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How and where satellite cities form around a large city:

Sustain bifurcation mechanism of a long narrow economy1

Kiyohiro Ikeda,2 Hiroki Aizawa,3 José M. Gaspar4

Abstract

We investigate economic agglomeration in a long narrow economy, in which discrete

locations are evenly spread over a line segment. We elucidate the mechanism how (new)

satellite cities form around a central city by the bifurcation analysis of a monocentric city

at the center. The validity and usefulness of this mechanism are ensured for various kinds

of spatial economic models, namely Forslid & Ottaviano (J Econ Geo, 2003), Pflüger

(Reg Sci Urban Econ, 2004), Pflüger and Südekum (J Urban Econ, 2008), and Murata

and Thisse (J Urban Econ, 2005). Where satellite cities emerge is demonstrated to be

dependent on the models and their economic parameters. For the first two models, for

example, the larger the agglomeration forces, the farther away from the monocentric city

satellite cities emerge. The transition of stable agglomeration patterns is observed and is

put to use in the explanation of the history of city size distribution in the real world.

Keywords: Bifurcation; economic geography; long narrow economy; satellite city;

sustain point.
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Figure 1: A chain of cities in the world

1. Introduction

A chain of cities prospers worldwide, e.g., on the Main Island of Japan and in a closed

narrow corridor between the Atlantic Ocean and the Appalachian Mountains (see Fig. 1).

A chain of cities can be found also at transnational scales, particularly in Europe (see

Fig. 2), such as the Atlantic Axis (from Porto in Portugal to La Coruña in Spain), the

STRING (from Hamburg in Germany to Oslo in Norway), and the so-called “blue, green

and golden bananas”.

The mechanism of the growth of a large city, such as New York City and Tokyo,

among a chain of cities is of great interest in spatial economics. Geography, amongst

other factors, plays a big role in characterizing chains of cities according to their loca-

tional and spatial topology. One such particular configuration is the line segment, whose

analysis, despite its stylized geometry, is of great interest because: (i) it is both simple and

generates asymmetries that confers advantages to some regions; and (ii) it is empirically

relevant as it fits several real world examples of a chain of cities.

This paper aims to elucidate the agglomeration mechanism of a long narrow economy,
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Figure 2: European transnational megalopolises (source: Maps on the Web: https://mapsontheweb.zoom-

maps.com)

in which discrete locations are evenly spread over a line segment. We answer the question

“How and where do (new) satellite cities form around a large city?” By satellite cities

we refer to a pair of (potential) cities, placed on each side of a central city, forming a

spatial pattern that resembles a megalopolis or megaregion. This is apparently a difficult

mission as the associated agglomeration properties are dependent on spatial economic

models and as well as on their economic parameters. To tackle this mission, we elucidate

the bifurcation/agglomeration mechanism of this economy in the following two steps:

1. The bifurcation mechanism for a general spatial economy.

2. The bifurcation mechanism for well-known economic geography models.

The results for the first step are applicable to canonical spatial economics models. On the

other hand, the results for the second step are more informative than those for the first

step, although these results hinge on the particular assumptions of the models employed

in our paper.
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The literature reports several characteristic agglomeration patterns of this economy:

the simplest core–satellite pattern for three places (Ago et al., 2006), a chain of spatially

repeated core–periphery patterns a la Christaller and Lösch (e.g., Fujita and Mori, 1997),

and a megalopolis which consists of large core cities that are connected by an industrial

belt, i.e., a continuum of cities (Mori, 1997). These patterns were numerically observed

for a long narrow economy by changing agglomeration forces and transport costs (Ikeda

et al., 2017). Yet such patterns were investigated somewhat fragmentarily and in an ad

hoc manner up to now.

In the first step, as a novel theoretical contribution of the paper, we answer the ques-

tion “How do (new) satellite cities form around a large city?” in a manner applicable to a

general economic geography model with an arbitrary number of places. It is proved that

a state of full agglomeration to a large single city at the center can encounter a bifurca-

tion at a critical level5 of transport costs (freeness of trade). Above (below) this level this

state becomes economically unsustainable and leads to the emergence of satellite cities

around the large central city. Nowadays it seems far more important to investigate the

competition between central and satellite cities than to investigate the self-organization

of cities in a flat land envisaged, e.g., by Central Place Theory (Christaller, 1933).

In the second step, we answer the question “Where do (new) satellite cities form

around a large city?” As a pioneering work on this issue, Fujita and Krugman (1995)

investigated the emergence of satellite places around a monocenter in an infinite contin-

uous space, and studied the conditions under which a monocentric equilibrium is stable

in the context of a general equilibrium model. However, their work is silent on the exact

5This critical level is called the sustain point (Fujita et al., 1999).
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location of such places around the central city for a bounded corridor with finite length,

i.e., it does not discuss how far away from the central city the satellite places emerge.

Recently, Allen and Arkolakis (2014) provided examples of equilibrium configura-

tions and their stability along a continuous line segment under changes in trade costs and

other parameters such as exogenous productivities. However, they do not discuss what

patterns arise (and where) once full agglomeration becomes unsustainable.

In the study of a chain of cities in this paper, a line segment economy with discrete

places would be more pertinent than the continuous space. In this paper, we answer

our question based on the analysis of many-region versions of several spatial economic

models: the footloose entrepreneur models by Forslid & Ottaviano (2003), by Pflüger

(2004), and by Pflüger and Südekum (2008) (FE, PF and PFSU, respectively), and the

MT model by Murata and Thisse (2005).

The choice of these models is not arbitrary. The FE, PF and PFSU models fall in the

class of analytically solvable models and hence allow us to obtain some analytical proofs

that would otherwise be unattainable. The MT model, although not analytically solvable,

is remarkably simple for the case of full agglomeration (a single city). Moreover, our

choice allows us to cover all three kinds of models according to the spatial scale of dis-

persion forces (see Akamatsu et al, 2021 for classification of models). Global dispersion

forces occur when they depend on the proximity structure between regions (competition

effects that extend over a certain distance). Local dispersion arises due to congestion

inside each region. The FE and PF models belong to the class of models that exhibit

only global forces. The MT model belongs to the class of models that exhibit only local
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dispersion forces.6 Finally, the PFSU model belongs to the class of models that contains

both local and global dispersion forces.7

The location of the satellite places turns out to be dependent on the models and the

values of their parameters. This location is demonstrated to be dependent on the agglom-

eration forces that are a consequence of: (i) the global size of the industrial sector relative

to the traditional sector, (ii) the degree of scale economies in the industrial sector, and (iii)

the size of congestion forces due to housing costs and/or commuting costs.

In the FE model and the PF model, when agglomeration forces are very small, a large

central place surrounded by two neighboring satellite places emerges for low enough

trade costs, thus forming a hump-shaped megalopolis around the central city. When

these forces are large, satellite cities appear far away from the primary city at the center.

This would give an economic implication of agglomeration shadow (Arthur, 1990),8 cast

by cities with a large industry size over locations in the vicinity, in which little or no

settlement takes place because competition among firms in neighboring regions is so

intense that firms cannot gain profit there. In contrast, sufficiently separated satellite

cities and the central region can share industry. The PFSU model displays a similar

tendency, while two neighboring satellite places always emerge for the MT model.

The analysis on the FE model is put to use in the investigation of the population

distribution in chains of cities presented above. The historical change of the population

6The seminal model by Helpman (1998) or the more recent model by Allen and Arkolakis (2014) also

fall into this class and can actually be shown to be isomorphic under some conditions.

7For more information on this typology, its meaning, and consequences, we refer the interested reader

to Akamatsu et al. (2021).

8See also Fujita et al. (1999), Ioannides and Overman (2004), and Fujita and Mori (2005).

6



distribution in a chain of cities in the mainland of Japan is successfully explained using

the result of the analysis of an long narrow economy with five cities using the FE model,

while the population distribution in the Atlantic Axis using that with seven cities. Thus,

the analysis by economic geography models, in the framework proposed in this paper,

would be of great assistance in the investigation of real data.

This paper is organized as follows: The bifurcation from the full agglomeration to a

single city on a long narrow economy is described in Section 2. Economic geography

models are introduced in Section 3. How and where satellite cities form for economic

geography models is investigated in Section 4. Location of satellite cities is studied in

Section 5. Real data is studied in Section 6. Section 7 concludes.
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Figure 3: A long narrow economy

2. Full agglomeration to a single city on a long narrow economy

We employ a long narrow economy as a spatial platform for economic geography

models. We would like to answer the question “How and where do (new) satellite cities

form around a large city?” As a mechanism of the emergence of satellite cities around

a large core city, we set forth the bifurcation at the state of the full agglomeration at the

center. Note that this mechanism is applicable to diverse spatial economic models under

the replicator dynamics so far as they have the state of the full agglomeration.

2.1. Modeling of the spatial economy

The long narrow economy has K = 2k + 1 (k ∈ Z : k ≥ 1) cities labeled i ∈ N =

{0, ..., k, ..., 2k}, which are equally spread on a line segment (Fig. 3). The kth city is

located at the center, and a city i , k is said to be δ ≡ |i − k| steps away from the center.

There are inter-regionally mobile agents, the number of which at city i ∈ N is denoted

by λi under the constraint
∑

i∈N λi = 1. We introduce a spatial equilibrium according to

which the mobile agents migrate among cities and choose to live in the city that offers

them the highest utility. A customary way of defining such an equilibrium is to consider

the following problem: Find (λ∗, v̂) satisfying

(vi − v̂)λ∗i = 0, vi − v̂ ≤ 0, λ∗i ≥ 0,
∑

i∈N

λ∗i = 1, (1)

where v̂ is the highest (indirect) utility of the solution to this problem.
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We consider the replicator dynamics (Taylor and Jonker, 1978): dλ
dt
= F(λ, φ), where

λ = (λi | i ∈ N), F(λ, φ) = (Fi(λ, φ) | i ∈ N), and:

Fi(λ, φ) = (vi(λ, φ) − v̄(λ, φ))λi, i ∈ N. (2)

Here, v̄ =
∑

i∈N λivi represents the weighted average utility and φ ∈ (0, 1) is the trade

freeness, which is an inverse measure of transportation costs. We choose the free-

ness of trade as the bifurcation parameter in order to capture the historical tendency

of falling/increasing transport costs, as is customary in geographical economics.9 We

do not, however, disregard the important role of other costs in determining the size and

distribution of cities, such as congestion or commuting costs, as we shall see, e.g., for the

PFSU and MT models (Section 3).

