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Abstract

This paper proposes a new Bayesian semiparametric model that combines a multi-

variate GARCH (MGARCH) component and an infinite hidden Markov model. The

new model nonparametrically approximates both the shape of unknown returns dis-

tributions and their short-term evolution. It also captures the smooth trend of the

second moment with the MGARCH component and the potential skewness, kurto-

sis, and volatility roughness with the Bayesian nonparametric component. The results

show that this more-sophisticated econometric model not only has better out-of-sample

density forecasts than benchmark models, but also provides positive economic gains for

a CRRA investor at different risk-aversion levels when transaction costs are assumed.

After considering the transaction costs, the proposed model dominates all benchmark

models/portfolios when No Short-Selling or No Margin-Trading restriction is imposed.

Keywords: Multivariate GARCH, IHMM, Bayesian nonparametric, Portfolio allocation,

Transaction costs

JEL codes: C53; C58; C14; C32; C11; C34
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1 Introduction

It is well known that conditional returns distributions exhibit fat tails and potential skewness,

and the shape of those distributions are constantly changing over time. Providing better

density forecasts of conditional distributions requires an econometric model that is flexible

enough to capture all these shapes and dynamics. This paper proposes a new multivariate

Bayesian semiparametric model that allows the shape of the conditional distributions to

change over time nonparametrically. The new model produces better density forecasts and

portfolio allocations than all of the benchmark models.

Changing volatility is among the first distributional features brought to econometricians’

attention. One branch in the multivariate setting deals with extensions of the univariate

GARCH models (Bollerslev, 1986). Popular examples include VEC (Bollerslev et al., 1988),

BEKK (Engle and Kroner, 1995), constant conditional correlation (CCC, Bollerslev, 1990),

dynamic conditional correlation (DCC, Tse and Tsui, 2002; Engle, 2002) and many others.

All of these models assume that the returns innovation distributions are i.i.d normal. The

innovation can be easily replaced with some fat-tailed distributions to incorporate leptokurtic

returns (see Pesaran and Pesaran, 2010; Kawakatsu, 2006; Bonato, 2012; Peng and Kim,

2020, and many others), but the conditional distribution is still assumed to be symmetric

and constant.

Mixture modelling is an alternative approach to modelling non-normal innovation dis-

tributions. Examples include the structural breaking model (Chib, 1998; Pástor and Stam-

baugh, 2001; Pesaran et al., 2006; Pettenuzzo and Timmermann, 2011) and the Markov-

switching (MS) model (Hamilton, 1989; Rydén et al., 1998; Maheu and McCurdy, 2000;

Guidolin and Timmermann, 2007, 2008). Both models can generate skewness and kurtosis

but they also assume the returns distribution is known and mixed from a fixed number of

states.

Instead of employing a finite number of states, the Dirichlet process mixture (DPM)

model approximates the unknown conditional returns distributions by mixing an infinite
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number of normal kernels over a Dirichlet process (Antoniak, 1974). This model can fruit-

fully mimic distributional features, such as skewness, kurtosis and asymmetric tails for any

continuous distribution. Jensen and Maheu (2013) and Maheu and Shamsi Zamenjani (2021)

combine the DPM with a multivariate GARCH model (MGARCH-DPM) to capture the un-

known shape of returns innovation distributions in addition to the smooth dynamics of

conditional covariances. While the DPM relaxes the parametric assumption that the data-

generating process of the innovation distributions is known, the mixture weights remain

constant, and the time-variation of the returns distributions is only contributed from the

GARCH part of the model.

The infinite hidden Markov model (IHMM) extends the DPM by using time-varying

mixing weights (Beal et al., 2002). Its Markovian mixing weights are constructed from a

hierarchical Dirichlet process (HDP) prior formalized by Teh et al. (2006), which consists

of two layers of nested Dirichlet processes, so the shape of the approximated distribution

is allowed to change over time. The IHMM can also be seen as a Bayesian nonparametric

extension of the MS model as it generalizes the predefined finite number of states into an

infinite number of states. Conditional returns distributions are approximated by mixing an

infinite number of normal kernels and, for each period, the mixture weights depend on which

state the previous period was in.

The IHMM has been applied in many economic and financial time-series since econome-

tricians introduced it from computer science. Examples include Song (2014) and Jochmann

(2015) on inflation rates, Maheu and Yang (2016) on short-term interest rates, Jin and Ma-

heu (2016) and Jin et al. (2019) on realized covariance modelling, and Hou (2017) and Jin

et al. (2021) on macroeconomic forecasting.

Although the IHMM can mimic smooth volatility transitions, empirically it would require

many probably non-recurring states, which would greatly reduce the estimation efficiency.

Dufays (2016) combines an IHMM with a univariate GARCH model to solve this problem,

but a relevant multivariate model is still lacking.

4



In this paper, I propose a new multivariate Bayesian semiparametric model that combines

the IHMM with a multivariate GARCH (MGARCH) model. The MGARCH component

captures the strong dependence and smooth changes in the conditional second moments. The

IHMM component not only nests a finite-state MS model and captures the short-run changes

in the conditional distribution, but also nests the DPM model so that one does not need to

assume the shape (tails, skewness, etc.) of the underlying data-generating process for the

unknown returns distribution. Further, both the unknown conditional distribution and its

short-term evolution are approximated nonparametrically through an infinite hidden Markov

structure in addition to the GARCH dynamics. To compare these models’ performance, this

paper selects four benchmark models: an MGARCH model with normal innovations, an

MGARCH model with asymmetric volatility feedback, an IHMM without GARCH effects

and an MGARCH-DPM model. The proposed MGARCH-IHMM exhibits a clear advantage

in monthly density forecasts over all of the benchmark models.

To test the model’s economic performance in portfolio allocation, I follow Guidolin and

Timmermann (2007), Pettenuzzo and Timmermann (2011) and Pettenuzzo and Ravazzolo

(2016) and maximize an investor’s expected utility by employing the full information ac-

quired from predictive distributions when integrating out all of the parameters and the pos-

sible distributional uncertainties, in contrast to the traditional mean-variance optimization.

Without assuming that the predictive returns distributions are of a known type, this method

is more appropriate as it is sensitive to the shape of the predictive density of the returns.

The optimized portfolios (models) are then evaluated based on an ex-post performance fee

motivated by Fleming et al. (2001) and Bollerslev et al. (2018). The empirical results show

that a risk-averse investor is always willing to pay at least 44 bps annually (and often more)

to switch from any benchmark model/portfolio, including a buy-and-hold equally weighted

one, to the MGARCH-IHMM when no transaction costs or trading restrictions are assumed.

After considering the transaction costs, the proposed MGARCH-IHMM dominates all of

the benchmarks when No Short-Selling or No Margin-Trading restriction is imposed. The
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investor is willing to pay at least 17 bps annually for switching to my new model. These

results are robust to different risk-aversion levels.

This paper is organized as follows. Section 2 illustrates the specifications and the benefits

of the proposed MGARCH-IHMM, along with the sampling and forecasting algorithms and

the benchmark models. Section 3 details the returns series uses to test this model. Section 4

presents the posterior estimations of the MGARCH-IHMM and its out-of-sample forecasts.

Section 5 compares the portfolio-allocation performance of different econometric models un-

der different risk-aversion levels, transaction costs and trading restriction settings. Section 6

concludes.

2 MGARCH-IHMM Model

This paper proposes a new Bayesian semiparametric model with an MGARCH component

and an infinite hidden Markov model (IHMM) component. Jensen and Maheu (2013) propose

an MGARCH-DPM model that models the returns innovations nonparametrically through

a static infinite mixture. The new model proposed in this paper extends this model by

replacing the DPM component with an infinite hidden Markov structure that allows the

mixture to change over time. The proposed MGARCH-IHMM is more flexible and nests

the MGARCH-DPM model as a special case. Let rt be an N × 1 vector of returns, and

r1:T = {r1, r2, . . . , rT}. Define Θ = {Θ1,Θ2, . . . } as the set of state-dependent parameters,
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where Θj =
{

µj,Σj

}

. The hierarchical representation of the model is

G0|β0,Ξ ∼ DP (β0,Ξ) (1a)

Gj|α0, G0 ∼ DP (α0, G0) , j = 1, 2, . . . (1b)

Θj|Gj
iid
∼Gj (1c)

rt|st,Θ,Ft−1 ∼ N
(

µst ,H
1/2
t ΣstH

1/2
t

′
)

(1d)

Ξ = N (b0,B0)× IW (Σ0, ν +N) , ν > 0 (1e)

H t = CC ′ +αα′ ⊙ (rt−1 − η) (rt−1 − η)′ + ββ′ ⊙H t−1 (1f)

where Ft−1 is the information set for t− 1, DP (β0,Ξ) is a Dirichlet process with concentra-

tion parameter β0 and base measure Ξ, where the concentration parameter represents how

dispersed the draw is away from the base measure, and Ξ contains a normal prior N (b0,B0)

for µst and an inverse Wishart prior IW (Σ0, ν +N) for Σst . The Bayesian nonparamet-

ric component IHMM and the parametric component MGARCH of this model are linked

through (1d). st denotes the state/cluster for time t. st, µst and Σst are determined by

the IHMM component, and H t is determined by the MGARCH component. H
1/2
t is the

Cholesky decomposition of H t. Σst is parametrized around an identity matrix. The general

level and long-run dynamics of conditional volatility are captured by the GARCH compo-

nent, and Σst serves as an amplifier to either boost or shrink the conditional covariance from

H t. Clearly, when µst = 0 and Σst = I, the MGARCH-IHMM reduces to a parametric

MGARCH model.

