (1 - L° ) Yst
that varies over seasons. Furthermore, excluding the special case of an I (1) process, these authors show that
a PI process with an intercept cannot have a trend that is common over the seasons, regardless of whether
the intercept is constant over the seasons or varies. Additionally, as shown in Lee (1992), Lee and Siklos
(1995), Johansen and Schuamburg (1998), and Cubadda (2001), when including seasonal dummies, we have
a distribution of critical values like in the Johansen procedure when testing with a constant. Hence, in our
case the relevant critical values with seasonal dummies are those from the standard Johansen trace test with
a constant. And when dealing with seasonal dummies and trends we use the critical values of the Johansen
procedure with a constant and a linear trend (see also Tables 2.a to 2.e ).

Finally, note that for periodic autoregressive processes like (1), we can use periodic polynomials in the

lag operator to obtain (1 — ¢1,L — ¢posL? — -+ — ¢psLP) ysr = €5r. And as in Note 1, we can use the follow-
ing factorization: (1 — 1L — o L2 — - — ¢>pSLp) = (1—-¢sL) (1 — 1L — - — ;71751}”1) ,where the

s
coefficients ¢y, for s = 1,2,...,.5, are those associated with the PI restriction H 1¢S = 1. The standard
e

augmentation in the Johansen procedure satisfactorily handles non-periodic dynamic behavior and non-
periodic stationarity, but in the presence of periodic stationary dynamics, it is convenient to use periodic
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augmentation in the canonical correlation procedure to test for the cointegration rank. Hence, with periodic
augmentation the VAR model used when testing for cointegration is as follows:

S ARISN 7 e

p—1 S
AV = af VM + 3N TydaAY) + By
j=1s=1
where dg, for s = 1,2,...,5, are the usual seasonal dummies. In the following Monte Carlo section we

present the results of the performance of the canonical correlation procedure with periodic augmentation
compared to standard augmentation, and we show that periodic augmentation clearly performs well.

4 Monte Carlo

For our Monte Carlo experiment, we take a three-variable approach—as in subsections 2.3.1, 2.3.2, and 2.3.3—
and explore the three situations presented in each of these subsections, corresponding respectively to Lemma
2, Lemma 3, and Lemma 4. Accordingly, these can be seen as a situation with no cointegration between
three PI processes, a situation with one common stochastic trend shared by three PI processes (that is,
two periodic cointegration relationships between three PI processes), and a final situation with two common
stochastic trends shared by three PI processes (that is, one periodic cointegration relationship between three
PI processes).

As mentioned in the previous section, we compare the results obtained when using the Johansen cointe-
gration rank test with the true parameters versus the fitted ones (based on the Boswijk and Franses (1996)
test), in order to obtain the pseudo-demodulated time series. We also assess the adequacy of the critical
values of the Johansen trace test in our case, in terms of the deterministic part (see Hamilton (1994) Table
B.10 and Johansen (1995) Tables 15.1, 15.2, and 15.4). All of these issues will be present in the following
subsection on the case of no cointegration.

4.1 No cointegration

We consider three PI processes with no cointegration, like in subsection 2.3.1, that is:

1 _ 41,1 1
Ysr = ¢sys—l,‘r + Ugr

Yar = OoYa1r + s (39)
B = B+,

s=1,2,3 and 4

T=12,...,N

with the following combinations of the parameters:

Table 1
o1 | o5 [0 |1 |3 [ 03 |9t [ 03 | o3
¢ 1105111/ 09]105(09|11]09]|1.05]| 1.1
i | 1.2 08 |1 1.2 1 08 |1 1.2 0.8

Note that in Table 1 we only provide the value of the first three parameters for each process. The
unreported parameter, that is, ¢}, for j = 1,2, and 3, will be such that the PI condition holds. Hence we

will have (bi =1/ ¢{¢g¢%). Also, for the innovations uJ_ we consider the following four possibilities:

(1) wl, =cl; e, ~ Niid(0,1)
(2) ul, =¢l, — 0~55g—1,r

(

(

(40)
3) wl.=opul | +el p=1{08,095}
) wl =gl 4+l p1=08 pa=1, ¢3=05

and @4 = 0.8/ (p1p2p3) @4 =0.95/(p19203)
Jj=12,3,
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3 ’. . . . o . . . .
where EéT) = [ el g2 & ] is a white noise vector with the positive definite variance-covariance matrix

E [Egi)Egi)/} = ¥, with the following three possibilities for X:

[1 0 0
(@) =0 1 0
| 0 0 1
1 08 03
() ¥y=1]08 1 05 (41)
| 03 05 1
1 08 0.95
() ¥3=1] 08 1 08
| 095 08 1

We consider quarterly data, that is S = 4, and the following possibilities for the total number of years:
N =50, 100, and 250. Finally, all of the results are obtained with 10.000 replications.

In Tables 2.a to 2.d, we collect the quantiles of the Johansen trace test when applied to the pseudo-
demodulated time series associated with the three PI processes of (39) with the combinations of parameters
in Table 1 for a sample size of N = 500. In each table the results obtained with the true values associated
with the PI processes and the fitted values obtained from the Boswijk and Franses test (1996) are reported.
Table 2.a shows the results obtained with a constant, Table 2.b with seasonal dummies, Table 2.c with a
constant and a trend, and finally, Table 2.d with seasonal dummies and trends. From Tables 2.a to 2.d it is
possible to conclude that we obtain almost the same quantiles when the true fitted values of the coefficients
associated with the PI restriction are used. Also, the quantiles in Tables 2.a and 2.b are very similar to each
other, and to those in Table B.10 case 2 in Hamilton (1994) and Table 15.2 in Johansen (1995). Finally,
the quantiles of Tables 2.c and 2.d are very similar to each other, and to those reported in Table 15.4 in
Johansen (1995).

Additionally, in Table 2.e we report the empirical size for situation (39) with the combinations from Table
1 with seasonal dummies, using true and fitted values to obtain the pseudo-demodulation process, and with
white noise innovations. These results confirm that we do not have important differences in the performance
of the Johansen trace test when using true fitted values of the coefficients associated with the PI restriction.

The results concerning the size performance of the test are presented in Tables 3.a and 3.b. Table 3.a
shows the results obtained with a white noise innovation, an AR(1) innovation with ¢ = 0.8 and ¢ = 0.95,
and finally with an MA(1) innovation with § = 0.5. Table 2.b shows the results obtained from a PAR(1)
innovation with 12304 = 0.8 and 192304 = 0.95 and with non- perlodlc and periodic augmentation.
The columns labelled i and i refer to the values of the coefficients ¢, ¢3, and ¢)3, for 7 = 1,2,3, shown
in Table 1. Finally, the labels X7, Y5, and X3 refer to three options for the Variance—covariance matrix

E [ §§)E£i)’} (41) used in the Monte Carlo experiments.

As mentioned in the Econometric Methodology section, we first apply the leehhood Ratlo test by
Boswijk and Franses (1996) to all the time series and retain the fitted values of qb 2, ¢}, and ¢ for

j =1,2,3, under the restriction H¢g = 1. For case (1) in (40), to compute the Likekihood Ratio test we fit

s=1

a restricted and unrestricted PAR(1). For case (2) in (40), the order of the PAR is 5, and finally, for cases
(3) and (4) in (40), the PAR is of order 2. However, in the case of the VAR used to test the cointegration
rank, the order is determined using the AIC criteria with a maximum order of augmentation of 9 lags. In
the two remaining sections, the orders of the fitted PAR and VAR models are as defined here. Finally, all of
the results are obtained including seasonal dummies.

