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Abstract

I study a committee that is considering a costly project whose
distributive consequences are unknown. The committee is divided into
two factions. Support of both factions is required for the project to be
approved. By delaying approval, the committee can gradually learn
which faction benefits from the project. I show that a project that
gives a lower payoff to everyone is more likely to be approved than a
more socially efficient project. Furthermore, the equilibrium amount of
learning is excessive, and a deadline on adopting the project is socially
optimal in a wide range of settings.
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1 Introduction

Reforms and other collective decisions often involve distributive consequences
that are initially unknown but gradually revealed. Consider, for example, a
regional legislature that can choose whether to offer a subsidy to a foreign
firm. If the subsidy is offered, the firm will open a production facility in the
region. The legislature does not know whether the firm will place the facility
in city A or in city B. Both cities would have to share the cost of the subsidy,
but only the city where the facility is placed will reap the benefits. City B
has better transport connections, so it is a more likely candidate. However,
the national government is considering whether to build a railway line to
city A — if it announces its intention to do so, the firm will prefer to build
the facility there. By delaying the vote on the subsidy, the legislature can
update its belief about the government’s likely decision, and hence about the
identity of the city that would benefit from the subsidy.

Collective decisions on such projects, in which the distribution of bene-
fits is initially unknown but gradually revealed, are common in politics and
economics. They include countries choosing to join or leave free trade zones
without knowing the direction of the resulting change in relative prices; firms
deciding to jointly lobby for increased patent protection prior to knowing
which of them wins a patent race; and legislatures choosing to increase sub-
sidies for alternative energy sources without knowing which technology will
prove most promising (and hence which firms will benefit from the subsidy).
In this paper, I explore the implications of such distributive uncertainty on
voting outcomes, and their implications for optimal decision rules.

In more detail, the paper models a committee that needs to decide whether
to implement a costly project. The committee consists of two factions, called
A and B. The project can be of two types. One type of the project brings
a positive payoff to faction A, while the other — to faction B. The type is
initially unknown, and there is a common belief about it. Time is continu-

ous. At any point in time, the committee can either approve the project,



which ends the game, or continue waiting. As long as the committee waits,
at any point a public signal can arrive and reveal the project’s type. Arrival
of a signal revealing each type corresponds to a jump in a Poisson process.
The type that favours faction A is more likely to be revealed sooner — hence,
as long as no signal has arrived, the common probability that the project
benefits faction A is decreasing.

Approval of the project requires support of both factions.! Because of
this, once the type of the project is revealed, the faction that does not gain
from the project will vote against it forever, blocking its approval. More
generally, the project can only be approved if for each faction the probability
that the project benefits it is sufficiently high. Hence, the collective decision
is driven by the common belief about the project’s type; and the project is
approved when this belief reaches a certain intermediate value.

That value is determined by the asymmetry in the factions’ behaviour.
Because the belief is only becoming worse for faction A, it does not gain
from learning. Instead it simply votes for the project until its expected
payoff from approving it becomes negative. Faction B, on the other hand,
gains from delaying approval, because this makes it less likely that a project
from which it does not gain is approved. However, it knows that after a
certain point, faction A will cease to support the project. Anticipating this,
faction B switches its decision and votes for the project.

This logic leads to two main results. First, for a significant range of
parameter values, the project is more likely to be approved whenever its cost
is higher. Hence, a project that is ex ante and ex post worse for everyone
has a higher probability of being implemented than a more efficient project.
The reason is that, when the cost of the project is higher, faction A stops
supporting it earlier. This forces faction B to also switch its decision earlier,

or else the project would never be approved. Because both factions agree on

'If one faction has sufficient weight to be able to force approval on its own, the problem
becomes equivalent to a standard model of individual experimentation as in Keller et al.
(2005).



the project at an earlier time, there is a lower probability that the project’s
type is revealed (preventing approval) before that.

Second, T show that, unless the size of faction A is very small, the equi-
librium amount of information acquisition is excessive — in other words, the
committee delays the decision for too long. Because of this, it is socially
optimal to impose a deadline, forcing the committee to adopt the project
before the deadline or never at all. The reason is that adopting a project
earlier makes it less likely that nature reveals the type and prevents an ex
ante socially efficient project from being approved. Because a deadline res-
ults in the project being adopted at a time when it is more likely to benefit
faction A, it also redistributes surplus from faction B to faction A — hence,
the efficiency gain from it is higher when the weight of faction A is greater.

The rest of this section discusses the related literature. Section 2 intro-
duces the basic model, in which only one type can be revealed, and players
do not discount their future payoffs. It then derives the equilibria, and es-
tablishes the main results. Section 3 analyses a more general setting with
discounting and a possibility of either type being revealed. Section 4 con-

cludes. All proofs are in the appendix.

Related literature. The idea that the payoff consequences of collective
decisions are ex ante uncertain dates back to at least Fernandez and Rodrik
(1991). More recently, researchers have looked at settings in which decision-
making bodies can also vote to learn these consequences. One strand of
literature applies the idea of individual experimentation to a voting frame-
work. In Strulovici (2010), each voter is unsure about her preferences over a
proposal. Voters are ex ante identical, and have identically distributed types
that indicate whether they stand to gain or to lose if the proposal is adopted.
As the decision is being delayed, each voter can learn about her type. A key
result is that the committee stops learning too early compared to the social

optimum — a conclusion that is the opposite of the result of this paper. In a



related framework, Messner and Polborn (2012) study the effect of different
voting rules, showing that a supermajority rule is optimal. Hudja (2019) and
Freer et al. (2020) study a similar setting in laboratory experiments.