Stationary points (λ, φ) are defined as solutions of the static governing equation

F(λ, φ) = 0. (3)

There are several features about stationary points:

(1) Parameter dependency: Stationary points form equilibrium paths (λ(φ), φ). The

pattern λ, in general, varies with the parameter φ.

(2) Stability: A stable spatial equilibrium is obtained as a stable stationary point.

This point is linearly stable if every eigenvalue of the Jacobian matrix of F(λ, φ) has a

negative real part, and is linearly unstable if at least one eigenvalue has a positive one.

(3) Sustainability: A corner solution with zero population at one or more locations

9For a generic spatial economic model, we thus think of φ as an index that captures integration between

regions in the broadest sense possible, i.e., it may reflect export hurdles due to trade tariffs, the quality of

transportation infrastructures, or any kind of institutional barrier.
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Figure 4: Agglomeration patterns in a long narrow economy for K = 5 cities

(λi = 0) is called sustainable if vi− v̄ ≤ 0 is satisfied and is called unsustainable otherwise.

Unsustainable corner solution are unstable.

There are several patterns λ of interest. The full agglomeration (FA) to a single place

i = k − δ located δ steps away from the center (Fig. 4(a)) is defined as

λ = λFA
δ with






λi = 1 for i = k − δ,

λi = 0 for i , k − δ,

0 ≤ δ ≤ k.

(We assume 1 ≤ i ≤ k for simplicity, while a similar discussion holds for i > k by bi-

lateral symmetry of the long narrow economy.) Twin cities, uniform, core–satellite, and

diffused patterns, respectively, in Figs. 4(b)–(e) play an important role in the agglomera-

tion analysis of economic geography models (Section 4.3).

2.2. Full agglomerations to a single city

The state of the full agglomeration is studied, e.g., in Fujita and Krugman (1995) and

is of great economic interest. This state has several special features:

(1) Parameter independency: The full agglomeration λFA
δ has a special feature

(called invariant patterns in Ikeda et al., 2012, 2018, and Aizawa et al., 2020):

Proposition 1. The full agglomeration λ = λFA
δ (0 ≤ δ ≤ k) is a stationary point of the

replicator dynamics for any value of φ (and any value of any other parameter).
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Proof. See Appendix A.1 for the proof. �

(2) Stability: The stability of λ = λFA
δ is described by the following proposition

Proposition 2. The state of the full agglomeration λ = λFA
δ at the place i = k− δ is stable

if the utility vk−δ is strictly larger than the utility vi elsewhere (vi < vk−δ for any i , k− δ).

Proof. See Appendix A.2 for the proof. �

(3) Sustainability: The local sustain point φ = φs
i

for an individual place i and the

global sustain point φ = φs for the whole system are distinguished as below.

Definition 1. (i) Local sustainability. A region i (, k−δ) is locally sustainable if vi−v̄ ≤ 0

holds. A local sustain point for this region is defined by φ = φs
i

satisfying vi − v̄ = 0.

(ii) Global sustainability. A global sustain point φ = φs of λ = λFA
δ is defined as a point

where its stability changes, i.e., visat
− v̄ = 0 (v̄ = vk−δ) for some i = isat and v j − v̄ < 0 for

all j , isat, k − δ. The place i = isat is δsat(≡ k − isat) steps away from the center.

2.3. Bifurcation from the full agglomeration at the center: Emergence of satellite cities

To answer the major question of this paper, “how do (new) satellite cities form around

a large city?”, we elucidate the bifurcation mechanism of the state λ = λFA
0

of the full

agglomeration at the center. This state is chosen herein as it has superior stability among

full agglomerations in various locations (Section 4.1).

The full agglomeration λFA
0

at the center has a sustain point (λFA
0
, φc

δ
) (for some δ ∈ Nδ)

where vk−δ−vk = vk+δ−vk = 0 is satisfied.10 This is a bifurcation point, from which emerge

one or two satellite cities, δ steps away from the central region, as stated in the following

proposition (see Fig. 5 for the bifurcation of K = 5 cities).

10Since the state has the bilateral symmetry about the center, cities i = k± δ has the same indirect utility.
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Figure 5: Possible bifurcations for K = 5 cities

Proposition 3. The sustain point (λFA
0
, φc

δ
) has three bifurcating paths: a bifurcating path

with two satellite cities at i = k ± δ, that with a satellite city at i = k − δ, and that with a

satellite city at i = k + δ.

Proof. See Lemma 2 in Appendix A.3 for the proof. �

The path with a satellite city at i = k− δ and that at i = k+ δ are identified hereafter since

the spatial pattern for the former and that for the latter are bilaterally symmetric.

The stability of the bifurcating paths is described by the following proposition.

Proposition 4. The global sustain point has zero or one stable bifurcating path just after

bifurcation. Bifurcating curves of local sustain points, other than the global sustain point,

are all unstable just after bifurcation.

Proof. See Appendix A.4 for the proof. �

Thus the global sustain point can possibly engender a stable bifurcating path accom-

modating satellite cities at isat = k±δsat. When the full agglomeration λ = λFA
0

is stable, vk

for the central place is largest among all vi (i ∈ N) by Proposition 2. When φ crosses the

global sustain point φs, the full agglomeration becomes unstable and visat
becomes largest
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among all vi (i ∈ N). In this sense, the place isat is the most plausible location of satellite

cities.

How a stable bifurcating path branches at this sustain (bifurcation) point is described

by the following proposition.

Proposition 5. (i) A stable bifurcating path from the full agglomeration λFA
0

, if it exists,

branches in the opposite direction from the stable full agglomeration.

(ii) A bifurcating path is unstable, when this path snaps back, i.e., the path and the

stable full agglomeration reside in the same direction from the global sustain point.

Proof. See Appendix A.5 for the proof. �

Thus a stable bifurcating path, when it exists, realizes a continuation of stable paths that

reside on both sides of the sustain point. In the literature, such continuation is observed

for the PF model (Pflüger, 2004). In this paper, such continuation in a long narrow

economy is actually observed for the FE, PF, and PFSU models (Section 4.3).

We determine “where do (new) satellite cities form” by the following two steps:

Step 1: Obtain the global sustain point and the associated location δsat.

Step 2: Find a stable bifurcating path from this global sustain point.

When a stable bifurcating path exists, δsat obtained in this manner gives the location of

satellite cities that can emerge through the transition of stable equilibria. When it dose

not exist, a dynamical jump occurs, while δsat obtained still remains a candidate of the

location of agglomeration as it has the largest indirect utility among all places.
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3. Economic geography models

We shall present four economic geography models, namely the FE model (Forslid

and Ottaviano, 2003), the PF model (Pflüger, 2004), the MT model (Murata and Thisse,

2005) and the PFSU model (Pflüger and Südekum, 2008). The choice of these models is

far from arbitrary. First, we aim to encompass diverse modeling, that is, our choice allows

us to cover all three kinds of models according to a characterization based on the source

and spatial scale of net agglomeration/dispersion forces.11 The distinction between global

and local dispersion forces is that the former acts between regions and are dependent on

the distance structure, whereas the latter acts within regions and are independent of the

distance structure (Akamatsu et al., 2021). The FE and PF models, for instance, belong

to the class of models that exhibit only global forces. The MT model belongs to the class

of models that exhibit only local dispersion forces. Finally, the PFSU model belongs to

the class of models that containing both local and global dispersion forces.

Second, the FE, PF and PFSU models fall in the class of the so-called footloose

entrepreneur models (Baldwin et al., 2003), which are analytically solvable and hence are

more tractable compared to other economic geography models. This allows us to obtain

some analytical proofs that would otherwise be unattainable, namely the expressions for

the indirect utility in the central city and any periphery (or potential city) i , k, and proofs

on the existence and uniqueness of bifurcation points from the full agglomeration. The

MT model, although not analytically solvable, is remarkably simple for the case of full

agglomeration (a single city) in terms of expressions for the indirect utilities. The MT

model differs significantly in some assumptions, as we shall see further.

11Akamatsu et al. (2021) give more information on this typology, its meaning, and consequences.
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3.1. Common ground

We first lay down some general assumptions and establish a common ground of the

economic geography models. We shall omit most derivations and write down just the

main assumptions and results.

There are two factors of production (skilled and unskilled workers) and two sectors

(manufacturing, M, and traditional, A). Both types of workers consume final goods of

two types: manufacturing sector goods and a traditional sector good. Workers supply one

unit of each type of labor inelastically. Skilled workers are mobile between cities. The

number of skilled workers in city i ∈ N is denoted by λi under the constraint
∑

i∈N λi = 1.

The unskilled workers are immobile and distributed equally with Li = L/K (∀i ∈ N).

The traditional sector uses immobile labor to produce a perfectly tradable good under

perfect competition and constant returns to scale (each agent produces one unit of the

agricultural good). Choosing the traditional good as numeraire, we set its price and

the wage of immobile agents at unity in all regions. In the M-sector, many varieties of

imperfectly tradable manufactured goods are produced under monopolistic competition

and increasing returns to scale. Each firm produces a single variety using one unit of

mobile labour (fixed cost) and, in addition, one unit of immobile labour per unit of output

(variable cost). There is free entry in the manufacturing sector, thus firm profits are driven

to zero (the nominal wage of mobile labour, wi, totally absorbs operating profits).

The transportation costs for M-sector goods are assumed to take the iceberg form.

That is, for each unit of M-sector goods transported from city i to city j , i, only a

fraction 1/τi j < 1 actually arrives (τii = 1). It is assumed that τi j = exp(τm(i, j)L̃) is a

function of a transport cost parameter τ > 0, where m(i, j) is an integer expressing the
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road distance between cities i and j and L̃ is the distance unit. We have m(i, j) = |i− j| for

the long narrow economy. As our bifurcation parameter, we introduce the trade freeness

(a converse measure of transport costs):

φ = exp[−τ(σ − 1)L̃] ∈ (0, 1),

where σ (> 1) is a parameter that expresses the constant elasticity of substitution between

manufactured varieties. Then we represent by φi j = φ
|i− j| the friction between cities i and

j that decays in proportion to the transportation distance.