Clearly, the results of Table 3.a, show that with the white noise innovation the Johansen method applied
to the demodulated time series works adequately at detecting that we do not have cointegration between
the three PI processes, and the results are very similar in the three scenarios about the variance-covariance

matrix of E [Egi)Egi)/} = X. In the the case of the AR(1) innovation ¢ = 0.8 and ¢ = 0.95, we observe

an oversized Johansen test for 7o = 0 compared to the white noise innovation. The oversizing tends to be
resolved as the sample size increases. In the case of ¢ = 0.8, the size rg = 0 moves from around 0.15 when
N =50 to 0.07 when N = 250, and in the case of p = 0.95 the oversizing becomes more relevant, moving
from around 0.40 when N = 50 to 0.12 when N = 250. The last case reported in Table 2.a is that of the
MA(1) innovation with # = 0.5. Performance here in terms of size is very similar to what was observed with
the AR(1) innovation with ¢ = 0.8; the oversizing is less pronounced. Finally, Table 3.b presents the results
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of a PAR(1) innovation with ¢1p2p3¢04 = 0.8 and 1020304 = 0.95 and with non-periodic and periodic
augmentation. As in the case of the AR innovations, here we also observe much more relevant oversizing than
in the case of Y1304 = 0.95, and the oversizing clearly tends to be reduced as the sample size increases.
Note that with periodic augmentation the results improve a great deal and are in line with the results present
with the AR(1) innovation. We have run a Monte Carlo experiment using standard integrated processes with
the same innovations as in Tables 3.a and 3.b, and we can say that the results reported in Tables 3.a and
3.b are quite similar to those obtained with the standard integrated processes in the Johansen trace test.
Hence we can say that, overall, the Johansen procedure applied to pseudo-demodulated time series does a
good job of detecting the absence of cointegration between the three PI processes.

4.2 One periodic cointegration relationship

Compatible with subsection 2.3.3, here we explore the situation with three PI processes with one periodic
long-run relationship, or equivalently, a system of three PI processes ruled by two common stochastic trends,
see Lemma 4. Hence, we have a situation like in (33)-(34) with S = 4, §; = 2 = 1. As in the previous
subsection the values for qﬁ{, é, and gbé, for 7 =1,2,3, and qﬁ =1/ <¢{¢g %), for 7 = 1,2, 3, are shown in
Table 1. Hence, we have:

ybl“r = 61782/52’7' + ﬁlsyg‘r + u;r

2 3,2 2
Ysr = (bsysfl,‘r + Usr

3 _ 3,3 3
Ysr = ¢sys—1,7 + Ugr

s=1,2,....4 (42)
Bia=1 B2.a=1
2 3
B3 = zz B23 = Z;;;
A L, Pl
B2 = Y, B2,5-2 = B2 ool
By = PiP303 PLd3P3

adley 52T Pgigler

with u!l_, u?_, and u?_ as in (40) and also with the three cases considered in (41) for E [EST’)EST’)'} = 3.
Finally, we use the same sample sizes and replication numbers as in the previous subsection. The results
are presented in Tables 4.a and 4.b, with the same organization in terms of the different schemes of serial
correlation as the previous section. Overall we can say that the Johansen procedure does a good job of
determining that the three PI processes share two common stochastic trends. In tables 3.a to 3.c, on the
white noise innovation, we observe that the proportion of times that the null hypothesis of g = 0 is rejected
is always one, except in three cases when the sample size of N = 50, but it is very close to one. And in the
case of rg = 1, the proportion of times that the null is rejected is very close to that which can be seen in
Table 3.a. For the AR(1) innovation, the proportion of times that the null is rejected is lower than it is in
the white noise innovation for the sample sizes of N = 50 and N = 100, but when N = 250, the proportion
of times that the null is rejected is one when ¢ = 0.8 and very close to one when ¢ = 0.95. Hence, we
can say that with the AR(1) innovation the power issue at rqg = 0 tends to be resolved as the sample size
increases. In the case of ro = 1 with an AR(1) innovation, we obtain proportions of rejection of the null that
are in line with those seen with the white noise innovation. To finish, in Table 4.a, in the case of the MA(1)
innovation, the proportion of times that the null is rejected for ro = 0 is always one, except in two cases
with a sample size of N = 50. And, we observe a small oversizeing effect when ry = 1, but it is resolved as
the sample size increases. In Table 4.b the results for the PAR innovations with non-periodic and periodic
augmentation are presented. Clearly, the results achieved with periodic augmentation help to largely resolve
the problems observed in terms of power when rq = 1 with non-periodic augmentation.

4.3 Two periodic cointegration relationships

Finally, compatible with subsection 2.3.2, here we explore the situation of three PI processes with two peri-
odic long-run relationships, or equivalently, a system of three PI processes ruled by one common stochastic
trend, see Lemma 3. Hence, we have a situation like in (27)-(28) with S =4, 8 = a = 1. As in the previous
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two cases, the values for QS{, ?, and ng, for 5 =1,2,3, and gzﬁi =1/ (qﬁjlgb%gb%) , for j = 1,2, 3, are shown in
Table 1. Hence, we have the following;:

y;r = asyg'r + ui‘r

yi‘r = 5Sy§)‘r + ug'r

3 _ 3,3 3
Ysr = ¢sys—1,7 + Ugr

s=1,2,...,4.
ag =1 Ba=1 (43)
i 3
5 = 1 B3 = o
T B v
103 103
o Ololed o slelel
$10305 e
We consider the same options for the innovations u!_, u2_, and u?_, as well as the variance-covariance

ST
matrix F [Eg)Egi)/] = Y, from the two previous subsections; we also use the same the sample sizes and
number of replications. The results are shown in Tables 5.a and 5.b, following the same structure about
serial correlation as in the sets of tables of the two previous subsections. In general, we can say that in
Tables 5.a and 5.b the performance of the Johansen procedure with the pseudo-demodulated approach does
a good job of determining the cointegration rank. Clearly, the Johansen procedure detects that there is a
common stochastic trend shared by the three PI processes. Hence the procedure correctly detects that we
have two periodic cointegration relationship between the three PI processes. The power problems observed
in Tables 4.a and 4.b when g = 0 are equivalent to those reported for 7o = 1 in Tables 5.a and 3.b.

5 Conclusion

In this paper, we propose a easily implementable method for determining the cointegration rank between a

set of PI processes. Our method relies on the use of pseudo-demodulated time series that can be obtained
s

from an estimation of the parameters associated with the periodic integration restriction H¢g =1 from the

s=1

Likelihood Ratio test for periodic integration proposed by Boswijk and Franses (1996). Once we have these
pseudo-demodulated time series, they can be introduced into Johansen’s reduced-rank regression procedure.
In the Monte Carlo section, we show that our approach to determining the cointegration rank between a set
of periodically integrated processes performs adequately with small samples.
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Table 2.a Empirical Quantiles of Trace Test with Constant
mod ag rank 0,5 0,8 0,9 0,95 0,975 0,99
TRUE | rp =0 2,4731 49076 6,5465 8,1347 | 9,8126 | 11,9604
TRUE | rp =1 9,4428 | 13,4194 | 15,9128 | 18,1357 | 20,2987 | 23,2025
TRUE | ro =2 | 20,5283 | 25,8922 | 29,0984 | 31,8603 | 34,6723 | 37,9846
FITTED | ro =0 2,4710 | 4,9044 6,5420 8,1312 9,8093 | 11,9608
FITTED | ro =1 9,4373 | 13,4186 | 15,9161 | 18,1309 | 20,2920 | 23,2116
FITTED | ro =2 | 20,5241 | 25,8779 | 29,0954 | 31,8547 | 34,6680 | 38,0068
0,5000 0,8000 0,9000 0,9500 | 0,9750 0,9900
" TRUE | 1o =0 2,062 | 4,9281 6,6289 8,1455 9,8923 | 12,1150
X TRUE | ro =1 9,4657 | 13,4303 | 15,8785 | 17,9800 | 20,2643 | 23,1774
1 TRUE | ro =2 | 20,5718 | 25,8057 | 29,0293 | 31,9314 | 34,6087 | 37,7776
it | FITTED | rg =0 2,5066 | 4,9247 | 6,6252 8,1430 9,9012 | 12,0929
1w | FITTED | rg =1 9,4669 | 13,4277 | 15,8823 | 17,9727 | 20,2471 | 23,1829
it | FITTED | ro =2 | 20,5691 | 25,8037 | 29,0246 | 31,9100 | 34,6064 | 37,8231
Note: Based on 10.000 replication with N = 500and S = 4. Mod refers to the parameters values in Table 1. TRUE
and FITTED to the results obtained with the true coefficents or the fitted one obtained from the Boswijk and
Franses (1996) test. The DGPs are defined in (39) with the innovations as (1) in (40). And rpis the number of
cointegrating vectors under the null hypothesis.

