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Abstract

The present thesis aims to elucidate the mechanism of economic agglomerations in two-dimensional

economic spaces equipped with square road networks, which prosper worldwide (e.g., Chicago

and Kyoto). A series of theoretical approaches provided in the present thesis makes it possible to

investigate the spatial patterns of economic agglomerations on such spatial platforms systematically.

Theoretical results in the present thesis would contribute greatly to analytical and numerical

investigation of economic agglomerations.

Studies of the spatial patterns of economic activities date back to the classical central place

theory in economic geography (Christaller, 1933; Lösch, 1940). This theory suggested that central

places, where economic activities are concentrated, would form geometrical patterns under the

assumption of completely flat land surface and uniformly distributed consumers. The crude

geometric prediction of this theory has come to be supplemented with full-fledged microeconomic

foundations. The hexagonal distributions of economic agglomerations on the hexagonal lattice

economy have come to be simulated by theoretical and numerical analysis of economic geography

models (Ikeda et al., 2012b, 2017b, 2018a). That said, the present thesis focuses on square

distributions on the square lattice economy, which has not somewhat been given much attention.

Economic geography models, which encompass a wide range of spatial models in various fields,

such as new economic geography, urban economics, and international trade theory, contribute to the

understanding of the spatial patterns of economic activities. These models provide a comprehensive

knowledge on how the level of transportation costs affects the spatial patterns of agglomerations,

such as mono-centric and poly-centric distributions. Possible spatial patterns, however, depend

on both economic modeling and spatial platforms. The present thesis mainly focuses on the

latter, that is, mathematical mechanisms due to the symmetry of spatial platforms. We introduce

appropriate spatial platforms to investigate agglomeration behaviour from the uniform distribution

(Chapters 3 and 4), dispersion behaviour from the mono-centric distribution (Chapter 5), and

economic interactions between local and global scales (Chapter 6).

Each spatial platform introduced in the present thesis has the symmetry described by a group,

such as the dihedral group. Classification of bifurcation behaviour in such symmetric systems

is the main subject of group-theoretic bifurcation theory (Golubitsky et al., 1988). We apply

group-theoretic predictions to the investigation of bifurcation behavior of economic geography

models. Our analysis places a special emphasis on model-independent bifurcation mechanisms

behind agglomeration and dispersion behaviour, while the model dependency of such behaviour

has come to be elucidated recently by Akamatsu et al. (2021).
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The present thesis provides a systematic analysis procedure that is applicable to a wide range

of economic geography models. Note, however, that Chapters 4–6 employ the replicator dynamics

and assume the presence of corner solutions; accordingly, are not applicable to the models that

prohibit corner solutions, such as Helpman (1998) and Allen and Arkolakis (2014) models.

The present thesis is organized as follows:

Chapter 1 is the introduction that summarizes theoretical background, the contributions of the

present thesis, and related studies.

Chapter 2 introduces a general setup of economic geography models. Various kinds of models

have been developed in the previous studies. We accordingly discuss the applicability of theoretical

results in each chapter to specific models. We employ Forslid and Ottaviano (2003), Helpman

(1998), and Pflüger and Südekum (2008) models as representatives of economic geography models

for the numerical analyses throughout the present thesis.

Chapter 3 offers a group-theoretic bifurcation theory to explain the mechanism of the self-

organization of square patterns in economic agglomerations. As a spatial platform, we introduce

an n×n square lattice that has the symmetry described by the group D4 ⋉ (Zn×Zn). We investigate

steady-state bifurcation of the spatially uniform equilibrium on the square lattice. We show the

existence of bifurcating solutions expressing square and stripe patterns by using two different

mathematical methods: (i) the equivariant branching lemma and (ii) the bifurcation equations.

Chapter 4 focuses on the existence of invariant patterns that is a special feature of the replicator

dynamics. Invariant patterns are stationary points that retain their spatial distribution even when

the value of the bifurcation parameter changes. We propose a methodology to find invariant

patterns exhaustively. In view of invariant patterns, we develop an innovative bifurcation analysis

procedure and apply this procedure to economic geography models. We numerically demonstrate

the connectivity between the uniform distribution and invariant patterns via bifurcations.

Chapter 5 investigates the bifurcation mechanism of the full agglomeration at the geographical

center of a square lattice. We theoretically show the existence of bifurcating solutions that represent

a place at the center with large population surrounded by several places with small population.

Some of these solutions can be interpreted as the formation of satellite cities around the central

city. We numerically demonstrate transition processes by which population is absorbed into or

migrates from the center as the level of transport costs changes.

Chapter 6 proposes a local-global system, a spatial platform that can represent a hierarchical

structure but can retain the insightfulness of bifurcation mechanisms. It consists of the two-level

hierarchy comprising local and global systems. Each local system has a particular population

size and a geographical configuration such as a square lattice. The global system expresses

the geographical distribution of the local systems. We would like to develop the framework of

conventional economic geography models to a direction of the qualitative spatial economics.

Chapter 7 summarizes the main results of the present thesis and suggests the directions of future

research.

Keywords: bifurcation, economic agglomeration, economic geography, group-theoretic

bifurcation theory, invariant pattern, local-global system, replicator dynamics, square lattice.
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Munich

Nuremberg

Frankfurt

Stuttgart

Figure 1.1: Distribution of large cities in southern Germany.

1. Introduction

Hierarchical urbanization of megalopolises, cities, towns, villages, and so on displays char-

acteristic spatial patterns. Figure 1.1 depicts a distribution of large cities in southern Germany

with cities of various sizes. In particular, Frankfurt, Stuttgart, Nuremberg, and Munich display

a distinctive geometrical pattern. This is hinting at the existence of the underlying geometrical

mechanism. Christaller (1933) conducted the first attempt to elucidate such a mechanism for pop-

ulation distribution of Southern Germany to develop central place theory of economic geography.

Self-organization of hexagonal market areas of various kinds was proposed. Hexagonal market

areas with different sizes were expected to form hierarchical hexagonal distributions of population

(cities, towns, villages, etc.). For reviews of central place theory, see Lösch (1940), Lloyd and

Dicken (1972), Dicken and Lloyd (1990), Isard (1975), and Beavon (1977), for example.

In economics, central place theory has been exposed to a criticism that it is not based on market

equilibrium conditions (Fujita et al., 1999b). To overcome this, Eaton and Lipsey (1975, 1982)

made the earliest attempt to provide central place theory with a microeconomic foundation. Clarke

and Wilson (1985) and Munz and Weidlich (1990) demonstrated the emergence of spatial patterns

in economic agglomerations. Krugman (1996) envisioned that hexagonal distributions envisaged

in central place theory are to be self-organized in core-periphery models with a two-dimensional

spatial platform.

Core-periphery models, which are based on the Dixit-Stiglitz competition, can express the

migration of population among cities with a microeconomic foundation (e.g., Krugman, 1991;

Combes et al., 2008). Most studies for these models, however, employed an too much simplified

setup of the two-place economy to exploit analytical solvability.

In search of the mechanism of various spatial patterns in economic agglomerations, a proper

choice of a spatial platform is vital. To transcend the two-place economy, studies on several spatial

platforms have been conducted as reviewed in the Related Studies below. These spatial platforms,

for example, include a star economy, a line segment economy, a racetrack economy, an equidistant
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economy, and a lattice economy. The line segment and racetrack economies are one-dimensional,

whereas the equidistant and the lattice economies are two-dimensional.

In search of realistic spatial patterns, which are essentially two-dimensional, it is pertinent

to employ the square and the hexagonal lattices that are capable of expressing diverse spatial

agglomeration patterns:

• The square lattice can engender square, rectangular, and deformed triangular patterns.

• The hexagonal lattice can engender triangular, rectangular, and hexagonal patterns.

The suitability of these two kinds of lattices varies with cases as explained below:

In the simulation of hexagonal distributions, the use of hexagonal lattices is adequate. In

nonlinear mathematics, hexagonal distributions have been shown to exist on planar systems en-

dowed with hexagonal symmetry for several physical problems (Golubitsky and Stewart, 2002).

In central place theory, the regular-triangular lattice was suggested for use based on geometrical

discussion (Lösch, 1940). In economics, Eaton and Lipsey (1975) displayed the mechanism of the

formation of a hexagonal distribution of mobile production factors (e.g., firms and workers) in two

dimensions as an economic equilibrium for spatial competition. The bifurcation mechanism of the

self-organization of hexagonal distributions on the hexagonal lattice was elucidated (Ikeda et al.,

2014; Ikeda and Murota, 2014), as an extension of group-theoretic bifurcation analysis, which is

applied mainly to a continuous space (Golubitsky and Schaeffer, 1985; Golubitsky et al., 1988), to

a discreteized space.

On the other hand, it is quite noteworthy that square road networks exist worldwide. Chicago

(USA) and Kyoto (Japan), for example, are well-known to accommodate such square networks

historically (see Fig. 1.2). In fact, several studies of spatial agglomeration have been conducted

on square lattices (Clarke and Wilson, 1983, 1985; Weidlich and Haag, 1987; Munz and Weidlich,

1990; Brakman et al., 1999). Yet, bifurcation analysis on a discretized space of a square lattice is

very rare, and the study of Ikeda et al. (2018b) is an only exception.

This motivates the study of agglomeration and dispersion mechanisms on a square lattice.

The present thesis aims to elucidate such mechanisms on a square lattice by direct and extended

group-theoretic bifurcation analyses. We pay attention to the role of boundary conditions: (i)

periodic boundary conditions and (ii) ordinary boundary conditions. In search of the square

lattice counterpart of hexagonal distributions in central place theory, which considers an infinite

and uniform plain, it is pertinent to employ the periodic boundary conditions. We would like to

elucidate the mechanism of economic agglomerations on a square lattice with periodic boundary

conditions in Chapters 3 and 4. On the other hand, the importance of ordinary (non-periodic)

boundary conditions should not be overlooked. The infinite and uniform plain considered in

central place theory is an idealization of a finite space with boundary in the real world. We would

like to elucidate the mechanism of economic agglomerations on a square lattice with an ordinary

boundary condition in Chapters 5 and 6.

Overall, the present thesis provides a systematic analysis procedure that can be applicable to

a wide range of economic geography models. While studies of spatial economics are centered

mainly on the economic modeling, the present thesis focuses on the spatial structure of economic

2



(a) Chicago (USA)

(b) Kyoto (Japan)

Figure 1.2: Satellite photographs of cities provided by Google Maps displaying square road networks
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agglomerations, which is somewhat overlooked in these studies, despite its vital importance in

economic agglomeration. The contributions of the present thesis are summarized as follows:

Chapter 2 introduces a general framework of economic geography models. There is a great

number of economic geography models proposed in the previous studies. Accordingly, we discuss

the applicability of theoretical analysis to be conducted in each chapter to specific models. We

focus on Forslid and Ottaviano (2003), Helpman (1998), and Pflüger and Südekum (2008) models

as typical models for numerical analyses in each chapter.