Agents in region i ∈ N maximize utility u(Ci, Ai), where Ci is the consumption level

of a composite good of manufactures and Ai is that of the traditional good, subject to the

budget constraint PiCi+Ai = yi , where Pi is the regional price index of the manufacturing

goods composite, and yi is the agents’ income. Product market and labor market equilib-

rium yield a unique short-run equilibrium wage, a price and the consumption levels as a

function of the spatial distribution of mobile agents λ = (λi|i ∈ N).

3.2. The FE model

The utility from consumption in the FE model is given by:

uFE
i = µ ln Ci + (1 − µ) ln Ai,

where µ ∈ (0, 1) is the share of income spent on manufactures and: Ci =
[∫

s∈S
ci(s)

σ−1
σ ds

] σ
σ−1

is the CES composite of manufactures, ci(s) is the consumption in region i of a variety s

of manufactures, and σ > 1 is the elasticity of substitution between varieties. We here-

after assume the no-black-hole condition µ < σ − 1 (Forslid and Ottaviano, 2003) since

its violation is quite exceptional and empirically unrealistic.12

12 Anderson and Wincoop (2004), for instance, find that σ is likely to range between 5 and 10.
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The indirect utility in region i is given by (see Akamatsu et al., 2021):

vi(λ) =
µ

σ − 1
ln∆i(λ) + ln wi(λ) + ζ,

where ∆i(λ) =
∑

j∈N φi jλ j and ζ is a constant term. The nominal wage in region i is given

by (see Gaspar et al., 2019):

wi(λ) =
µ

σ

∑

j∈N

φi j

(

1 + w jλ j

)

∑

m∈N φm jλm

(4)

where we have made use of the simplification L = K so that li = Li/L = 1, ∀i ∈ N.13

For the full agglomeration λ = λFA
0

at the central place k, the indirect utilities at

i = k, k ± δ (1 ≤ δ ≤ k) are expressed explicitly as (see Appendix B.1)

vk = ln
µ̂

1 − µ̂
(2k + 1), µ̂ =

µ

σ
∈ (0, 1); (5)

vk±δ = ln
µ̂

1 − µ̂
+

δµ

σ − 1
ln φ + ln





(µ̂k + k + 1)φδ + (1 − µ̂)




(k − δ)φ−δ +

δ∑

p=1

φδ−2p









. (6)

By bilateral symmetry of the full agglomeration, we have vk−δ = vk+δ.

3.3. The PF model

The PF model differs from the FE model only in the agents’ upper-tier utility function,

which is now given by a quasi-linear logarithmic form: uPF
i = α ln Ci+Ai, where α > 0 is

a preference parameter towards manufactured goods that does not have the same meaning

as µ in the FE model.

The indirect utility is given by (see Gaspar et al., 2018; 2021):

vi(λ) =
α

σ − 1
ln∆i(λ) + ln wi(λ) + η,

13The choice of the total population L of low skilled workers is not influential on the results as the payoff

is linear in L (see Gaspar et al. (2019, pp. 9) for details). Thus, setting L = K entails no loss of generality.
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where η is a constant. The nominal wage is given by:

wi(λ) =
α

σ

∑

j∈N

φi j

(

1 + λ j

)

∑

m∈N φm jλm

. (7)

It was shown that varying the number Li = l ≥ 0 of unskilled workers has qualitative

impacts in the PF model (see Gaspar et al., 2018). However, we keep l = 1 for simplicity,

because any qualitative changes in l can be obtained by varying, e.g., σ instead.

The indirect utilities for λ = λFA
0

are given by (see Appendix B.2)

vk =
α

σ
(2k + 2) − α + Ā,

vk±δ =
α

σ

[

φδ(k + 2) + φ−δ(k − δ) +
φδ − φ−δ

φ2 − 1

]

+
αδ

σ − 1
ln φ − α + Ā, 1 ≤ δ ≤ k. (8)

Here Ā is the initial endowment of the numeraire good.

3.4. The PFSU model

The PFSU model (Pflüger and Südekum, 2008) builds on Pflüger (2004), with the

only difference being that it introduces a housing sector (denoted by H), which produces

a local dispersion force. The upper-tier utility of an agent is given by:

uPFS U
i = α ln Ci + γ ln Hi + Ai,

where α > 0, Hi stands for the consumption of housing goods, and γ > 0 is a param-

eter representing preferences towards consumption of housing. The indirect utility of a

mobile agent is given by:

vi =
α

σ − 1
ln∆i(λ) + ln wi(λ) − ln

λi + 1

hi

+ ξ,

where ξ is a constant term and hi = Hi/H denotes the share of housing stock in region

i. For simplicity, we assume that hi = 1, ∀i ∈ N. Again, we let li = 1 everywhere for

simplicity and for comparison purposes with the other models.

18



The nominal wage in region i is just the same as in the PF model in (7). The indirect

utilities for λ = λFA
0

are given by (see Appendix B.3)

vk =
α

σ
(2k + 2) − γ ln 2,

vk±δ =
α

σ

[

φδ(k + 2) + φ−δ(k − δ) +
φδ − φ−δ

φ2 − 1

]

+
αδ

σ − 1
ln φ, 1 ≤ δ ≤ k. (9)

3.5. The MT model

Murata and Thisse (2005) studied the interplay between commuting costs and inter-

regional transport costs by employing a simplified yet reasonable specification. We

closely follow Takayama et al. (2020), who extended the MT model to several regions.

The internal structure of each region is assumed to be one-dimensional and featureless

except that there is a given CBD; the city expands symmetrically around the origin. There

are only skilled and mobile workers, who choose their own residential region i ∈ N and

location x in that region, where the CBD is located at x = 0. Land endowment equals

unity everywhere in a region and agents are assumed to inelastically consume one unit

of land. The opportunity cost of land is normalized to zero in every region. Then, the

city spreads over the interval Xi ≡ [−λi/2, λi/2], where −λi/2 and λi/2 denote the city

boundaries.

Commuting costs take an iceberg form. Specifically, the effective labour supply of a

worker located at x is given by s(x) = 1 − 4θ|x|, for x ∈ Xi, where θ ∈ [0, 1/2) is the

commuting rate that ensures that s(x) ≥ 0 for all x ∈ Xi and for all i ∈ N. Then, total

effective labor supply at the CBD of region i is given by:

Li =

∫

xi∈Xi

s(x)dx = λi(1 − θλi).

Letting ri(x) be the land rent at x, a residential equilibrium implies that the wage net of
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commuting costs and land rent must be equal across locations: s(x)wi− ri(x) = s(λi/2)wi.

We thus have: ri(x) = 2θ(λi − 2|x|)wi, which implies an aggregate land rent at region i of:

Ri =

∫

xi∈Xi

ri(x)dx = θwiλ
2
i .

Finally, since land is locally owned, the income of a worker in region i at any location

x is given by yi = (1 − θλi)wi. Preferences are given by the following upper-tier utility

function uMT
i = Ci. The remaining difference between the MT model and the footloose

entrepreneur models is that each firm now requires a fixed input of one worker and a

variable input of one worker per output of the manufactured good that is produced.

Following Takayama et al. (2020), we reach the short-run equilibrium whereby firms

earn zero profits, which yields the following wage equation for city i:

Liwi = Liw
1−σ
i

∑

j∈N

φi jL jw j
∑

m∈N Lmw1−σ
m φ jm

.

We normalize
∑

j∈N λ jwi = wk.

In the state of full agglomeration to the central city k, the indirect utility in a potential

city i is given by vi = ζ∆
1

σ−1

i
yi, where yi = (1 − θλi)wi, ∆i =

∑

j∈N L jw
1−σ
j
φi j and ζ > 0 is a

constant. The indirect utilities for λ = λFA
0

are given by (see Appendix B.4)

vk = ζ(1 − θ)
σ
σ−1 ,

vk±δ = ζ(1 − θ)
1

σ−1φ
δ
σ

2σ−1
σ−1 1 ≤ δ ≤ k. (10)
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4. How and where satellite cities form for economic geography models

Being equipped with the sustain bifurcation mechanism of the full agglomeration at

the center (Section 2.3), we are ready to elucidate “how and where (new) satellite cities

form” for the four economic geography models (Section 3). This full agglomeration is

shown to be superior in stability to full agglomerations elsewhere (Section 4.1). The

sustainability and stability of the full agglomeration are investigated analytically (Sec-

tion 4.2). Bifurcation from the full agglomeration is studied numerically (Section 4.3).

4.1. Stability of full agglomerations at various locations: Numerical studies

We investigate the stability of the full agglomerations at various locations to demon-

strate the superior stability of the full agglomeration at the center. Such superiority is

presumed in the theoretical study in Section 2.3.

By Proposition 1, the full agglomeration λ = λFA
δ for any δ steps away from the

center is a stationary point of the replicator dynamics for any value of φ (and any value

of any other parameter). Among the stationary points of the full agglomeration, we are

interested in stable ones which can be identified as those satisfying Proposition 2, i.e.,

investigating if the utility vk−δ is strictly larger than the utility vi elsewhere.

We numerically investigated the range of φ ∈ (0, 1) in which the full agglomeration

λ = λFA
δ is stable for the four typical economic geography models presented in Section 3.

We used K = 7 cities and typical values of economic parameters.14 This stable range

14Referring to various empirical results (e.g., Bergstrand et al., 2013), we set σ = 6.0 for all the four

models. For the FE model, we set µ = 0.4 which is often used as a benchmark case and satisfies the

no-black-hole condition (µ < σ − 1). We set α = 0.8 for the PF model and (α, γ) = (0.8, 0.1) for the PFSU

model. For the MT model, we set θ = 0.2 in accordance with Murata and Tisse (2005).
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A B A B

(a) The FE model (b) The PF model

A B AO

(c) The PFSU model (d) The MT model

Figure 6: The range of φ of stable full agglomerations λ = λFA
δ

((σ, µ) = (6.0, 0.4) for the FE model,

(σ, α) = (6.0, 0.8) for the PF model, (σ, α, γ) = (6.0, 0.8, 0.1) for the PFSU model, and (σ, θ) = (6.0, 0.2)

for the MT model; red solid line: stable; broken line: unstable; ◦: global sustain point)
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is shown by the red solid line in Fig. 6. For the FE, PF and PFSU models, the full

agglomeration λ = λFA
0

at the center has the longest range of stable state φ ∈ (φs, 1) and

is the one which becomes stable (sustainable) first among the full agglomerations, when

the trade freeness increases from a low value. In contrast, full agglomerations λFA
δ (δ ≥ 1)

in the cities away from the center are much inferior in stability. Thus the central city has

a better trade environment and workers living there are endowed with a larger indirect

utility.15 Hence we hereafter focus on the full agglomeration at the center.