EHECHENENENES

Table 2.b Empirical Quantiles of Trace Test with Seasonal Dummies
mod ag rank 0,5 0,8 0,9 0,95 0,975 0,99
TRUE | ro =0 | 2,4727 | 4,9064 | 6,5433 | 8,1319 | 9,8102 | 11,9671
TRUE | ro =11 9,4410 | 13,4136 | 15,9168 | 18,1430 | 20,3155 | 23,2044
TRUE | ro =2 | 20,5270 | 25,8886 | 29,0798 | 31,8660 | 34,6736 | 38,0473
FITTED | ro =0 | 2,4724 | 49022 | 6,5419 | 8,1302 | 9,8053 | 11,9600
FITTED | ro=1| 9,4401 | 13,4168 | 15,9183 | 18,1371 | 20,2866 | 23,2089
FITTED | ro =2 | 20,5207 | 25,8754 | 29,0933 | 31,8508 | 34,6695 | 38,0166
0,5000 | 0,8000 | 0,9000 | 0,9500 | 0,9750 | 0,9900
i1 TRUE | ro =0 | 2,5069 | 4,9258 | 6,6216 | 8,1426 | 9,8814 | 12,1116
i TRUE | ro =11 9,4665 | 13,4352 | 15,8805 | 17,9773 | 20,2531 | 23,2049
1 TRUE | ro =2 | 20,5704 | 25,7971 | 29,0176 | 31,9143 | 34,6061 | 37,7697
it | FITTED | ro =0 | 2,5077 | 4,9250 | 6,6213 | 8,1399 | 9,8988 | 12,0945
1 | FITTED | ro=1 | 9,4646 | 13,4293 | 15,8734 | 17,9770 | 20,2431 | 23,1891
ii | FITTED | ro =2 | 20,5648 | 25,8026 | 29,0229 | 31,9129 | 34,6084 | 37,8095
Note: See the note of table 2.a.

CHECHENENEHED
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Table 2.c Empirical Quantiles of Trace Test withconstant and Trend

mod ag rank 0,5 0,8 0,9 0,95 0,975 0,99
i TRUE | ro =0 | 4,7457 | 7,7617 | 9,7202 | 11,7634 | 13,5321 | 15,8662
i TRUE | ro =1 | 13,9358 | 18,4514 | 21,2791 | 23,6911 | 26,1444 | 28,8353
i TRUE | ro =2 | 27,0797 | 33,2513 | 36,7054 | 39,9997 | 42,8724 | 46,7600
i | FITTED | ro =0 | 4,7419 | 7,7565 | 9,7171 | 11,7579 | 13,5260 | 15,8549
1 | FITTED | ro =1 | 13,9367 | 18,4424 | 21,2782 | 23,6898 | 26,1489 | 28,8410
i | FITTED | ro =2 | 27,0699 | 33,2314 | 36,7108 | 39,9864 | 42,8834 | 46,7630

0,5000 | 0,8000 | 0,9000 | 0,9500 | 0,9750 | 0,9900
11 TRUE | ro =0 | 4,8091 7,7974 | 9,7992 | 11,6816 | 13,6039 | 15,6681
0 TRUE | ro =1 | 13,9003 | 18,6648 | 21,4928 | 23,9217 | 26,1132 | 28,9832
11 TRUE | ro =2 | 27,0189 | 33,2001 | 36,7969 | 40,0044 | 42,8102 | 46,4758
it | FITTED | ro =0 | 4,8056 | 7,7927 | 9,7992 | 11,6722 | 13,5869 | 15,6694
1 | FITTED | rg =1 | 13,8900 | 18,6671 | 21,4765 | 23,9346 | 26,0939 | 28,9880
it | FITTED | ro =2 | 27,0008 | 33,1834 | 36,8049 | 39,9706 | 42,7710 | 46,4735

Note: See the note of table 2.a.
Table 2.d Empirical Quantiles of Trace Test with Seasonal Dummies and Trends

mod ag rank 0,5 0,8 0,9 0,95 0,975 0,99
i TRUE | ro=0| 4,7432 | 7,7518 | 9,7177 | 11,7490 | 13,5247 | 15,8137
i TRUE | ro =1 | 13,9308 | 18,4375 | 21,2623 | 23,6894 | 26,1400 | 28,8139
i TRUE | ro =2 | 27,0665 | 33,2482 | 36,6841 | 39,9596 | 42,8916 | 46,7446
¢t | FITTED | ro=0| 4,7439 | 7,7511 9,7209 | 11,7482 | 13,5231 | 15,8321
1 | FITTED | ro =1 | 13,9283 | 18,4335 | 21,2587 | 23,6818 | 26,1453 | 28,8059
¢ | FITTED | ro =2 | 27,0635 | 33,2485 | 36,6881 | 39,9759 | 42,8657 | 46,7518

0,5000 | 0,8000 | 0,9000 | 0,9500 | 0,9750 | 0,9900
1 TRUE | ro =0 | 4,8071 7,7889 | 19,7934 | 11,6648 | 13,5801 | 15,6767
i TRUE | ro =1 | 13,8872 | 18,6679 | 21,4583 | 23,9272 | 26,1060 | 28,9560
1 TRUE | ro =2 | 27,0079 | 33,1957 | 36,7767 | 39,9534 | 42,7393 | 46,4956
it | FITTED | ro =0 | 4,8056 | 7,7879 | 9,7943 | 11,6641 | 13,5833 | 15,6805
1 | FITTED | o =1 | 13,8816 | 18,6629 | 21,4543 | 23,9444 | 26,0890 | 28,9466
it | FITTED | rg =2 | 27,0034 | 33,1852 | 36,7901 | 39,9601 | 42,7511 | 46,4838

Note: See the note of table 2.a.
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Table 2.e Size

X
PI FITTED | FITTED | TRUE | TRUE
Variables | Rank | N i i1 i 1
ro=0 50 0,0698 0,0671 | 0,0702 | 0,0665
ro=0 | 100 0,0624 0,0631 | 0,0627 | 0,0627
ro=0 | 250 0,0561 0,0582 | 0,0564 | 0,0581
ro=1 50 0,0065 0,0037 | 0,0062 | 0,0039
ro=1 | 100 0,0045 0,0042 | 0,0044 | 0,0041
ro= 250 0,0037 0,0032 | 0,0037 | 0,0033
ro= 2 50 0,0010 0,0002 | 0,0010 | 0,0002
ro=2 | 100 0,0010 0,0004 | 0,0010 | 0,0005
250 0,0009 0,0002 | 0,0009 | 0,0002
ro=0 50 0,0602 0,0566 | 0,0607 | 0,0571
ro=0 | 100 0,0563 0,0559 | 0,0562 | 0,0557
ro= 0 | 250 0,0541 0,0524 | 0,0541 | 0,0527
ro= 50 0,0055 0,0048 | 0,0056 | 0,0049
ro=1 | 100 0,0045 0,0051 | 0,0047 | 0,0050
ro=1 | 250 0,0034 0,0034 | 0,0034 | 0,0034
ro=0 50 0,0536 0,0524 | 0,0545 | 0,0528
ro=0 | 100 0,0546 0,0473 | 0,0548 | 0,0474
1| ro=01] 250 0,0540 0,0496 | 0,0542 | 0,0497

Note: Based on 10.000 replication with S = 4, tand %7 refers to the parameters values in Table 1. TRUE and
FITTED to the results obtained with the true coefficents or the fitted one obtained from the Boswijk and Franses
(1996) test. The DGPs are defined in (39) with the innovations as (1) in (40). 7pis the number of cointegrating

vectors under the null hypothesis. The Trace test is conducted at a nominal 5% level of significance. Finally Y1
refers to (41).