The IHMM component of this model is a Bayesian nonparametric one that employs a

hierarchical Dirichlet process (HDP). (1a) and (1b) represents this HDP structure. There are

an infinite number of states/clusters in the model, and the state-dependent parameter set Θj

is a random draw from their corresponding probability measure Gj. Accordingly, there are

also an infinite number of Gjs, and each one of them is drawn from a separate bottom layer

Dirichlet process with precision parameter α0 and base measure G0. Further, G0 is a draw
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from the top layer Dirichlet process with precision parameter β0 and base measure Ξ. Ξ can

be also seen as the prior of the state-dependent parameters Θ, a multivariate normal prior for

µst and an inverse Wishart prior for Σst . The IHMM component is essentially an infinitely

dimensional Markov-switching (MS) model. It is designed to capture the sudden changes

in the conditional distribution through a regime-switching scheme. This regime-switching

behaviour is shown more clearly later in the stick-breaking representation. Because this

is a Bayesian nonparametric model, where one does not need to impose any distributional

assumption to the conditional returns distributions, so it can capture features such as asym-

metries and fat tails. Moreover, unlike the DPM, which is another Bayesian nonparametric

model, but where the conditional distribution is static, the IHMM also nonparametrically

approximates the unknown short-term evolution of the conditional distributions.

The MGARCH component takes a variant of the diagonal BEKK-GARCH representation

(Engle and Kroner, 1995). C is an N × N lower triangular matrix, α, β and η are N × 1

vectors, and ⊙ is the Hadamard operator representing element-by-element multiplication.

The parameter restriction of α2
i + β2

i < 1 for all i = 1, . . . , N is imposed for stationarity in

H t. Unlike traditional MGARCH models, where the source of the H t variation is the returns

shock in the last period (the difference between the last period returns and the conditional

mean), the H t dynamics in this model are determined by the change in the returns from an

additional parameter η. This allows the model to capture the potential asymmetric volatility

feedback effect. When η > µst−1
, for a rt−1 less than µst−1

, ∥rt−1−η∥ > ∥rt−1−µst−1
∥, this

would increase H t as in an asymmetric dynamic covariance (ADC) model (Kroner and Ng,

1998). However, the MGARCH-IHMM does not enforce an asymmetric volatility feedback

or the sign of this asymmetry but the feedback is instead learned from data. The posterior

estimates of Fama-French 5 industry portfolios returns show that ηi is generally greater than

µi,st−1 for each asset i.

This model nests many models as special cases. For example, when α0 → 0, Gj → δx,

where δx is a Dirac measure centred at x and x is G0 distributed. Then the MGARCH-
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IHMM reduces to the MGARCH-DPM model from Jensen and Maheu (2013). Additionally,

if β0 → 0, the MGARCH-IHMM reduces to a parametric MGARCH model with a normal

innovation, and if β0 → ∞, the MGARCH-IHMM reduces to a parametric MGARCH model

with Student-t innovation.

From a mixture perspective, this model can be rewritten as a stick-breaking representa-

tion (Sethuraman, 1994; Teh et al., 2006):

Γ|β0 ∼ GEM (β0) (2a)

Πj|α0,Γ ∼ DP (α0,Γ) (2b)

st|st−1,Π ∼ Catagorical(Πst−1) (2c)

p (rt|Θ,Π, st−1) =
∞
∑

k=1

πst−1kN
(

rt;µk,H
1/2
t ΣkH

1/2
t

′
)

(2d)

µk ∼ N (b0,B0), Σk ∼ IW (Σ0, ν +N) (2e)

where Γ = (γ1, γ2, . . . )
′, Πj = (πj1, πj2, . . . ), and H t is defined as in (1f). To be more

specific,

γk = γ̂k

k−1
∏

l=1

(1− γ̂l) , γ̂k ∼ Beta (1, β0) , (3a)

πjk = π̂jk

k−1
∏

l=1

(1− π̂jl) , π̂jk ∼ Beta

(

α0γk, α0

(

1−
k
∑

l=1

γl

))

. (3b)

GEM(β0)
1 is a general stick-breaking process with a precision parameter β0. As shown in

equation (2d), the conditional distribution of the returns is a mixture of an infinite number of

Gaussian kernels with a vector of weights Πj. Πj is the jth row of the infinitely dimensional

squared transition matrix Π and a draw from a particular Dirichlet process. Because the

IHMM is also a Bayesian nonparametric extension of the MS model, all of the states can recur

with certain probabilities. To ensure this recurrence, another Dirichlet process is required to
1GEM stands for Griffiths, Engen, and McCloskey. See Pitman (2002) as an example.
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share the atoms among all the bottom-layer Dirichlet processes. πjk indicates the probability

of switching from state j to state k. Note that in the MGARCH-DPM model, πst−1k = πk

for all t = 1, . . . , T , so the MGARCH-DPM model is nested in the MGARCH-IHMM. This

scenario will occur when α0 → 0. Please note that (3b) is not applicable when α0 approaches

to 0, as it is derived from the formal definition of the Dirichlet process, where the precision

parameter is strictly positive.

The state-dependent parameters µk and Σk allow us to identify potential regime switches.

Furthermore, mixing over µk also generates possible skewness in the conditional returns dis-

tributions, and mixing over Σk generates kurtosis. Since the mixture weights are Marko-

vian, the unknown conditional distribution is allowed to change over time in an unknown

pattern. In summary, the proposed MGARCH-IHMM retains all the advantages from both

the MGARCH model and the IHMM. The new model is designed to capture the highly per-

sistent long-run volatility dynamics and any potential drastic regime switches. Additionally,

it approximates both the shape and the short-term evolution of the unknown conditional

distributions nonparametrically.

2.1 Hierarchical Priors

Prior settings are very important in Bayesian inferences, especially when estimating Bayesian

nonparametric models where the number of useful states is estimated jointly with other

parameters. Each state-dependent parameter is estimated based on the subsamples assigned

to its corresponding state. For states with fewer observations, the parameter posteriors can

be heavily influenced by the priors, compared to states with more observations where the

posteriors are dominated by the likelihoods. On the other hand, whenever a new state is

introduced, the parameters are drawn directly from the priors. When the priors are far away

from the support of the data, the introduction of the new state is easily wasted.

This problem can be successfully solved by introducing hierarchical priors, which are the

priors of the base measure parameters. The base measure parameters are now estimated
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from the state-dependent parameters instead of being preset as constants. This allows the

base measure to learn from the data so the state-dependent parameters, especially those of

a new state, can always land within a reasonable region and then greatly improve both the

in-sample fit and the out-of-sample forecasts.

Consider the following set of hierarchical priors motivated by Song (2014) and Maheu

and Yang (2016):

b0 ∼ N (h0,H0) , B0 ∼ IW (A0, a0) , Σ0 ∼ W (C0, d0) , ν ∼ Exp (g0) . (4)

Then b0, B0, Σ0 and ν are drawn conditional on both the hierarchical priors and the corre-

sponding parameters (µ and Σ).

2.2 Covariance Targeting

In the MGARCH component, C has N(N+1)/2 parameters to estimate, while α, β and η all

have N parameters, respectively. Obviously, the number of parameters grows quadratically

in C and linearly in θH = {α,β,η}. Hence, by targeting the symmetric CC ′ matrix instead

of estimating it, one can greatly reduce the total number of parameters in the estimation.

Let µ̄ = 1
T

∑T
t=1 rt be the unconditional expectation and H̄ = 1

T

∑T
t=1(rt − µ̄)(rt − µ̄)′

be the unconditional covariance matrix. In a reduced form of the MGARCH-IHMM, where

Σt = I for all t, referring to equation (1f), the unconditional expectation of H t is

E (H t) = CC ′ +αα′ ⊙ E
[

(rt−1 − η) (rt−1 − η)′
]

+ ββ′ ⊙ E (H t−1)

= CC ′ +αα′ ⊙ E
[

(rt−1 − µ̄+ µ̄− η) (rt−1 − µ̄+ µ̄− η)′
]

+ ββ′ ⊙ E (H t−1)

= CC ′ +αα′ ⊙ H̄ +αα′ ⊙ (µ̄− η) (µ̄− η)′ + ββ′ ⊙ E (H t−1) .
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Further assuming E (H t) = H̄ for all t = 1, . . . , T , we have

CC ′ = H̄ ⊙ [1−αα′ − ββ′]−αα′ ⊙ (µ̄− η) (µ̄− η)′ , (5)

where 1 is an N ×N matrix with all the elements being 1. Note that any draw of θH from

the posterior that results in non-positive definite CC ′ is rejected.

2.3 Sampling Algorithm

The MGARCH-IHMM is estimated through an MCMC algorithm. For the Bayesian non-

parametric component (IHMM), I employ the beam sampler introduced by Van Gael et al.

(2008) (see also Fox et al., 2011; Maheu and Yang, 2016). Similar to the slice sampler for

the DPM model, the beam sampler partitions the infinite number of states in the IHMM

into a finite set of “major” states with assigned observations and an additional “remaining”

state where no observation is assigned.. Whenever a new state is introduced, the corre-

sponding data density parameters are drawn directly from the hierarchical priors since no

data have yet been assigned to that state. Let state R be the “remaining” state, then

Γ = (γ1, . . . , γK , γR)
′ and Πj = (πj1, . . . , πjK , πjR), where γR =

∑

∞

k=K+1 γk = 1 −
∑K

k=1 γk

and πjR =
∑

∞

k=K+1 πjk = 1−
∑K

k=1 πjk. The sampling steps are as follows:

1. Sample the auxiliary slice variable u1:T |Γ,Π.

2. Update K. If a new “major” state is introduced, then draw the corresponding param-

eters and the transition probabilities from the prior. The transition matrix now has

an additional column and row.

3. Forward filter, backward sampler (FFBS) for the state variable s1:T |r1:T , u1:T ,Γ,Π,Θ,H1:T .

4. Simulate the coloured ball counts in the “oracle” urn2 c1:K |s1:T ,Γ, α0.
2An “oracle” urn is a special urn in the hierarchical Pòlya urn scheme introduced by Beal et al. (2002).