4.2. Sustainability and stability of full agglomeration at the center: Theoretical study

As stated in Section 2.3, the global sustain point for the full agglomeration at the

center plays an important role in determining the location of the satellite cities. For the

four models, the existence and uniqueness of a local sustain point (possibly a global

sustain point) are described as below.

Proposition 6. (i) The FE model and the PF model has a local sustain point φs
i
∈ (0, 1)

for every i ∈ {0, . . . , k}. For δ = |i − k| ∈ {1, . . . , 6}, this point is unique for any k ≥ δ.

(ii) The PFSU model has zero, one or two local sustain points for δ ∈ {1, . . . , 6} and for

any k ≥ δ.

(iii) The MT model has a unique local sustain point φs
i
∈ (0, 1) for every i ∈ {0, . . . , k}.

Proof. See Appendix B for the proof. �

Regarding the FE and PF models, although Proposition 6(i) establishes uniqueness only

for δ ∈ {1, . . . , 6}, its extension to any k and any δ ∈ Nδ is very likely to hold (see

15This superiority of the central city is in line with the limit behavior of the Krugman model for a long

narrow economy with three places (Ago et al., 2006).
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Conjectures 1 and 2 in Appendix B).

Based on Proposition 6, the global sustain point and the stability of the full agglom-

eration can be described by the following proposition.

Proposition 7. (i) For the FE model and the PF model, there exists a global sustain

point φs = maxiφ
s
i
∈ (0, 1) and the full agglomeration is stable for φ ∈ (φs, 1). For

δ ∈ {1, . . . , 6}, the full agglomeration is unstable for φ ∈ (0, φs).

(ii-1) For the PFSU model, for large k and/or large γ, there is no local sustain point and

the full agglomeration is unstable for any φ ∈ (0, 1).

(ii-2) For the PFSU model, if there are only two local sustain points φs1
i

and φs2
i

for any

i ∈ N, we can define two global sustain points: φs1 = maxi φ
s1
i

and φs2 = mini φ
s2
i

.

Then if φs1 < φs2, φs1 and φs2 are global sustain points and the full agglomeration is

stable for φ ∈ (φs1, φs2) and is unstable for φ ∈
{

(0, φs1) ∪ (φs2, 1)
}

.

(iii) The MT model has a unique global sustain point φs ∈ (0, 1) and the full agglomer-

ation is stable for φ ∈ (0, φs) and unstable for φ ∈ (φs, 1). At this global sustain point,

satellite cities emerge one step away from the center (δ = 1).

Proof. See Appendix B for the proof. �

4.3. Bifurcation from full agglomeration: Numerical study

By numerical bifurcation analysis of the four economic geography models, we demon-

strate the usefulness of (1) the bifurcation theory in Section 2.3 in elucidating “how (new)

satellite cities form around a large city” and (2) the two step procedure to determine

“where (new) satellite cities form” presented at the end of Section 2.

We conducted the comparative static analysis regarding K = 7 cities for the four

models for the same parameter values as those used in Fig. 6. Figure 7 plots the paths of
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(a) The FE model (b) The PF model

O

BA

C

AO

B

(c) The PFSU model (d) The MT model

Figure 7: Bifurcating paths of equilibria emanating from the state of the full agglomeration at the center

(parameter values are (σ, µ) = (6.0, 0.4) for the FE model, (σ, α) = (6.0, 0.8) for the PF model, (σ, α, γ) =

(6.0, 0.8, 0.1) for the PFSU model, and (σ, θ) = (6.0, 0.2) for the MT model; solid line: stable; broken line:

unstable; ◦: global sustain point)
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full agglomeration λFA
0

at the center and bifurcating paths that branch at the global sustain

points shown by ◦. The vertical axis is the population λ3 at the central region (k = 3) and

the horizontal axis is the trade freeness φ ∈ (0, 1). Stable equilibria are shown by solid

curves, while unstable ones by broken ones.

First, we investigate the stability of the full agglomeration λFA
0

. A solid horizontal

line at λ3 = 1 denotes stable full agglomeration, while the broken line at λ3 = 1 stands

for unstable one. There is a global sustain point (shown by ◦) at an end of this solid

horizontal line: the point A for all the four models and the point B for the PFSU model.

The stability and the existence of global sustain point(s) agree with Proposition 7:

• For the FE and PF models, the full agglomeration has a unique global sustain point

φs at A, and is stable for φ ∈ (φs, 1) (during AB) and unstable for φ ∈ (0, φs) (during

OA) in agreement with Proposition 7(i).

• For the PFSU model, the full agglomeration has two global sustain points φs1 and

φs2 (respectively, at A and B), stable for φ ∈ (φs1, φs2) (during AB), and unstable for

φ ∈
{

(0, φs1) ∪ (φs2, 1)
}

(during OA and BC) in agreement with Proposition 7(ii-2).

• For the MT model, the full agglomeration has a unique global sustain point φs at

A, and is stable for φ ∈ (0, φs) (during OA) and unstable for φ ∈ (φs, 1) (during AB)

in agreement with Proposition 7(iii).

Next, we investigate stable bifurcating paths for the global sustain points. From each

global sustain point, we found two kinds of bifurcating paths: one with one satellite city

and another with two satellite cities in agreement with Proposition 3. The paths with one

satellite city are all unstable, while those with two satellite cities are stable except for the
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global sustain point A for the MT model. Therefore, only the curves with two satellite

cities (OA and BC), which are superior in stability, are included in Fig. 7.

For the FE, PF, and PFSU models, each global sustain point has one stable bifurcating

path just after bifurcation in agreement with Proposition 4. As φ increases from a small

value, the stable bifurcating path OA transits to a stable full agglomeration λFA
0

(the path

AB). In agreement with Proposition 5(i), there is a continuation of stable paths. The

global sustain point A has δsat = 2 and the bifurcated path OA displays a core–satellite

pattern with a large central city surrounded by two satellite cities located two steps away

from the center. We see an emergence of a sustainable full agglomeration at the center

by steadily absorbing and finally nullifying the (mobile) population of satellite cities.

For the PFSU model, as φ further increases, we can see a further transition from the

stable full agglomeration (path AB) to stable bifurcating equilibria (path BC), expressing

a diffused state of agglomeration with two satellite cities at δ = 1. Thus the PFSU model,

unlike the FE and PF models, accommodates both the coalescence and the emergence

of satellite cities as the freeness of trade increases. This might tell a more compelling

story regarding the historical evolution of the spatial economy due to the spectacular

decrease in transport costs. During the first stage, we observe the formation of very

large cities (monocentric patterns), but eventually further drops in transport costs give

rise to the emergence of satellite cities, thus forming chains of cities that develop into

megalopolises or megaregions as a result of the increase in economic integration.

For the MT model, as φ increases, the stable full agglomeration becomes unstable at

the global sustain point A. Bifurcating path of equlibria branches in the reversed direction

of φ < φs and is unstable just after bifurcation in agreement with Proposition 5(ii).
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5. Location of satellite cities for economic geography models

As we have seen for economic geography models in Section 4.3, there are stable bi-

furcating paths with a pair of satellite cities located δsat steps away from the full agglom-

eration λFA
0

at the center. In this section, (1) the location δsat of satellite cities is shown to

be dependent on the models and their parameters (Section 5.1) and (2) the location δsat

for a large number of places is investigated (section 5.2).

5.1. Model and parameter dependency of the location of satellite cities

We numerically obtained the value of δsat of the FE model for K = 7 cities by varying

the values of the parameters σ and µ. Figure 8(a) depicts the contours of δsat in the range

(0, 1) × (0, 1) of the space of (1/σ, µ). As 1/σ and/or µ increases, δsat increases one by

one from the smallest value of δsat = 1. That is, as agglomeration forces increase due

to stronger scale economies or a larger size of the manufacturing sector (respectively, a

decrease in σ and/or an increase in µ), the satellite cities tend to form away from the pri-

mary city at the center, thereby forming an agglomeration shadow (Arthur, 1990; Ikeda et

al., Fig. 5, 2017). By contrast, as agglomeration forces decrease, the satellite cities tend

to locate closer to the primary city, thereby forming a discrete version of a hump-shaped

megalopolis around this city for δsat = 1. Thus, we have observed the dependence of ag-

glomeration patterns on the values of economic parameters, which possibly are a source

of the diversity of the population distribution of a chain of cities observed worldwide and

help the explanation of the historical emergence of megalopolises or megaregions.

This is in accordance with the analytical results on the stability of the single agglom-

eration in the pioneering work by Fujita and Krugman (1995) who considered a simi-

lar economic geography model with a one-dimensional unbounded continuous location
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(a) The FE model (b) The PF model

The lower global sustain point The higher global sustain point

(c) The PFSU model (σ = 6.0)

Figure 8: Contour maps of δsat, which indexes the location of satellite cities for K = 7 cities emerging from

the global sustain point, drawn on parameter spaces (sky blue area: δsat = 1; pink: δsat = 2; green: δsat = 3;

dark blue: δsat = 1 and δsat = 2 are coincidental; black: δsat = 2 and δsat = 3 are coincidental)
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space. They, for instance, show that a satellite city may emerge away from the center,

but not how far from the center. They suggest that, with a so-called potential function,

we could investigate locations of satellite cities. They, however, do not explicitly ex-

plain the parameter dependence of such locations. By contrast, we take a step further by

investigating the stability of agglomeration patterns that form the large central city and

satellite cities as shown in Fig. 8(a) and explicitly showing the parameter dependence of

the location of satellite cities around a large central city.

We further look at the PF model to show the model dependence of δsat. Figure 8(b)

depicts the contours of δsat in the range (0, 1) × (0, 1) in (1/σ, α)-space. The parameter α

does not influence δsat. As 1/σ increases, δsat increases from 2 to 3 but δsat = 1 cannot be

realized, unlike the FE model. This demonstrates the model dependence of δsat.