=] | po| ho| | bo| bo| o wo| wo| wof wo| wo| wo| wof wo
=
(o)
|
I\

23



Table 3.a No Cointegration

rank 21 22 23

White Noise (1) in (40).
ro=0 | 50 | 0.0799 | 0.0786 | 0.0767 | 0.0769 | 0.0783 | 0.0721
ro=0 | 100 | 0.0641 | 0.0671 | 0.0647 | 0.0662 | 0.0633 | 0.0676
ro=0 | 250 | 0.0611 | 0.0577 | 0.0623 | 0.0643 | 0.0615 | 0.0613
ro=1 | 50 | 0.0052 | 0.0059 | 0.0054 | 0.0052 | 0.0062 | 0.0058
ro=1 | 100 | 0.0046 | 0.0062 | 0.0055 | 0.0045 | 0.0041 | 0.0053
ro=1 | 250 | 0.0041 | 0.0041 | 0.0044 | 0.0039 | 0.0046 | 0.0055
ro=2 | 50 | 0.0003 | 0.0008 | 0.0005 | 0.0007 | 0.0009 | 0.0012
ro=2 | 100 | 0.0008 | 0.0009 | 0.0008 | 0.0010 | 0.0005 | 0.0012
ro=2 | 250 | 0.0004 | 0.0005 | 0.0009 | 0.0005 | 0.0002 | 0.0007
AR (1) ¢ =0.8 (3) in (40).
ro=0 |50 | 0,1620 | 0,1602 | 0,1551 | 0,1654 | 0,1569 | 0,1621
ro=0 | 100 | 0,1015 | 0,1032 | 0,0993 | 0,1081 | 0,1001 | 0,0936
ro=10 | 250 | 0,0753 | 0,0708 | 0,0767 | 0,0721 | 0,0700 | 0,0757

7o=1 | 50 | 0,0168 | 0,0167 | 0,0147 | 0,0165 | 0,0175 | 0,0177
7o=1 | 100 | 0,0092 | 0,0094 | 0,0081 | 0,0094 | 0,0095 | 0,0086
7o=1 | 250 | 0,0052 | 0,0060 | 0,0059 | 0,0067 | 0,0048 | 0,0074

ro=2 | 50 0,0021 | 0,0020 | 0,0022 | 0,0015 | 0,0022 | 0,0017
ro= 2 | 100 | 0,0013 | 0,0010 | 0,0015 | 0,0012 | 0,0014 | 0,0013
ro=2 | 250 | 0,0005 | 0,0006 | 0,0007 | 0,0007 | 0,0005 | 0,0011
AR(1) »=0.95 (3) in (40).
ro=10 | 50 0.4071 | 0.4066 | 0.4113 | 0.4083 | 0.6811 | 0.6089
ro=0 | 100 | 0.2323 | 0.2442 | 0.2474 | 0.2464 | 0.3981 | 0.3754
ro=10 | 250 | 0.1233 | 0.1168 | 0.1285 | 0.1121 | 0.1818 | 0.1825
ro=1 1 50 0.0842 | 0.0817 | 0.0811 | 0.0817 | 0.2161 | 0.1785
ro=1 | 100 | 0.0291 | 0.0319 | 0.0333 | 0.0344 | 0.0801 | 0.0744
ro=1 | 250 | 0.0124 | 0.0124 | 0.0106 | 0.0101 | 0.0224 | 0.0245
ro=2 | 50 0.0173 | 0.0146 | 0.0120 | 0.0138 | 0.0463 | 0.0360
ro=2 | 100 | 0.0047 | 0.0053 | 0.0054 | 0.0060 | 0.0131 | 0.0135
ro=2 | 250 | 0.0017 | 0.0013 | 0.0009 | 0.0011 | 0.0030 | 0.0037
MA(1) 6=0.5(2)in (40).
ro=10 | 50 0.1050 | 0.1012 | 0.1018 | 0.1035 | 0.1037 | 0.1015
ro=10 | 100 | 0.0769 | 0.0754 | 0.0792 | 0.0788 | 0.0779 | 0.0761
ro=10 | 250 | 0.0658 | 0.0695 | 0.0737 | 0.0711 | 0.0721 | 0.0686
ro=1 1| 50 0.0073 | 0.0088 | 0.0081 | 0.0093 | 0.0076 | 0.0065
ro=1 | 100 | 0.0057 | 0.0048 | 0.0045 | 0.0069 | 0.0040 | 0.0057
ro=1 | 250 | 0.0058 | 0.0049 | 0.0045 | 0.0056 | 0.0052 | 0.0042
ro=2 | 50 0.0010 | 0.0009 | 0.0006 | 0.0016 | 0.0007 | 0.0006
ro=2 | 100 | 0.0010 | 0.0004 | 0.0006 | 0.0010 | 0.0011 | 0.0011
ro=2 | 250 | 0.0005 | 0.0009 | 0.0007 | 0.0005 | 0.0010 | 0.0011
Note: Based on 10.000 replication with S = 4, tand 47 refers to the parameters values in Table 1. The DGPs are
defined in (39) with the innovations deffined in (40). rpis the number of cointegrating vectors under the null

hypothesis. The Trace test is conducted at a nominal 5% level of significance. Finally X1, Yo and X3 refers to
(41).
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Table 3.b No Cointegration

rank

X

Yo

N

i

[

7

[

PAR(1) p1p2p3p4 = 0.8 (4) in (40).

7"0:0

50

0.6025

0.4876

0.5645

0.4849

0.5706

0.4693

To= 0

100

0.3486

0.2254

0.2710

0.2268

0.2799

0.2194

7"0:0

250

0.1030

0.1055

0.1024

0.1093

0.1072

0.1130

To= 1

50

0.1555

0.1100

0.1318

0.1015

0.1345

0.1012

7”0:1

100

0.0566

0.0327

0.0395

0.0295

0.0413

0.0288

To= 1

250

0.0092

0.0104

0.0110

0.0107

0.0121

0.0105

7”():2

50

0.0268

0.0185

0.0229

0.0192

0.0233

0.0185

To= 2

100

0.0077

0.0047

0.0060

0.0055

0.0057

0.0038

7”():2

250

0.0014

0.0019

0.0015

0.0017

0.0011

0.0019

PAR(1) ¢1p2p3¢04 = 0.8 (4) in
Periodic Augmentation

(40).

To= 0

50

0.3582

0.3782

0.3597

0.3762

0.3554

0.3663

7"0:0

100

0.1837

0.1954

0.1799

0.1983

0.1852

0.1936

To= 0

250

0.0805

0.0883

0.0871

0.0971

0.0874

0.0931

To= 1

50

0.0642

0.0719

0.0609

0.0712

0.0607

0.0682

To= 1

100

0.0195

0.0261

0.0204

0.0211

0.0205

0.0216

7”0:1

250

0.0061

0.0074

0.0074

0.0081

0.0075

0.0088

To= 2

50

0.0112

0.0107

0.0111

0.0122

0.0096

0.0100

ro=2

100

0.0031

0.0037

0.0040

0.0031

0.0023

0.0035

To= 2

250

0.0010

0.0010

0.0006

0.0009

0.0012

0.0011

PAR(1) v1020304 = 0.95 in (40).

T():O

50

0.7380

0.6211

0.6775

0.6109

0.6811

0.6089

To= 0

100

0.5065

0.3707

0.4009

0.3665

0.3981

0.3754

T():O

250

0.1886

0.1854

0.1898

0.1766

0.1818

0.1825

To=—

50

0.2599

0.1797

0.2148

0.1743

0.2161

0.1785

To=—

100

0.1310

0.0728

0.0829

0.0696

0.0801

0.0744

To= 1

250

0.0268

0.0225

0.0209

0.0213

0.0224

0.0245

To= 2

50

0.0536

0.0395

0.0439

0.0408

0.0463

0.0360

To= 2

100

0.0237

0.0121

0.0144

0.0125

0.0131

0.0135

7"0:2

250

0.0046

0.0036

0.0024

0.0027

0.0030

0.0037

PAR(1) p1p23¢4 = 0.95 in (40).

Periodic Augmentation

To= 0

50

0.4401

0.4660

0.4489

0.4852

0.4342

0.4721

7"0:0

100

0.2751

0.3051

0.3197

0.3321

0.2734

0.2999

To= 0

250

0.1219

0.1409

0.1606

0.1685

0.1295

0.1428

’l"():].