Please refer to Appendix A for details.
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5. Sample β0 and α0 following Fox et al. (2011).

6. Sample Γ|c1:K , β0.

7. Sample Π|n1:K,1:K ,Γ, α0.

8. Sample the state-dependent parameters Θ|r1:T , s1:T ,H1:T .

9. Sample hierarchical priors.

(a) Sample b0|µ1:K ,B0,h0,H0.

(b) Sample B0|µ1:K , b0, a0,A0.

(c) Sample ν|σ2
1:K , s0, g0.

(d) Sample Σ0|Σ1:K , v0,C0, d0.

10. sample GARCH parameters θH = (α,β,η)′ |r1:T , s1:T ,Θ. Apply a block-move random-

walk Metropolis-Hastings algorithm to sample θH .

Repeat the above steps and discard the first burn-in samples. Details of all the sampling

steps can be found in Appendix B. After simulating all of the M MCMC samples, the

posterior mean of each parameter and latent variable can be computed by

E(θ|r1:T ) ≈
1

M

M
∑

i=1

θ(i),

where θ(i) is the ith MCMC draw of the given parameter θ.

2.4 Predictive Likelihood

I define the predictive likelihood for a particular out-of-sample period as p (rt+1|r1:t). This

predictive likelihood is computed as follows:

1. Estimate the model for r1:t and collect M posterior samples for
{

Θ
(i),θ

(i)
H ,Π(i), s

(i)
1:t, K

(i)
}M

i=1

as described in Section 2.3.
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2. Simulate the state indicator from equation (2c):

s
(i)
t+1|s

(i)
t ,Π(i) ∼ Catagorical(Π

(i)

s
(i)
t

).

3. If s(i)t+1 ≤ K(i), then the posterior of Θ(i)

s
(i)
t+1

is already drawn. Otherwise state s
(i)
t+1 is

inactive and without any assigned observation, so the posterior of Θ(i)

s
(i)
t+1

is essentially

the prior. Draw Θ
(i)

s
(i)
t+1

from the base measure µ
(i)

s
(i)
t+1

∼ N(b
(i)
0 ,B

(i)
0 ) and Σ

(i)

s
(i)
t+1

∼

IW (Σ
(i)
0 , ν(i) +N).

4. Propagate H
(i)
t+1 from equation (1f):

H
(i)
t+1 = C(i)C(i)′ +α(i)α(i)′ ⊙

(

rt − η(i)
) (

rt − η(i)
)′

+ β(i)β(i)′ ⊙H
(i)
t .

5. Evaluate the predictive likelihood for the realized return rt+1 conditional on every

MCMC sample

p(rt+1|r1:t,Θ
(i)

s
(i)
t+1

,θ
(i)
H ) = N

(

rt+1

∣

∣

∣

∣

µ
(i)

s
(i)
t+1

,H
(i)1/2
t+1 Σ

(i)

s
(i)
t+1

H
(i)1/2
t+1

′

)

,

where N(x|µ,Σ) is a multivariate normal density with mean µ and covariance Σ

evaluated at x.

6. Average out the conditional predictive likelihoods with respect to the MCMC draws

p(rt+1|r1:t) ≈
1

M

M
∑

i=1

p(rt+1|r1:t,Θ
(i)

s
(i)
t

,θ
(i)
H ).

The log-predictive likelihood over the whole out-of-sample period t+1, . . . , T for model A is

logPLA = log p(rt+1:T |r1:t,MA) =
T−1
∑

l=t

log p(rl+1|r1:l,MA). (6)
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The log-predictive likelihood essentially evaluates the predictive density at the actual returns

realization point. This can serve as a metric when comparing the out-of-sample performance

among the different models. It also measures how likely the actual out-of-sample returns can

be realized, given the predictive densities foretasted by the selected model. To compare, one

can compute the difference of the log-predictive likelihoods between the two models, which

is also called the log-Bayes factor:

logBFAB = logPLA − logPLB.

A log-Bayes factor greater than 5 is usually considered strong evidence that supports one

model over the other. The log score differential (LSD) is another measure used to compare

model density forecasts. The LSD is simply the ratio between the log-Bayes factor and the

benchmark log-predictive likelihood.

LSDAB =
logBFAB

logPLB

. (7)

2.5 Benchmark Models

MGARCH-DPM A semiparametric multivariate GARCH model where the innovation

is a constant mixture can be written as follows:

Γ|β0 ∼ GEM (β0) , st|Γ ∼ catagorical(Γ)

rt|Θ,H t,Π, st ∼ N
(

µst ,H
1/2
t ΣstH

1/2
t

′
)

µs ∼ N (b0,B0) , Σs ∼ IW (V , ν +N)

H t = CC ′ +αα′ ⊙ (rt−1 − η) (rt−1 − η)′ + ββ′ ⊙H t−1.

This model replaces the IHMM component of the MGARCH-IHMM with a DPM component.

The DPM model is a special case of the IHMM, where the mixture is static instead of
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Markovian, so the MGARCH-DPM model is nested within the MGARCH-IHMM when

α0 → 0, as discussed in Section 2. CC ′ is targeted as in equation (5).

IHMM A fully nonparametric multivariate model with regime switching is specified as

Γ|β0 ∼ GEM (β0), Πj|α0,Γ ∼ DP (α0,Γ)

st|st−1,Π ∼ Πst−1 , rt|st,Θ,Ft−1 ∼ N
(

µst ,Σst

)

µs ∼ N (b0,B0), Σs ∼ IW (V , ν +N)

b0 ∼ N (h0,H0) , B0 ∼ IW (A0, a0), Σ0 ∼ W (C0, d0) , ν ∼ Exp (g0) .

This model is similar to the MGARCH-IHMM but without the MGARCH component. So

this model is nested within the MGARCH-IHMM when H t = I for all t. The same set of

hierarchical priors is also employed in this model.

MGARCH-N A fully parametric multivariate GARCH model with normal innovation is

specified as

rt = µ+H
1/2
t zt, zt

iid
∼N(0, I)

H t = CC ′ +αα′ ⊙ (rt−1 − µ) (rt−1 − µ)′ + ββ′ ⊙H t−1,

where, through covariance targeting, CC ′ is defined as

CC ′ = H̄ ⊙ (1−αα′ − ββ′) .
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MGARCH-A A fully parametric asymmetric multivariate GARCH model with normal

innovation is specified as

rt = µ+H
1/2
t zt, zt

iid
∼N(0, I)

H t = CC ′ +αα′ ⊙ (rt−1 − η) (rt−1 − η)′ + ββ′ ⊙H t−1,

where CC ′ is targeted as in equation (5). Unlike the MGARCH-N model, this model can

also capture the potential asymmetry in the volatility feedback.

2.6 Hyper parameters

The hyper parameters for the priors, the hyper priors and the hierarchical priors are common

across models and between posterior estimations and out-of-sample forecasts for compara-

bility in the results. Following Fox et al. (2011), the hyper priors for the HDP concentration

parameters β0 and α0 are assumed as

β0 ∼ Gamma(2, 8), α0 ∼ Gamma(2, 8), (8)

where E(β0) = E(α0) = 0.25. During estimation, these hyper priors strongly favour less-

active states for better state identification and faster computation speed. The hyper prior for

the concentration parameter of the DPM is also assumed as Gamma(2, 8). The hierarchical

priors discussed in Section 2.1 are assumed as

b0 ∼ N (0, I) , B0 ∼ IW (I, N + 2) , Σ0 ∼ W

(

I

N + 2
, N + 2

)

, ν ∼ Exp (2) . (9)

For the MGARCH parameters θH = (α,β,η)′, assume a truncated multivariate normal

prior

θH ∼ N(0, I)1{αi > 0, βi > 0, α2
i + β2

i < 1, for all i}, (10)
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where αi > 0 and βi > 0 are imposed for parameter identification and α2
i +β2

i < 1 is imposed

for the stationary MGARCH process.

3 Data

The data used in this paper include monthly returns of the Fama-French 5 industry portfolios,

consisting of Consumer, Manufacture, High Tech, Health and Other portfolios, and the 1-

month Treasury bill rate from the website of Kenneth French. All of the returns range from

July 1926 to December 2020 at a monthly frequencies, for a total of 1,134 observations.

Furthermore, all of the returns are converted into log-returns for continuous compounding

and scaled by 100 for percentage values.

Table 1 is approximately here.

Panel A of Table 1 illustrates some univariate descriptive statistics of the five industry

portfolio log-returns. The expected returns are from around 0.71% to 0.93%, and the stan-

dard deviation from around 5.27% to 6.34%. All of the industries are negatively skewed and

leptokurtic. Panel B shows that all five industries are highly but not perfectly correlated,

so the diversification benefit still exists. Moreover, as discussed later in Section 5, if an

investor’s utility is not quadratic, then the diversification benefits are not solely determined

by these industries’ correlations.3

4 Model Performance

4.1 In-Sample Estimation

In all three models, the first 20,000 iterations were discarded as burn-ins, and 20,000 MCMC

samples were collected for posterior inference. This section summarizes the results of the
3Also see the simulation experiment in Jondeau and Rockinger (2006) where the sensitivities to skewness

and kurtosis are tested for portfolio allocations.
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full sample estimates, consisting of 1,106 observations.

Table 2 is approximately here.