Chapter 3 reveals the mechanism of the self-organization of square agglomeration patterns from

a uniform state by relying on group-theoretic bifurcation analysis (Golubitsky et al., 1988). The

results of this chapter are applicable to any economic geography models with a single independent

variable (expressing mobile population) at each nodal point. As a spatial platform, we introduce an

n×n square lattice with periodic boundary conditions that has the symmetry described by the group

D4 ⋉ (Zn × Zn), where the group D4 expresses square symmetry and Zn represents translational

symmetry. We investigate steady-state bifurcation of the spatially uniform equilibrium and, in

turn, to show the existence of bifurcating solutions expressing square and stripe patterns by using

two different mathematical methods: (i) the equivariant branching lemma and (ii) the bifurcation

equations. The stability of bifurcating solutions is investigated. Square patterns are highlighted as

a square lattice counterpart of hexagonal patterns on a hexagonal lattice.

Chapter 4 shows the existence of invariant patterns, which is a special feature of the replicator

dynamics. The results of this chapter are applicable to any economic geography models with the

replicator dynamics with a single independent variable (expressing mobile population) at each

nodal point and the independent variable can possibly become zero at some nodal point (no mobile

population at the point). Invariant patterns are stationary points that retain their spatial distribution

when the value of the bifurcation parameter changes. In view of invariant patterns, we propose

an innovative bifurcation analysis procedure: (i) obtaining invariant patterns and (ii) searching for

bifurcating equilibrium curves connecting stable invariant patterns. We apply this procedure to

economic geography models. We numerically demonstrate the connectivity between the uniform

equilibrium and invariant patterns through the bifurcating solutions.

Chapter 5 elucidates the bifurcation mechanism of the full agglomeration at the geographical

center in a square lattice. The results of this chapter are applicable to any economic geography

models with invariant patterns, which includes the full agglomeration to a single nodal point.

We theoretically show the existence of bifurcating solutions that represent one large central place

surrounded several places with small population. Some of these bifurcating solutions can be

interpreted as the formation of satellite cities around the center. We numerically demonstrate a

transition that population emerges from, or is absorbed into, the center as the transport cost changes.

Chapter 6 proposes a spatial platform that can represent a hierarchical structure but can retain

the insightfulness of bifurcation mechanisms. It consists of two-level hierarchy of local and global

systems. Each local system has a particular population size and a geographical configuration such

as a square lattice. The global system expresses the geographical distribution of the local systems.

We would like to develop the framework of conventional economic geography models to a direction

of the qualitative spatial economics. As specific examples, we employ two identical square lattices

of which the centers are connected directly. The global transport costs between the square lattices

and local transport costs within each square lattice are considered.
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Related Literature

The present thesis fundamentally relies on group-theoretic bifurcation theory, which has been

developed in nonlinear mathematics (e.g., Mitropolsky and Lopatin, 1988; Allgower et al., 1992;

Olver, 1995; Marsden and Ratiu, 1999; Hoyle, 2006). Group-theoretic bifurcation theory pro-

vides a powerful tool to analyze a system of equations with symmetry described by the group

equivariance. Pattern formations in many physical phenomena3 are often modeled by differential

equations with the group equivariance on an infinite plane and is investigated by group-theoretic

bifurcation analysis. Systems with the Euclidean group symmetry have been employed for reaction-

diffusion systems (Turing, 1952), the Rayleigh-Bénard convection (Busse, 1978), cellular patterns

in combustion (Sivashinsky, 1983), and solidification (Coriell and McFadden, 1993). Steady-state

bifurcation from the fully symmetric equilibrium (the uniform distribution) on these systems was

classified (Melbourne, 1999). The bifurcation behaviour of systems with dihedral group symmetry

has been studied in applied mathematics (Sattinger, 1983; Healey, 1988; Dellnitz and Werner,

1989), chemistry (Kim, 1999), and physics (Kettle, 2007). The mechanism of hexagonal patterns4

are related to the symmetry of the dihedral group D6, while we focus on the dihedral group D4

expressing square symmetry in Chapters 5 and 6. As an unified modeling for reaction-diffusion

systems, the Navier-Stokes flow, the Bénard problem, and so on, a system with the symmetry of the

infinite group D4⋉T2 (T2 express the two-torus of translation symmetry) has been studied (Dionne

et al., 1997; Golubitsky and Stewart, 2002), while we employ the finite group D4 ⋉ (Zn × Zn) in

Chapters 3 and 4.

The present thesis contributes to an understanding of how group-theoretic bifurcation theory

adapts to analysis of economic geography models. Economic geography models, which theoreti-

cally describe the spatial patterns of economic activities, include a wide range of spatial models.

While a fraction of these models is introduced and classified in Section 2 with reference to the

viewpoint of Akamatsu et al. (2021), the readers may refer to standard textbooks, such as Brakman

et al. (2001), Fujita and Thisse (2002), Baldwin et al. (2003), and Combes et al. (2008), to name a

few.

Various spatial platforms were employed to observe diverse spatial agglomeration patterns.

For a long narrow economy on a line segment or an infinite straight line, the literature reports

several characteristic agglomeration patterns: the simplest core–satellite pattern for three places

(Ago et al., 2006), a chain of spatially repeated core–periphery patterns a la Christaller and Lösch

(Fujita and Mori, 1997), and a megalopolis which consists of large core cities that are connected

by an industrial belt, i.e., a continuum of cities (Mori, 1997). These patterns were numerically

observed by changing agglomeration forces and transport costs (Ikeda et al., 2017a).

3 For example, in fluid dynamics, the Rayleigh-Bénard convection, which is observed for a horizontal layer of

fluid heated from below, displays hexagonal patterns (Bénard, 1900; Koschmieder, 1993). The Couette-Taylor flow,

which is a rotating annular fluid in a hollow cylinder, displays various symmetric patterns (Taylor, 1923). In material

mechanics, uniform materials, such as cylindrical soils, undergo symmetric deformation patterns (Ikeda and Murota,

2019; Tanaka et al., 2002). Flower patterns of a honeycomb structure, which are observed in uniaxial and biaxial

in-plane compression, have drawn keen interest (Saiki et al., 2005).
4 For example, the mechanism of hexagonal patterns in the Rayleigh-Bénard convection was elucidated by

(Kirchgässner, 1979). Competition between hexagonal and triangular patterns on surface waves was studied (Skeldon

and Silber, 1998; Silber and Proctor, 1998).
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A racetrack economy, which comprises a system of identical cities spread uniformly around

the circumference of a circle, was studied extensively as a semi-two-dimensional spatial plarform.

Krugman (1993, 1996) carried out local stability analysis of a core-periphery model on the racetrack

economy to identify the emergence of several spatial frequencies. For the racetrack economy with

2k cities, a spatially alternation of a core place with a large population and a peripheral place

with a small population was observed for economic geography models (Picard and Tabuchi, 2010;

Tabuchi and Thisse, 2011). Such a mechanism was explained in terms of the spatial period doubling

bifurcation cascade, which produces fewer larger agglomerations through repeated doubling of the

spatial period of agglomerated cities (Ikeda et al., 2012a; Akamatsu et al., 2012; Osawa et al.,

2017). Anas (2004) demonstrated the presence of other agglomeration patterns, such as balanced

agglomeration, concentrated agglomeration, and de-agglomeration.

The racetrack economy was studied comparatively with an economy on a line segment (a long

narrow economy) by Mossay and Picard (2011) in a continuous space to display the difference in

agglomeration patterns. Agglomerations in racetrack and star economies were studied compara-

tively (Barbero and Zofío, 2016). An analogy of the agglomerations in the racetrack economy to

a long narrow economy and a square lattice economy was studied in Ikeda et al. (2017a, 2018b),

respectively.
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2. Economic Geography Models

This chapter provides the general framework of economic geography models, which we em-

ployed throughout the present thesis. Section 2.1 explains basic assumptions of the modeling

on a symmetric spatial platform. Section 2.2 presents the classification of a series of economic

geography models with reference to Akamatsu et al. (2021). Section 2.3 introduces some particular

models, which we use for numerical simulations.

2.1. General Framework

We explain modeling of the economy to investigate the spatial patterns of economic agglomer-

ations.

2.1.1. Basic Assumptions

Let P = {1, . . . ,K} be the set of places. A spatial distribution of mobile workers is denoted by

λ = (λi) under the normalizing constraint
∑

i∈P λi = 1. The payoff for the mobile workers is given

by a payoff function v = (vi).
The economy of economic geography models involves spatial frictions. That is, the payoff

function v depends on a proximity matrix D = [di j] with di j = ϕ
m(i, j), where ϕ ∈ (0, 1) is the trade

freeness between two consecutive places, and m(i, j) is the shortest distance between places i and

j along the transport network of the economy.

Each mobile worker selects a place to locate in response to the payoff vi. A spatial equilibrium

is defined as a spatial distribution λ that satisfies the following condition:{
v
∗ − vi(λ, ϕ) = 0 if λi > 0,

v
∗ − vi(λ, ϕ) ≥ 0 if λi = 0,

(2.1)

where v
∗ denotes the equilibrium utility level.

To investigate the stability of a spatial equilibrium, we consider an adjustment dynamics:

dλ

dt
= F(λ, ϕ) (2.2)

with F = (Fi). A stationary point of the adjustment dynamics is given as a spatial distribution λ

that satisfies the governing equation:

F(λ, ϕ) = 0. (2.3)

The stability of a stationary point is classified via eigenanalysis of the Jacobian matrix J = ∂F/∂λ
as follows: {

linearly stable: every eigenvalue has a negative real part,

linearly unstable: at least one eigenvalue has a positive real part.

Example 2.1. A most customary example of the adjustment dynamics in (2.2) is the replicator

dynamics:

Fi(λ, ϕ) = (vi(λ, ϕ) − v̄(λ, ϕ))λi, (2.4)

7



where v̄ represents the weighted average utility defined as

v̄ =

∑
i∈P

λivi . (2.5)

This dynamics is widely used in economics including Krugman’s original study (Krugman, 1991).