50

0.0992

0.1040

0.0951

0.1064

0.0946

0.1069

To= 1

100

0.0420

0.0494

0.0511

0.0598

0.0385

0.0496

To= 1

250

0.0125

0.0139

0.0168

0.0188

0.0124

0.0155

To= 2

50

0.0175

0.0178

0.0205

0.0192

0.0168

0.0184

7”():2

100

0.0070

0.0080

0.0065

0.0102

0.0058

0.0074

To= 2

250

0.0019

0.0020

0.0028

0.0024

0.0020

0.0017

Note: See the note of table 3.a.
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Table 4.a One Periodic Cointegration Relationship

rank

X

b))

X3

N

]

‘ii )

[

7

[

White Noise (1) in (40).

7"0:0

50

1.0000

0.9987 | 1.0000

0.9992

1.0000

0.9947

To= 0

100

1.0000

1.0000 | 1.0000

1.0000

1.0000

1.0000

7"0:0

250

1.0000

1.0000 | 1.0000

1.0000

1.0000

1.0000

To= 1

50

0.0620

0.0636 | 0.0623

0.0649

0.0651

0.0713

7”0:1

100

0.0591

0.0593 | 0.0559

0.0611

0.0581

0.0581

To= 1

250

0.0557

0.0584 | 0.0556

0.0594

0.0558

0.0538

7”():2

50

0.0058

0.0045 | 0.0050

0.0055

0.0055

0.0060

To= 2

100

0.0047

0.0040 | 0.0051

0.0043

0.0042

0.0054

7"():2

250

0.0044

0.0044 | 0.0046

0.0038

0.0040

0.0040

AR

D »=

0.8 (3) in (40).

7”0:0

50

0.5043

0.8068 | 0.6357

0.7834

0.5462

0.6018

To= 0

100

0.9551

0.9958 | 0.9834

0.9971

0.9957

0.9767

To= 0

250

1.0000

1.0000 | 1.0000

1.0000

1.0000

1.0000

To=

50

0.0560

0.0849 | 0.0688

0.0826

0.0631

0.0748

To=—

100

0.0681

0.0702 | 0.0654

0.0698

0.0689

0.0698

To=

250

0.0581

0.0676 | 0.0610

0.0611

0.0601

0.0652

To= 2

50

0.0054

0.0088 | 0.0052

0.0085

0.0052

0.0075

To= 2

100

0.0049

0.0055 | 0.0047

0.0052

0.0054

0.0054

To= 2

250

0.0050

0.0040 | 0.0040

0.0041

0.0037

0.0048

AR(1) o=

0.95 (3) in (40).

To= 0

50

0.3633

0.6894 | 0.3657

0.6041

0.5017

0.5594

7”0:0

100

0.5737

0.8214 | 0.6027

0.7685

0.6408

0.6887

To= 0

250

0.9817

0.9835 | 0.9902

0.9885

0.9911

0.9715

To= 1

50

0.0673

0.1180 | 0.0675

0.1039

0.0915

0.0995

To= 1

100

0.0713

0.0912 | 0.0739

0.0815

0.0741

0.0800

To= 1

250

0.0668

0.0693 | 0.0690

0.0719

0.0647

0.0710

To= 2

50

0.0122

0.0158 | 0.0094

0.0133

0.0156

0.0141

To= 2

100

0.0083

0.0097 | 0.0075

0.0091

0.0087

0.0084

To= 2

250

0.0051

0.0062 | 0.0059

0.0057

0.0064

0.0058

MA

1) 0=

0.5 (2) in (40).

7”():0

50

1.0000

1.0000 | 1.0000

0.9999

1.0000

0.9994

To= 0

100

1.0000

1.0000 | 1.0000

1.0000

1.0000

1.0000

7"():0

250

1.0000

1.0000 | 1.0000

1.0000

1.0000

1.0000

To= 1

50

0.0881

0.0857 | 0.0904

0.0817

0.0814

0.0789

To= 1

100

0.0710

0.0687 | 0.0662

0.0609

0.0720

0.0661

To= 1

250

0.0633

0.0678 | 0.0611

0.0629

0.0658

0.0587

To= 2

50

0.0084

0.0071 | 0.0069

0.0056

0.0086

0.0090

To= 2

100

0.0062

0.0059 | 0.0047

0.0052

0.0061

0.0043

To= 2

250

0.0045

0.0052 | 0.0067

0.0037

0.0051

0.0035

Note: See the note of table 3.a, but with DPGs defined in (42).
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Table 4.b One Periodic Cointegration Relationship

rank

X

b))

X3

N

]

[

7

[

7

[

PAR(1) p1p203¢4 = 0.8 (4) in (40).

7"0:0

50

0.4095

0.4903

0.4099

0.5486

0.5030

0.4548

To= 0

100

0.5318

0.5913

0.5346

0.7208

0.6804

0.6029

7"0:0

250

0.9599

0.9446

0.9872

0.9792

0.9959

0.9285

To= 1

50

0.0694

0.0744

0.0676

0.0848

0.0809

0.0710

7”0:1

100

0.0559

0.0646

0.0628

0.0711

0.0674

0.0615

To= 1

250

0.0614

0.0630

0.0600

0.0644

0.0585

0.0639

7”():2

50

0.0114

0.0093

0.0111

0.0123

0.0126

0.0088

To= 2

100

0.0073

0.0081

0.0075

0.0052

0.0078

0.0052

7"():2

250

0.0070

0.0058

0.0053

0.0055

0.0057

0.0067

PAR(1) ¢1p2p3¢04 = 0.8 (4) in
Periodic Augmentation

(10).

To= 0

50

0.5849

0.7801

0.5301

0.5921

0.4668

0.4909

7"0:0

100

0.9018

0.9727

0.8157

0.9199

0.8135

0.8637

To= 0

250

0.9999

0.9985

0.9994

0.9987

0.9995

0.9683

To= 1

50

0.0446

0.0202

0.0367

0.0164

0.0227

0.0138

To= 1

100

0.0326

0.0075

0.0278

0.0089

0.0243

0.0096

To=— 1

250

0.0195

0.0032

0.0251

0.0043

0.0183

0.0031

To= 2

50

0.0034

0.0003

0.0030

0.0005

0.0008

0.0003

7”():2

100

0.0013

0.0002

0.0013

0.0000

0.0009

0.0003

To= 2

250

0.0007

0.0001

0.0005

0.0002

0.0003

0.0000

PAR(1) p102¢0304 = 0.95 (4) in (40).

T():O

50

0.4727

0.5637

0.4699

0.6244

0.5025

0.5459

To= 0

100

0.4113

0.5424

0.4289

0.6542

0.4902

0.6506

T():O

250

0.4077

0.5646

0.4892

0.7793

0.7821

0.8555

To=—

50

0.0987

0.1094

0.0961

0.1244

0.0917

0.1072

To=—

100

0.0795

0.0880

0.0791

0.1097

0.0698

0.0803

To= 1

250

0.0574

0.0586

0.0591

0.0811

0.0648

0.0676

To= 2

50

0.0178

0.0196

0.0205

0.0223

0.0147

0.0150

To= 2

100

0.0102

0.0141

0.0137

0.0174

0.0086

0.0094

7”0:2

250

0.0089

0.0060

0.0074

0.0090

0.0067

0.0067

PAR(1) p1p2p304 = 0.95 (4) in (40).

Periodic Augmentation

To= 0

50

0.9399

0.9455

0.9088

0.8877

0.7976

0.7227

7"0:0

100

0.9997

0.9983

0.9993

0.9922

0.9931

0.9103

To= 0

250

0.9998

0.9996

0.9999

0.9965

0.9999

0.9564

7"0:].

50

0.0992

0.0318

0.0993

0.0330

0.0510

0.0247

To= 1

100

0.1240

0.0191

0.1375

0.0242

0.0478

0.0113

To= 1

250

0.0482

0.0059

0.0822

0.0104

0.0276

0.0048

To= 2

50

0.0037

0.0003

0.0056

0.0010

0.0021

0.0004

7"():2

100

0.0018

0.0005

0.0023

0.0003

0.0012

0.0006

To= 2

250

0.0015

0.0002

0.0008

0.0001

0.0004

0.0000

Note: See the note of table 3.a, but with DPGs defined in (42).
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Table 5.a Two Periodic Cointegration Relationship

rank

X

b))

X3

N

]

‘ii )

[

7

[

White Noise (1) in (40).