Another approach models collective learning as acquiring information
about a common state. In these models, voters choose between two altern-
atives, one of which is preferred by all voters in one state, while another is
preferred by all voters in the other state. A classic example is a jury deciding
whether to convict or acquit the defendant, with all jurors agreeing that the
defendant should be convicted if he is guilty, and acquitted if he is innocent.
In Chan et al. (2018), a committee is deciding on whether to approve one
of two alternatives or continue gathering information about a state of the
world. All members want to select the alternative that matches the state of
the world, although preference intensities differ. The reason why the commit-
tee, at some point, chooses to stop acquiring information is that information
acquisition is costly. Anesi and Bowen (2018) analyse policy experimentation
in which a committee, at each stage, is voting on a tax rate, on a redistribu-
tion scheme, as well as choosing between a risky reform and a safe alternative;
selecting the reform enables learning whether it is good or bad. As in Chan
et al. (2018), all members agree that a good reform is better than the status
quo, and a bad reform is worse; the reason why information acquisition stops
is also due to cost: acquiring information requires selecting the reform, which
is costly if the reform is bad. Anesi and Safronov (2021) analyse the impact
of rules that allow costly deliberation to stop. In their model, at each stage,
the committee can vote to stop information acquisition; doing so enables it
to make a vote on approving or rejecting the reform. The paper shows how
such deliberation rules can bring Paerto-inefficient outcomes.?

The key difference between these two lines of research and this paper is

that in my model, voters are learning about the distributional consequences of

2A number of papers also study policy experimentation by multiple alternating prin-
cipals, but without voting. See, for example, Callander and Hummel (2014).



a proposal. Thus, unlike models of individual experimentation, in my paper
a signal reveals the payoffs of all voters from the project. Hence, there is a
common belief about the project’s type, which drives the collective decision.?
At the same time, unlike models of jury decisions, payoffs need not have the
same sign for all voters — instead, voters of different factions have opposing
preferences.* This information and payoff structure underlies the results of
the paper. Specifically, it implies that when information is fully revealed
(and, more generally, when the common belief is close to zero or one) the
project is always rejected even if it is socially optimal to adopt it.> Hence,
the project can only be approved at an intermediate range of beliefs, which
implies that a costlier project is more likely to be approved. The fact that in
each state the two factions receive opposing payoffs means that, unlike earlier
models in which costless information never hurts, in this model full revelation
of information is not socially optimal, as it blocks welfare-improving projects
from being approved. This implies the optimality of a deadline.

Overall, models of individual experimentation are relevant for settings
in which ex ante similar voters are unsure about their individual payoffs
from adopting the proposal, but not about the nature of the proposal itself.
Models of jury decisions apply to situations in which voters are uncertain
about whether the proposal is good or bad for everyone. My paper, on the
other hand, applies to settings in which voters have known factional identities
and are learning about the distribution of the payoffs from the project across

factions.

3In the language of models of experimentation, in my model the type of each voter is
perfectly positively correlated with the types of members of the same faction, and perfectly
negatively correlated with the types of members of the other faction. Note that while a
faction acts as if it was a single player, the size of each faction matters for the welfare
analysis.

4For a model of voting under similar adversarial preferences in a setting without col-
lective learning, see Kim and Fey (2007).

5In experimentation models, in contrast, if all information is revealed the decision
depends on whether the majority of voters gains or loses from the project. In jury models,
if information is fully revealed all voters are in favour of the socially optimal alternative.



A related paper that similarly studies information acquisition by a divided
committee with conflicting preferences is Ginzburg and Guerra (2019). In it,
a committee decides whether to learn the state before choosing to accept or
reject a proposal. Learning the state of the world is a one-shot decision, and
both states are equally likely to be revealed if the committee votes in favour
of learning. Here, on the other hand, the state is revealed gradually, and
one state is revealed faster than the other — hence, the “intensive margin” of
learning becomes an object of analysis.

The results of the paper have a parallel in the literature on legislative
bargaining (see Eraslan et al., 2020 for an overview). In particular, in Austen-
Smith et al. (2019), inefficient policies are more likely to be chosen because
they would be easier to repeal. A similar effect emerges in my paper: more
costly proposals are more likely to be adopted. However, this happens not
because of concerns over ability to repeal (once adopted, the proposal is
irreversible), but because a more costly project forces the committee to come

to an agreement earlier.

2 Basic Model and Results

2.1 Model setup

A committee consisting of factions A and B is considering whether to im-
plement a project. There is continuous time t. At every point in time,
each faction decides between voting for and against the project. Neither
faction has sufficient weight to force the committee to approve the project.
Hence, the project is implemented once both factions vote in favour of it —
this means, in particular, that any faction can block the project by voting
against it forever. When the project is approved, the game ends and payoffs
(discussed below) are realised.

Implementing the project will impose a cost ¢ € (0,1) on each of the

factions. At the same time, if implemented, the project will generate a

7



benefit whose value is normalised to 1. The project has an unknown type
0 € {a,b}. The type of the project corresponds to the faction that receives
the benefit. Thus, if a project of type a is approved at time ¢, faction A
receives a payoff of 1 — ¢ > 0, while faction B receives a payoff of —c¢ < 0.
Similarly, if a project of type b is approved, faction A receives a payoff of —c,
while faction B receives a payoff of 1 — ¢. Until the project is approved, each
faction receives a payoff of zero.

If the project has type 8 = a, at any time a public signal can arrive and
reveal its type. The arrival of a signal corresponds to a jump time of a Poisson
process with intensity A. As long as the signal has not arrived, players are
updating their beliefs about the type. Let py be the common prior probability
that 6 = a, and let p; be the probability that 6 = a conditional on no signal
arriving before time . In the subsequent text, I will refer to p, as “the belief”.
All aspects of the game except for the type are common knowledge.