Panel A of Table 2 lists the posterior estimates of the non-state-dependent parameters

for the five models, and the assets in rt are indexed in the same order as in Table 1. The

MGARCH-IHMM, and the MGARCH-DPM, the MGARCH-N and the MGARCH-A models

all have high βs that are above 0.92, and low αs that are below 0.31 in general. As mentioned

in Section 2, η helps to capture the asymmetric volatility feedback. Comparing the η

estimates and the posterior means of µ over time in Panel B, ηis are in general greater than

the corresponding µi. This shows that the Fama-French 5 industry portfolio returns usually

exhibit negative feedback to their volatility (a return that is lower than its expectation leads

to higher volatility next period). This is also the case for the MGARCH-A model, where ηis

are greater than the corresponding µi except for those in the third portfolio (High Tech). The

MGARCH persistence (α2
i +β2

i ) in the MGARCH-IHMM are almost the same as those in the

MGARCH-DPM, the MGARCH-N and the MGARCH-A models, although each of the αis

and βis are a little different. However, the α and β estimates are almost identical between

the MGARCH-N and the MGARCH-A, so the difference in the MGARCH-IHMM is unlikely

to be due to the asymmetric volatility feedback but rather to the Bayesian nonparametric

IHMM component. On the other hand, the 0.95 density intervals for the GARCH parameters

are slightly wider in the MGARCH-IHMM compared to those in the MGARCH-N and the

MGARCH-A models. For example, the 0.95 density interval for β1 is (0.9385, 0.9556) in the

MGARCH-IHMM, (0.9391, 0.9510) in the MGARCH-N model and (0.9404, 0.9527) in the

MGARCH-A model. The posterior for the GARCH parameters in the MGARCH-IHMM

are generally more dispersed, probably due to the complexity of the model.

Comparing the semiparametric MGARCH-IHMM and the nonparametric IHMM, the

MGARCH-IHMM has higher concentration parameters (α0 = 1.6190 and β0 = 0.9140, on

average) than the IHMM (α0 = 0.9919 and β0 = 0.7723, on average) and a greater number

of active states (K = 9.7826, compared to K = 7.8118, on average). The MGARCH-DPM
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model has the lowest concentration parameter (β0 = 0.3872) and the least number of active

states (K = 4.8338).

Comparing the posterior means of the state-dependent mean parameter µst over time

between the MGARCH-IHMM and the MGARCH-DPM model, both models share similar

medians and means, but the unconditional distribution of the posterior means of µst are more

dispersed for the MGARCH-IHMM than for the MGARCH-DPM model. This shows that

the MGARCH-IHMM allows for much richer dynamics for the state-dependent parameters

than the MGARCH-DPM model does for its Markovian mixtures.

Figure 1 is approximately here.

In addition to the GARCH dynamics, the Fama-French 5 industry portfolios still exhibit

clear regime-switching behaviour, implying that both long-run smooth changes and short-run

regime switches are important. Figure 1 plots the heat map generated by the MGARCH-

IHMM. This heat map shows the empirical probability that two periods share the same state.

The redder the colour, the higher the probability of sharing states. There are two dominating

states: a “bull” state with high expected returns and low state-dependent volatility, and a

“bear” state with low expected returns and high state-dependent volatility. Most periods

fall within the “bull” state, but there are several exceptions. The “bear” state is shared

by multiple eras, including but not limited to the Great Depression, from March 1928 to

September 1933; the Stagflation, from September 1973 to March 1975; the Savings and

Loan Crisis, from November 1989 to October 1990; the Dotcom Bubble, from May 1998

to September 2001; the 2008 Financial Crisis, from November 2007 to April 2009; the US-

China Trade War, from October 2018 to May 2019; and the recent Coronavirus Crash, from

January to August 2020. Note that these are states that have been identified in addition to

the GARCH effect, indicating that the regular MGARCH-N model is insufficient especially

during crises. The rest of the active states approximate the tails and shapes of the conditional

returns distributions.
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Figure 2 is approximately here.

Figure 2 plots the posterior means of some of the time-varying parameters, with the

previously mentioned major “bear” periods shaded in red. To be more specific, the top

plot shows the average over five industry portfolios of the posterior means for the state-

dependent mean parameter µst , and the other three plots show the log determinants of the

posterior means for the time-varying second-moment parameters. As discussed earlier, Σst

is parameterized around an identity matrix whose log determinant is 0. If Σst equals to iden-

tity, the conditional covariance dynamics of the MGARCH-IHMM reduces to those of the

MGARCH-A model. From the graph, the “bear” state (red) is accompanied by low expected

returns and high state-dependent volatility (log determinant greater than 0), which repre-

sents a slowdown in the growth of investors’ wealth and high investment uncertainty, and

the “bull” state is the opposite. Because the state switching captures the dynamics in addi-

tion to the GARCH recursion, if the MGARCH component is sufficient for the conditional

covariance dynamics, then the state-dependent covariance Σt will be an identity matrix,

which clearly is not the case here. Therefore, the “bear” state, where the log determinant

of the state-dependent variance is considerably greater than zero (the horizontal dashed line

in the second graph), compensates for the extra volatility that the MGARCH component

fails to capture, and the “bull” state, where the state-dependent variance is lower than one,

causes the overall conditional variance of the returns to shrink.. As for the H t dynamics,

the “bear” state usually occurs when the log determinant of H t is increasing, and the “bull”

state usually occurs when the log determinant of H t is decreasing. This implies that these

states are identified because H t is not climbing or declining fast enough, and an additional

multiplier Σt is required to boost the conditional covariances.

The last graph of Figure 2 plots the log determinant of the posterior means of the over-

all conditional variances that are estimated from each model, namely E
(

H
1/2
t ΣkH

1/2
t

′
)

for the MGARCH-IHMM and MGARCH-DPM, E (Σst) for the IHMM, and E (H t) for

the MGARCH-N and MGARCH-A. The conditional variance that is estimated from the
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MGARCH-IHMM is the most-flexible one among all of the selected models in terms of both

its strong persistent and rough volatility dynamics.4 For the IHMM, the log determinant of

the covariances tries to mimic the smooth volatility trend but still changes drastically and

switches among the different levels, while for the MGARCH-N and MGARCH-A models,

the paths of the log determinants are approximately the same. They can change gradually,

but the range of the change is confined and it cannot capture the roughness in the volatility.

Both the MGARCH-IHMM and the MGARCH-DPM models allow for highly persistent and

rough volatility dynamics, but the volatility path of the MGARCH-IHMM appears to be

rougher than that of the MGARCH-DPM model.

4.2 Out-of-Sample Forecasts

Table 3 is approximately here.

In Bayesian econometrics, one usually compares forecasts from different models by using

the log predictive likelihood, the log Bayes factor or the log score differential (LSD). The

empirical results show that the MGARCH-IHMM outperforms the benchmark MGARCH-

DPM, IHMM, MGARCH-N and MGARCH-A models in terms of the density forecasts. A

recursive prediction is performed for 360 out-of-sample periods from January 1991 to De-

cember 2020 by re-estimating each model for each period. Table 3 compares the performance

of these recursive forecasts among the four models. The difference in the log-predictive like-

lihoods between two models represents a log Bayes factor, and a number greater than 6

is usually considered strong evidence that one model predicts better than the other. The

MGARCH-IHMM produces a log-predictive likelihood of -4478.602, which is 13.4731 higher

than the log-predictive likelihood of the MGARCH-DPM (-4492.075), 72.2869 higher than

that of the IHMM (-4550.889), 42.9239 higher than that of the MGARCH-A (-4521.526),

and 44.8084 higher than that of the MGARCH-N (-4523.410). The average log score LSDs
4For the roughness of volatility and its importance, see Andersen et al. (2007); Bayer et al. (2016);

Gatheral et al. (2018); Glasserman and He (2020); Livieri et al. (2018); Shi et al. (2021).
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give the same model rankings. The proposed MGARCH-IHMM provides a prediction that

is 0.30% better than the MGARCH-DPM, 1.59% better than the IHMM, 0.95% better than

the MGARCH-A and 0.99% better than the MGARCH-N. However, the MGARCH-IHMM

does not show an advantage in terms of the point forecast. All five models yield similar root

mean squared forecast errors (RMSFE)5, with 4.1480 for the MGARCH-IHMM, 4.1487 for

the MGARCH-DPM model, 4.1340 for the IHMM, 4.1493 for the MGARCH-N model and

4.1508 for the MGARCH-A model.

5 Utility-Based Portfolio Optimization

Clearly, the proposed MGARCH-IHMM is more flexible and can provide better density

forecasts than all of the benchmark models, but does it translate into actual economic gains

in portfolio allocation? As discussed at the beginning of this paper, in most research, a

portfolio is optimized on a mean-variance space, which means that a risk-averse investor

wants to maximize the expected returns while minimizing the variance of her portfolio.

Here, the “risk” is defined as the variance or standard deviation of the asset returns, and

it ignores any higher moments or the whole returns distribution. This implies either that

the investor’s utility function is quadratic or approximately quadratic with respect to her

wealth, or that the asset returns are multivariate elliptically distributed.

On one hand, stock returns are better approximated by a mixture of normals, as discussed

in Section 4.1, so ellipticity is not guaranteed. Moreover, after being converted into simple

returns, all of the predictive distributions will be more skewed than those of the log returns.

On the other hand, a quadratic utility is usually considered as unrealistic due to its increasing

absolute risk-aversion. The constant relative risk-aversion (CRRA) utility, whose absolute

risk-aversion is decreasing when wealth increases, is relatively more realistic. To incorporate

the CRRA utility along with general returns distributions, we need to consider a more-general
5The forecast error is computed from the average of the difference between the predicted mean of rt and

the actual realized returns across five industry portfolios.
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portfolio-optimization problem.

5.1 Dynamic Optimal Portfolio Weights

Consider a rational, risk-averse investor whose utility function is U(W ), where W denotes

their wealth. She distributes her wealth into N risky assets and one risk-free asset.6 Without

loss of generality, assume her wealth set as 1 at the beginning of each period and her wealth

at the end of each period t is

Wt = 1 +w′

tRt + (1−w′

tι)Rf,t − C(wt,wt−1), (11)

where wt represents the vector of the portfolio weights of the risky assets, Rt is a vector of

the simple returns of the risky assets,7 ι is a vector of 1, and Rf,t is the simple return of the

risk-free asset. C(·) is the transaction cost incurred when rebalancing at the end of period

t, which is a function of wt.