7"0:0

50

1.0000

1.0000 | 1.0000

1.0000

1.0000

1.0000

To= 0

100

1.0000

1.0000 | 1.0000

1.0000

1.0000

1.0000

7"0:0

250

1.0000

1.0000 | 1.0000

1.0000

1.0000

1.0000

To= 1

50

1.0000

1.0000 | 1.0000

1.0000

1.0000

1.0000

7”0:1

100

1.0000

1.0000 | 1.0000

1.0000

1.0000

1.0000

To= 1

250

1.0000

1.0000 | 1.0000

1.0000

1.0000

1.0000

7”():2

50

0.0536

0.0492 | 0.0548

0.0541

0.0559

0.0529

To= 2

100

0.0556

0.0532 | 0.0530

0.0507

0.0572

0.0521

7"():2

250

0.0519

0.0579 | 0.0525

0.0535

0.0528

0.0487

AR

D »=

0.8 (3) in (40).

7”0:0

50

0.9776

0.9712 | 0.9817

0.9813

0.9843

0.9829

To= 0

100

1.0000

1.0000 | 1.0000

1.0000

1.0000

1.0000

To= 0

250

1.0000

1.0000 | 1.0000

1.0000

1.0000

1.0000

To=

50

0.6379

0.6212 | 0.6401

0.6296

0.6563

0.6540

To=—

100

0.9991

0.9986 | 0.9987

0.9974

0.9991

0.9991

To=

250

1.0000

1.0000 | 1.0000

1.0000

1.0000

1.0000

To= 2

50

0.0464

0.0458 | 0.0478

0.0459

0.0482

0.0473

To= 2

100

0.0481

0.0540 | 0.0521

0.0515

0.0492

0.0493

To= 2

250

0.0542

0.0529 | 0.0520

0.0520

0.0559

0.0515

AR(1) o=

0.95 (3) in (40).

To= 0

50

0.3342

0.2926 | 0.3089

0.2713

0.3004

0.2916

7”0:0

100

0.6592

0.6445 | 0.6374

0.6378

0.6161

0.6701

To= 0

250

1.0000

1.0000 | 1.0000

1.0000

1.0000

1.0000

To= 1

50

0.0555

0.0546 | 0.0516

0.0456

0.0501

0.0447

To= 1

100

0.1892

0.1888 | 0.1785

0.1817

0.1719

0.2006

To= 1

250

0.9682

0.9804 | 0.9702

0.9798

0.9691

0.9858

To= 2

50

0.0086

0.0095 | 0.0087

0.0061

0.0088

0.0073

To= 2

100

0.0271

0.0272 | 0.0283

0.0266

0.0249

0.0270

To= 2

250

0.0525

0.0550 | 0.0518

0.0530

0.0521

0.0535

MA

1) 0=

0.5 (2) in (40).

7”():0

50

1.0000

1.0000 | 1.0000

1.0000

1.0000

1.0000

To= 0

100

1.0000

1.0000 | 1.0000

1.0000

1.0000

1.0000

7"():0

250

1.0000

1.0000 | 1.0000

1.0000

1.0000

1.0000

To= 1

50

1.0000

1.0000 | 1.0000

1.0000

1.0000

1.0000

To= 1

100

1.0000

1.0000 | 1.0000

1.0000

1.0000

1.0000

To= 1

250

1.0000

1.0000 | 1.0000

1.0000

1.0000

1.0000

To= 2

50

0.0827

0.0808 | 0.0727

0.0700

0.0687

0.0659

To= 2

100

0.0659

0.0638 | 0.0643

0.0684

0.0673

0.0596

To= 2

250

0.0580

0.0593 | 0.0526

0.0575

0.0594

0.0581

Note: See the note of table 3.a, but with DPGs defined in (43).
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Table 5.b Two Periodic Cointegration Relationship

rank

X

b))

X3

N

i

[

7

[

7

[

PAR(1) p1p203¢4 = 0.8 (4) in (40).

7"0:0

50

0.3542

0.3415

0.4092

0.3662

0.4685

0.3903

To= 0

100

0.7496

0.7373

0.7983

0.7979

0.8622

0.8176

7"0:0

250

1.0000

0.9999

1.0000

1.0000

1.0000

1.0000

To= 1

50

0.0666

0.0622

0.0754

0.0681

0.0889

0.0756

7”0:1

100

0.2423

0.2543

0.2810

0.2848

0.3354

0.3114

To= 1

250

0.9257

0.8715

0.9424

0.9970

0.9893

0.9973

7”():2

50

0.0114

0.0096

0.0109

0.0114

0.0132

0.0118

To= 2

100

0.0224

0.0268

0.0280

0.0306

0.0312

0.0323

7"():2

250

0.0344

0.0485

0.0381

0.0431

0.0434

0.0488

PAR(1) ¢1p2p3¢04 = 0.8 (4) in
Periodic Augmentation

(10).

To= 0

50

0.9419

0.9087

0.9048

0.8653

0.8343

0.8325

7"0:0

100

0.9999

0.9996

0.9993

0.9981

0.9965

0.9974

To= 0

250

1.0000

1.0000

1.0000

1.0000

1.0000

0.9999

To= 1

50

0.4855

0.3939

0.3816

0.3065

0.2501

0.2624

To= 1

100

0.9561

0.9166

0.8827

0.8490

0.7359

0.8073

To=— 1

250

0.9999

1.0000

0.9994

0.9999

0.9979

0.9998

To= 2

50

0.0301

0.0285

0.0173

0.0233

0.0137

0.0224

7”():2

100

0.0402

0.0483

0.0334

0.0471

0.0337

0.0432

To= 2

250

0.0328

0.0450

0.0237

0.0480

0.0374

0.0537

PAR(1) p102¢0304 = 0.95 (4) in (40).

T():O

50

0.2795

0.2578

0.2951

0.2584

0.3339

0.2819

To= 0

100

0.4036

0.3853

0.4049

0.4011

0.4689

0.4214

T():O

250

0.9261

0.9166

0.9093

0.9728

0.9688

0.9759

To=—

50

0.0394

0.0383

0.0447

0.0373

0.0544

0.0443

To=—

100

0.0716

0.0683

0.0706

0.0775

0.0902

0.0805

To= 1

250

0.4760

0.4952

0.3908

0.5861

0.6127

0.6054

To= 2

50

0.0060

0.0060

0.0068

0.0061

0.0082

0.0083

To= 2

100

0.0093

0.0100

0.0113

0.0099

0.0099

0.0118

7”0:2

250

0.0261

0.0304

0.0303

0.0326

0.0310

0.0374

PAR(1) p1p2p304 = 0.95 (4) in (40).

Periodic Augmentation

To= 0

50

0.9989

0.9976

0.9973

0.9953

0.9930

0.9941

7"0:0

100

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

To= 0

250

1.0000

0.9999

1.0000

1.0000

1.0000

1.0000

7"0:].

50

0.8775

0.8420

0.8007

0.7839

0.6998

0.7473

To= 1

100

0.9999

0.9995

0.9990

0.9978

0.9927

0.9983

To= 1

250

0.9999

0.9999

0.9996

1.0000

0.9999

1.0000

To= 2

50

0.0613

0.0608

0.0444

0.0603

0.0441

0.0598

7"():2

100

0.0556

0.0672

0.0429

0.0712

0.0587

0.0697

To= 2

250

0.0420

0.0484

0.0259

0.0580

0.0510

0.0599

Note: See the note of table 3.a, but with DPGs defined in (43).

29




Figure 1

15

0,5

ZrT'E
910'e
068'Z
S9/L'E
6E9'7
£15'Z
2BE'T
zoz'e
QET'ZT
T10'C
SE2E'T
654'T
FES'T
20S'T
Z8E'T
152'T
TET'T
S00'T
0880
¥SL'0
229'0
£0S'0
LLE'D
T5Z'0
9zT'o
0000

2.5

15

0,3

ZFT'E
9T0'e
068'C
S9L'2
6EQ'T
£15'C
8BE'C
792’
9ET'T
1102
588’1
6SL'T
¥ES'T
805'T
ZRE'T
£S2'1T
TET'T
S00'T
0880
¥SL'0
g8z9'0
€050
LLE'D
TSE'0
9zZT'D
000’0

L,

= 0.8, ¢ =

4T = 100,61

1/ (¢1¢23)and us, ~ Niid (0,1). Part (b) Average periodogram of a; 'ys,with asbeen the

s'" element of adefined in (46). Based in 5000 replications.