[ will focus on Markov strategies with p; as a Markov state. For each
faction i € {A, B}, a Markov strategy implies a set S; € [0, 1] of beliefs,
such that faction i votes to approve the project if and only if p; € S;. Thus,
S; fully describes faction ¢’s strategy. Note that, once a signal arrives, p;
remains constant at zero or at one forever. Hence, after a signal arrives, the
project will never be approved, as one of the factions strictly prefers to vote
against it.

As usual in voting games, the game has many trivial equilibria, for ex-
ample, one in which each faction votes against the project at all beliefs.
Hence, I will restrict attention to equilibria with the following characterist-
ics: at the equilibrium a faction votes to approve the project at belief p, if
and only if its expected payoff when the project is approved at p, is larger
than its expected payoff from delaying the project by any (possibly infinite)
amount of time before returning to playing according to the equilibrium.
This eliminates weakly dominated strategies in way similar to the standard

refinement applied in voting games, and assumes that a player votes as if she



was pivotal.

Formally, consider strategies Sa, Sp, and take any belief p, € (0,1). Let
u; (p;) be faction i’s expected payoff if the project is approved at belief p;.”
Given the strategy S_; of the other faction, for each T > 0, let V; (p;, T, S_;)
be faction i’s expected payoff at belief p, from voting against the project for
T units of time before switching to voting in favour of it if no signal has
arrived during that time. T will assume that strategies Sa, Sp constitute an
equilibrium whenever for each i € {4, B} and all p; € [0, 1], we have p; € S;
if and only if u; (p;) > V; (p, T, S_;) for all finite or infinite 7" > 0.

2.2 Equilibrium

Consider a belief p;. The payoffs of factions A and B from approving the

project immediately equal

ua(pe) =pe(1—c)— (1 —p)ec=p —c,
and

up(pr) = —pic+ (1 —p;) (1 —¢c)=1—c—ps.

Note that, at a given belief, any faction can ensure a payoff of zero by
voting against the project forever, as doing so will mean that the project is
never adopted. Consequently, faction i € {A, B} will not vote for the project
when its instantaneous payoff u; (p;) is negative. Therefore, faction A will
vote against the project at all p; < ¢, while faction B will vote against the
project at all p, > 1 — c¢. As a consequence, if ¢ > %, then at any belief at
least one of the factions will vote against the project, and hence the project
will never be approved. If ¢ < %, the project can only be approved when

pe € e, 1 —¢].

6See also Strulovici (2010) for a similar refinement in a continuous-time voting game.
"In the language of the literature on strategic experimentation (Keller et al., 2005),
u; (pt) is the myopic payoff of faction ¢ from adopting the project at belief p;.



As the approval is being delayed, players are updating their beliefs about
the type of the project. If no signal arrives by time ¢, the belief equals

poe—)\t 1

Tpoe Mt (T-po) 1+ et

Pt (1)

As p; is decreasing with time, faction A becomes increasingly more pess-
imistic about its payoff from the project. Hence, it receives no benefit from
learning, and has no incentive to delay voting for the project in order to learn
its type. Instead, it votes for the project whenever its myopic payoff w4 (p;)
from adopting the project is greater than zero — that is, as long as p; > c.

The following proves this formally:

Lemma 1. At any equilibrium, faction A wvotes for the project if and only if
P € [C, 1]

This means, in particular, that if the initial belief pg is below ¢, the project
is never approved.

For faction B, delaying the decision makes it more likely that a signal
arrives and reveals the project’s type to be a. Hence, delaying adoption of
the project benefits faction B, as it makes it less likely that a project of type
a is approved. However, once p; falls to ¢, any further delay means that the
project is never approved, as faction A would switch to opposing it. Hence, at
p: = ¢, faction B has to choose between approving the project immediately,
or never adopting it. It chooses the former if ¢ is low enough that its payoff
from approving the project at p, = c is positive. Otherwise, the project is
never approved. The following result captures this intuition and describes
the time at which the project is approved at the equilibrium:

Lemma 2. If ¢ < min {po, %}, the project is approved at time t* = % In (%%)
when the belief equals ¢, unless a signal arrives before that. If ¢ > min {po, %},

the project is never approved.
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Since approval of the project requires support of both factions, neither
can receive a strictly negative payoff at the equilibrium. At the same time,
Lemma 2 implies that approval of the project, if it happens at all, takes place
when faction A is indifferent between approving and rejecting the project.
Hence, its expected payoff is zero in equilibrium. This will happen even when
po is high, i.e. when the project is ex ante likely to favour it. Faction B,
however, can receive a positive expected payoff. Hence, the faction whose
preferred type tends to be revealed with time is worse off than the faction

whose preferred type is not revealed.

2.3 Project quality and approval chance

We can now turn to the first main result of the paper, which relates the
project’s efficiency to its chance of being approved. Recall that a project, if
approved, imposes a cost ¢ on each faction. Thus, given the belief, a project
with a lower cost Pareto-dominates a project with a higher cost. Does the
outcome of the vote reflect this efficiency ranking?