Model dependence can be seen also for the PFSU model. Figure 8(c) plots the con-

tours of δsat in the range (0, 1) × (0, 1) in (α, γ)-space for σ = 6.0. There are two possible

global sustain points, called the lower global sustain point and the higher one (cf., the

points A and B in Fig. 7(c)). While δsat = 1 and 2 are attainable at the lower global sus-

tain point, only δsat = 1 at the upper one. For the lower global sustain point, an increase

in the preferences for manufactured goods (higher α) or a decrease in the preference for

housing (lower γ) also brings about an increase in δsat thus corroborating the results that

higher agglomeration forces push potential satellite cities away from the central region.

For the MT model, δsat = 1 holds for any parameter values by Proposition 7(iii).

This model, accordingly, does not have model dependence of δsat, unlike the other three

models. The model, for this reason, is not suitable for the investigation of “where satellite

cities form.”
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5.2. Location of satellite cities for a large number of cities

We would like to investigate where (new) satellite cities form for a very large number

of potential cities K. As an index for the optimal location of the satellite cities, we

introduce a normalized length from the center, being defined as δsat/k.

We computed the values of δsat/k for k = 3, 50, 100, and 200 (K = 2k+1 cities) for the

four models using the same parameter values as those employed in Fig. 7 in Section 4.3.

Table 1 lists the values of δsat/k,16 where k = 3 corresponds to the analysis in Fig. 7.

For the FE model, as k increases to a large value, such as k = 50, the optimal location

is convergent quickly to δsat/k ≈ 0.58, as can be seen from the plot of δsat/k against k in

Fig. 9. For the PF model, the convergence is much slower and the location of the satellite

cities tends to be much closer to the central city than the FE model. For the MT model,

δsat = 1 holds for any k and, accordingly, δsat/k converges to 0, i.e., the center of the

economy.

These results may be interpreted as a discretized line segment counterpart of the infi-

nite line economy and are consistent with preexisting analytical results on this economy

by Fujita and Krugman (1995) who show that a satellite city may emerge away from the

center, but not how far from the center. In contrast to their study, our result explicitly

determines the location of satellite cities around a central city. It is empirically relevant

as it fits several real world examples of a chain of cities as to be seen in Section 6.

16The results of the PFSU model are not included in this table, because sustain points do not exist for

large k by Proposition 7(ii-1). No sustain point exists for large values of k = 50, 100, and 200, while two

sustain points exist for k = 3 (Fig. 7(c)).
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Figure 9: Convergence of normalized length δsat/k from the center for a large k computed for the FE model

(µ = 0.4 and σ = 6.0)

Table 1: The convergence of δsat/k as k increases

k = 3 50 100 200

The FE model 2/3 = 0.67 0.58 0.57 0.57

The PF model 2/3 = 0.67 0.33 0.22 0.17

The MT model 1/3 = 0.33 0.02 0.01 0.005
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6. Use of economic geography analysis in the study of real data

We have seen several theoretical patterns of satellite cities around a large city at the

center and ensured their existence for the typical economic geography models. In this

section, comparing these patterns with worldwide city size distributions, we demonstrate

the usefulness of the proposed procedures in the analysis of real population data.

6.1. Mainland in Japan

Taking Japan in Fig. 1(b) as reference with K = 5 regions, we conducted the com-

parative static analysis for the FE model (Forslod and Ottaviano, 2003). Figure 10 shows

the paths of equilibria, in which the vertical axis denotes the population λ2 ∈ [0, 1] at

the central city and the horizontal axis denotes the trade freeness φ ∈ (0, 1). As the

trade is liberated (φ increases from 0), there appears a series of equilibria A, B, . . ., I;

the associated spatial population distributions are depicted at the right of this figure. The

bifurcation occurs at the global sustain point H engendering two satellite places at δ = 1

leading to a stable state A–G.

As φ increases from a low value, there emerge three stable stages: (1) the twin cities

at δ = 1 (Tokyo and Osaka) for an intermediate value of φ slightly below 0.5 along the

path DE, (2) the central city surrounded by the twin cities in an intermediate stage along

the path EG, containing E′ and E′′, and (3) the full agglomeration at the center (Nagoya)

for φ over 0.5 along the path HI. Then one could infer that the configuration of Japan

resembles that of the pattern E′′ with Nagoya at the center being highly populated but

scarcely if compared to the gigantic satellites of Osaka and Tokyo at δ = 1, and with the

border of the regions of Hiroshima and Sendai at δ = 2 a little smaller than Nagoya.
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Figure 10: Paths of equilibria for the FE model with (σ, µ) = (6.0, 0.4) for K = 5 cities (solid line: stable;

broken line: unstable; ◦: global sustain point; �: local maximum point of φ; •: reference point)

Figure 11: Population of cities in Japan. Blue arc is the population in 1950 and orange arc is the population

in 2020 (source: the UN, Department of Economic and Social Affairs, Population Division (2018)

34



When we compare the five cities’ population in the 1950’s (shown by blue arcs in

Fig. 11) with the population in 2020 (shown by orange arcs), we observe that Nagoya has

grown significantly more compared to Tokyo and Osaka, thus suggesting that Japan may

be in the stage of E′E′′, expressing the growth of the central city (Nagoya). Such growth

is in line with the recent numerical experiment on Shinkansen extension by Hayakawa et

al. (2021), which reports that the investment on Shinkansen network would lead to the

population change of large metropolitan areas of Tokyo, Osaka, and Nagoya by −0.3%,

0.6%, and 9.8%, respectively. Thus, the largest growth of population in response to

the investment is expected to occur at Nagoya located at the geographical center of the

metropolitan areas of Tokyo and Osaka.

6.2. The Atlantic Axis

Regarding the Atlantic Axis in Fig. 12, when restricted to 7 cities, from Porto south-

wards to La Coruña in the North, we can see that these two cities at the borders of the

corridor acting as large cities three steps (δsat = 3) away from the bigger central city

(Vigo). Indeed, both in Portugal and Spain there is a large size of the business and in-

dustrial tissue concentrated in the northwestern coastal provinces, thus corroborating our

predictions that higher agglomeration forces push satellite cities away from the center, as

we have seen for the FE model (see the parameter zone for δsat = 3 in Fig. 8(a)).

A few notes of caution are warranted at this point. First, the choice of parameter val-

ues for our simulations in Figs. 7 and 10 is plausible for illustration purposes but may be

arbitrary from an empirical perspective. This means that obtaining specific estimates for

the megaregions discussed throughout this paper would likely improve our understand-

ing and predictive capacity regarding the location of satellite cities around a central city.
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La

Figure 12: Atlantic Axis mega-region (population from 2017, Eurostat)

This, however, is left for future research.

Second, a great part of the distribution and size of cities may well be related with ac-

tivities regarding services instead of manufacturing goods, something which the models

used here disregard completely.17

Third, for most of the empirically depicted cases in this work, particularly in Europe,

the mega-regions seem to always have significant populations at the border regions. This

could be due to an underestimation of agglomeration forces by our choice of parameter

values. If agglomeration forces are instead very strong in these megaregions, then more

population at the borders lies in accordance with our predictions.

17We thank Ricardo Gonalves for pointing this out to us.
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7. Conclusion

We have elucidated the bifurcation mechanism of the formation of twin satellite cities

around a large core city in a long narrow economy. This mechanism is independent on

models and is readily applicable to many spatial economic models under replicator dy-

namics. A pertinent combination of this model-independent general bifurcation mech-

anism with model-dependent properties, such as stability/sustainability and parameter

dependency, is vital in the successful elucidation of the mechanism of the formation of

satellite cities.

Analyzing the FE, PF and PFSU models, we have shown that the higher the ag-

glomeration forces (less preference for housing, a higher industry size, or stronger scale

economies), the farther satellite cities emerge from the central city. Conversely, if ag-

glomeration forces are weak, there emerges a hump-shaped megalopolis with satellite

cities located side-by-side with the primary central city.

It is pertinent to relate our use of the long narrow economy with Thisse et al. (2021),

who study urbanization patterns in a linear city with three discrete locations and hetero-

geneous agents as increasing returns to scale in production increase. Granted, the settings

differ fundamentally in that their model falls under the class of urban economics whereas

the models here belong to the field of geographical economics.18 However, what we wish

to highlight is what makes both works relatable: the line segment with discrete locations.

Thisse et al. (2021) find that, once increasing returns become sufficiently strong,

18Note that this does not imply in any way that we consider geographical economics and urban eco-

nomics competing theories. Rather, they can and should be very much complementary (see Gaspar, 2018;

2021).
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stronger returns to scale may induce the dispersion of economic activities toward the

peripheral (border regions). Their results hinge heavily on the heterogeneity of agents

regarding residential location preferences. Thus, to increase comparability between the

models we could introduce heterogeneity in our setting as in Castro et al. (2022).

It would thus be interesting to check if this dispersion process for high increasing

returns to scale also implies higher residence in outer regions with more locations in

their setting. If the answer is positive, the results are similar to ours, not in the con-

ventional sense of dispersion (as in uniformity of the spatial distribution), but in the

sense of increasing distance regarding the centre for locations that become more concen-

trated/populated. This could potentially add to a weak conjecture of geographical scale

invariance which would suggest a fractal relationship between spatial configurations at

low scales and very large scales.

We have thus observed diverse agglomeration patterns dependent on the values of

trade freeness and on microeconomic parameters. Such dependence possibly is a source

of the diversity of the population distribution of a chain of cities observed worldwide.

The population distribution in a chain of cities in the mainland of Japan was successfully

explained using the result of the analysis for five cities, while that in the Atlantic Axis

by that for seven cities. Thus, the analysis by the economic geography model gives an

insight into the investigation of real data. This motivated us to conduct the study of the

bifurcation mechanism from the full agglomeration presented in this paper.

A remark is on the standpoint of this paper. While it is customary to start from the

uniform state, we highlight agglomeration patterns emanating from the completely ag-

glomerated state. Nowadays it would be far more important to investigate the competition
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between a large central city and satellite cities than to investigate the self-organization of

cities in a flat land envisaged in Central Place Theory. Future work will extend this the-

ory to different spatial topologies, such as a “star economy”, a “racetrack economy” or

regions in two-dimensional space.

It is a topic for future research to study the progress of satellite cities’ formation

for other spatial economic models based on the bifurcation mechanism proposed in this

paper, thereby selecting a model that is on purpose. Among these, we have early (new)

economic geography models such as the original Core-Periphery model by Krugman

(1991) and similar ones: the modified version with land instead of immobile workers

by Puga (1999), the models with dispersive congestion effects by Helpman (1998) and

Tabuchi (1998), or the quasi-linear upper tier utility footloose entrepreneur model (e.g.