0.5and ¢4 =

Part (a) Average periodigram of a PI process Ysr = PsYs—1,7 + Usrwith S

¢3
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7 Appendix

Proof of Lemma 1:
First note that, as in the quarterly case studied by Paap and Franses (1999), successively substituting in
(3) yields

T—1
Y = [AgTALTYo + AU + ) AT A AU,
j=1
T—1
= A ALY+ AU+ AGTALAGTDY U, (44)

j=1

This result follows because matrix A LA, is idempotent. First, note that the matrix Ag (see chapter 2 pp 45-
48 of Pollock (1999)) is an S x S lower-triangular Toeplitz matrix associated with the polynomial (1 — ¢sL).
Hence the matrix A L collects the coefficients of the expansion of the inverse polynomial associated with
(1 — ¢sL)°. Based on the form of the matrices Aal and Aj, it is clear that the resulting matrix AglAl

is an S x S matrix with the first S — 1 columns having elements equal to zero and the last column equal
/

s
to the column vector v = | ¢1 @102 d1d2¢3 --- H¢S . Finally note that the last element of v,
=1
S S
that is, Hgbs, is equal to 1, as we have Periodic Integration. Also, as the first S — 1 columns of A LA, are
s=1

equal to zero and the lower left element of this matrix is equal to one, implies that [Ag 1A1]j =A; 1A, for
j =2,3,.... Clearly, (44) provides a representation of (2), where the matrix Aj'A; A, " gives the effect of
the accumulated vector of shocks 25;11 U,_; (see for example Boswijk and Franses (1996), Paap and Franses
(1999) and del Barrio Castro and Osborn (2008a)). The matrix A;'A; A" has rank one and hence can be

written as

AJTA A = ab’ (45)
where, for (45),

S /
az[l@ $aps - H@}
s=2

s s !
b=p.mﬂ@ o [[os - m]. (46)
=3 s=4

Hence using (44) and (45) it is clear that () holds.

Now if we focus on U, this is the S x 1 vector that collects the stacked observations of us, that we
assume that follows a stationary PAR of order P — 1. That is, (1 — gL —- - — z/Jp_Lst’l) Ugr = Egr
with ey, ~ iid (0,02). It is possible to write for U, follows VAR of order P = int [(P + S — 2) /5], that is:

YoUr =V U; 1= = ¥pU, p=E;
U (B)U, = E,
(VoI —¥1B—---—UpB”) =V (D).

With B here playing the role of the lag operator for the S x 1 vectors Y., U, and E,. For the cumulate sum

25:1 E; it is possible to write ﬁ ZJLZJ E; = oW (r). With W (r) been a S x 1 standard vector Brownian

6That is: ~ _

1 0 0 0 0

¢2 1 0 0 0

203 3 1 0 0

1 $20304 P304 ¢4 1 0

At = _ . :
s s s s

H¢>j Hd>j H¢j H¢j 1

L =2 j=3  j=4  j=5 ]

31



motion. Hence for the cumulate sum Z;;ll U._; in (44), it is possible to write:
L7r]

1 ~1
w3 U= oW (1) W (r). (47)

With ¥ (1)~ being the inverse of the polynomial matrix ¥ (B) evaluated at B = I. Result (6) is obtained
straightforwardly using (47), (45) and (44). Finally note that w and w (r) are defined as follows:

w(r)=w lob' W (1) W (r) (48)

w=0 (b’\II L~ e )Y 10)1/2

|
Proof of Lemma 2:
First note that in model (21), by recursive substitution, we can have :

—1 g -1 =1 —1 J -1
v® = {(Afj”)) Aﬂ v+ (A) U+ Y [(Aé3)> A§3>] (a8) v®, (9
j=1
~1
and that the inverse matrix (A(()3)) will be also block diagonal, such that:

(A9) ™" = diag [(a1) ™" (a2) ™ (a3) 7]

with :
[ 1 0 0 0 0]
o 1 0 0 0
593 o3 1 0 0
1 0

(Aé) -1 _ ¢%¢?ﬂ¢i d)é?ﬁi j=1,2,3. (50)

LS
NS

S.‘ S.. SI' 5.' . :
[I# Ilet IIet It - 1
L k=2 k=3 k=4 k=5

~1
The product (A[(JS)> A(13) is also block diagonal, with the following form:

(A53>)‘1 A = diag [(A}) " AL (A) " A2, (A]) " AT

with :
[0 0 0 0 ¢}
00 0 0 d1¢p
1 000 - 0 o305
(A@— Aj= |0 0 0 o 0 GRS | g3

S
000 - 0 e
k=1

N1
Clearly, as we have PI processes the lower right element of the sub-matrices (A(J)) A7 are equal to

s

. -1
H@Q = 1. Hence, it is easy to check that matrix (AE,S)) A§3) is idempotent. Then it is possible to write
k=1
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for (49):
v = (af) TAPY® 4 (a8) U (a8) AP (a8) ;U@ (51)

. 1 ajb] Osxs 0Osxs
(Aé3)> A§3) (A(()g)) = OS’>< S agb/z OS><S
Osxs Osxs asgbj

S !
aj=|1 ¢) ¢heh - H@]

S S !
bj=1|1 ¢ Hﬁg~~ﬁ]-
s=2 s=3

Note that, from (51), each of the 3 PI processes collected in the vector V®) has his own stochastic trend,
T—1

that is b;. ZUﬁ_k, for K = 1,2 and 3. And also we have cointegration between the seasons of each PI
k=1

process. In (51) we have the cumulate sum ZUTB_)j and that we can write:

j=1
LTTJ 1
| Tr] f Z po U‘r
f Z U ZL ] U2 | =@ () P eIl Ww® (). (52)
ZLTTJ U3
In order to prove (52) first note that the connection between u?_ and €% _ for j = 1,2 and 3 is the following
(1 - lZJ{SL cee— wp 1 SLp_l) ul_ = ¢eJ_. Also we assume that E(g) [ el &2 & ]/ is a white noise
vector with the positive definite variance-covariance matrix F {Eéi) Egi)/} = 3 then for the (3 x S) x 1 vector
EP® — [EY, Ef’,Ef’]/ =lel,, .. eb et ek 88, ,5§T]/ we will have:
|Tr]

\}ZE S PRI W ().

Where W) (1) is a (35) x 1 multivariate Vector Brownian motion with variance covariance matrix I, (35)x(35)

and P is a lower triangular matrix of order 3 x 3 such that such that ¥ = PP’. Hence [P ® Is] W(3) (r) will
have a variance covariance matrix ¥®Ig. Now note that ,as (1 — ] L — q/)p L SLP*I) ul_ =gl _, there

will be a vector of season representation for each u/_ j = 1,2 and 3, that is, a VAR representation of order
P=|(p—2)/S]+1 as follows:

(\I/{;—QJ{L7~~-7\II§JLP>U¥:EJ

And in the case of the 3—variate vector U'®) = vy, u?, Uf’]/ we will have:

(0§ - oL - v U — B
(qu3> WL mﬁ?ﬁ) —0® (L)

such that \11(3) i =0,1,..., P are block diagonal matrices with diagonal elements \I’f j =123 fori=
0,1,...,P. Hence we have U(S) v® ()7t E® and it will be possible to write:

[T

[Tr]
1
JT Z UJ( Z v (1 E(S) +op(1).
j=1
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Hence (52) will come naturally. Next from (51) we have:

1 1 —1 _ .
IIRVCINN ( Aff”)) A® (A53)> O (TP oI W® () (53)

VT 77

/
a;b] 0Ogxs Osxs

!
= | Osxs azby

Osxs

O ()T PRI WS ().