Another well-known example is the logit dynamics:

Fi(λ, ϕ) =
exp[θvi(λ, ϕ)]∑

j∈P exp[θv j(λ, ϕ)]
− λi, (2.6)

where θ ∈ (0,∞) is a parameter denoting the inverse of variance of idiosyncratic tastes. □

Remark 2.1. Chapter 3 provides general results that are independent of the functional form of

adjustment dynamics. Chapters 4–6, however, employ the replicator dynamics, and hence the

results are not applicable to other dynamics such as the logit dynamics. □

2.1.2. Group Equivariance

We are interested in the economy defined on a symmetric spatial platform, where places are

symmetrically emplaced according to a certain rule. We assume that the payoff function v and

thus the adjustment dynamics F introduces no additional asymmetry. Such a condition can be

formalized as the group equivariance:

T(g)F(λ, ϕ) = F(T(g)λ, ϕ), g ∈ G, (2.7)

where G is a group describing the symmetry of the underlying spatial platform, and T(g) is the

permutation matrix specified by

T(g)D = DT(g), g ∈ G. (2.8)

Example 2.2. Models with the replicator dynamics in (2.4) on a symmetric spatial platform that

are endowed with the equivariance of a group G satisfy the equivariance to G in the sense of (2.7)

as proved in Proposition 2.1 at the end of this chapter. The proof for the logit dynamics can be

treated in a similar manner. □

2.2. Classification of the Models

In the classification of economic geography models with the general framework in Section 2.1,

we rely on the recent work of Akamatsu et al. (2021). This reference considers a racetrack

economy, in which a number of regions with the same characteristics are equidistantly located

over a circumference. Proposition 1 in this reference shows that the endogenous spatial patterns

that emerge upon the instability of the symmetric equilibrium (the uniform distribution of mobile

workers) substantially differ across model classes. That is, this classification depends on the spatial

scale of dispersion forces in a model. If a model is of Class I, a multimodal pattern emerges. For

a model of Class II, only a unimodal pattern emerges. If a model is of Class III, both possibilities

arise, depending on the bifurcation parameter (trade freeness).
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Example 2.3. Each model class includes the following typical models:

• Class I includes models by Krugman (1991), Puga (1999), Forslid and Ottaviano (2003),

Pflüger (2004), and Harris and Wilson (1978).

• Class II includes models by Helpman (1998), Murata and Thisse (2005), Redding and Sturm

(2008), Allen and Arkolakis (2014), Redding and Rossi-Hansberg (2017), and Beckmann

(1976).

• Class III includes modelds by Tabuchi (1998), Pflüger and Südekum (2008), and Takayama

and Akamatsu (2011).

□

Remark 2.2. In Chapters 4–6, we focus on a special kind of corner solutions, called invariant

patterns, which admit λ to have zero components. Hence, the results of these chapters are not

applicable to models that do not take corner solutions due to the existence of the housing market,

such as Helpman (1998) and Allen and Arkolakis (2014) models. □

2.3. Examples of Economic Geography Models and their Group Equivariance

Among the models presented in Example 2.3, we introduce Forslid and Ottaviano (2003),

Helpman (1998), and Pflüger and Südekum (2008) models as representatives of Class I, II, and III,

respectively. We employ these models for numerical bifurcation and stability analysis throughout

the present thesis. The fundamental logic of these models are investigated in the work of Akamatsu

et al. (2021). We explain their group equivariance for symmetric spatial platforms.

2.3.1. Examples of Economic Geography Models

We briefly introduce the multi-regional versions of these three models. As a basic assumption

for these three models, there is a manufacturing industrial sector (M-sector). The transportation

cost for the M-sector goods are assumed to take the iceberg form. For each unit of M-sector goods

transported from place i to j (, i), only a fraction 1/τi j < 1 arrives (τii = 1 for all i), and τi j = τi j(τ)
is a function in the transportation cost parameter τ > 0 defined as

τi j = exp[τm(i, j)], (2.9)

where m(i, j) is the shortest distance between places i and j. The trade freeness ϕ is defined as

ϕ = exp[−(σ − 1)τ], ϕ ∈ (0, 1). (2.10)

Note that ϕ is inversely proportional to τ. Then, the spatial discounting factor di j is represented as

di j = ϕ
m(i, j)

= τi j
−(σ−1). (2.11)
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Forslid and Ottaviano (2003) (FO) Model

There are two types of workers: skilled and unskilled workers. The total endowments of

skilled and unskilled workers are H and L, respectively. Skilled workers are mobile across K

places. The number of skilled workers in place i is denoted by λi under the normalizing constraint∑K
i=1 λi = 1. Unskilled workers are immobile and are distributed equally across all places with

L/K . For simplicity, we assume that H = 1 and L/K = 1.

There are two industrial sectors: manufacturing (M) and agriculture (A). The A-sector is

modeled by perfect competition and requires a unit input of unskilled workers to produce one unit

of goods. The M-sector is modeled by Dixit-Stiglitz monopolistic competition and requires both

skilled and unskilled workers as the input.

Preferences over the M-sector and A-sector goods are identical across individuals. The utility

function U of an individual in place i is defined by

Ui = µ ln CM
i + (1 − µ) ln CA

i , (2.12)

where µ ∈ (0, 1) is the constant expenditure share of manufacturing sector goods, CA
i

stands for the

consumption of the A-sector product in place i, and CM
i

represents the manufacturing aggregates

in place i, defined as

CM
i ≡

©­«
K∑

j=1

∫ nj

0

q ji(ℓ)(σ−1)/σdℓ
ª®¬
σ/(σ−1)

, (2.13)

where q ji(ℓ) represents the consumption in place i of a variety ℓ ∈ [0, n j] produced in place j ∈ P,

n j stands for the number of produced varieties at place j, and σ ∈ (1,∞) denotes the constant

elasticity of substitution between any two varieties.

The indirect utility vi in place i is given by

vi =
µ

σ − 1
ln∆i + lnwi, (2.14)

where ∆ j =
∑K

k=1 dk jλk . The market equilibrium wage wi is given by the equilibrium wage

equation:

wi =
µ

σ

K∑
j=1

di j

∆ j

(w jλ j + 1). (2.15)

With the notations

w = (wi), D = [di j], ∆ = diag(∆1, . . . ,∆K), Λ = diag(λ1, . . . , λK), (2.16)

the equation (2.15) is written as

w =
µ

σ
D∆−1(Λw + 1), (2.17)

which can be solved for wi as

w =
µ

σ

(
I − µ

σ
D∆−1

Λ

)−1

D∆−11. (2.18)
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Helpman (1998) (Hm) Model

The Hm model assumes that all workers are mobile across K places. The total endowment of

mobile workers is H. For simplicity, we set H = 1.

There are two industrial sectors: the housing (H) sector and the manufacturing (M) sector. The

amount of housing stock in place i is denoted by ai. The M-sector is based the same assumption

as those of the FO model. The utility function U of an individual in place i is defined by

Ui = µ ln CM
i + (1 − µ) ln CH

i , (2.19)

where CH
i

represents the consumption of H-sector goods.

The indirect utility function vi in place i is given by

vi =
µ

σ − 1
ln ∆̃i + µ ln

λi(wi + r)
ai

− ln
λi

ai

, (2.20)

where ∆̃i =
∑K

j=1 d jiw
1−σ
j

λ j . The market equilibrium wage wi is given by the equilibrium wage

equation:

wiλi = µ

K∑
j=1

di jw
1−σ
i

λi∑K
k=1 dk jw

1−σ
k

λk

(wi + r)λ j, (2.21)

where r represents a dividend of rental revenue. For simplicity, we set r = 1 and ai = 1.

Pflüger and Südekum (2008) (PS) Model

The PS model is based on the same assumptions as those of the FO model. This model

introduces the H-sector and employs a quasi-linear logarithmic function as the utility function

instead of (2.12):

Ui = µ ln CM
i + γ ln CH

i + CA
i , (2.22)

where γ ∈ (0, 1) denotes the constant expenditure share of H-sector goods.

The indirect utility vi in place i is given by

vi =
µ

σ − 1
ln∆i − γ ln

λi + 1

ai

+ wi, (2.23)

where the market equilibrium wage wi is given by

wi =
µ

σ

K∑
j=1

di j

∆ j

(λ j + 1). (2.24)

For simplicity, we set ai = 1.

2.3.2. Group Equivariance

We have the following proposition for the equivariance of the FO model, the Hm model, and

the PS model with the replicator dynamics for symmetric spatial platforms.
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Proposition 2.1. For a spatial platform that has the symmetry described by a group G, the FO

model, the Hm model, and the PS model with the replicator dynamics in (2.4) are equivariant to G

in the sense of (2.7), i.e.,

T(g)F(λ, ϕ) = F(T(g)λ, ϕ), g ∈ G (2.25)

for some permutation matrix T(g) of G.

Proof. We treat the case of an n × n square lattice with G = D4 ⋉ (Zn × Zn) to be introduced in

Section 3.2. Note that the concrete form of T(g) is to be given in Section 3.4.1. Each element g

of G acts as a permutation of place numbers (1, . . . ,K), and the action of g ∈ G is expressed as

g : i 7→ i∗. For the indirect utility function vi in (2.14) for the FO model, that in (2.20) for the

Hm model, and that in (2.23) for the PS model, we have νi(T(g)λ, ϕ) = νi∗(λ, ϕ) because of the

definition of the transport cost parameter in (2.9). We also have ν(T(g)λ, ϕ) = ν(λ, ϕ) by (2.5).

Therefore, we have

Fi(T(g)λ, ϕ) = (νi∗(λ, ϕ) − ν(λ, ϕ))λi∗ = Fi∗(λ, ϕ) (2.26)

for the function Fi in (2.2). This proves the equivariance in (2.25). □

It is possible to extend this proposition to other dynamics, such as the logit dynamics in (2.6).
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(a) Chicago (the U.S.) (b) Kyoto (Japan)

Figure 3.1: Satellite photographs of cities provided by Google Maps displaying square road networks.

3. Bifurcation Mechanism from the Uniform Distribution on a Square Lattice

This chapter presents details of our published paper (Kogure et al., 2021). Theoretical results

in this chapter are an adaptation of the results for the hexagonal lattice (Ikeda and Murota, 2014)

to a square lattice.

3.1. Introduction

Square road networks prosper worldwide. Chicago (the U.S.) and Kyoto (Japan), for example,

are well-known to accommodate such square networks historically (see Fig. 3.1). We intend to

elucidate the mechanism of economic agglomerations on such square networks as an important

contribution of nonlinear mathematics to spatial economics.

In spatial economics, the mechanism of economic agglomerations is highlighted as the most

important topic. After a pioneering work by Krugman (1991), bifurcation is welcomed as a catalyst

to engender a core place and a peripheral place from two identical places. The study of spatial

agglomerations have come to be extended from the two-places economy to a racetrack economy

(one-dimension) and, in turn, to explain various poly-centric agglomerations (Tabuchi and Thisse,

2011; Ikeda et al., 2012a; Akamatsu et al., 2012). In economic geography, central place theory

(Christaller, 1933; Lösch, 1940) envisaged the emergence of hexagonal agglomerations based on the

distribution of cities and towns in Southern Germany. The existence of the hexagonal distribution

of mobile production factors (e.g., firms and workers) was shown based on a microeconomic

foundation (Eaton and Lipsey, 1975). To explain the mechanism of economic agglomerations

in the real world, spatial platforms for economic geography models need to be extended to two-

dimensional spaces as conducted in this chapter.