If ¢ < min {po, %}, Lemma 2 implies that a project of type b is approved
with certainty. A project of type a is approved once the belief reaches c, as
long as no signal arrives by then. Hence, approval is more likely if it takes
less time for the belief to reach ¢, which happens if ¢ and the initial belief p,

are closer to each other. This implies the following result:

Proposition 1. If ¢ < min {po, %}, the ex ante probability that the project

1—pg . . . . . . .
2, which is decreasing in py and increasing in c. If ¢ >

min {pg, %}, the project is never approved.

s approved 1is

Thus, the probability of approval is strictly increasing in ¢ for any project,
except those that have zero chance of acceptance. In other words, a project
that is ex ante and ex post less Pareto-efficient has a higher chance of being
approved. The reason for this is that faction A is more reluctant to support

a project with a higher cost. Hence it switches from supporting to opposing
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Figure 1: Probability that the project is approved as a function of ¢, for
Po = 0.8.

the project earlier. As a result, faction B will wait less before switching to
support the project. Because a shorter delay makes it less likely that the
type is revealed, it implies that the project has a higher ex ante chance of
being approved. Figure 1 shows the probability of approval as a function of
the project’s cost c.

Furthermore, the probability that the project is approved is also decreas-
ing in pg. Thus, although the voting rule is symmetric in the sense of requiring
consent of both factions for approval, a project has a higher chance of being

approved if it is ex ante more likely to favour faction B.

2.4 Optimal amount of learning

How can the decision-making procedure be modified to improve efficiency? In
many decision-making bodies there is a minimum waiting time between the
submission of a proposal and a final decision on it. For example, parliaments
often require several readings to approve a law, with a minimum time between
them. Such arrangements impose a minimum amount of learning before a
project can be adopted. Conversely, some decision-making procedures impose
a deadline after which the proposal cannot be adopted — this has the effect
of limiting the maximum length of learning. Under the utilitarian welfare
criterion, when are such rules optimal?

Suppose the share of faction A’s members is «, and the share of faction
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B’s members is 1 — a. Thus, « is the weight of faction A’s utility in the
utilitarian welfare function. If ¢ > min { Do, %}, the project is never approved.
A deadline or a minimum waiting time has no effect in this case. Otherwise,
the effect of planner’s interventions depends on «, as the following result

shows:

Proposition 2. Suppose ¢ < min {po, %} If ¢ > «, not imposing a decision
rule is soctally optimal. If ¢ < «, it is socially optimal to impose a deadline

of

T—=—1In
1—po p*

1 po 1-—p
A

) , where p* = min {py, 1 — c} .

Hence, a minimum waiting time is never socially optimal, while a deadline
is optimal if the share of faction A is sufficiently large.

Intuitively, a minimum waiting time that is smaller than ¢* as defined
in Lemma 2 has no effect, since the committee will anyway wait until ¢*.
A minimum waiting time greater than ¢* means that by that time either
the type is revealed, or the belief p; falls below c. In both of these cases,
the project will not be approved, and each faction will receive a payoff of
zero. At the equilibrium, however, the ex ante expected payoff is positive for
faction B, and zero for faction A — hence, imposing such a minimum waiting
time is suboptimal.

A deadline, on the other hand, can force the committee to agree on ap-
proving the project at an earlier time than ¢*. This has two effects. First,
it reduces the probability that the type is revealed before the committee
agrees on approving the project. This makes approval more likely, increasing
welfare. Second, by forcing approval when the belief is higher, a deadline
additionally benefits faction A at the expense of faction B. Because of this,
whenever the ex ante welfare gain from the project is sufficiently high, and
the share of faction A is large — that is, when c is small and « is large — the
earliest deadline at which the project can still be adopted is socially optimal.

That earliest deadline is the time at which the belief equals min {py, 1 — c}.
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Proposition 2 implies that when ¢ < «, the equilibrium amount of learn-
ing is excessive. A benevolent social planner should then reduce the amount
of information that the committee acquires by imposing a deadline. In par-
ticular, when the cost of the project is sufficiently low relative to other para-
meters of the model, it is socially optimal to set the tightest possible deadline
— that is, to force the committee to choose between approving the project

immediately or never at all. The following result shows this formally:

Corollary 1. If ¢ < min{a, 1 —])o,pg,%}, it is socially optimal to set a
deadline T = 0.

Hence, for low-cost projects, not acquiring any information is socially

optimal.

3 General case

This section generalises the preceding analysis to the case when future payoffs
are discounted and both types can be revealed by nature.

Suppose that the committee discounts payoffs at an exponential rate r >
0. Suppose further that types a and b are revealed at rates \, and )\,
respectively. Assume without loss of generality that A, > \,. If A, = A, the
belief does not evolve with time until a type is revealed. Hence, at a Markov
equilibrium the project is either adopted immediately, or never adopted. The
former happens when both factions are in favour of the project ex ante, that
is, when pg € [¢, 1 — ¢]; otherwise, the latter happens.

From now on I will focus on the more interesting case when A\, > \. The
belief that the project is of type a conditional on no signal arriving before

time ¢ equals
—“Aat
poe” " 1
= = (2)

Pr= “Aat _ ot 1=po ,(Ag—Np)t’
poe~ el + (1 —pg) et 1+ p—oe( b)
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which, as before, is decreasing with time. Hence, faction A, as before, does
not gain from learning, and votes for the project if and only if its myopic
payoff from the project is positive. Therefore, the statement of Lemma 1

continues to hold, as the following result shows:

Lemma 3. At any equilibrium, faction A votes for the project if and only if
Pt € [C, 1]

However, faction B now faces a tradeoff. On the one hand, a delay reduces
the probability that the project of type a is adopted. On the other hand,
it also reduces the payoff from the project due to discounting. Furthermore,
type b can now be revealed with time — hence, waiting now also reduces the
probability that a project of type b is approved. This tradeoff determines the
point at which faction B starts voting in favour of the project — that is, the
time at which the project is adopted if no signal arrives by then.