!
Osxs Osxs asbg

In order to define the three scalar Brownian motions of lemma 1, that is, w; (r), we (r) and ws (r).
First we focus on [P @ Is] W) (r), and note that the 3 x 3 lower triangular matrix P associated to 3 x 3

variance-covariance matrix >:

M =

will be as follows:

pi1 O 0
P=| pi2 p 0

b13 P23 P33

i 011 0

2 2
o2, 2127913
o2 23 o2

13 11

g11 2\ 2
2lg2 _( 212
22 o11

2 2 2
0'%1 012 013
052 032 a%3 ,
013 023 033

2
02 02
9 o2, 21273
5 o2 23 o2

o2, —(Js) | <
33 J11 2 2

2/g52 _( 212

22 o11

Note that W) (r) is a (39) x 1 multivariate Vector Brownian motion with variance covariance matrix
I(35)x(35), hence we can write W®) (r) = [W (r)", W2 (r) ,W? (r)'},, where each of the W7 (r)’ for j = 1,
2 and 3 are S x 1 multivariate Vector Brownian motions. So we can write:

PoIs|W® (r) = P=

priW1(r)
p12Wt (1) 4 p2aeW? ()

p13W(r) + pasW?2 (r) + p3sW3 (r)

And finally, we can define the scalar Brownian motions w; (r) for j =1, 2 and 3 as:

wy (r) = wy 'p1b TG (1)7

W)

wa (r) = w;lb’QKI!(?’) (1)_1 [plgVVl (1) + paaW? (r)} (54)
ws (1) = wy by w® (1) [prsW! (1) + pasW? (r) + pssW? ()]

with :

with:

1/2

o = (LT ()7 9 (1))
_ _ 1/2
wy = ([phe + 2] U (1)1 9 (1) by )

B B 1/2
w3 = ([pfg + P33 +P§3] by U@ (1) Lp®) (1) ! bB) .

(55)

[ |
Proof of Lemma 3:

We could have also recursive substitution as in (49), note that, it is possible to check that the inverse of

matrix A(()3) in (29) will be as follows:
Is
Osxs

() =

Osxs

-1
Ogx s _A(()yl) (Aéy3)>
-1
Is AW (AéyS)) 7 (56)

()

Osxs
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—1
note the inverse of sub-matrix Aé%), that is, (Aé%)) is a lower triangular matrix as in (50), that is:

Tl 0 0 0 0
3 1 0 0 0
O 1 0 0

1 0

oAt ool o

() -

S. S'
114 14

S S P
[Tet IIed - 1t
k=4 k=5

L k=2 k=3 i
—1 —1
Based on the form of (A((J?’)) and A§3) in (56-29-57-31-77) it is possible to see that the product (A((J3)) X
Ag?’) has the following expression:
(3 3 Osxs Osxs Osx(s—1)V1
(Ao ) X Ay = | Osxs Osxs Osxs—1)v2 | (58)
Osxs Osxs Osx(s—1)vs

-1
hence all the elements of the (35) X (35) matrix (Ag?’)) X Ag?’) are equal to zero, except for its last column.
This last column is the concatenation of the S x 1 vectors v; j = 1,2 and 3. Where the vectors are defined
as follows:

Y R cmﬁ@]
[dl adtéd andtdlel o as]

vy = - Bird}  Badieds  B3dididn 551§[1¢§ ] (59)
[ Gét bl potelel - Bs ]

vi=| ¢} oies @ie3es - ﬁﬂﬁ}

[ 63 ¢3¢3 oodss 1]

-1
Note that the lower left element of matrix is (A63)> X Ag‘g’) is equal to one. And due to its form, it is clear

(3)

~1
that (A((JB)> x A" is idempotent. Hence in this case we also have:

()"

A?@§n+(A§»‘1U9)+(A$»‘1A$D(A§Q_135Uﬁg (60)

Jj=1

B B Osxs Osxs Vlu/
1 1 X /
(A(()3)> A§3) (A(()3)> = | Osxs Osxs V2ug
OSXS OSXS Vsug
s s s 5
%=[H@ [Iet IIet Il 1]
k=2 k=3 k=4 k=5
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—1
Note that uj is the last row of matrix (A(()ys)) (57). And it is also possible to write:

B _ Osxs Osxs a(aibh)

1 1 ;

(A5") ALY (A7) = | Osxs Osxs 3 (ashl oy
OS><S OSXS a3bi°)

S /
aj=| 1 ¢b ¢hel - ché} =123
s=2

M S S S
by=1| 1 ¢ [Jer oi][ed &i][ed - ¢§].
L k=3 k=4 k=5

T—1
Hence clearly the three PI processes share the same stochastic trend b ZUE’_ .
k=1
Note that as in the previous lemma, here it also applies (52) and from (60) and (61) we have:

1 -1 -1 .
ﬁyﬁj = (A) AP (A) wO ) PeIgw® () (62)

Osxs Osxs «af(aiby) .
= | Osxs Osxs B(asby) | V@ M) PRIIWD (r).

/
Osxs Osxs  asbj

Finally the scalar w3 and the scalar Brownian motion ws (r) are as in lemmal see (54) and (55).H

Proof of Lemma 4:

In this case, it is also possible to use recursive substitution as in (49), note that, it is possible to check
that the inverse of matrix Aé?’) in (35) will be as follows:

I 7A(()y1y2) (A(()yz))_l 7Agy1y3) (Agy3)>_1

(Aé3)) e Osxs (Aéy2)) B Osxs . (63)
Osxs Osxs (Aéy?’))i

-1
Also as mentioned previously for (A(()yi)) with ¢ = 2 and 3 we have:

o1 0 0 ]

¢h 1 0
P05 ¢35 1
( A(()yi)) - ¢§¢:§,¢Z ¢%:¢Z (;5:3

_ o0 o o
o O OO

S K K K .o
ITet IIoi IIet IIoi - 1
L k=2 k=3 k=4 k=5
-1
The resulting matrix (A[()S)) X Ag?’):
3! - Osxs Osx(s—1)Wiz2 Ogx(s—1)W13
(Ao) XA = | Osxs Ogx(s—1)W2 Osxs ; (65)

Osxs Osxs Osx(s-1)W3

-1
hence all the elements of (Ag?’)) X Af’) are equal to zero except for the elements of the S x 1 vectors wys,
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w13, Wo and wg, that are defined as follows:

- s
wia = | fud] Pradids Lisdidsey - 515H¢§
s=1

= [ Bud? Bdidd Psdidded - Pus |

S
Wiz = | B¢l Padied Busisied - Bas][42 (66)
s=1

= [ Bud? Bodidd Pozdidded - Pos |

S !
wi=| ol dd soldl - Hqsz:]
s=1

=[ ¢ o9y Gidhey - 1] =23
~1
As in the previous section, due to the form of matrix (Aég)) X Agg) and noting than the last element of

-1
wo and w3 are equal to one, it is possible to see that matrix (Aé?’)) X A(13) is going to be idempotent.

Hence we are also able to write for (21) with Aés) and Agg) defined in (35):

v(3)

T

(Aé?’)) -1 Agg)yo(g) n (Aé?’)) -1 U 4 (Agg)) —1 Agg) (A(()S)) -1 SUS’,)J- ©7)
j=1

BV @) (! Osxs Wiguhy Wiguj
(A() ) A1 (A() ) = Osxs W2u/2 Osxs
Osxs Osxs wauj

S S S S
uj = [ e TI¢: TI¢: IJei - 1 ] i=23.
k=3 k=5

k=2 k=4

. . . B TAG) (A®) L.
It is possible to see that we can rewrite (AO ) A (AO ) in (67) as:

_ _ Osxs fF1(aiby) B2 (aibs)
1 1 2 3
(A(()S)) Agg) (A(()?’)) = | Osxs agb}, Osxs (68)

!
Osxs Osxs azbj

S /
aj=|1 ¢ ¢p0% - H@] j=12.3
s=2

S S S
b= 1 of[Jer o [Jer of]Jer - %1 j=2,3.
k=3 k=4 k=5

T—1

Hence in this three PI processes system we have two common stochastic trends, that is bg ZUT{ x and bg
k=1
T—1
S,
k=1
Note that as in the previous lemma, here it also applies (52) and from (67) and (68) we have:
L 3 3)) ' A3 3\ ! 1
ﬁYleJ = (A7) AP (AP) wO ) PeIgw® () (69)
Osxs PBi(aiby) B2 (aiby)
= | Osxs  aby Osxs [ TO ()P I (1),
Osxs  Osxs azbj

Finally the scalars we and ws and the scalar Brownian motions ws (1) and ws (r) are as in lemmal see (54)
and (55).1
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