Lattice economies, including hexagonal and square lattices, can accommodate various two-

dimensional agglomeration patterns of economic interest. Motivated by hexagonal agglomerations

in central place theory, Ikeda and Murota (2014) elucidated the bifurcation mechanism of eco-

nomic geography models on a hexagonal lattice. The stability of bifurcating solutions from the

uniform distribution was investigated to demonstrate that theoretically predicted bifurcating solu-

tions, including hexagonal patterns, are all unstable just after the bifurcation (Ikeda et al., 2018a).

For economic geography models with the replicator dynamics, geometrical distributions that are

solutions to the governing equation, irrespective of the value of the bifurcation (transport cost) pa-
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rameter, are called invariant patterns and were demonstrated to represent economic agglomerations

of great economic interest (Ikeda et al., 2019a).

Yet the bifurcation mechanism of economic geography models on a square lattice is not

understood to the full extent. Some studies dealt with economic agglomerations on a square lattice

(Clarke and Wilson, 1983; Weidlich and Haag, 1987; Munz and Weidlich, 1990; Brakman et al.,

1999) but are not based on economic geography models. As a pioneering study that combined a

square lattice with an economic geography model, Ikeda et al. (2018b) investigated the mechanism

of break bifurcation on the uniform distribution and indicated the occurrence of period-doubling

bifurcation. They, however, found just a fraction of bifurcating solutions on a square lattice by

relying on an ad hoc procedure.

That said, this chapter aims to develop group-theoretic bifurcation theory for economic geogra-

phy models on a square lattice that has the symmetry described by the finite group D4 ⋉ (Zn × Zn).
We focus on a bifurcation mechanism due to the geometrical symmetry and present an exhaustive

list of bifurcating solutions from the uniform distribution on this lattice. This list would be of

assistance in the study of economic agglomerations. We futhermore pay a special attention to the

symmetry of two half branches at a bifurcation point. We obtain theoretical conditions for the

symmetry and the asymmetry of such bifurcating half branches. The present theory is applicable

to any economic geography models with a single degree of freedom at each node.

Many pattern-formation phenomena have been modeled by partial differential equations with

group equivariance on an infinite plane. As the mathematical model of reaction-diffusion models,

Navier-Stokes flow, and the Bénard problem, a system that is equivariant to the infinite group

D4 ⋉ T2 (T2 expresses the two-torus of translation symmetries) has been studied (Dionne et al.,

1997; Golubitsky and Stewart, 2002). As for economic agglomerations described by economic

geography models, it is essential to consider a discretized finite plane. For this reason, we employ

the finite group D4 ⋉ (Zn × Zn) that is not studied up to now.

This chapter is organized as follows. Section 3.2 introduces an n×n square lattice with symmetry

labeled by the group D4 ⋉ (Zn × Zn) and classifies square patterns for economic agglomerations

on this lattice. Section 3.3 gives derivation of the irreducible representations of the group D4 ⋉

(Zn × Zn). Section 3.4 provides the matrix representations of this group. Section 3.5, as well

as Appendix A.6, presents group-theoretic bifurcation analysis by using equivariant branching

lemma and that by solving bifurcation equations. Section 3.6 summarizes results of the stability of

bifurcating solutions. Section 3.7 applies group-theoretic bifurcation analysis to typical economic

geography models on this lattice and conducts numerical simulations based on theoretical results

elucidated in the previous sections.

3.2. Square Lattice and its Symmetry

In this section, we introduce an n × n finite square lattice comprising a system of uniformly

distributed n×n places. We allocate discretized degrees-of-freedom to each node of this lattice. We

apply periodic boundary conditions to this lattice to express infiniteness and to avoid heterogeneity

due to boundaries. Periodic repetition of this lattice covers an infinite two-dimensional plane.

Using a group consisting of D4 and Zn × Zn, we express the symmetry of this lattice. We

consider the compatibility of n with square patterns of interest on this lattice. We present and

classify subgroups expressing the symmetry of square patterns. The study conducted in this
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Figure 3.2: An infinite square lattice.

section is purely geometric and involves no bifurcation mechanism. It forms, however, an important

foundation of group-theoretic bifurcation analysis in Section 3.5 and Appendix A.6.

This section is organized as follows. An infinite square lattice is introduced in Section 3.2.1.

Square patterns on this lattice are described in Section 3.2.2. The n× n square lattice is introduced

in Section 3.2.3. The group expressing the symmetry of this lattice is given in Section 3.2.4.

3.2.1. Infinite Square Lattice

We introduce an infinite square lattice as a set of integer combinations of oblique basis vectors

ℓ1 = d

[
1

0

]
, ℓ2 = d

[
0

1

]
, (3.1)

where d > 0 means the length of these vectors. We denote the infinite square lattice as

H = {n1ℓ1 + n2ℓ2 | n1, n2 ∈ Z}, (3.2)

where Z denotes the set of integers. Figure 3.2 depicts the infinite square lattice.

To represent square patterns on the infinite square lattice, we consider a sublattice spanned by

basis vectors

t1 = αℓ1 + βℓ2, t2 = −βℓ1 + αℓ2, (3.3)

where α and β are integer-valued parameters with (α, β) , (0, 0). We denote the sublattice by

H(α, β), that is,

H(α, β) = {n1 t1 + n2 t2 | n1, n2 ∈ Z}
= {(n1α − n2β)ℓ1 + (n1β + n2α)ℓ2 | n1, n2 ∈ Z}

=

{[
ℓ1 ℓ2

] [
α −β
β α

] [
n1

n2

] ���� n1, n2 ∈ Z
}
. (3.4)
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(a) (α, β) = (2, 0) (b) (α, β) = (2, 1)

Figure 3.3: Square patterns represented by sublattices.

We see that the angle between t1 and t2 is π/2. In addition, we have | t1 | = | t2 |. Thus, the sublattice

H(α, β) represents a square pattern (see Fig. 3.3).

We define the spatial period L as

L = d

√
α2
+ β2, (3.5)

which represents the common length of the basis vectors t1 and t2. We refer to

L

d
=

√
α2
+ β2 (3.6)

as the normalized spatial period, which is an important index for characterizing the size of a square

pattern. Although this definition refers to the basis vectors t1 and t2, the spatial period L, as well

as the normalized spatial period L/d, is in fact determined by the sublatticeH(α, β), as seen from

(3.8) with (3.7) below.

The normalized spatial period L/d in (3.6) takes specific values
√

1,
√

2,
√

4,
√

5, . . . as a

consequence of the fact that α and β are integers. The square pattern with L/d = 1 is called the

uniform distribution. The normalized spatial period is obtained from (3.6) as

L

d
=

√
α2
+ β2

=

√
1,
√

2,
√

4,
√

5,
√

8,
√

9,
√

10,
√

13,
√

16,
√

17,
√

18,
√

20,
√

25, . . .

=

{
1, 2, 3, 4, 5, . . . ,√

2,
√

5,
√

8,
√

10,
√

13,
√

17,
√

18,
√

20, . . . .
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The parameter values are given as follows:

(α, β) =




(1, 0) (L/d = 1),
(1, 1) (L/d =

√
2),

(2, 0) (L/d = 2),
(2, 1) (L/d =

√
5),

(2, 2) (L/d =
√

8),
(3, 0) (L/d = 3),
(3, 1) (L/d =

√
10),

(3, 2) (L/d =
√

13),
(4, 0) (L/d = 4),
(4, 1) (L/d =

√
17),

(3, 3) (L/d =
√

18),
(4, 2) (L/d =

√
20),

(4, 3) (L/d = 5),
(5, 0) (L/d = 5), . . . .

3.2.2. Description of Square Patterns

Sublattices introduced in the previous subsection describe square patterns on an infinite square

lattice. Using the parameter values of the sublattices, we classify square patterns into several types.

Parameterization of Square Patterns

In the parameterization (α, β) of sublattices, let us note its non-uniqueness that different pa-

rameter values of (α, β) can sometimes result in the same sublatticeH(α, β). We define

D = D(α, β) = α2
+ β2, (3.7)

which is a positive integer for (α, β) , (0, 0). It will be shown later in this subsection that D is an

invariant in this parameterization, that is, we have the following implication:

H(α, β) = H(α′, β′) =⇒ D(α, β) = D(α′, β′). (3.8)

Then, the parameter space for sublattices is given as follows:

Proposition 3.1. Square sublatticesH(α, β) are parameterized, one-to-one, by

{(α, β) ∈ Z2 | α > 0, β ≥ 0}. (3.9)

Two sublattices H(α, β) and H(β, α) are not identical in general, but are mirror images with

respect to the y-axis. They are regarded as the same essentially. We call two sublattices essentially

different if they are neither identical nor mirror images with respect to the y-axis. Essentially

different square sublattices are parameterized as follows:
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Table 3.1: The values of D(α, β) for (α, β) in (3.10).

α \ β 0 1 2 3 4 5 6 7

1 1 2

2 4 5 8

3 9 10 13 18

4 16 17 20 25 32

5 25 26 29 34 41 50

6 36 37 40 45 52 61 72

7 49 50 53 58 65 74 85 98

Proposition 3.2. Essentially different square sublattices H(α, β) are parameterized, one-to-one,

by

{(α, β) ∈ Z2 | α ≥ β ≥ 0, α , 0}. (3.10)

Table 3.1 shows the values of D = D(α, β) for (α, β) with 0 ≤ β ≤ α ≤ 7, α , 0. It is worth

noting that the values of D in this table are all distinct with the exceptions of D(5, 0) = D(4, 3) = 25

and D(5, 5) = D(7, 1) = 50. This means, in particular, that smaller square patterns (with D < 25)

are uniquely determined by their spatial period L, which is related to D as

L

d
=

√
D (3.11)

by (3.6) and (3.7).

Proofs of (3.8) and Propositions 3.1 and 3.2

First, recall that H(α, β) is generated by (t1, t2) = (t1(α, β), t2(α, β)) in (3.3), which can be

expressed as [
t1 t2

]
=

[
ℓ1 ℓ2

] [
α −β
β α

]
.

The determinant of this coefficient matrix coincides with D(α, β) in (3.7), i.e.,

D(α, β) = α2
+ β2

= det

[
α −β
β α

]
.