Ottaviano et al., 2002).

More recently, the structural model-based approach used to evaluate the causal ef-

fects of regional agglomerations summarized by Redding and Rossi-Hansberg (2017)

has lead to a sprawl of the so-called quantitative spatial economics models, such as Red-

ding and Sturm (2008), Allen and Arkolakis (2014) and Behrens and Murata (2021), to

name a few. The model by Allen and Arkolakis (2014), for instance, is a very interesting

candidate as it relies on exogenous differences but also incorporates agglomeration exter-

nalities in a way to preserve sufficient analytical tractability to provide conditions under

which a unique spatial distribution equilibrium exists and additionally allowing for some

comparative statics. On the other hand, there is a caveat in these structural model-based

approaches in that under the uniqueness of equilibrium, by construction, they cannot

explain the endogenous formation of multiple agglomerations (Akamatsu et al., 2021).
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Appendix A. Theoretical details of bifurcation analysis

Appendix A.1. Proof of Proposition 1

For λ = λFA
δ , we have λi = 0 (i , k− δ) and vk−δ− v̄ = 0 since v̄ =

∑

i∈N λivi = 1× vk−δ;

accordingly, the governing equation (3) with (2) is satisfied for any i ∈ N.

Appendix A.2. Proof of Proposition 2

At the state of the full agglomeration λ = λFA
δ at the place i = k−δ, the eigenvalues of

the Jacobian matrix of the static governing equation F(λ, φ) in (3) are given by −vk−δ(< 0)

and vi − v̄ = vi − vk−δ (i , k − δ). Hence, if vk−δ > vi for any i , k − δ, all eigenvalues are

negative and this state is stable.

Appendix A.3. Proof of Proposition 3

We consider the sustain point (λFA
0
, φc

δ
), where vk−δ − vk = vk+δ − vk = 0 is satisfied. In

the neighborhood of this point, the governing equation F(λ, τ) = 0 in (3) can be reduced

to a two-dimensional bifurcation equation F̃i = 0 (i = k − δ, k + δ) in two independent

variables (x, y) = (λk−δ, λk+δ) with an incremental parameter ψ = φ − φc
δ

(cf., Ikeda and

Murota, 2019) as shown in Lemma 1 below.

Lemma 1. The bifurcation equation at the critical point (λFA
0
, φc

δ
) is expressed as

F̃k−δ(x, y, ψ) = x (aψ + bx + cy + higher order terms) = 0,

F̃k+δ(x, y, ψ) = y (aψ + by + cx + higher order terms) = 0

(A.1)

with the symmetry condition F̃k+δ(x, y, ψ) = F̃k−δ(y, x, ψ) and expansion coefficients:

(a, b, c) =

(

∂g

∂φ
,
∂g

∂x
,
∂g

∂y

)∣
∣
∣
∣
∣
∣
(x,y,ψ)=(0,0,φc

δ
)

, g(x, y, ψ) = vk−δ(λ̃) − vk(λ̃);

λ̃ = (0k−δ−1, x, 0δ, 1 − x − y, 0δ, y, 0k−δ−1, φ
c
δ + ψ), 0p = (0, . . . , 0

︸  ︷︷  ︸

p times

).
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Proof. In the neighborhood of the critical point (λFA
0
, φc

δ
), F(λ, τ) = 0 in (3) reduces to

three equations F j = 0 with three variables v j ( j = k, k ± δ), while the other variables are

equal to 0. Then Fk−δ + Fk + Fk+δ = 0 gives the conservation law: λk−δ + λk + λk+δ = 0.

The variable λk can be eliminated from Fk−δ and Fk+δ to arrive at (A.1). The symmetry

condition arises from the bilateral symmetry of the long narrow economy. �

The bifurcation equation (A.1) with the symmetry condition has solutions (x, y) =

(λk−δ, λk+δ) = (0, 0), (w, 0), (0,w), and (w,w) (w > 0); (x, y) = (0, 0) corresponds to the

pre-bifurcation solution (λFA
0
, φc

δ
) and others to bifurcating solutions. Since the solutions

(w, 0) and (0,w) are identical, we hereafter consider only the former solution.

Lemma 2. The critical point (λFA
0
, φc

δ
) is a bifurcation point with two kinds of branches:

(λ, φ) = (λFA
0 , φc

δ) + (∆λp, ψp), p = 1, 2;

∆λ1 = w(e1
δ,−2, e2

δ), ψ1 ≈ −(b + c)w/a; e
1
δ = (0k−δ−1, 1, 0δ), 0 < w ≪ 1, (A.2)

∆λ2 = w(e1
δ,−1, 0k), ψ2 ≈ −bw/a; e

2
δ = (0δ, 1, 0k−δ−1). (A.3)

Proof. We see that (x, y) = (λk−δ, λk+δ) = (w,w) corresponds to ∆λ1 = w(e1
δ,−2, e2

δ) and

satisfies (A.1) in Lemma 1 for ψ = ψ1 ≈ −(b + c)w/a. Also, (x, y) = (w, 0) corresponds

to ∆λ2 = w(e1
δ,−1, 0k) and satisfies (A.1) for ψ = ψ2 ≈ −bw/a. �

Appendix A.4. Proof of Proposition 4

Let a local sustain point φc
δ

not be a global sustain point. Then there exists δ′ (δ′ , δ)

such that vk−δ′ − vk > 0 at this point. By continuity of vk−δ′ and vk as functions in φ,

vk−δ′ − vk > 0 is satisfied in a neighborhood of (λFA
0
, φc

δ
). Therefore, the bifurcation

solution is unstable just after bifurcation.
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Appendix A.5. Proof of Proposition 5

The Jacobian matrix for the bifurcation equation (A.1) reads

Ĵ ≈





aψ + 2bx + cy cx

cy aψ + 2by + cx





.

The use of (x, y) = w(1, 1) and ψ = ψ1 ≈ −(b + c)w/a (cf., (A.2)) in Ĵ leads to Ĵ1 below

and the use of (x, y) = w(1, 0) and ψ = ψ2 ≈ −bw/a (cf, (A.3)) leads to Ĵ2 as

Ĵ1 ≈ w





b c

c b





, Ĵ2 ≈ w





b c

0 c − b





.

Lemma 3. The bifurcating solution (∆λ1, ψ1) has the eigenvalues: e1 ≈ (b+c)w and e2 ≈

(b − c)w. On the other hand, (∆λ2, ψ2) has the eigenvalues: e1 ≈ bw and e2 ≈ (c − b)w.

Lemma 4. Under the assumption that the state of the full agglomeration is stable for

ψ < 0 or ψ > 0, there are three cases: (i) If −b > |c|, only the first bifurcating path

(∆λ1, ψ1) is stable. (ii) If c < b < 0, only the second bifurcating path (∆λ2, ψ2) is stable.

(iii) Otherwise, both paths are unstable. (iv) A stable bifurcating path branches in the

direction of ψ < 0 (respectively, ψ > 0) if the full agglomeration state is stable for ψ > 0

(respectively, ψ < 0).

Proof. For the fully agglomerated state (x, y) = (0, 0), we have Ĵ = aψI with the eigen-

value aψ (twice repeated). If the state is sustainable for ψ > 0 (respectively, ψ < 0),

we have a < 0 (respectively, a > 0). (i) The first bifurcating solution (∆λ1, ψ1) with

e1 ≈ (b + c)w and e2 ≈ (b − c)w (cf., Lemma 3) is stable if −b > |c|. Since b + c < 0,

a < 0, and w > 0, ψ = ψ1 ≈ −(b + c)w/a in (A.2) gives ψ = ψ1 < 0 (respectively,

ψ1 > 0). (ii) The second bifurcating solution (∆λ2, ψ2) with e1 ≈ bw and e2 ≈ (c − b)w

(w > 0) is stable if c < b < 0. Since b < 0, a < 0 and w > 0, ψ = ψ2 ≈ −bw/a in (A.3)
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gives ψ = ψ2 < 0 (respectively, ψ2 > 0). The two bifurcating solutions cannot be stable

simultaneously since −b > |c| and c < b < 0 are contradictory. (iii) and (iv) are apparent

form (i) and (ii). �

Appendix B. Indirect utilities and sustain points at full agglomeration

We consider the full agglomeration at the center (i = k). By bilateral symmetry about

the center (vi = vK−i), it suffices to consider places i = {0, . . . , k − 1} at the left. We often

use δ = k − i, which expresses steps away from the center, instead of i.

For the FE, PF and PFSU models, the wage in city i ∈ N is given by a general form:

wi(λ) =
ξ

σ

∑

j∈N

φi jb j
∑

m∈N φm jλm

, (B.1)

where ξ and b j are model dependent. We have ξ = µ and bi = (1 + wiλi) for the FE model

and ξ = α and bi = (1 + λi) for the PF and PFSU models.

For the full agglomeration in region k (λk = 1), for which λ j = 0 and b j = 1 ( j , k)

hold, the wage in region i , k is given by

wi =
ξ

σ




φδbk +

2k∑

j,k

φi j

φk j




. (B.2)

The second term of the nominal wage is systematically given, using φi j = φ
|i− j|, by:

2k∑

j,k

φi j

φk j

=

i−1∑

j=0

φi j

φk j

+

k−1∑

j=i

φi j

φk j

+

2k∑

j=k+1

φi j

φk j

=

i−1∑

j=0

φi− j

φk− j
+

k−1∑

j=i

φ j−i

φk− j
+

2k∑

j=k+1

φ j−i

φ j−k

=

i−1∑

j=0

φi−k +

k−1∑

j=i

φ2 j−i−k +

2k∑

j=k+1

φk−i = iφi−k +
φ−i−k

(

φ2k − φ2i
)

φ2 − 1
+ kφk−i

= φ−δ(k − δ) +
φδ − φ−δ

φ2 − 1
+ kφδ.

Thus, the wage in region i , k is finally given by:

wi =
ξ

σ

[

φδ(k + bk) + φ
−δ(k − δ) +

φδ − φ−δ

φ2 − 1

]

. (B.3)
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Appendix B.1. The FE model

Derivation of vi (Proof of (5) and (6)): We have bi = (1 + wiλi). By setting i = k in

(B.1), the wage in region k is obtained as

wk =
µ̂

1 − µ̂
(2k + 1) , µ̂ =

µ

σ
.