Suppose the investor rebalances her portfolio given the information set Ft−1. For a

particular period t, she maximizes her conditional expected utility:

max
wt

E [U(Wt)|Ft−1] (12)

≈
1

M

M
∑

m=1

U(W
(m)
t ),

where W
(m)
t = 1 +w′

tR
(m)
t + (1−w′

tι)Rf,t − C(wt,wt−1).

The superscript (m) corresponds to the mth draw of the simulated predictive returns for

time t. No constraint on wt is required since the rest of the wealth is distributed to the

risk-free asset. The No short-sale constraint (wi,t ≥ 0 for each asset i) or no leverage trading

constraint (wi,t ≥ 0 for each asset i and
∑N

i=1 wi,t ≤ 1) can also be applied.
6N = 5. Consumer, Manufacture, High Tech, Health and Other portfolio are from the Fama-French 5

industry portfolios.
7For each element in Rt, Ri,t = exp(ri,t/100)− 1.
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At the end of period t, the investor is subject to transaction fee C(wt,wt−1) on every

transactions she made to rebalances her portfolio.

C(wt,wt−1) = c

N
∑

i=1

|wi,t − wi,t−1|+ c

∣

∣

∣

∣

∣

N
∑

i=1

wi,t −

N
∑

i=1

wi,t−1

∣

∣

∣

∣

∣

. (13)

where c denotes the flexible fee as a certain percentage of the wealth. The first term represents

the portfolio turnovers due to the balance change in each asset in the risky portfolio. The

second term represents the amount of the risk-free asset the investor needs to trade when

rebalancing.

The analytical solution for this problem is in general unavailable, so it needs to be found

numerically. Note that if the utility function U(W
(i)
t ) is strictly concave with respect to W

(i)
t ,

then it is also strictly concave with respect to wt, and so is its empirical expectation. This

ensures the existence of a unique solution to the above optimization problem.

5.2 Break-even Management Fees

Because the notion of “risk” is not measured by the second moment of returns distribu-

tion but by the uncertainty of the returns, the Sharpe ratio, which measures risk by its

standard deviation, may not be a desirable criteria to compare portfolio-allocation perfor-

mance. Instead, this paper implements a more-direct method, by computing the break-even

management fee an investor is willing to pay for switching from one model to another (e.g.,

Fleming et al., 2001; Bollerslev et al., 2018) to compare the economic performance of different

portfolios.

At the end of period t − 1, the investor rebalances her portfolio to the optimal weights

wt found above, and carries this portfolio into the next period when the actual returns Rt

are realized. One can easily compute her realized wealth Wt and the realized utility U(Wt)

for each out-of-sample period. The break-even management fee the investor is willing to pay,
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∆, for switching from model M2 to model M1 is given by equating the ex-post utilities as

T
∑

l=t+1

U(Wl −∆|M1) =
T
∑

l=t+1

U(Wl|M2). (14)

Note that the investor’s initial wealth is always 1 for each period, so ∆ can be seen either

as a dollar fee or a returns fee.

5.3 Empirical Results

I optimize the portfolio under a constant relative risk-averse (CRRA) utility. The utility

function is specified as

U(W ) =
W 1−a

1− a
,

where a is the risk-aversion parameter, which indicates the relative risk aversion as a and

the absolute risk aversion as a
W

.

The portfolio is optimized when a = {2, 4, 6} for all five econometric models with transac-

tion costs c = {0%, 1%, 2%}, respectively. A simplex method is used for each optimization,

with 200 different initial values being used to avoid the local optimum problem. The Brent-

Dekker method is used to find the scalar root in equation (14). In addition to the benchmark

models listed in Section 2.5, I consider two equally weighted portfolios. The first mixes a

risky, equally weighted portfolio with risk-free asset (EW + RF). The second is a buy-and-

hold strategy of an equally weighted portfolio that consists of the Fama-French 5 industry

portfolios and a risk-free asset (EW), where each component has a weight of 1/6.

Table 4 is approximately here.

Table 4 shows the annualized fee that an investor is willing to pay for switching from one

econometric model to another over the out-of-sample period from January 1991 to December

2020. When no trading restriction is imposed, the investor is always willing to pay a positive

fee to switch from all of the benchmark models to the proposed MGARCH-IHMM model
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when there are no transaction costs. Among all of the benchmark models/portfolios, the

Bayesian semiparametric model MGARCH-DPM is the most competitive, but the investor

is still willing to pay for an annualized fee from 0.44% to 0.82%, depending on the relative

risk-aversion level when switching to the MGARCH-IHMM model. This shows that the

distributional change over time, other than volatility dynamics, still matters economically.

The investor is willing to pay less for switching from the two parametric GARCH models than

for switching from the Bayesian nonparametric IHMM model, a finding that is consistent

with the density forecast results. This result emphasizes the importance of smooth changes in

the second moment for stock returns, both statistically and economically. When transaction

costs are not involved with unlimited margin trading, a risk-averse investor always prefers a

more-sophisticated MGARCH-IHMM than a less-sophisticated benchmark.

After considering the transaction costs but still having no trading restrictions, the buy-

and-hold strategy for an equally weighted portfolio (EW) becomes very competitive. Since

the weights are constant over time, there are no transaction costs. The advantage is even

greater when the transaction costs are high (2%). This is because when there are no trans-

action costs or trading restrictions, the optimal weights from the MGARCH-IHMM change

over time to such as extent as to achieve the highest possible expected utility, as shown in

Figure 3a. After introducing the transaction costs, the change in the optimal weights over

time is penalized. The paths of positions over time are significantly stabilized in Figure 3b

and 3c, but still change too much (both in longs and shorts), which causes greater transaction

costs than the benefits gained from the better density forecasts.

Figure 3 is approximately here.

Table 5 lists the average positions over time for the risky portfolio that is optimized using

different models. When there are no trading restrictions (Panel A), all of the econometric

models suggest taking large margin-buy and short-sale positions. After considering the

transaction costs, the MGARCH-IHMM still uses the largest margin-buy and short-sale
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positions among all of the models. The net risky positions are relatively low since it is offset

by the large long and short positions.

In practice, short-selling can be very expensive or even not available for some investors.

When short-selling is not allowed for any risky asset (wi,t ≥ 0 for all i = 1, . . . , N), the

investor is always willing to pay for a positive annualized fee to switch from any benchmark

model to my new model (from 0.13% to 5.97%, depending on the model, the risk-aversion

parameters and transaction cost settings), regardless of the risk-averse parameter or the

transaction costs. Among all the benchmark models, when there are no transaction costs,

the Bayesian nonparametric and semiparametric models are worse than the most-flexible

MGARCH-IHMM (a fee no more than 0.81% for switching to the MGARCH-IHMM) but

much better than the parametric MGARCH models and equally weighted portfolios (a fee

no less than 0.98%). This suggests that the economic value of a smooth volatility structure is

better realized by short-selling in the out-of-sample period. After considering the transaction

costs, the buy-and-hold equally weighted portfolio (EW) becomes one of the best models after

the MGARCH-IHMM, especially when the investor is more risk-averse. When a = 4 or 6,

an investor is willing to pay no more than 0.65% annually for switching from the EW to the

MGARCH-IHMM optimized portfolio, while she is always willing to pay at least 10 bps more

for switching from any other benchmark model to the proposed MGARCH-IHMM, given

the same risk-averse parameter and transaction costs. Compared to the scenario without

trading restrictions, the net risky positions are approximately the same when short-selling is

not allowed (Table 5), but the range of the weight change is greatly reduced since the entire

space of the negative weights is excluded. Although the solution found in the optimization

problem may be sub-optimal to the solution without trading restrictions, the realized results

are better than those for all of the benchmarks.

Under the “No Short-Selling” restriction, the optimal portfolio calls for active margin-

buying. From the bottom-left plot in each of Figures 3a, 3b and 3c, the investor will take

margin-buying positions most of the time, and the leverage can be high during some peri-
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ods, for example, in the beginning of 1991 when a = 2. This strategy can be risky when

transaction costs are involved. When an investor holds a margin-buying position with high

leverage, it is much harder to liquidate her position in time if the market is frictional.

As a result, the “No Margin-Trading” restriction is further considered, where wi,t ≥ 0

for all i = 1, . . . , N and
∑N

i=1 wi,t ≤ 1. Similar to the scenario without short-selling, the

MGARCH-IHMM model dominates all the benchmarks, regardless of risk aversion levels

and transaction cost settings, with an annualized fee between 0.07% and 2.72% (Table 4).

The other Bayesian semiparametric model MGARCH-DPM, along with the Bayesian non-

parametric model IHMM and the buy-and-hold equally weighted portfolio (EW), are the

second-best candidates among all of the models. For the risky holdings of the MGARCH-

IHMM portfolio, it shows that the investor, on average, should hold the risky portfolio in as

a greater portion as possible for the best outcome (Figure 3). When there are no transaction

costs, the investor can adjust her portfolio freely, and it is optimal to hold the risky part of

the portfolio, without having the risk-free asset except when there is a bear market, namely

during the Dotcom Bubble, the 2008 Financial Crisis, the US-China Trade War or the recent

Coronavirus Crash. When transaction costs are relevant, instead of pursuing market timing,

it is better not to react so drastically but to maintain risky holdings that are relatively stable.

But this does not necessarily advocate a buy-and-hold strategy because the relative weights

for each individual risky asset can still change even when the net risky holding is stable.

6 Conclusions

This paper investigates the relationship between accurate returns density forecasts and

whether they lead to economic gains in portfolio choice. The results show that under a

relatively realistic CRRA utility, positive economic gains can be generated from a more-

sophisticated model that produces the highest out-of-sample log-predictive likelihood.