IfH(α′, β′) ⊆ H(α, β), then [
α′ −β′
β′ α′

]
=

[
α −β
β α

] [
x11 x12

x21 x22

]

for some integers x11, x12, x21, x22. Hence, D(α′, β′) is a multiple of D(α, β). Exchanging the roles

of (α, β) and (α′, β′), we have (3.8).

Next, we derive the parameter spaces (3.9) and (3.10) for H(α, β). We observe geometrically

(see Fig. 3.4(a)) that H(α′, β′) = H(α, β) if and only if t′
1
= α′ℓ1 + β′ℓ2 is obtained from
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(a) A square for (3.12) (b) A square for (3.13)

Figure 3.4: Squares associated with (3.12) and (3.13).

t1 = αℓ1 + βℓ2 by a rotation at an angle that is a multiple of π/2, i.e., t′
1
= R4

k t1 with

R4 =

[
cos(π/2) − sin(π/2)
sin(π/2) cos(π/2)

]
=

[
0 −1

1 0

]

for some k ∈ {0, 1, 2, 3}. Since

R4 t1 = R4(αℓ1 + βℓ2) = α(ℓ2) + β(−ℓ1) =
[
ℓ1 ℓ2

] [
0 −1

1 0

] [
α

β

]
,

we haveH(α′, β′) = H(α, β) if and only if

[
α′

β′

]
=

[
0 −1

1 0

] k [
α

β

]

for some k ∈ {0, 1, 2, 3}. Therefore, we obtain the same lattice for the following four parameter

values:

(α, β), (−β, α), (−α,−β), (β,−α). (3.12)

This allows us to adopt (3.9) as the parameter space for H(α, β), by which we mean that, for

every (α′, β′) , (0, 0) in Z2, the sublatticeH(α′, β′) is the same as the sublatticeH(α, β) for some

(uniquely determined) (α, β) in (3.9). It should be mentioned, in particular, thatH(0, β) = H(β, 0)
by (3.12). Hence, we have α > 0 in (3.9).

Geometrically, the sublattices for (α, β) and (β, α) are mirror images with respect to the line

x = y. In this sense, we regardH(α, β) andH(β, α) as essentially the same. Thus, we regard the

following four parameter values as essentially equivalent to (α, β):

(β, α), (−α, β), (−β,−α), (α,−β). (3.13)

See Fig. 3.4(b) for the square of (3.13). If β = 0 or α = β, the set of four parameters in (3.13) is

identical to the set in (3.12). This is because the lattices for β = 0 or α = β are symmetric with

respect to the line x = y.
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Figure 3.5: Square patterns of three types that are centered at the origin.

Thus, essentially equivalent parameter values can be summarized as follows:

(α, β), (−β, α), (−α,−β), (β,−α), (β, α), (−α, β), (−β,−α), (α,−β). (3.14)

which reduces in a special case of β = 0 to

(α, 0), (0, α), (−α, 0), (0,−α) (3.15)

or in another special case of α = β to

(α, α), (−α, α), (−α,−α), (α,−α). (3.16)

On the basis of the observations above, (3.10) can be adopted as the parameter space for essentially

different sublattices. This means that every (α, β) , (0, 0) in Z2 is essentially equivalent to some

(uniquely determined) member in (3.10).

Types of Square Patterns

We define the tilt angle φ ofH(α, β) as

cos φ =
(ℓ1)⊤ t1
∥ℓ1∥ · ∥ t1∥

, (3.17)

where (α, β) belongs to the parameter space in (3.9) or (3.10). This definition is equivalent to

φ = arcsin

(
β√

α2
+ β2

)
. (3.18)

We have 0 ≤ φ < π/2 in the case of (3.9) and 0 ≤ φ ≤ π/4 in the case of (3.10).

With reference to the tilt angle φ, we classify square patterns into three types:




type V if φ = 0,

type M if φ = π/4,
type T otherwise.

(3.19)
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Figure 3.5 depicts square patterns of these types that are centered at the origin, where “V” indicates

that the x-axis contains a vertex of the square, “M” denotes that the x-axis contains the midpoint

of two neighboring vertices of that square, and “T” means “tilted.” Using the parameter (α, β), we

also have 


type V if (α, β) = (α, 0) (α ≥ 1),
type M if (α, β) = (β, β) (β ≥ 1),
type T otherwise,

(3.20)

where the parameter space for type T depends on the choice of (3.9) or (3.10) as

For (3.9): {(α, β) | α > 0, β ≥ 0, α , β}, (3.21)

For (3.10): {(α, β) | α > β ≥ 0}. (3.22)

Accordingly, the parameter spaces in (3.9) and (3.10) are divided, respectively, into three parts:

{(α, 0) | α ≥ 1} ∪ {(β, β) | β ≥ 1} ∪ {(α, β) | α > 0, β ≥ 0, α , β}, (3.23)

{(α, 0) | α ≥ 1} ∪ {(β, β) | β ≥ 1} ∪ {(α, β) | α > β ≥ 0}. (3.24)

The types V, M, and T are correlated with the normalized spatial period as

L/d =



√
4,
√

9,
√

16,
√

25, . . . for type V,√
2,
√

8,
√

18,
√

32, . . . for type M,√
5,
√

10,
√

13,
√

17, . . . for type T.

It should be emphasized, however, that the type does not always determine, nor is determined by,

the spatial period. This is demonstrated by the two lattices H(5, 0) and H(4, 3). These lattices

share the same normalized spatial period L/d =
√

25 but are different types; the former is of type V

and the latter of type T.

3.2.3. Square Lattice with Periodic Boundaries

We introduce an n × n finite square lattice Hn as a subset of the infinite square lattice H
spreading over the entire plane. We defineHn as

Hn = {n1ℓ1 + n2ℓ2 | ni ∈ Z, 0 ≤ ni ≤ n − 1 (i = 1, 2)}, (3.25)

which consists of integer combinations with coefficients between 0 and n − 1. This is a finite set

comprising n2 elements, where n represents the size of the lattice. Figure 3.6(a) depicts the 4 × 4

square lattice.

The infinite square latticeH is regarded as a periodic extension of the n × n square latticeHn

with the two-dimensional period of (nℓ1, nℓ2). In other words, H is regarded as being covered by

translations of Hn by vectors of the form m1(nℓ1) + m2(nℓ2) with integers m1 and m2. A point

n1ℓ1 + n2ℓ2 inH corresponds to n′
1
ℓ1 + n′

2
ℓ2 inHn for (n′

1
, n′

2
) given by

n′1 ≡ n1 mod n, n′2 ≡ n2 mod n. (3.26)
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(a) The 4 × 4 square lattice (b) Periodic boundaries

Figure 3.6: A system of places on the 4 × 4 square lattice with periodic boundaries.

Figure 3.6(b) depicts the 4 × 4 square lattice with periodic boundaries.

For the sublattice H(α, β) of H , we may consider its portion H(α, β) ∩ Hn contained in Hn

and assume that the periodic extension of this portion coincides with H(α, β) itself. If this is the

case, we say that (α, β) is compatible with n, or n is compatible with (α, β). Using the Minkowski

sum5 ofH(α, β) ∩ Hn andH(n, 0), we have the condition for compatibility as

(H(α, β) ∩ Hn) +H(n, 0) = H(α, β), (3.27)

which is equivalent to

H(n, 0) ⊆ H(α, β). (3.28)

We can restate the compatibility condition as follows:

Proposition 3.3. The size n of Hn is compatible with (α, β) if and only if n is a multiple of

D(α, β)/gcd(α, β), that is,

n = m
D(α, β)

gcd(α, β), m = 1, 2, . . . . (3.29)

Proof. By (3.28), the size n is compatible with (α, β) if and only if

[
t1 t2

] [
x11 x12

x21 x22

]
= n

[
ℓ1 ℓ2

]
for some integers x11, x12, x21, x22, where t1 and t2 are defined in (3.3). Substituting

[
t1 t2

]
=

[
ℓ1 ℓ2

] [
α −β
β α

]

5 For two sets X,Y ⊆ Z2, their Minkowski sum X + Y is defined as X + Y = {x + y | x ∈ X, y ∈ Y }.
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into the above equation and multiplying the inverse of
[
ℓ1 ℓ2

]
from the left, we obtain

[
α −β
β α

] [
x11 x12

x21 x22

]
= n

[
1 0

0 1

]
,

from which [
x11 x12

x21 x22

]
= n

[
α −β
β α

]−1

=

n

D(α, β)

[
α β

−β α

]
=

n gcd(α, β)
D(α, β)

[
α̂ β̂

−β̂ α̂

]
,

where α̂ = α/gcd(α, β) and β̂ = β/gcd(α, β). This shows that x11, x12, x21, x22 are integers if and

only if n is a multiple of D(α, β)/gcd(α, β). □

With the classification of three types in (3.20), the compatibility condition (3.29) in Proposi-

tion 3.3 leads to the following statements:

• For a pattern H(α, β) of type V, parameterized by (α, β) = (α, 0) with α ≥ 1, a compatible

n is a multiple of α.

• For a patternH(α, β) of type M, parameterized by (α, β) = (β, β) with β ≥ 1, a compatible

n is a multiple of 2β.

• For a pattern H(α, β) of type T, with (α, β) in (3.21) or (3.22), a compatible n is a multiple

of D(α, β)/gcd(α, β).

To sum up, we have

n =




mα (α ≥ 1) for type V,

2mβ (β ≥ 1) for type M,

mD(α, β)/gcd(α, β) for type T,

(3.30)

where m = 1, 2, . . . .

3.2.4. Group Expressing Symmetry

We introduce the group expressing the symmetry of the n × n square lattice. As a first step of

bifurcation analysis of the square patterns on the n × n square lattice, we identify the subgroups

expressing the symmetry of these patterns.

Symmetry of the Finite Square Lattice

The symmetry ofHn in (3.25) is characterized by invariance with respect to

• r: counterclockwise rotation about the origin at an angle of π/2,

• s: reflection y 7→ −y,

• p1: periodic translation along the ℓ1-axis (i.e., the x-axis), and

• p2: periodic translation along the ℓ2-axis (i.e., the y-axis).
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Consequently, the symmetry of the square latticeHn is described by the group

G = ⟨r, s, p1, p2⟩, (3.31)

which is generated by r , s, p1, and p2 with the fundamental relations:

r4
= s2

= (rs)2 = p1
n
= p2

n
= e, p2p1 = p1p2,

rp1 = p2r, rp2 = p1
−1r, sp1 = p1s, sp2 = p2

−1s, (3.32)

where e is the identity element. Each element of G can be represented uniquely in the form of

slrmp1
i p2

j, l ∈ {0, 1}, m ∈ {0, 1, 2, 3}, i, j ∈ {0, 1, . . . , n − 1}. (3.33)

The group G contains the dihedral group

⟨r, s⟩ ≃ D4

and the cyclic groups

⟨p1⟩ ≃ Zn, ⟨p2⟩ ≃ Zn

as its subgroups, where Zn means the cyclic group of order n, which is denoted as Cn. The group

G has the structure of the semidirect product of D4 by Zn × Zn, that is, G = D4 ⋉ (Zn × Zn).