The nominal wage in any potential city i , k is given by:

wi = µ̂

{

φδ
[

k + 1 +
µ̂

1 − µ̂
(2k + 1)

]

+

[

φ−δ(k − δ) +
φδ − φ−δ

φ2 − 1

]}

.

The indirect utilities for the FE model in the central region at i = k and in peripheries at

i = k ± δ (1 ≤ δ ≤ k) with distance δ = |i − k| from the center are given, respectively, by:

vk = ln
µ̂

1 − µ̂
+ ln(2k + 1),

vk±δ = ln
µ̂

1 − µ̂
+
δµ ln φ

σ − 1
+ ln

{

φδ(µ̂k + k + 1) + (1 − µ̂)

[

φ−δ(k − δ) +
φδ − φ−δ

φ2 − 1

]}

. (B.4)

These equations give (5) and (6).

Existence of local sustain point (Proof of Proposition 6(i)): The sustain point must

satisfy SFE ≡ vk±δ − vk = 0 for some δ (≥ 1) with

SFE =
δµ ln φ

σ − 1
+ ln

{

φδ(µ̂k + k + 1) + (1 − µ̂)

[

φ−δ(k − δ) +
φδ − φ−δ

φ2 − 1

]}

− ln(2k + 1). (B.5)

Notice that

lim
φ→+0
SFE = +∞, lim

φ→1
SFE = 0. (B.6)

Differentiating SFE with respect to φ, we get:

∂SFE

∂φ
=

A1 − A2

dφ
(

φ2 − 1
)

A3

,
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where:

A1 = δφ
2δc[k(µ + σ) + µ] + δφ2δ+4c

[

k(µ + σ) + σ
]

+ φ2a [δb(2k − 2δ + 1) + 2d] > 0,

A2 = δab
[

(k − δ)(φ4 + 1) + 1
]

+ 2adφ2δ+2 + δc(2k + 1)φ2δ+2(µ + σ) > 0,

A3 = − a
[

δ
(

φ2 − 1
)

− kφ2 + k + 1
]

+ φ2δ
[

φ2(k(µ + σ) + σ) − k(µ + σ) − µ
]

< 0,

where A3 < 0 can be shown by performing the variable change φδ = x ∈ (0, φ). Hence,

the zeros of the derivative depend on the zeros of A1 − A2. First, notice that:

lim
φ→1

∂SFE

∂φ
= δ

[

δ(σ − µ)

2kσ + σ
+ µ

(

1

σ
+

1

σ − 1

)]

> 0.

This means, together with limφ→1 S
FE = 0 in (B.6), that

SFE < 0 for φ = 1 − ǫ, (B.7)

while SFE > 0 for φ = ǫ, with ǫ > 0 arbitrarily small. Thus, by the Intermediate Value

Theorem, there exists at least one local sustain point φc
δ
∈ (0, 1) such that SFE(φc

δ
) = 0.

Uniqueness of local sustain point (Proof of Proposition 6(i)): In the study of the

uniqueness, we employ the no-black-hole condition σ − 1 > µ, and introduce several

positive constants

a = σ − µ > 0, b = σ − µ − 1 > 0, c = σ + µ − 1 > 0, d = σ − 1 > 0.

Let us define F(φ) ≡ A1 − A2. Notice that:

F(0) = −δ(k − δ + 1)ab < 0, F(1) = 0, F′(0) = 0, F′(1) = 0,

F′′(0) = 2a [δ(−2δ + 2k + 1)b + 2d] > 0,

F′′(1) = 8δ {δdσ + µ [δ + σ(−δ + 4k + 2) − 2k − 1]} > 0. (B.8)
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Then, given the six results in (B.8), the Intermediate Value Theorem establishes that F(φ)

has at least one zero for φ ∈ (0, 1) for any k and any δ ∈ Nδ.

Next, we will demonstrate the uniqueness of the critical point for δ ∈ {1, . . . , 6}, by

showing that F(φ) has exactly one zero for φ ∈ (0, 1) for each δ. This establishes that SFE

has at most one turning point (a minimum), which implies that the critical point is unique

and corresponds to a local sustain point. The proof consists on using Descartes’ rule of

signs after reordering the monomials of F(φ) and determine the maximum number of

positive real roots of F(φ). For this purpose, we compute F j(φ) = F(φ)|δ= j ( j = 1, . . . , 6):

F1(φ) =
(

φ2 − 1
)2 {

φ2c
[

k(µ + σ) + σ
]

− kab
}

,

F2(φ) = 2
(

φ2 − 1
)2 {

φ4c
[

k(µ + σ) + σ
]

+ φ2µa − (k − 1)ab
}

,

F3(φ) =
(

φ2 − 1
)2 {

3φ6c
[

k(µ + σ) + σ
]

+ φ4a(3µ + d) + φ2a〈2µ − b〉 − 3(k − 2)ab
}

,

F4(φ) = 2
(

φ2 − 1
)2 {

2φ8c
[

k(µ + σ) + σ
]

+ φ6a(2µ + d) + 2φ4µa + φ2a〈µ − b〉 − 2(k − 3)ab
}

,

F5(φ) =
(

φ2 − 1
)2 {

5φ10c
[

k(µ + σ) + σ
]

+ φ8a(5µ + 3d) + φ6a(5µ + d)

+ φ4a〈4µ − b〉 +φ2a〈2µ − 3b〉 − 5(k − 4)ab
}

,

F6(φ) = 2
(

φ2 − 1
)2 {

3φ12c
[

k(µ + σ) + σ
]

+ φ10a(3µ + 2d) + φ8a(3µ + d) + 3φ6µa

+φ4a〈2µ − b〉 + φ2a〈µ − 2b〉 − 3(k − 5)ab
}

,

where 〈·〉 denotes a term that can take both signs dependent on the values of the param-

eters µ and b = σ − µ − 1. We focus on the polynomial of φ2 in the curly bracket {·}

and, in turn, to note that the sign change of the coefficients of the polynomial occurs only

once for each F j ( j ∈ {1, . . . , 6}). Thus, F j = F(φ)|δ= j has one zero for δ ∈ {1, . . . , 6} by

Descartes’ rule of signs. This concludes the proof.

Note that, for F1, the coefficient for φ2 is positive (+) and the coefficient for the con-
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stant term is negative (−); accordingly, the sign changes once from positive to negative.

For F3, the signs for the coefficients are +, +, ±, −; accordingly, the sign change occurs

once (〈·〉 denotes a term that becomes positive or negative dependent on the values of the

parameters therein). For F5, although the two terms 〈4µ− b〉 and 〈2µ− 3b〉 can take both

signs, 〈2µ − 3b〉 becomes negative first as b increases since 〈4µ − b〉 > 〈2µ − 3b〉. Hence,

the sign change occurs once for any values of µ and b. Other cases of F2, F4, and F6 can

be treated similarly.

Although we cannot prove the uniqueness for a general δ, an examples with a large

values of δ = 10 can be provided in the following conjecture. For exceedingly high

values of δ (like 100 or 1000), it is possible, but extremely cumbersome to demonstrate.

Conjecture 1. The uniqueness of a local sustain point holds for any k and for any δ ∈ Nδ

in the FE model.

Proof. Substituting arbitrarily large values for δ by increasing order, for any k ≥ δ, it

seems to be always possible to factor out the term
(

φ2 − 1
)2

that multiplies a polyno-

mial whose coefficients only change sign once, after rearranging all the monomials by

decreasing order. For the purpose of illustration, we set δ = 10:

F10(φ) = 2
(

φ2 − 1
)2 {

5φ20c
[

k(µ + σ) + σ
]

+ φ18a(5µ + 4d) + φ16a(5µ + 3d)

+ φ14a(5µ + 2d) + φ12a(5µ + d) + 5φ10µa + φ8a〈4µ − b〉

+ φ6a〈3µ − 2b〉 + φ4a〈2µ − 3b〉 +φ2a〈µ − 4b〉 − 5(k − 9)ab
}

.

Although there are several terms that can take both signs, since 〈4µ − b〉 > 〈3µ − 2b〉 >

〈2µ−3b〉 > 〈µ−4b〉, the sign change occurs once for any values of µ and b. Thus, F10(φ)

has one zero for φ ∈ (0, 1). �
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Stability of full agglomeration (Proof of Proposition 7(i)): From SFE < 0 for

φ = 1 − ǫ in (B.7), with ǫ > 0 low enough, we see that the full agglomeration is stable

in the neighborhood of φ = 1 and becomes unstable at a local sustain point φs
i

for some

place i. Such local sustain point serves as the global sustain point and is defined as

φs = maxi φ
s
i
. The full agglomeration is stable for φ ∈ (φs, 1). If each local sustain point

is unique, the full agglomeration is unstable for φ ∈ (0, φs).

Appendix B.2. The PF model

Derivation of vi (Proof of (8)): We have bi = 1 + λi. The wage in the core region at

i = k is now given by: wk =
α

σ
(2k + 2). The indirect utility in the core is given by:

vk =
α

σ
(2k + 2) − α + Ā. (B.9)

With the use of bk = 2 in (B.3), the nominal wage in region i , k is obtained as

wi =
α

σ

[

φδ(k + 2) + φ−δ(k − δ) +
φδ − φ−δ

φ2 − 1

]

.

The indirect utility of peripheries at i = k ± δ (1 ≤ δ ≤ k) is given by

vi = vk±δ =
α

σ

[

φδ(k + 2) + φ−δ(k − δ) +
φδ − φ−δ

φ2 − 1

]

+
αδ

σ − 1
ln φ − α + Ā. (B.10)

Existence of local sustain point (Proof of Proposition 6(i)): Recall that σ − 1 > 0.

The sustain point must satisfy SPF ≡ vk±δ − vk = 0 for some δ (≥ 1). From (B.9) and

(B.10), we have

SPF =
α

σ

[

φδ(k + 2) + φ−δ(k − δ) +
φδ − φ−δ

φ2 − 1

]

+
αδ

σ − 1
ln φ −

α

σ
(2k + 2) . (B.11)

Notice that

lim
φ→+0
SPF = +∞, lim

φ→1
SPF = 0. (B.12)
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Differentiating SPF with respect to φ, we get

∂SPF

∂φ
=

αφ−δ (B1 − B2)

(σ − 1)σ
(

φ2 − 1
)2
φ
,

where:

B1 = δσ
(

φ4 + 1
)

φδ − (σ − 1)φ2 [δ(2δ − 2k − 1) − 2] + δ(σ − 1)φ2δ
[

(k + 2)φ4 + k + 1
]

> 0,

B2 = 2δσφδ+2 + (σ − 1)φ2δ+2 [δ(2k + 3) + 2] + δ(σ − 1)
[

−δ + φ4(k − δ) + k + 1
]

> 0.