When p; < ¢, the project will never be adopted, since faction A will
vote against it. Thus, as before, the project cannot be approved if ¢ > py.
Furthermore, again as before, if ¢ > %, there is no belief at which both factions
agree to approve the project, so the project also cannot be approved.

Otherwise, at all p, > ¢, faction B can choose to approve the project
at any time before p, reaches c. It then faces a standard optimal stopping
problem, with the restriction that if the project is not approved when the
belief reaches ¢, it will never be approved, and faction B will receive a payoff
of zero.

If without the restriction the solution to this stopping problem involves
stopping at the belief that is greater than ¢, then it also optimal for faction
B to switch to approving the project at that belief. On the other hand, if
the unrestricted solution involves stopping at a belief below ¢, then at p, = ¢
faction B knows that continuing to oppose the project means that its payoff
is zero. Hence, at p; = c it will support the project if its instantaneous payoff
from it is positive — that is, if ¢ < %

This reasoning implies that the equilibrium looks as follows:
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Lemma 4. Lel ¢ := VAP e e % < %, and let

. WZC ifCE(O,E]7
p = ptr l—c

c if ce (e 3]

If ¢ < min {po, %} and py > p*, then at the equilibrium the project is

Aa—Xp 1-po p*
arrives before that. If ¢ < min {po, %} and py < p*, then at the equilibrium

approved at belief p* and at time t* = L ln< e l_p*>, unless a signal

the project is approved immediately with probability one. If ¢ > min {po, %},

then at the equilibrium the project is never approved.

To see the intuition, consider the case when ¢ < min {pg, %} and the initial
belief pg is greater than p*. When ¢ < ¢, the solution of the aforementioned
unrestricted stopping problem (which in this case equals p*) is weakly greater
than c. In this case, faction B switches to supporting the project when the
belief reaches that solution. On the other hand, if ¢ > ¢, the unrestricted
solution is smaller than ¢. Then faction B delays approval until the belief
reaches ¢, and at that point votes for the project.

At the same time, if ¢ < min {po, %} and pg is already below the optimal
solution, the project is adopted at the start. Finally, when ¢ > min {po, %},
the project, as discussed above, is never approved.

Note that when A\, = r = 0 as in the baseline model, we have ¢ = 0
and p* = c. Hence the equilibrium becomes identical to the one described in
Proposition 1.

When ¢ < ¢, by Lemma 4 the belief p* at which the project is approved
is decreasing in ¢. Thus, an increase in the cost of the project means the
committee waits longer, making approval less likely. On the other hand, if
¢ > ¢, the project is approved at belief p* = ¢, as in the baseline model.
Then an increase in ¢ makes the committee wait less, increasing the chance

of approval. Formally, we have the following result:
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Figure 2: Probability that the project is approved as a function of ¢, for
r=1, A\, =15, \y = 3, and pg = 0.8.

Proposition 3. If ¢ > min {po, %}, or if po < p*, then the probability that
the project is approved does not depend on py or c. Otherwise, the probability
that the project is approved is decreasing in po; furthermore, it is decreasing

in ¢ when ¢ < ¢, and increasing in ¢ if ¢ > C.

As before, the project is more likely to be approved if it is more likely to
favour faction B. Furthermore, for a certain range of costs, a less socially
efficient project is more likely to be approved. This result generalises the
result of Proposition 1 — in particular, when )\, and r approach zero, then ¢
approaches zero as well, and the probability of approval is increasing in the
project’s cost ¢ for almost all values of c.

Figure 2 shows the probability of approval as a function of ¢. As one
can see from the figure, if the cost of the project is very low, then p* > py,
and the project is approved with probability one. As the cost increases, the
probability of approval falls. Once the cost exceeds ¢, the probability of
approval starts to increase with the cost. Finally, if the cost is exceeds %, the
project is never approved.

Consider now the optimal decision rules. As before, a minimum waiting

17



time increases the amount of learning, while a deadline reduces it. Further-
more, as before, a deadline makes approval more likely and redistributes
surplus from faction B to faction A. Recall that o denotes the weight of
faction A in the social welfare function. Then the following result describes

the optimal decision rules:

Proposition 4. Suppose ¢ < min {po, %} Ifpo < p*, orifc > max {a, VAptr }7

VAo +r+vVAp+r
not imposing a decision rule is weakly optimal. In all other cases, a deadline

15 optimal.

Hence, when o > c¢ the equilibrium amount of information acquisition
is inefficiently large, and a deadline is required to correct this. This result

mirrors the result of Proposition 2. In addition, the equilibrium amount of

VvV )‘b +7‘
NI VETER v

(so learning is slow), or when r is large (so delaying reduces the present value

learning is also too high if > c. This can hold when ), is large
of payoffs by a large amount.

Note that when A, = = 0 as in the baseline model, then p* = ¢. Hence,
the condition py > p* automatically holds when ¢ < min {po, %}, while the
second condition is equivalent to ¢ > o — hence, the result becomes identical

to the one in Proposition 2.

4 Conclusions

Collective decisions that involve uncertainty are common. This paper has
looked at settings in which the uncertainty concerns distributive consequences
of a decision, and the amount of learning can be endogenously chosen. For
these situations, the paper has shown two results. First, in a large range of
settings, the equilibrium amount of learning is excessive. Second, the need for
consensus between factions with opposing interests ensures that less efficient

projects are more likely to be approved.
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Appendix

Proof of Lemma 1. If p, < ¢, then for any Sg, ua (p;) < Va (ps, 00, Sp) =
0, where V4 (pg, 00, Sp) is faction A’s payoff from voting against the project
forever. Hence, any p; < ¢ does not belong to S4.