Remark 3.1. A group G is said to be the semidirect product of a subgroup H by another subgroup

A, denoted G = A ⋊ H, if

• A is a normal subgroup of G, and

• each element g ∈ G is represented uniquely as g = ah with a ∈ A and h ∈ H.

Each element g = ah ∈ G can also be represented uniquely in an alternative form of g = h′a with

h′ ∈ H and a ∈ A, since g = ah = h(h−1ah) and h′ = h−1ah ∈ A by the normality of A. Our group

G = ⟨r, s, p1, p2⟩ is a semidirect product of H = D4 by A = Zn×Zn, and we have G = D4⋉(Zn×Zn)
in accordance with g = slrmp1

i p2
j in (3.33) with slrm ∈ D4 and p1

i p2
j ∈ Zn×Zn. For more details

on the definition of semidirect product, see Curtis and Reiner (1962).

□

Subgroups for Square Patterns

The symmetry of H(α, β) ∩ Hn is described by a subgroup of G = ⟨r, s, p1, p2⟩, which is

denoted by G(α, β). With notations6

Σ(α, β) = ⟨r, s, p1
αp2

β, p1
−βp2

α⟩, (3.34)

Σ0(α, β) = ⟨r, p1
αp2

β, p1
−βp2

α⟩, (3.35)

6 The subscript “0” to Σ0(α, β) indicates the lack of s.
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the subgroup G(α, β) is given as follows:

G(α, β) =


⟨r, s, p1

α, p2
α⟩ = Σ(α, 0) if α ≥ 1, β = 0 (type V),

⟨r, s, p1
βp2

β, p1
−βp2

β⟩ = Σ(β, β) if α = β, β ≥ 1 (type M),

⟨r, p1
αp2

β, p1
−βp2

α⟩ = Σ0(α, β) otherwise (type T),

(3.36)

where the parameter (α, β) for type T runs over {(α, β) | α > 0, β ≥ 0, α , β} in (3.21) or

{(α, β) | α > β ≥ 0} in (3.22), depending on the adopted parameter space (3.9) or (3.10).

The parameter (α, β)must be compatible with the lattice size n via (3.30), which restricts (α, β)
to stay in a bounded range. Among the square patterns of type V on the n × n square lattice,

we exclude those with Σ(1, 0) from our consideration of subgroups since Σ(1, 0) = ⟨r, s, p1, p2⟩
represents the symmetry of the underlying n × n square lattice. That is, we consider Σ(α, 0)
for 2 ≤ α ≤ n since n is divisible by α by (3.30). A square pattern with the symmetry of

Σ(n, 0) = D4, which lacks translational symmetry, is included here as a square of type V for

theoretical consistency. As for type M, we must have 1 ≤ β ≤ n/2 in Σ(β, β) since n is divisible

by 2β (β ≥ 1) by (3.30). The parameter for type T, which is dependent on the choice of (3.9) or

(3.10), must stay in the range

for (3.9): {(α, β) | 1 ≤ α ≤ n − 1, 1 ≤ β ≤ n − 1, α , β}, (3.37)

for (3.10): {(α, β) | 1 ≤ β < α ≤ n − 1}. (3.38)

To sum up, the relevant subgroups of our interest are given by



Σ(α, 0) = ⟨r, s, p1

α, p2
α⟩ (2 ≤ α ≤ n) for type V,

Σ(β, β) = ⟨r, s, p1
βp2

β, p1
−βp2

β⟩ (1 ≤ β ≤ n/2) for type M,

Σ0(α, β) = ⟨r, p1
αp2

β, p1
−βp2

α⟩ ((α, β) ∈ (3.37) or (3.38)) for type T.

(3.39)

Recall that (α, β) must also satisfy the compatibility condition in (3.30).

3.3. Irreducible Representations of the Group for the Square Lattice

In the previous section, we introduced the n× n square lattice as a two-dimensional discretized

space. We identified the symmetry of this lattice by the group in (3.31):

G = ⟨r, s, p1, p2⟩, (3.40)

which is composed of the dihedral group ⟨r, s⟩ ≃ D4 expressing local square symmetry and the

group ⟨p1, p2⟩ ≃ Zn × Zn (direct product of two cyclic groups of order n) expressing transla-

tional symmetry in two directions. In group-theoretic bifurcation analysis in Section 3.5 and

Appendix A.6, we will find bifurcating solutions for each irreducible representation of this group,

as each irreducible representation is associated with possible bifurcating solutions with certain

symmetries. The first step of the analysis is to obtain all the irreducible representations of this

group.

It is not difficult to obtain all irreducible representations for groups with simple structures such

as the dihedral and cyclic groups. Since the group G in (3.40) has a far more complicated structure,
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it might be difficult to list all the irreducible representations in an ad hoc way. Fortunately, we

can use the method of little groups in group representation theory to obtain all the irreducible

representations in a systematic manner. In this section, we describe this method and construct a

complete list of the irreducible representations of G. It turns out that the irreducible representations

overR are one-, two-, four-, or eight-dimensional, and all of them are absolutely irreducible. We will

use the irreducible representations derived in this manner in group-theoretic bifurcation analysis

in Section 3.5 and Appendix A.6 to prove the existence of square patterns.

In this section, the matrix forms of the irreducible representations of the group G in (3.40)

are listed. A systematic method using little groups to construct the irreducible representations

of G is described in Appendix A.1.2 and is applied to G in Appendix A.1.3. All the irreducible

representations of G are derived in Appendix A.1.4.

List of Irreducible Representations

The irreducible representations of D4 ⋉ (Zn × Zn) over R are one-, two-, four-, or eight-

dimensional. The number Nd of the d-dimensional irreducible representations of D4 ⋉ (Zn × Zn)
depends on n, as shown below:

n \ d 1 2 4 8

N1 N2 N4 N8

2m 8 6 3(n − 2) (n2 − 6n + 8)/8
2m − 1 4 1 2(n − 1) (n2 − 4n + 3)/8

(3.41)

where m denotes a positive integer. For several values of n, the concrete numbers Nd of the

d-dimensional irreducible representations are listed in Table 3.2. This table for n = 1 shows that

D4 ⋉ (Z1 × Z1), being isomorphic to D4, has four one-dimensional irreducible representations

and one two-dimensional ones. Four-dimensional irreducible representations exist for n ≥ 3 and

eight-dimensional ones appear for n ≥ 5.

We have the relation ∑
d

d2Nd = 12N1 + 22N2 + 42N4 + 82N8 = 8n2, (3.42)

which is a special case of the well-known general identity for the number of irreducible representa-

tions over C. This formula applies since all the irreducible representations over R of D4 ⋉ (Zn×Zn)
are absolutely irreducible (see Appendix A.1.4).

In the following subsections, we present the matrix forms of the irreducible representations

of respective dimensions together with their characters. Table 3.3 summarizes the irreducible

representations. The labels such as (1;+,+,+) and (8; k, ℓ) represent the name of the irreducible

representations.

One-Dimensional Irreducible Representations

The group D4⋉ (Zn×Zn) = ⟨r, s, p1, p2⟩ has eight one-dimensional irreducible representations.

These are labeled by

(1;+,+,+), (1;+,−,+), (1;−,+,+), (1;−,−,+),
(1;+,+,−), (1;+,−,−), (1;−,+,−), (1;−,−,−) (3.43)
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Table 3.2: The number Nd of the d-dimensional irreducible representations of D4 ⋉ (Zn × Zn).

n \ d 1 2 4 8

N1 N2 N4 N8

∑
Nd

1 4 1 0 0 5

2 8 6 0 0 14

3 4 1 4 0 9

4 8 6 6 0 20

5 4 1 8 1 14

6 8 6 12 1 27

7 4 1 12 3 20

8 8 6 18 3 35

9 4 1 16 6 27

10 8 6 24 6 44

11 4 1 20 10 35

12 8 6 30 10 54

n \ d 1 2 4 8

N1 N2 N4 N8

∑
Nd

13 4 1 24 15 44

14 8 6 36 15 65

15 4 1 28 21 54

16 8 6 42 21 77

17 4 1 32 28 65

18 8 6 48 28 90

19 4 1 36 36 77

20 8 6 54 36 104

21 4 1 40 45 90
...

...
...

...
...

...

42 8 6 120 190 324

Table 3.3: The irreducible representations of D4 ⋉ (Zn × Zn).

n \ d 1 2 4 8

2m (1;+,+,+), (1;+,−,+) (2;+), (2;−) (4; k, 0,+), (4; k, 0,−) (8; k, ℓ)
(1;+,−,+), (1;−,−,+) (2;+,+), (2;+,−) (4; k, k,+), (4; k, k,−)
(1;+,+,−), (1;+,−,−) (2;−,+), (2;−,−) (4; n/2, ℓ,+), (4; n/2, ℓ,−)
(1;−,+,−), (1;−,−,−)

2m − 1 (1;+,+,+), (1;+,−,+) (2;+) (4; k, 0,+), (4; k, 0,−) (8; k, ℓ)
(1;+,−,+), (1;−,−,+) (4; k, k,+), (4; k, k,−)

(4; k, 0;+), (4; k, 0;−) with 1 ≤ k ≤ ⌊(n − 1)/2⌋ in (3.49);

(4; k, k;+), (4; k, k;−) with 1 ≤ k ≤ ⌊(n − 1)/2⌋ in (3.50);

(4; n/2, ℓ;+), (4; n/2, ℓ;−) with 1 ≤ ℓ ≤ ⌊(n − 1)/2⌋ in (3.51);

(8; k, ℓ) with 1 ≤ ℓ ≤ k − 1, 2 ≤ k ≤ ⌊(n − 1)/2⌋ in (3.60)

27



and are given by

T (1;+,+,+)(r) = 1, T (1;+,+,+)(s) = 1, T (1;+,+,+)(p1) = 1, T (1;+,+,+)(p2) = 1,

T (1;+,−,+)(r) = 1, T (1;+,−,+)(s) = −1, T (1;+,−,+)(p1) = 1, T (1;+,−,+)(p2) = 1,

T (1;−,+,+)(r) = −1, T (1;−,+,+)(s) = 1, T (1;−,+,+)(p1) = 1, T (1;−,+,+)(p2) = 1,

T (1;−,−,+)(r) = −1, T (1;−,−,+)(s) = −1, T (1;−,−,+)(p1) = 1, T (1;−,−,+)(p2) = 1,

T (1;+,+,−)(r) = 1, T (1;+,+,−)(s) = 1, T (1;+,+,−)(p1) = −1, T (1;+,+,−)(p2) = −1,

T (1;+,−,−)(r) = 1, T (1;+,−,−)(s) = −1, T (1;+,−,−)(p1) = −1, T (1;+,−,−)(p2) = −1,

T (1;−,+,−)(r) = −1, T (1;−,+,−)(s) = 1, T (1;−,+,−)(p1) = −1, T (1;−,+,−)(p2) = −1,

T (1;−,−,−)(r) = −1, T (1;−,−,−)(s) = −1, T (1;−,−,−)(p1) = −1, T (1;−,−,−)(p2) = −1.