The zeros of the derivative depend on the zeros of B1 − B2. First, notice that:

lim
φ→1

∂SPF

∂φ
=
δα [δ(σ − 1) + 2σ − 1]

(σ − 1)σ
> 0.

This, together with limφ→1 S
PF = 0 in (B.12), means that

SPF < 0 for φ = 1 − ǫ, (B.13)

with ǫ > 0 arbitrarily small, while SPF > 0 for φ = ǫ. Thus, by the Intermediate Value

Theorem, there exists at least one sustain point φ ∈ (0, 1) such that SPF(φ) = 0.

Uniqueness of local sustain point (Proof of Proposition 6(i)): We demonstrate the

uniqueness of the critical point. Let us define G(φ) ≡ B1 − B2. Then we have

G(0) = −δ(σ − 1)(−δ + k + 1) < 0, G(1) = 0, G′(0) = 0, G′(1) = 0,

G′′(0) = 2(σ − 1)
(

−2δ2 + δ + 2δk + 2
)

> 0, G′′(1) = 8δ(δ(σ − 1) + 2σ − 1) > 0.

Then, given these six results, the Intermediate Value Theorem establishes that G(φ) has

at least one zero for φ ∈ (0, 1), for any k and any δ ∈ Nδ.

Next, we will demonstrate the uniqueness of the critical point for δ ∈ {1, . . . , 6}, by

showing that G(φ) has exactly one zero for φ ∈ (0, 1). This establishes that SPF has at

most one turning point (a minimum), which implies that the critical point is unique and
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corresponds to a local sustain point. The proof consists on using Descartes’ rule of signs

after reordering the monomials of G(φ) and determine the maximum number of positive

real roots of G(φ). We compute G j(φ) = G(φ)|δ= j ( j = 1, . . . , 6):

G1(φ) =
(

φ2 − 1
)2

(σ − 1)

[

(k + 2)φ2 +
σ

σ − 1
φ − k

]

,

G2(φ) =2
(

φ2 − 1
)2

(σ − 1)

[

(k + 2)φ4 +
σ

σ − 1
φ2 − (k − 1)

]

,

G3(φ) =
(

φ2 − 1
)2

(σ − 1)

[

3(k + 2)φ6 + φ4 +
3σ

σ − 1
φ3 − φ2 − 3(k − 2)

]

,

G4(φ) =2
(

φ2 − 1
)2

(σ − 1)

[

2(k + 2)φ8 + φ6 +
2σ

σ − 1
φ4 − φ2 − 2(k − 3)

]

,

G5(φ) =
(

φ2 − 1
)2

(σ − 1)

[

5(k + 2)φ10 + 3φ8 + φ6 +
5σ

σ − 1
φ5 − φ4 − 3φ2 − 5(k − 4)

]

,

G6(φ) =2
(

φ2 − 1
)2

(σ − 1)

[

3(k + 2)φ12 + 2φ10 + φ8 +
3σ

σ − 1
φ6 − φ4 − 2φ2 − 3(k − 5)

]

.

We see that the coefficients of the polynomial for each Gi(φ) changes sign once. Thus,

G(φ) has one zero for φ ∈ (0, 1) by Descartes’ rule of signs.

Conjecture 2. The uniqueness of a local sustain point holds for any k and any δ ∈ Nδ in

the PF model.

Proof. Substituting arbitrarily large values for δ by increasing order, for any k ≥ δ, it

seems to be always possible to factor out the term
(

φ2 − 1
)2

that multiplies a polyno-

mial whose coefficients only change sign once, after rearranging all the monomials by

decreasing order. For the purpose of illustration, we set δ = 20:

G20(φ) =2
(

φ2 − 1
)2

(σ − 1)
[

10(k + 2)φ40 + 9φ38 + 8φ36 + 7φ34 + 6φ32 + 5φ30 + 4φ28

+ 3φ26 + 2φ24 + φ22 +
10σ

σ − 1
φ20 − φ18 − 2φ16 − 3φ14

− 4φ12 − 5φ10 − 6φ8 −7φ6 − 8φ4 − 9φ2 − 10(k − 19)
]

.
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One can see that the polynomial in the brackets changes sign only once. Thus, G(φ) has

one zero for φ ∈ (0, 1). This concludes the proof. �

Stability of full agglomeration (Proof of Proposition 7(i)): The proof is similar to

that for the FE model.

Appendix B.3. The PFSU model

Derivation of vi (Proof of (9)): As shown by Akamatsu et al. (2021), the nominal

wage in the PFSU model is just the same as in the PF model. The indirect utility becomes

vi(λ) = wi(λ) +
α

σ − 1
ln∆i(λ) − γ ln(λi + 1),

where ∆i(λ) =
∑n

j=1 φi jλ j and wi(λ) is given by (1). Further, we have: bi = l + λi. Since

we keep l = 1 for simplicity, we have bi = 1 + λi. The indirect utilities are given by

(1 ≤ δ ≤ k)

vk =
α

σ
(2k + 2)−γ ln 2; vi = vk±δ =

α

σ

[

φδ(k + 2) + φ−δ(k − δ) +
φδ − φ−δ

φ2 − 1

]

+
αδ

σ − 1
ln φ.

Existence of local sustain point (Proof of Proposition 6(ii)): The sustain point must

satisfy SPFS U ≡ vk±δ − vk = 0 for some δ (≥ 1) with

SPFS U ≡ vi − vk = S
PF + γ ln 2 (B.14)

with SPF in (B.11) and the second term is a constant that does not depend on φ. We

consider the case of δ ∈ {1, . . . , 6} where SPF has a unique zero at φ = φs with SPF < 0

for φ ∈ (φs, 1) and SPF > 0 for φ ∈ (0, φs) (cf., Appendix B.2). An increase in the value

of the parameter γ shifts SPF upwards up to a point where SPFS U may have two, one, or

no zeros.
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Non-existence of sustain point (Proof of Proposition 7(ii-1)) First, we consider the

case of γ → +∞. From (B.14), it is apparent that SPFS U > 0 for any i and φ. Hence there

is no sustain point and the full agglomeration is always unstable.

Next, we consider the case of k → +∞ and show that a sustain point does not exist

and the full agglomeration is always unstable. To prove these, it is sufficient to show

vk−1 − vk > 0 for φ ∈ (0, 1). For i = k − 1 (δ = 1), (B.14) with (B.11) gives

SPFS U
∣
∣
∣
δ=1
=
α

σ

[

k(φ + φ−1 − 2) + 2φ − 2
]

+
α

σ − 1
ln φ + γ ln 2. (B.15)

Since we have φ + φ−1 − 2 = φ−1(φ − 1)2 > 0 for φ ∈ (0, 1), we can show:

lim
k→+∞

(vk−1 − vk) = +∞ ∀φ ∈ (0, 1). (B.16)

Stability of full agglomeration (Proof of 7(ii-2)): If there are two zeros SPFS U in

φ ∈ (0, 1) for each i, we have two local sustain points, φs1
i
∈ (0, 1) and φs2

i
∈ (0, 1)

with φs2
i
> φs1

i
. Then the full agglomeration is unstable for φ ∈

{

(0, φs
1
) ∪ (φs

2
, 1)

}

. If we

introduce

φs1 = max
i
φs1

i ∈ (0, 1), φs2 = min
i
φs2

i ∈ (0, 1),

we note that the full agglomeration is unstable for φ ∈ {(0, φs1) ∪ (φs2, 1)}. If φs1 > φs2,

there is no stable zone of φ. If φs1 < φs2, there is a stable zone of φ ∈ (φs1, φs2).

Appendix B.4. The MT model

Derivation of vi (Proof of (10)): In the MT model, we have the wage equation:

wiLi =

n∑

j=0

φi jLiw
1−σ
i

∑n
m=0 Lmw1−σ

m φ jm

L jw j,
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where→ Li = λi(1 − θλi). Let us normalize
∑

j λ jwi = wk, where wk is the wage in the

central region at full agglomeration. The wage at a potential city i for any Li is given by:

wσ
i =

n∑

j=0

φi jL jw j
∑n

m=0 Lmw1−σ
m φ jm

⇐⇒ wi =





n∑

j=0

φi jL jw j
∑n

m=0 Lmw1−σ
m φ jm





1/σ

.

At the full agglomeration, for which the locations i , k have zero population, the wage be-

comes wi = φ
δ
σ wk. The indirect utility is given by vi = ζ∆

1
σ−1

i
yi, where yi = (1 − θλi)wi,

∆i =
∑n

j=0 L jw
1−σ
j

φi j and ζ > 0 is a constant. Using wi = φ
δ
σ wk, we get the indirect utility:

vk = ζ(1 − θ)
σ
σ−1 ; vi = vk±δ = ζ(1 − θ)

1
σ−1φ

δ
σ

2σ−1
σ−1 , 1 ≤ δ ≤ k.

Unique existence of sustain point (Proof of Propositions 6(iii) and 7(iii)): We have

SMT ≡ vk±δ − vk = (1 − θ)
1

σ−1φ
δ
σ

2σ−1
σ−1 − (1 − θ)

σ
σ−1 . (B.17)

We have SMT < 0 for φ = 0 and SMT > 0 for φ = 1. The solution to SMT = 0 with (B.17) is

φ = φc
δ ≡ (1 − θ)

(σ−1)σ
δ(2σ−1) . (B.18)

The critical point is uniquely determined or each δ so that the local sustain point is also uniquely

determined. Further, notice that

∂φc
δ

∂δ
= −

(σ − 1)σ ln(1 − θ)(1 − θ)−
(σ−1)σ
δ−2δσ

δ2(2σ − 1)
> 0,

which means that φc
δ

is strictly increasing in δ. Since full agglomeration is stable below the sustain

point, we have that δsat = 1 and

φ = φs ≡ (1 − θ)
(σ−1)σ
2σ−1 . (B.19)

The sustain point in terms of commuting costs is given by:

θs = 1 − φ
1
σ

2σ−1
σ−1 .
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