Consider now any p; > ¢, and fix Sg. Suppose faction A votes against the
project for T" units of time before voting in favour of it. Doing this implies a
(possibly infinite) time 7 > T such that the project is approved at time 7 if
no signal arrives by then. The probability that no signal arrives by the time
7 equals e~ for a project of type a, and equals 1 for type b. Hence, for any

T > 0 and any Sg, we have

Va(pe,T,S8) =pr(1—c) e = (L—py)c
<pe(l—c)=(1—p)e
=UuA (Pt)-

Hence, if p; > ¢, then ua (p;) > Va(p,T,Sp) for all T > 0, and thus

e € Sa. Il
Proof of Lemma 2. Consider first the case when ¢ > % Then at any
belief p;, > ¢, the payoff of faction B if the project is approved immediately

18

ug(p)=1—p)(l—¢c)—pc=1—p —c <O,

and hence B votes against the project at p;. Hence, there is no p; at which
both A and B vote for the project, so the project is never approved. Similarly,
if ¢ > pg, then the project is never approved, because faction A will never
vote in favour of it except when the type is revealed to be a, in which case
faction B will vote against the project.

Now consider the case when ¢ < % and ¢ < py. Take any p; > ¢. By con-

tinuity of (1), there exit sufficiently small € > 0 such that p,,. > ¢. Suppose
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faction B votes against the project for € units of time before switching to
voting in favour of the project. Then the project is adopted ¢ units of time
later unless its type is @ and a signal reveals it during this period. The payoff

of faction B from then equals

Vi (pr,,84) = (1 —pr) (1 —¢) - Ptcef)‘s > (1—p) (1 —c)—pic=up(p:)-

Thus, faction B votes against the project at p;.

Now take p, = ¢. Then up (c) = (1 —¢)* — ¢ > 0. Given the strategy of
faction A, if faction B votes against the project for any 7" > 0 units of time,
the project will not be adopted. Hence, ug (¢) > Vg (¢,T,54) = 0,VT > 0.
Therefore, faction B votes in favour of the project.

Hence, the project is adopted when the belief p, reaches c. Substituting

pr = ¢ into (1) and solving for ¢ yields the expression for the time t*. O

Proof of Proposition 1. By Lemma 2, if ¢ > min {po, %}, the project is

never approved. If ¢ < min {po, %}, the project is approved at time t* if no

signal arrives. This happens with probability e=*". Substituting ¢ = #* into
t*

(1) and using p; = c yields e ™" = 1;%1%6. Then the ex ante probability

that the project is approved equals

e C
poe ™ + (1 = po) = (1 — po) <ﬁ+1)>

which is equivalent to the expression in the proposition. O

Proof of Proposition 2. Let ¢ < min {po, %} By Lemma 2, the project
is approved at time t* and at belief p; = ¢, if no signal arrives by then.
Setting a minimum waiting time 7" < ¢* has no effect. Setting a minimum
waiting time 7" > t* means that the project is not approved. Recall that at

the equilibrium the project is only approved when each faction’s payoff from
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approval is weakly positive. Hence, setting a minimum waiting time 7" > t*
weakly reduces welfare. We can conclude that a minimum waiting time is
always weakly welfare-reducing.

Consider now a deadline T. If T > t*, the deadline has no effect. Suppose
now that T < t*. If T is such that the project is never approved, this
intervention is not optimal by the same logic as above. Suppose instead that
T is such that the project is approved at T unless a signal arrives by then.
In this case, if § = b, the project is approved with certainty; and if 6 = a,
the project is approved with probability e T, Hence, the expected utility of
faction A equals

Us=poe T (1—c)—(1—po)ec,

while the expected utility of faction B equals
Up = —poe e+ (I—po)(L—c).
Then the utilitarian welfare of the project equals

W =aUs+ (1—«a)Usp
:po(oz—c)e_)‘f—i—(l—po)(l—a—c).

If a < ¢, welfare is increasing in T, so it is optimal to let T — t*, that
is, not to impose a deadline. If o = ¢, welfare is constant in T, so it is also
weakly socially optimal not to impose a deadline.

If o > ¢, welfare is decreasing in T, so it is optimal to impose a deadline
T equal to the earliest time at which both factions can vote for the project.

If pg < 1 — ¢, this corresponds to T = 0. If py > 1 — ¢, this corresponds to T'

such that p; = 1 — ¢; using (1), that time equals %111 (13270 ﬁ) Combining

these two observations yields the result. O

Proof of Corollary 1. If ¢ < min{a,1 — po, po, 5}, then ¢ < min {po, 3 }

and a > ¢, hence by Proposition 2 it is optimal to impose a deadline of 7.
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Furthermore, the condition on ¢ implies that py < 1 — ¢, and hence p* = po,
so T =0. O

Proof of Lemma 3. If p; < ¢, then uy (p;) = e (p; — ¢) < 0. Thus, for
any Sg, ua (pr) < Vi (pt,0,Sp) = 0. Hence, any p; < ¢ does not belong to
Sa.