A new multivariate Bayesian semiparametric model (MGARCH-IHMM) is proposed in
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this paper. The additional IHMM component successfully captures the regime-switching

phenomenon around GARCH dynamics. Multiple occurrences of the “bear” state are iden-

tified apart from the “bull” state. The rest of the estimated states are there to approximate

the unknown shape of the conditional distributions. The state-dependent covariance pa-

rameter serves as a multiplier to the GARCH covariance, helping to boost the covariance

when it is not increasing fast enough and to shrink it when it is not decreasing fast enough.

Compared to the parametric models, the Bayesian semiparametric models, especially the

MGARCH-IHMM, can capture the roughness in the volatility dynamics well.

The MGARCH-IHMM shows a clear advantage against the benchmark MGARCH-DPM,

IHMM, MGARCH-N and MGARCH-A models in terms of density forecast. The MGARCH-

IHMM allows for distributional change, such as skewness, kurtosis and tails, in addition to

smooth volatility changes and the approximated unknown conditional distributions captured

by the MGARCH-DPM. By adding the IHMM component, the MGARCH-IHMM is capable

of predicting skewed and leptokurtic returns distributions, compared to the MGARCH-N

and MGARCH-A models. Compared to the IHMM, the MGARCH-IHMM is able to predict

smooth changes in the volatility dynamics.

Since the commonly used Markowitz Portfolio Theory implies that the investor only

cares about the first two moments of the conditional returns distribution, the rest of the

information from the returns distribution is discarded. Therefore, a more-general portfolio-

optimization problem, which maximizes the expected utility, is implemented instead.

Empirical results show that, when there are no transaction costs, a risk-averse investor is

always willing to pay a positive fee for switching to the more-sophisticated Bayesian semipara-

metric model MGARCH-IHMM with better density forecasts, regardless the risk-aversion

level. However, the MGARCH-IHMM optimized portfolio involves heavy short-selling and

margin-buying, both of which may result in high transaction costs. After considering the

transaction costs, the benefits of frequently rebalancing portfolios to their optimum are

negated by the associated transaction costs since the optimal weights change too much in
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the absense of trading restrictions.

Margin trading, including margin-buying and short-selling, can be expensive or not ac-

cessible for some investors. When No Short-Selling or No Margin-Trading constraints are

imposed, the MGARCH-IHMM dominates all the benchmarks, including a buy-and-hold

equally weighted portfolio that has zero transaction costs, regardless of the risk-aversion

level or the transaction cost settings.
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Table 1: Descriptive Statistics of the Industry Portfolio Returns

Panel A: Univariate statistics
Industry Mean Median StDev Skewness Ex.Kurtosis Min Max
Consumer 0.8818 1.2324 5.2714 -0.5883 6.7366 -33.6592 36.2349
Manufacture 0.7977 1.2669 5.5026 -0.4705 7.4474 -36.9037 36.1374
High Tech 0.8373 1.2472 5.5998 -0.6536 3.9009 -31.1702 29.1475
Health 0.9314 1.0989 5.5460 -0.6361 7.4813 -41.6728 31.5759
Other 0.7118 1.2768 6.3401 -0.2871 8.1140 -35.7104 46.2160

Panel B: Correlations
Consumer Manufacture High Tech Health Other

Consumer 1.0000 0.8749 0.8175 0.7828 0.8832
Manufacture 0.8749 1.0000 0.8101 0.7448 0.8935
High Tech 0.8175 0.8101 1.0000 0.7098 0.8031
Health 0.7828 0.7448 0.7098 1.0000 0.7416
Other 0.8832 0.8935 0.8031 0.7416 1.0000
1. Source: Kenneth French’s Data Library.
2. From July 1926 to December 2020, 1,134 observations.
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Table 2: Posterior Estimates

MGARCH-IHMM:
Γ|β0 ∼ GEM (β0) , Πj |α0,Γ ∼ DP (α0,Γ)

st|st−1,Π ∼ catagorical(Πst−1
)

rt|Θ,Ht,Π, st ∼ N
(

µst ,H
1/2
t ΣstH

1/2
t

′)

Ht = CC ′ +αα′ ⊙ (rt−1 − η) (rt−1 − η)
′
+ ββ′ ⊙Ht−1

MGARCH-DPM:
Γ|β0 ∼ GEM (β0) , st|Γ ∼ catagorical(Γ)

rt|Θ,Ht,Π, st ∼ N
(

µst ,H
1/2
t ΣstH

1/2
t

′)

Ht = CC ′ +αα′ ⊙ (rt−1 − η) (rt−1 − η)
′
+ ββ′ ⊙Ht−1

IHMM:
Γ|β0 ∼ GEM (β0) , Πj |α0,Γ ∼ DP (α0,Γ)

st|st−1,Π ∼ catagorical(Πst−1
)

rt|st,Θ,Ft−1 ∼ N
(

µst ,Σst

)

MGARCH-N:
rt = µ+H

1/2
t zt

Ht = CC ′ +αα′ ⊙ (rt−1 − µ) (rt−1 − µ)
′
+ ββ′ ⊙Ht−1

MGARCH-A:
rt = µ+H

1/2
t zt

Ht = CC ′ +αα′ ⊙ (rt−1 − η) (rt−1 − η)
′
+ ββ′ ⊙Ht−1

Panel A: non-state-dependent parameters
MGARCH-IHMM MGARCH-DPM IHMM MGARCH-N MGARCH-A

Mean 0.95 DI Mean 0.95 DI Mean 0.95 DI Mean 0.95 DI Mean 0.95 DI

µ1 0.7586 (0.5143,1.0043) 0.7944 (0.5488,1.0373)
µ2 0.7141 (0.4703,0.9591) 0.7443 (0.5034,0.9872)
µ3 0.7869 (0.5403,1.0327) 0.7851 (0.5359,1.0305)
µ4 0.8317 (0.5620,1.0937) 0.8368 (0.5651,1.1050)
µ5 0.5930 (0.3095,0.8787) 0.6652 (0.3803,0.9486)

α1 0.2404 (0.2278, 0.2525) 0.2513 (0.2426,0.2604) 0.2644 (0.2541,0.2732) 0.2575 (0.2466,0.2678)
α2 0.2554 (0.2373, 0.2691) 0.2621 (0.2521,0.2723) 0.2738 (0.2624,0.2882) 0.2820 (0.2681,0.2944)
α3 0.2589 (0.2443, 0.2696) 0.2891 (0.2798,0.3000) 0.3013 (0.2787,0.3208) 0.3014 (0.2894,0.3168)
α4 0.2524 (0.2328, 0.2747) 0.2743 (0.2510,0.3069) 0.2807 (0.2594,0.2999) 0.2643 (0.2491,0.2869)
α5 0.2556 (0.2425, 0.2698) 0.2618 (0.2484,0.2749) 0.2896 (0.2730,0.3049) 0.2897 (0.2768,0.3040)

β1 0.9477 (0.9385, 0.9556) 0.9422 (0.9327,0.9514) 0.9452 (0.9391,0.9510) 0.9471 (0.9404,0.9527)
β2 0.9485 (0.9402, 0.9573) 0.9446 (0.9364,0.9516) 0.9455 (0.9384,0.9517) 0.9419 (0.9344,0.9489)
β3 0.9425 (0.9334, 0.9512) 0.9328 (0.9224,0.9411) 0.9328 (0.9222,0.9443) 0.9319 (0.9229,0.9395)
β4 0.9361 (0.9188, 0.9490) 0.9249 (0.9049,0.9428) 0.9336 (0.9208,0.9450) 0.9390 (0.9276,0.9483)
β5 0.9470 (0.9396, 0.9534) 0.9426 (0.9337,0.9503) 0.9359 (0.9266,0.9454) 0.9348 (0.9253,0.9426)

η1 2.1068 (1.5072, 2.6198) 2.3519 (1.6730,2.8626) 1.3033 (0.6774,1.7108)
η2 1.7347 (1.2468, 2.2381) 1.9518 (1.2454,2.5057) 1.0098 (0.4078,1.3683)
η3 1.3616 (0.8971, 1.9095) 1.5638 (0.9139,2.1334) 0.6037 (0.0804,1.0255)
η4 1.8997 (1.2746, 2.5574) 1.9541 (1.2088,2.5770) 0.9182 (0.2964,1.4279)
η5 2.3398 (1.6549, 3.0103) 2.6564 (1.7991,3.3445) 1.5565 (0.9303,2.0199)

α0 1.6190 (0.9509, 2.5345) 0.9919 (0.5945, 1.4988)
β0 0.9140 (0.3807, 1.6428) 0.3872 (0.1115,0.8235) 0.7723 (0.3303, 1.4078)
K 9.7826 (6.0000,13.0000) 4.8338 (3.0000,8.0000) 7.8118 (7.0000,10.0000)
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Table 2: Posterior Estimates (cont.)