(3.44)

Two-Dimensional Irreducible Representations

The group D4 ⋉ (Zn × Zn) = ⟨r, s, p1, p2⟩ has six or one two-dimensional irreducible represen-

tations depending on whether n is even or odd. Two two-dimensional irreducible representations,

which are denoted as (2;σ) (σ ∈ {+,−}), exist for n even and are defined by

T (2;σ)(r) =
[
−1

1

]
, T (2;σ)(s) =

[
1

−1

]
, (3.45)

T (2,σ)(p1) = T (2;σ)(p2) = σ
[
1

1

]
, (3.46)

whereas only (2;+) is present for n odd. The other four two-dimensional irreducible representations,

denoted as (2;σr, σs) (σr, σs ∈ {+,−}), exist when n is even and are defined by

T (2;σr,σs)(r) =
[

σr

1

]
, T (2;σr,σs)(s) = σs

[
1

σr

]
, (3.47)

T (2;σr,σs)(p1) =
[
−1

1

]
, T (2;σr,σs)(p2) =

[
−1

−1

]
. (3.48)

Four-Dimensional Irreducible Representations

The group D4 ⋉ (Zn ×Zn) = ⟨r, s, p1, p2⟩ with n ≥ 3 has four-dimensional irreducible represen-

tations. We can designate them by

(4; k, 0, σ) with 1 ≤ k ≤
⌊
n − 1

2

⌋
, σ ∈ {+,−}; (3.49)

(4; k, k, σ) with 1 ≤ k ≤
⌊
n − 1

2

⌋
, σ ∈ {+,−}; (3.50)

(4; n/2, ℓ, σ) with 1 ≤ ℓ ≤ n

2
− 1, σ ∈ {+,−}. (3.51)

Therein, (4; n/2, ℓ, σ) exists only for n even, and ⌊x⌋ denotes the largest integer not larger than x

for a real number x. The number of four-dimensional irreducible representations is given by

N4 =

{
3n − 6 if n is even,

2n − 2 if n is odd.
(3.52)
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The irreducible representation (4; k, 0, σ) is given by

T (4;k,0,σ)(r) =
[

S

I

]
, T (4;k,0,σ)(s) = σ

[
I

S

]
, (3.53)

T (4;k,0,σ)(p1) =
[
Rk

I

]
, T (4;k,0,σ)(p2) =

[
I

Rk

]
, (3.54)

where

R =

[
cos(2π/n) − sin(2π/n)
sin(2π/n) cos(2π/n)

]
, S =

[
1

−1

]
, I =

[
1

1

]
. (3.55)

The irreducible representation (4; k, k, σ) is given by

T (4;k,k,σ)(r) =
[

S

I

]
, T (4;k,k,σ)(s) = σ

[
S

S

]
, (3.56)

T (4;k,k,σ)(p1) =
[
Rk

R−k

]
, T (4;k,k,σ)(p2) =

[
Rk

Rk

]
. (3.57)

The irreducible representation (4; n/2, ℓ, σ) is given by

T (4;n/2,ℓ,σ)(r) =
[

S

I

]
, T (4;n/2,ℓ,σ)(s) = σ

[
S

I

]
, (3.58)

T (4;n/2,ℓ,σ)(p1) =
[
−I

R−ℓ

]
, T (4;n/2,ℓ,σ)(p2) =

[
Rℓ

−I

]
. (3.59)

Eight-Dimensional Irreducible Representations

The group D4 ⋉ (Zn × Zn) = ⟨r, s, p1, p2⟩ with n ≥ 5 has eight-dimensional irreducible repre-

sentations. We can designate them by (8; k, ℓ) with

1 ≤ ℓ ≤ k − 1, 2 ≤ k ≤
⌊
n − 1

2

⌋
. (3.60)

The number of eight-dimensional irreducible representations is given by

N8 =

{
(n2 − 6n + 8)/8 if n is even,

(n2 − 4n + 3)/8 if n is odd.
(3.61)

The irreducible representation (8; k, ℓ) is defined as

T (8;k,ℓ)(r) =



S

I

I

S


, T (8;k,ℓ)(s) =



I

I

I

I


, (3.62)

T (8;k,ℓ)(p1) =



Rk

R−ℓ

Rk

R−ℓ


, T (8;k,ℓ)(p2) =



Rℓ

Rk

R−ℓ

R−k


(3.63)

with R, S, and I defined in (3.55).
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3.4. Representation Matrix for the Square Lattice

In the previous section, we found the irreducible representations of the group D4 ⋉ (Zn × Zn)
in preparation for group-theoretic analysis in Section 3.5 and Appendix A.6. Note that not all

the irreducible representations are involved in mathematical models on the square lattice. The

consideration of relevant irreducible representations is essential in group-theoretic analysis that

provides information about bifurcating solutions.

In this section, we first identify the irreducible representations µ that are relevant to our analysis

on the square lattice. For this purpose, we derive the explicit form of the permutation representation

T(g) of the group D4 ⋉ (Zn ×Zn) and investigate the irreducible decomposition of this permutation

representation. We can exclude irreducible representations that are not contained in T(g) from

consideration in search of square bifurcating patterns in Section 3.5 and Appendix A.6. It turns

out that only some of the one-, two-, and four-dimensional ones are relevant, while all of the

eight-dimensional ones are relevant.

We next present the transformation matrix Q for irreducible decomposition. Since the irre-

ducible representations of the group D4 ⋉ (Zn ×Zn) have a special feature of multiplicity-free,7 the

orthogonal transformation of the Jacobian matrix J = ∂F/∂λ of the governing equation in (2.3)

takes a diagonal form

Q−1JQ = diag(e1, . . . , eK).
This diagonal form is useful in eigenanalysis of computational bifurcation analysis on the square

lattice.

This section is organized as follows. The permutation representation for the square lattice is

investigated in Section 3.4.1. The irreducible decomposition of the permutation representation

is presented in Section 3.4.2. Transformation matrices for block-diagonalization are derived in

Section 3.4.3.

3.4.1. Representation Matrix

In our study of a system of K = n2 places on the n × n square lattice, each element g of

D4 ⋉ (Zn × Zn) = ⟨r, s, p1, p2⟩ acts as a permutation of place numbers (1, . . . ,K). Consequently,

the representation matrix T(g) is a permutation matrix for each g. By definition, T(g) has “1” at

the (i, j) entry if place j is moved to place i by the action of g.

The representation matrix T(g) for general n can be determined as follows. The coordinate of

a place on the n × n square lattice is given by

x = n1ℓ1 + n2ℓ2, n1, n2 = 0, 1, . . . , n − 1

with ℓ1 = d(1, 0)⊤, ℓ2 = d(0, 1)⊤ in (3.1), where d means the length of the vectors ℓ1 and ℓ2. Thus,

the n2 places are indexed by (n1, n2), and so are the rows and columns of the representation matrix

T(g). The action of r is expressed as

r · ℓ1 = ℓ2, r · ℓ2 = −ℓ1.

7 The multiplicity is either 1 or 0 for each irreducible representation.
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Hence, we have

r · x = n1(r · ℓ1) + n2(r · ℓ2) = n1(ℓ2) + n2(−ℓ1) = (−n2)ℓ1 + n1ℓ2,

which means that the action of r on (n1, n2) is given by

r · (n1, n2) ≡ (−n2, n1) mod n. (3.64)

Then, the column of T(r) indexed by (n1, n2) has “1” in the row indexed by (−n2 mod n, n1).
Similarly, the actions of s, p1, and p2 are expressed as

s · (n1, n2) ≡ (n1,−n2) mod n, (3.65)

p1 · (n1, n2) ≡ (n1 + 1, n2) mod n, (3.66)

p2 · (n1, n2) ≡ (n1, n2 + 1) mod n. (3.67)

The permutation representation T(g) is specified by (3.64)–(3.67) above.

Example 3.1. The permutation representation for the 4× 4 square lattice is given by (3.64)–(3.67)

as follows:

T(r) =



1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1



, T(s) =



1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1



,

T(p1) =



1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1



, T(p2) =



1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1



.
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□

3.4.2. Irreducible Decomposition

The irreducible decomposition of the permutation representation T(g) for the n×n square lattice

is now investigated. The multiplicities of irreducible representations in this decomposition are

determined. It is to be emphasized that irreducible representations lacking in the decomposition of

T(g) can be excluded from consideration in the search for square bifurcating patterns in Section 3.5

and Appendix A.6.

Simple Examples

Prior to the analysis for general n, we present the results for n = 3 and n = 4. We begin with

the case of n = 3. The group D4 ⋉ (Z3 ×Z3) has nine irreducible representations (see Section 3.3):

R(D4 ⋉ (Z3 × Z3)) = {(1;+,+,+), (1;+,−,+), (1;−,+,+), (1;−,−,+),
(2;+), (4; 1, 0,+), (4; 1, 0,−), (4; 1, 1,+), (4; 1, 1,−)}.

Among these nine irreducible representations, only three of them, (1;+,+,+), (4; 1, 0,+), and

(4; 1, 1,+), are contained in T(g) with multiplicity 1, whereas the others are missing in T(g).
Indeed we will see in Section 3.4.3 in a general setting that

Q−1T(g)Q = T (1;+,+,+)(g) ⊕ T (4;1,0,+)(g) ⊕ T (4;1,1,+)(g), g ∈ D4 ⋉ (Z3 × Z3)

for some orthogonal matrix Q. Accordingly, the multiplicities aµ for µ ∈ R(D4 ⋉ (Z3 × Z3)) are

given as follows:

a(1;+,+,+)
= 1, a(1;+,−,+)

= 0, a(1;−,+,+)
= 0, a(1;−,−,+)

= 0;

a(2;+)
= 0; a(4;1,0,+)

= 1, a(4;1,0,−)
= 0, a(4;1,1,+)

= 1, a(4;1,1,−)
= 0.