Consider now any p; > ¢, and fix Sg. Suppose faction A votes against the
project for T units of time before voting in favour of it. Doing this implies
a (possibly infinite) time 7 > T such that the project is approved at time 7
no signal arrives by then; otherwise, it is never approved. The probability
that no signal arrives by the time 7 equals e~*" for a project of type a, and

e~™7 for type b. Hence, for any T > 0 and any Sp, we have

VA pta T, SB = [pt (1 C e T — (1 — pt) ce_’\bT] e Tlt+T]
< [pt (I—c)e ™ —(1—p,) Cef)‘bq el
[pt (1 C) (1 — pt) C] e~ Qotr)T—rt
Ug (pt) e ()\b+T)T rt
ua (pt)

where the last inequality follows from the fact that ua (p;) = pi (1 —¢) —
(1 —pi)c >0 for all p, > ¢. Hence, if p; > ¢, then ua (pr) > Va (p, T, Sp)
for all 7' > 0, and therefore p;, € Sj4. n

Proof of Lemma 4. As discussed above, if ¢ > min {pm %}, the project
is never approved. For the rest of the proof, consider the case when ¢ <
min {po, %} Let t be the time at which faction B switches to voting for the
project. Let Wg (t) be the expected payoff of faction B as a function of t.

Then faction B solves

max Wg (t) subject to p; > c. (3)
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Note that W (t) = —poce” X" + (1 — pg) (1 — ¢) e~ P+ and

t
aWa—i() — (O + 1) poce QI (0 4 7) (1= po) (1 — ¢) e~ Kot

This derivative is positive if and only if

(A +7) (1= po) (1= ) e” ™0 < (A + 1) poce 7"

<)\a+r Do c (4)

(>\a—>\b)t
< .
‘ M+rl—pyl—c

Suppose that pg < p*; note that this can only hold together with ¢ <

1

min {po, %} when p* > ¢, that is, when p* = . Then we have

X o
1+#+: lic
1
[
Po=1" 35 ¢
Apt+r 1—c

Do <)\b—|—r1—c
1l—po =~ AN+717 ¢
Aa +7 Po c

M+rl—pl—c

—

<1,

and hence (4) cannot hold, because A\, > ), implies that e®«=*) > 1. Thus,
Wi (t) is decreasing in ¢, and hence the optimal ¢ equals zero, so the project
is adopted immediately.

Suppose instead that py > p*. Then (4) holds if and only if

1 )\a—FT’ Do C ~
t < 1 =t.
Ao — Np n()\b+r1—p01—c)

Thus, £ is the solution to the unrestricted stopping problem. At time ¢,

the belief equals p; = L

ovees e\ 2 :
Ifce <0, ﬁ’ﬁ], then % < (£9)7, so p; > ¢, and the constraint
in (3) is satisfied. Then faction B switches to voting for the project at t* = ¢,

I *=p; Yt | impli
when the belief equals p* = p;. Note also that ¢ € (0, mim implies
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that % < (1;‘3)2, and hence

c

i} 1 1
D =p;= T > — =C.
1+)\b+:ﬁ 1-'-70

VaFr 1 Aot 1—c)? R OWn(t)
If c € <W&bﬁ,§},then > (7‘3) , 50 p; < ¢. Then =3~ >0

for all t such that p; > ¢, and we have a corner solution at which faction B
switches to voting for the project at a belief p* = ¢. That belief is reached

at time t* = 1/\ ln(lpO 1-p ) m
a—Ap —po P

Proof of Proposition 3. If pg < p*, or if ¢ > min {po, %}, the project is
either approved immediately with probability one, or is never approved. In
either case, the probability that the project is approved does not depend on
po and on c.

For all other cases, note that by Lemma 4, the project is approved at

po_ 1-p*
—po p*

probability of approval then equals

time ¢* = 5 L\b In <1 ) if no signal arrives before that. The ex ante

poe " + (1 —po) e "

__Xda __ M

po L—p"\ re=% po L—p"\ X
:po( : ) +<1—po>< :
I—po p I—po p

a b
— Aa 1 — p* *ﬁ 1 —p*\ Ja>p
e (55) T (5

The above expression is decreasing in py. Furthermore, it is increasing in

p*, and by Lemma 4, p* is decreasing in c if ¢ < /PRy, v %, and increasing

in ¢ otherwise. This implies the result. O

Proof of Proposition 4. When ¢ > min {pm %}, the project can never be

approved, so decision rules have no effect.
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The rest of the proof will focus on the case when ¢ < min {po, %} If
po > p*, then by Lemma (4), without a decision rule the project is approved
at time t* if no signal arrives by then. If py < p*, without a decision rule the
project is approved at time zero.

When the project is approved, both factions receive a weakly positive
payoff, and at least one faction receives a strictly positive payoff. Since ap-
proval of the project happens with a strictly positive probability, the project
is ex ante welfare improving. Hence, any deadline or a minimum waiting
time that ensures that the project will not be approved reduces social wel-
fare. Thus, we can without loss of generality focus on decision rules at which
the project is approved with positive probability.

Such a decision rule implies a time 7" such that the project is approved
at T if no signal arrives by then. In particular, a project of type 8 = a is

AT “while a project of type 6 = b is approved

approved with probability e~
with probability e 7. Let W (T') denote the utilitarian social welfare for a

decision rule with a given 7. It is given by

W A(T) =po [ (1 —¢) — (1 — ) e CatIT £ (1= po) [(1 = ) (1 — ¢) — ad] e~ Cs*0T
=po (@ —¢) e T 4 (1= pg) (1 —a — ¢) e NHT,

For the project to be approved at time T, the belief at that time must
satisfy pr € [¢,1 — ¢|. At the same time, we must have pr < py. Hence, the
set of feasible values of T is given by pr € [c, min {1 — ¢, po}] . Using (2), this

is equivalent to

1 —
ePa= )T ¢ lmax Po ¢ ,1p, Po ¢ .
1—pyl—c 1—py c

Hence, the optimal T is given by

1—
argmax W (T) subject to e?*= 2T ¢ |max Po ¢ 15, Po °l.
T l—pol—c 1—py c
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Differentiating, we obtain

oW (T)
aT

= (Aa+7)po(c—a)e Pt (X 4 7) (1= pg) (1 — a — ) e NHT,

We have four cases.