Panel B: Summary of Posterior means of µst over time
MGARCH-IHMM Min 25% Median Mean 75% Max
µ1 -1.5289 0.4779 1.1288 0.9243 1.4756 1.6909
µ2 -0.2949 0.6587 1.0097 0.8995 1.1963 1.3202
µ3 -0.1667 0.7207 1.0791 0.9552 1.2517 1.3592
µ4 0.2566 0.7789 1.1245 1.0241 1.3033 1.4447
µ5 -0.9827 0.2400 1.0149 0.8024 1.4083 1.6510

MGARCH-DPM Min 25% Median Mean 75% Max
µ1 0.4415 0.9007 1.0628 0.9761 1.1222 1.1634
µ2 0.5529 0.8484 0.9694 0.9109 1.0128 1.0417
µ3 0.3734 0.9071 1.0098 0.9546 1.0468 1.0713
µ4 0.4632 0.9841 1.0797 1.0294 1.1143 1.1355
µ5 0.2759 0.7731 0.9417 0.8559 1.0018 1.0406

Table 3: Log-Predictive Likelihoods and Log-Bayes Factors

Model log PL log BF LSD RMSFE
MGARCH-IHMM -4478.602 — — 4.1480
MGARCH-DPM -4492.075 13.4731 0.30% 4.1487
IHMM -4550.889 72.2869 1.59% 4.1340
MGARCH-A -4521.526 42.9239 0.95% 4.1493
MGARCH-N -4523.410 44.8084 0.99% 4.1508

Training samples are from July 1926 to December 1990, and
out-of-sample periods are from January 1991 to December
2020.
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Table 4: Annualized Fees a Risk-Averse Investor Is Willing to Pay

U(W ) =
W 1−a

1− a
,

Wt = 1 +w′
tRt + (1−w′

tι)− C(wt,wt−1),

C(wt,wt−1) = c

N
∑

i=1

|wi,t − wi,t−1|+ c

∣

∣

∣

∣

∣

N
∑

i=1

wi,t −

N
∑

i=1

wi,t−1

∣

∣

∣

∣

∣

.

a a = 2 a = 4 a = 6

c 0% 1% 2% 0% 1% 2% 0% 1% 2%

Panel A: No Trading Restriction
MGARCH-DPM 0.82% -0.96% -4.17% 0.55% 0.47% -1.00% 0.44% 0.71% -0.67%
IHMM 6.39% 1.16% -5.08% 3.43% -0.21% -0.34% 2.31% 0.85% -0.01%
MGARCH-A 2.20% -2.41% -6.96% 1.31% 0.84% -0.42% 0.91% 1.22% -0.13%
MGARCH-N 1.37% -2.45% -6.14% 0.88% 0.28% -0.89% 0.62% 0.92% -0.37%
EW+RF 3.55% -0.14% -5.71% 1.94% 1.74% 0.27% 1.32% -0.28% -0.11%
EW 5.41% -0.81% -6.30% 1.04% -0.47% -1.91% 0.53% -0.00% -1.36%

Panel B: No Short-Selling
MGARCH-DPM 0.81% 2.51% 2.20% 0.78% 0.99% 1.50% 0.65% 0.80% 1.31%
IHMM 0.35% 1.51% 1.20% 0.13% 0.66% 0.75% 0.25% 0.59% 0.87%
MGARCH-A 3.17% 3.09% 3.55% 1.85% 1.82% 2.47% 1.36% 1.84% 1.99%
MGARCH-N 1.93% 2.42% 2.67% 1.26% 2.03% 2.48% 0.98% 1.81% 2.08%
EW+RF 4.09% 4.11% 3.75% 2.24% 3.03% 2.73% 1.62% 2.10% 2.28%
EW 5.97% 3.42% 3.06% 1.34% 0.22% 0.65% 0.83% 0.40% 0.59%

Panel C: No Margin-Trading
MGARCH-DPM 0.07% 0.33% 0.47% 0.82% 1.11% 1.18% 0.63% 0.78% 1.16%
IHMM 1.44% 0.51% 0.93% 1.14% 0.95% 0.39% 0.71% 0.68% 0.77%
MGARCH-A 0.20% 0.77% 0.91% 1.35% 2.09% 2.47% 1.03% 1.45% 1.68%
MGARCH-N 0.15% 0.38% 0.90% 1.52% 1.80% 2.19% 1.22% 1.60% 1.92%
EW+RF 0.11% 1.51% 1.56% 1.88% 2.61% 2.72% 1.72% 1.86% 2.13%
EW 0.50% 0.83% 0.88% 0.98% 0.44% 0.36% 0.92% 0.17% 0.43%
1. No Trading Restriction indicates no restriction on wt during expected utility optimization; No Short-Selling

indicates a constraint of wi,t ≥ 0 for all i = 1, . . . , N is imposed in the optimization problem; and No Margin-
Trading indicates that in addition to the No Short-Selling constraint,

∑N
i=1

wi,t ≤ 1 is also imposed in the
optimization problem.

2. IHMM means an investor switches from IHMM to MGARCH-IHMM.
3. A positive fee means the MGARCH-IHMM is better, and a negative fee means the corresponding benchmark

model is better.
4. EW+RF indicates mixing an equally weighted portfolio with the risk-free asset, assuming iid; and EW

indicates an equally weighted portfolio of the Fama-French 5 industry portfolios and a risk-free asset (each
has a weight of 1/6).
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Table 5: Risky Positions Averaged over Time

a a = 2 a = 4 a = 6

c 0% 1% 2% 0% 1% 2% 0% 1% 2%

Panel A: No Trading Restriction
Long:
MGARCH-IHMM 4.3408 2.6729 2.4037 2.4173 1.8978 1.7783 1.6499 1.2949 1.3901
MGARCH-DPM 3.6612 1.7090 1.7372 2.0483 1.1633 1.2402 1.3988 0.7789 0.8577
IHMM 4.6610 1.7763 1.9958 2.5441 1.2783 1.1557 1.7265 0.9052 0.9494
MGARCH-A 4.0941 1.5820 1.4847 2.0573 0.8012 0.7603 1.3722 0.5027 0.5099
MGARCH-N 4.5350 2.0060 1.7757 2.2802 1.0503 1.0330 1.5210 0.6702 0.6655
EW+RF 1.1331 0.7300 0.7299 0.5797 0.3676 0.3676 0.3888 0.2455 0.2455
EW 0.8333 0.8333 0.8333 0.8333 0.8333 0.8333 0.8333 0.8333 0.8333
Short:
MGARCH-IHMM -1.8967 -1.6987 -1.7893 -1.0116 -0.9702 -0.8749 -0.6838 -0.6489 -0.6507
MGARCH-DPM -1.3671 -0.5988 -0.6841 -0.7511 -0.3395 -0.4043 -0.5114 -0.2381 -0.2570
IHMM -2.3146 -0.5282 -0.7440 -1.2233 -0.4435 -0.3216 -0.8243 -0.3134 -0.2841
MGARCH-A -1.8056 -0.5583 -0.5356 -0.9072 -0.3075 -0.3065 -0.6051 -0.1997 -0.2079
MGARCH-N -2.2006 -0.8794 -0.8665 -1.1065 -0.4734 -0.4852 -0.7381 -0.3224 -0.3186
EW+RF 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
EW 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Total:
MGARCH-IHMM 2.4441 0.9742 0.6143 1.4057 0.9276 0.9034 0.9662 0.6460 0.7394
MGARCH-DPM 2.2941 1.1102 1.0530 1.2972 0.8239 0.8359 0.8874 0.5408 0.6007
IHMM 2.3464 1.2482 1.2518 1.3208 0.8348 0.8341 0.9022 0.5918 0.6653
MGARCH-A 2.2885 1.0237 0.9492 1.1500 0.4936 0.4538 0.7671 0.3030 0.3020
MGARCH-N 2.3344 1.1266 0.9092 1.1737 0.5769 0.5478 0.7829 0.3478 0.3469
EW+RF 1.1331 0.7300 0.7299 0.5797 0.3676 0.3676 0.3888 0.2455 0.2455
EW 0.8333 0.8333 0.8333 0.8333 0.8333 0.8333 0.8333 0.8333 0.8333

Panel B: No Short-Selling
MGARCH-IHMM 2.4021 1.4434 1.4614 1.3703 0.9411 1.0755 0.9393 0.6369 0.7638
MGARCH-DPM 2.1723 1.0154 1.0345 1.2188 0.6417 0.6139 0.8315 0.4214 0.4222
IHMM 2.2498 1.0489 1.0619 1.2500 0.6243 0.7111 0.8520 0.4100 0.4672
MGARCH-A 2.0384 0.9041 0.7852 1.0229 0.4592 0.4285 0.6824 0.2866 0.2996
MGARCH-N 2.0194 0.9512 0.9077 1.0138 0.4326 0.4354 0.6759 0.2882 0.2799
EW+RF 1.1331 0.7300 0.7299 0.5797 0.3676 0.3676 0.3888 0.2455 0.2455
EW 0.8333 0.8333 0.8333 0.8333 0.8333 0.8333 0.8333 0.8333 0.8333

Panel C: No Margin-Trading
MGARCH-IHMM 0.9730 0.9866 0.9895 0.8883 0.8795 0.9564 0.7784 0.6551 0.7665
MGARCH-DPM 0.9979 0.9655 0.9801 0.9567 0.5774 0.5791 0.7886 0.4215 0.4056
IHMM 0.9687 0.9805 0.9795 0.8992 0.6446 0.7145 0.7625 0.4210 0.4650
MGARCH-A 0.9950 0.9436 0.7840 0.8597 0.4078 0.4060 0.6617 0.2969 0.3258
MGARCH-N 0.0022 0.8713 0.7904 0.8603 0.4328 0.4327 0.6603 0.3029 0.2949
EW+RF 0.9344 0.7300 0.7299 0.5797 0.3676 0.3676 0.3888 0.2456 0.2455
EW 0.8333 0.8333 0.8333 0.8333 0.8333 0.8333 0.8333 0.8333 0.8333
1. The table shows the positions of the risky portfolio optimized with each model and averaged over time. To be

more specific, Total = E(
∑N

i=1
wi), Long = E(

∑N
i=1

wi1{wi>0}), and Short = E(
∑N

i=1
wi1{wi<0}). When No

Short-Selling or No Margin-Trading is imposed, the short position is always 0 and Long = Total.
2. The meaning of No Trading Restriction, No Short-Selling and No Margin-Trading are the same as in Table 4.
3. The meaning of EW+RF and EW are the same as in Table 4.
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Figure 1: Heat Map of States Estimated by the MGARCH-IHMM
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MGARCH-IHMM, MGARCH-DPM: Cov = E(H1/2
t ΣkH