Case 1: a € [¢,1 —c|. Then alg/;T) < 0 for all T. Hence, the smallest

possible T' is optimal. Therefore, a deadline is optimal if p, > p*, and no

intervention is needed if py < p*.

Case 2: a>1—c>c. Then an}T) > 0 if and only if

Aa=2)T < (Aa +7)po (=) .
(A +7) (1 = po) (v = [L = )

el

Hence, the optimal 7 is such that either e«=*)T = max { i s 1}, or
—po 1—¢’

ePa=2)T — %%C. We can prove that welfare is higher in the former case.
If max { 2ot 1+ = 1, welfare is higher in the former case if and only if
—po 1—c

pola—c)+(1—po)(1—a—c)

Aat+T

P 1—c\ 2N D 1—c\ 2%
em(a-0 ((2120) T aemamg (0 T

—
|

i

o

which always holds, because py > ¢ implies that 13(1’)0 % > 1.

On the other hand, ifmax{lﬁo %,1} — % _c  welfare is higher when
po 1—c 1—po 1—c
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ePa=2)T — max{ po_ ¢ 1} if and only if

1—po 1—¢?
_AAaJr)\T _AAb-T
po ¢ =% Po ¢ a N
— 1— l—a—c
po (@ C><1—p01—0) + (1= po) >(1—p01—c)
1 TR 1 —
Po —C @~ Po —C a—Ap
> — 1-— l1—a—
Zmia-o ({21 00) T e m a0 ({21
[ Agtr Aptr ]
_ ot Agtr c T Xa—Xp c T XaAp
)\a—Ab 1 o N —\ o 1 - -
= e famo (15) T e (15
- Aa+r Aptr 7
_ Aptr Aatr 1— D VDY 1—c\ 22X
>po " (1= po)?ee | (a—c) ( c C) Tt (l-a—c) ( c ) |
Aal’” a )
( ) c ) e M 1—c) 2
— (a— —
a-e 1—c c

Aptr Ap+7r
1—c\ * c o\ N
2a-a-o [(F59) T () T

Aa+T Aag+r

which holds because ¢ < 1 — ¢ implies that (%_C)_*""*b — (1—;0)_M‘*b > ()
_ Mot _ ot
and (120) 5 - (1) 5 <
Therefore, when o > 1 — ¢ > ¢, welfare is the highest when e

max { lf;’ml%c, 1}, that is, at the smallest feasible T. Hence, a deadline is

(>\a_>\b)T —

optimal if py > p*, and no intervention is needed if py < p*.

Case 3: a<c<1—-—cand py <p*. When a < c <1—c, we have
AW (T)

a7 > 0 if and OIlly if

e(Aaf)‘b)T < )\a + T p() C— (5)

M+rl—pl—c—a
As po < p*, without intervention the project is approved at time 0. A

deadline has no effect. A minimum waiting time is optimal if and only if

27



welfare is strictly increasing in 7" at T" = 0 — that is, if and only if

A +7 Do c—

1<
M+rl—pl—-—c—a
1
<~ Po > Agtr _c—oa (6)
+ Ap+r 1—c—a
By Lemma 4, either p* = ¢, or p* = 1+*“+ Since ¢ < min {po, %}, the
Aptr 1—c
former case cannot hold when pg < p*. On the other hand, if p* = W,
)\b+'r 1—c

then, using the fact that ¢ < 1 — ¢, we have ;% > =2 for all a € (0,1),
and thus p* < H@% Together with the fact that pg < p*, this implies

Ap+r 1—c—a
that (6) never holds, and hence a minimum waiting time is never optimal.

To summarise, no decision rule is optimal in this case.

Case 4: a<c<1—cand py > p*. In this case a deadline is optimal if

ePa=2)t" is greater than the right-hand side of (5), and a minimum waiting

time is optimal if e«=)*" is smaller than the right-hand side of (5).

If c < Ny vt then Lemma 4 implies that

SOt _ P 1=p"  po Aatr
l—po p* L—po Xy +r1l—c

and deadline is optimal whenever - > <=2 This is true for any o € (0, 1).

l—c—a”
VApt+T 1 . .
Ifce (Wm, 5], then Lemma 4 implies that

cQa—rp)tr _ PO L-p"  po l-c
lL—po p* I—=po ¢

which is greater than the right-hand side of (5) if and only if

l—c A+71r c—a«
> . 7
c N+rl—c—a« ™
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L=¢ > /3£ which does not hold when
pt+T

ce (\/W— %, %} Furthermore, as the right-hand side of (7) is increas-

ing in «a, (7) does not hold for any o € [0,¢]. Hence, a deadline is never

optimal when @« < ¢ <1 —cand ¢ € (m— %, %} At the same time,

when ¢ € (m— %, %], Lemma 4 implies that without intervention, the

ot Cp ok . Aa=Ao)T _ 1—c
project is approved at belief p* = ¢, that is, when el T — %TC' A

minimum waiting time cannot extend the waiting time further without pre-

If « =0, (7) is equivalent to

venting project approval, which, as we have seen, is suboptimal. Therefore,
no intervention is optimal in this case.

To summarise, neither a deadline nor a minimum waiting time is optimal
. . 1. ; .o NovET: 1
1fc>m1n{p0,§},1fp0§p,or1fa<c<1—candc€ <Wm,§ .
Otherwise, a deadline is optimal. O]
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