1/2
t

′
),

IHMM: Cov = E(Σst), MGARCH-N, MGARCH-A: Cov = E(Ht)

Figure 2: (Log Determinants of) the Posterior Means of the Time-Varying Parameters over
Time
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(a) c = 0%

(b) c = 1%

Figure 3: Risky Positions in the Portfolio Optimized with MGARCH-IHMM over Time
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(c) c = 2%

Figure 3: Risky Positions in the Portfolio Optimized with MGARCH-IHMM over Time
(cont.)
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Appendix A Pólya Urn Scheme for HDP

To estimate the IHMM, a hierarchical Pólya urn scheme introduced by Beal et al. (2002)

is more convenient. This representation consists of a set of regular urns with an additional

“oracle” urn. Suppose there are currently K existing “major” states, then firstly draw from

the regular urn as follows:

p (s̃ = s|st = j, s1:t−1) =
K
∑

k=1

njk

α0 +
∑K

j=1 njk

δ (k, s) +
α0

α0 +
∑K

j=1 njk

δ (K + 1, s) (15)

where njk counts the number of balls in colour k from urn j; δ (a, b) is the Kronecker delta

function that equals 1 if a = b, otherwise 0. If s̃ ⩽ K, then st+1 = s̃; if a new state is drawn,

an additional sampling step from the “oracle” urn is involved:

p (st+1 = s|st = j, s1:t−1) =
K
∑

k=1

ck

β0 +
∑K

j=1 ck
δ (k, s) +

β0

β0 +
∑K

j=1 ck
δ (K + 1, s) (16)

where ck counts the number of balls in colour k from the “oracle” urn. If a new state is also

drawn in the “oracle” urn, the number of existing “major” states will become K + 1.

Appendix B Sampling Details

Recall that Γ = (γ1, . . . , γK , γR)
′ and Πj = (πj1, . . . , πjK , πjR), where γR =

∑

∞

k=K+1 γk =

1−
∑K

k=1 γk and πjR =
∑

∞

k=K+1 πjk = 1−
∑K

k=1 πjk. The sampling steps are:

1. Sample u1:T |Γ,Π. The auxiliary slice variable U = {ut}
T
t=1 is drawn by u1 ∼ U (0, γs1)

and ut ∼ U
(

0, πst−1st

)

.

2. Update K. Similar to the DPM model, if K does not meet the condition

min {ut}
T
t=1 > max {πjR}

K
j=1 (17)
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then K needs to be increased by 1 (K ′ = K+1) and all of the corresponding parameters

need to be drawn from the base measure. In addition, since a new “major” state is

introduced, Γ and Π also need to be updated accordingly:

(a) ΘK′ ∼ H;

(b) Draw v ∼ Beta (1, β0), then update Γ = (γ1, . . . , γK , γK′ , γR)
′, where γK′ = vγR

and γR = (1− v) γR;

(c) Draw vj ∼ Beta (α0γK′ , α0γR), update Πj = (πj1, . . . , πjK , πjK′ , πjR) for j =

1, . . . , K, where πjK′ = vπjR and πjR = (1− v) πjR;

(d) Draw the K ′th row of Π, ΠK′ , by ΠK′ ∼ Dir (α0γ1, . . . , α0γK , α0γK′ , α0γR).

Repeat the above steps until inequality (17) holds.

3. The forward filter for s1:T |r1:T , u1:T ,Γ,Π,Θ,H1:T . Iterating the following steps for-

ward from 1 to T :

(a) The prediction step for initial state s1 is as follows:

p(s1 = k|u1,Γ) ∝ 1 (u1 < γk) , k = 1, . . . , K (18)

for the following states s2:T :

p(st = k|r1:t−1, u1:t,Π,Θ,H1:t−1) ∝
K
∑

j=1

1 (ut < πjk) p (st−1 = j|r1:t−1, u1:t−1,Π,Θ,H1:t−1)

(19)

(b) The update step for s1:T :

p (st = k|r1:t, u1:t,Π,Θ,H1:t) ∝ p (rt|rt−1,Θk,H t) p (st = k|r1:t−1, u1:t,Π,Θ,H1:t−1)

(20)
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4. The backward sampler for s1:T |r1:T , u1:T ,Π,Θ,H1:T . Sample the states s1:T using the

previously filtered values backward from T to 1:

(a) for the terminal state sT directly from p (sT |r1:T , u1:T ,Π,Θ,H1:T )

(b) for the rest states,

p (st = k|st+1 = j, r1:t, u1:t+1,Π,Θ,H1:t) ∝ 1 (ut+1 < πkj) p (st = k|r1:t, u1:t,Π,Θ,H1:t)

(21)

5. Sample c1:K |s1:T ,Γ, α0. c1:K is essential for sampling Γ, and it counts balls in different

colours in the “oracle” urn. However, recall that the Pòlya urn scheme in section A,

the “oracle” urn is only involved when a new state is drawn from the regular urn, and

it would be difficult to directly sample ck. Fox et al. (2011) propose simulating ck from

the original Pòlya urn scheme instead of sampling it.

(a) Count the number of each transition type, njk, for the number of times switching

from state j to state k.

(b) Simulate an auxiliary trail variable xi ∼ Bernoulli
(

α0γk
i−1+α0γk

)

, for i = 1, . . . , njk.

If the trial is successful, an “oracle” urn step is involved at the ith step toward

njk and we increase the corresponding “oracle” counts, ojk, by one.

(c) ck =
∑K

j=1 ojk.

6. Sample β0. Following Fox et al. (2011); Maheu and Yang (2016), assume a Gamma

prior β0 ∼ Gamma (a1, b1), and let c =
∑K

j=1 cj,

(a) ν ∼ Bernoulli
(

c
c+β0

)

(b) λ ∼ Beta (β0 + 1, c)

(c) β0 ∼ Gamma (a1 +K − ν, b1 − log λ)

7. Sample α0. Following Fox et al. (2011), assume a Gamma prior α0 ∼ Gamma (a2, b2),

and let nj =
∑K

k=1 njk,
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(a) νj ∼ Bernoulli
(

nj

nj+α0

)

(b) λj ∼ Beta (α0 + 1, nj)

(c) α0 ∼ Gamma
(

a2 + c−
∑K

j=1 νj, b2 −
∑K

j=1 log (λj)
)

8. Sample Γ|c1:K , β0. Given the “oracle” urn counts c1:K and the property of Dirichlet

process, the conjugate posterior is

Γ|c1:K , β0 ∼ Dir (c1, . . . , cK , β0) (22)

9. Sample Π|n1:K,1:K ,Γ, α0. Similarly, the conjugate posterior of Πj is

Πj|nj,1:K ,Γ, α ∼ Dir (α0γ1 + nj1, . . . , α0γK + njK , α0γR) (23)

10. Sample Θ|r1:T , s1:T ,H1:T . Assume conjugate priors µ ∼ N (b0,B0) and Σ ∼ IW (Σ0, ν +N).

Define Y k ≡
{

H
−1/2
t rt|st = k

}T

t=2
and Xk ≡

{

H
−1/2
t |st = k

}T

t=2
. The linear model

is now

Y k = Xkµk + ϵk, ϵk ∼ N (0,Σk) (24)

The posteriors are

p (µk|Y k,Σk,H1:T ) ∼
∏

t:st=k

p (Y t|µk,Σk,H t) p (µk) (25)

∼ N (Mµ,V µ) (26)
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where

Mµ = V µ

(

∑

t:st=k

H
−1/2
t

′

Σ
−1
k H

−1/2
t rt +B−1

0 b0

)

(27)

V µ =

(

∑

t:st=k

H
−1/2
t

′

Σ
−1
k H

−1/2
t +B−1

0

)

−1

(28)

and

p (Σk|Y k,µk,H1:T ) ∝
∏

t:st=k

p (rt|µk,Σk,H t) p (Σk) (29)

∼ IW
(

Σ̄, ν̄ +N
)

(30)

where

ν̄ = Tk + ν =
T
∑

t=1

1 (st = k) + ν (31)

Σ̄ =
∑

t:st=k

H
−1/2
t (rt − µk) (rt − µk)

′

H
−1/2
t

′

+Σ0 (32)

11. Sample hierarchical priors.

(a) Sample b0|µ1:K ,B0,h0,H0 ∼ N (µb,Σb), where

µb = Σb

(

B−1
0

K
∑

k=1

µk +H−1
0 h0

)

(33)

Σb =
(

KB−1
0 +H−1

0

)

−1 (34)

(b) Sample B0|µ1:K , b0, a0,A0 ∼ IW (ΩB, ωb), where

ωb = K + a0 (35)

ΩB =
K
∑

k=1

(µk − b0) (µk − b0)
′ +A0 (36)
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(c) Sample ν|σ2
1:K , s0, g0. There is no easily applicable conjugate prior for ν so a

Metropolis-Hastings step needs to be applied. Implement a Gamma proposal

following Maheu and Yang (2016):

ν ′|ν ∼ Gamma
(

τ,
τ

ν

)

(37)

and the acceptance rate is

min

{

1,
p (ν ′|Σ1:K , s0, g0) /q (ν

′|ν)

p (ν|Σ1:K , s0, g0) /q (ν|ν ′)

}

(38)

(d) Sample Σ0|Σ1:K , v0,C0, d0 ∼ W (Cs, ds), where

Cs =

(

K
∑

k=1

Σ
−1
k +C−1

0

)−1

(39)

ds = K (ν +N) + d0 (40)

12. Sample the GARCH parameters θH = {α,β,η} |r1:T , s1:T ,Θ. With normal prior

θH ∼ N (0, I), the posterior is

p (θH |r1:T , s1:T ,Θ) ∼
T
∏

t=1

p (rt|Θ,H t) p (θH) (41)

Apply a random-walk Metropolis-Hastings algorithm to sample α and β. C is jointly

targeted.
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