We next show the case of n = 4. Recall the permutation representation T(g) for n = 4 from

Example 3.1. The group D4 ⋉ (Z4 × Z4) has 20 irreducible representations (see Section 3.3):

R(D4 ⋉ (Z4 × Z4)) = {(1;+,+,+), (1;+,−,+), (1;−,+,+), (1;−,−,+),
(1;+,+,−), (1;+,−,−), (1;−,+,−), (1;−,−,−),
(2;+), (2;−), (2;+,+), (2;+,−), (2;−,+), (2;−,−),
(4; 1, 0,+), (4; 1, 0,−), (4; 1, 1,+), (4; 1, 1,−), (4; 2, 1,+), (4; 2, 1,−)}.

Among these 20 irreducible representations, only six of them, (1;+,+,+), (1;+,+,−), (2;+,+),
(4; 1, 0,+), (4; 1, 1,+), and (4; 2, 1,+), are contained in T(g) with multiplicity 1, whereas the others

are missing in T(g), as we will see in Section 3.4.3 in a general setting. This means that

Q−1T(g)Q = T (1;+,+,+)(g) ⊕ T (1;+,+,−)(g) ⊕ T (2;+,+)(g) ⊕ T (4;1,0,+)(g) ⊕ T (4;1,1,+)(g) ⊕ T (4;2,1,+)(g),
g ∈ D4 ⋉ (Z4 × Z4)
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Table 3.4: The values of character χ of the permutation representation T .

g χ(g)
e n2

p1
ip2

j ((i, j) , (0, 0)) 0

rp1
ip2

j (i + j = 2k) 2 1

(i + j , 2k) 0 1

(n = 2m) (n , 2m)
r2p1

ip2
j (i, j: even) 4 1

(other (i, j)) 0 1

(n = 2m) (n , 2m)
r3p1

ip2
j (i + j = 2k) 2 1

(i + j , 2k) 0 1

(n = 2m) (n , 2m)

g χ(g)
sp1

ip2
j (i = 0, j = 2k) 2n n

(i = 0, j , 2k) 0 n

(i , 0) 0 0

(n = 2m) (n , 2m)
srp1

ip2
j (i = j) n

(i , j) 0

sr2p1
ip2

j ( j = 0, i = 2k) 2n n

( j = 0, i , 2k) 0 n

( j , 0) 0 0

(n = 2m) (n , 2m)
sr3p1

ip2
j (i = n − j) n

(i , n − j) 0

0 ≤ i, j ≤ n − 1; k,m: integers

for some orthogonal matrix Q, the concrete form of which is given in Example 3.2 in Section 3.4.3.

Accordingly, the multiplicities aµ for µ ∈ R(D4 ⋉ (Z4 × Z4)) are given as follows:

a(1;+,+,+)
= 1, a(1;+,−,+)

= 0, a(1;−,+,+)
= 0, a(1;−,−,+)

= 0,

a(1;+,+,−)
= 1, a(1;+,−,−)

= 0, a(1;−,+,−)
= 0, a(1;−,−,−)

= 0,

a(2;+)
= 0, a(2;−)

= 0, a(2;+,+)
= 1, a(2;+,−)

= 0,

a(2;−,+)
= 0, a(2;−,−)

= 0,

a(4;1,0,+)
= 1, a(4;1,0,−)

= 0, a(4;1,1,+)
= 1, a(4;1,1,−)

= 0,

a(4;2,1,+)
= 1, a(4;2,1,−)

= 0.

Analysis for the Finite Square Lattice

For general n, the permutation representation T(g) is specified by (3.64)–(3.67). We determine

the irreducible decomposition of T(g)with the aid of characters. Let χ(g) be the character of T(g),
which is defined by

χ(g) = Tr T(g), g ∈ D4 ⋉ (Zn × Zn). (3.68)

Table 3.4 shows the values of χ(g) for all g ∈ D4 ⋉ (Zn × Zn), which are dependent on whether

n is even or odd. For example, the action of rp1
i p2

j reads

rp1
i p2

j · (n1, n2) = r · (n1 + i, n2 + j) = (−n2 − j, n1 + i).

Invariant points (n1, n2) are those which satisfying (n1, n2) ≡ (−n2− j, n1+ i) (mod n). The number

of these points, which depends on i + j and n, gives χ(rp1
i p2

j).
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Table 3.5: The values of irreducible characters χµ appearing in (3.71).

g χ(1;+,+,+) χ(4;k,0,+) χ(4;k,k,+) χ(8;k,ℓ) χ(1;+,+,−) χ(2;+,+) χ(4;n/2,ℓ,+)

(n = 2m) (n = 2m) (n = 2m)
p1

ip2
j 1 2[cos(kiθ) 2[cos(k(i + j)θ) (A.6) (−1)i+j (−1)i + (−1)j 2[(−1)i cos(ℓ jθ)

+ cos(k jθ)] + cos(k(i − j)θ)] +(−1)j cos(ℓiθ)]
rp1

ip2
j 1 0 0 0 (−1)i+j 0 0

r2p1
ip2

j 1 0 0 0 (−1)i+j (−1)i + (−1)j 0

r3p1
ip2

j 1 0 0 0 (−1)i+j 0 (−1)i + (−1)j

sp1
ip2

j 1 2 cos(kiθ) 0 0 (−1)i+j (−1)i + (−1)j 2(−1)j cos(ℓiθ)
srp1

ip2
j 1 0 2 cos(k(i − j)θ) 0 (−1)i+j 0 0

sr2p1
ip2

j 1 2 cos(k jθ) 0 0 (−1)i+j (−1)i + (−1)j 2(−1)i cos(ℓ jθ)
sr3p1

ip2
j 1 0 2 cos(k(i + j)θ) 0 (−1)i+j 0 0

θ = 2π/n; (A.6) reads:

χ(8;k,ℓ)(p1
ip2

j) = 2[cos((ki + ℓ j)θ) + cos((−ℓi + k j)θ) + cos((ki − ℓ j)θ) + cos((−ℓi − k j)θ)]

In terms of characters, the irreducible decomposition of T(g) can be expressed as

χ(g) =
∑
µ

aµχµ(g), g ∈ D4 ⋉ (Zn × Zn), (3.69)

where χµ is the character of µ ∈ R(D4 ⋉ (Zn ×Zn)), and the multiplicity aµ of µ can be determined

by the formula

aµ =
1

8n2

∑
g∈D4⋉(Zn×Zn)

χ(g)χµ(g). (3.70)

In the case of n = 2m, for example, we obtain

χ(g) = χ(1;+,+,+)(g) + χ(1;+,+,−)(g) + χ(2;+,+)(g) +
∑

k:(3.51)

χ(4;n/2,ℓ,+)(g)

+

∑
k:(3.49)

χ(4;k,0,+)(g) +
∑

k:(3.50)

χ(4;k,k,+)(g) +
∑

(k,ℓ):(3.60)

χ(8;k,ℓ)(g)

as the decomposition (3.69). The terms χ(1;+,+,−)(g), χ(2;+,+)(g), and χ(4;n/2,ℓ,+)(g) appear only

when n is even. Hence, we may represent this succinctly as

χ(g) = χ(1;+,+,+)(g)
[
+ χ(1;+,+,−)(g) + χ(2;+,+)(g) +

∑
k:(3.51)

χ(4;n/2,ℓ,+)(g)
]

if n=2m

+

∑
k:(3.49)

χ(4;k,0,+)(g) +
∑

k:(3.50)

χ(4;k,k,+)(g) +
∑

(k,ℓ):(3.60)

χ(8;k,ℓ)(g),

g ∈ D4 ⋉ (Zn × Zn), (3.71)
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where [ · ]if n=2m means that the term is included when n is even. Table 3.5 shows the values of the

irreducible characters χµ(g) appearing on the right-hand side of (3.71) (see Appendix A.1.1 for

details about χµ(g)). The equality in (3.71) can be verified with the aid of Tables 3.4 and 3.5.

The decomposition (3.71) of the character χ(g) of T(g) means that some orthogonal matrix Q

exists such that

Q−1T(g)Q = T (1;+,+,+)(g)
[
⊕ T (1;+,+,−)(g) ⊕ T (2;+,+)(g) ⊕

⊕
k:(3.51)

T (4;n/2,ℓ,+)(g)
]

if n=2m

⊕
⊕

k:(3.49)

T (4;k,0,+)(g) ⊕
⊕

k:(3.50)

T (4;k,k,+)(g) ⊕
⊕

(k,ℓ):(3.60)

T (8;k,ℓ)(g),

g ∈ D4 ⋉ (Zn × Zn). (3.72)

This gives the irreducible decomposition of T(g). Accordingly, the multiplicities aµ in the irre-

ducible decomposition of T(g) are given as follows:

a(1;+,+,+)
= 1, a(1;+,−,+)

= 0, a(1;−,+,+)
= 0, a(1;−,−,+)

= 0,

a(1;+,+,−)
= 1, a(1;+,−,−)

= 0, a(1;−,+,−)
= 0, a(1;−,−,−)

= 0,

a(2;+)
= 0, a(2;−)

= 0,

a(2;+,+)
=

{
1 if n is even,

0 if n is odd,
a(2;+,−)

= 0, a(2;−,+)
= 0, a(2;−,−)

= 0,

a(4;k,0,+)
= 1, a(4;k,0,−)

= 0, 1 ≤ k ≤
⌊
n − 1

2

⌋
,

a(4;k,k,+)
= 1, a(4;k,k,−)

= 0, 1 ≤ k ≤
⌊
n − 1

2

⌋
,

a(4;n/2,ℓ,+)
=

{
1 if n is even,

0 if n is odd,
a(4;n/2,ℓ,−)

= 0, 1 ≤ ℓ ≤ n

2
− 1,

a(8;k,ℓ)
= 1, 1 ≤ ℓ ≤ k − 1, 2 ≤ k ≤

⌊
n − 1

2

⌋
.

It is noteworthy that the multiplicity is either 0 or 1 for each irreducible representation, that is, the

permutation representation T(g) in (3.64)–(3.67) is multiplicity-free (see Remark 3.2). Table 3.6

shows a summary.

By Ñd , we denote the number of d-dimensional irreducible representations of D4 ⋉ (Zn × Zn)
that exist in the permutation representation T(g). We have the following expressions for Ñd:

n \ d 1 2 4 8

Ñ1 Ñ2 Ñ4 Ñ8

2m 2 1 3(n − 2)/2 (n2 − 6n + 8)/8
2m − 1 1 0 n − 1 (n2 − 4n + 3)/8

(3.73)
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Table 3.6: Irreducible representations contained in the permutation representation T .

n \ d 1 2 4 8

2m (1;+,+,+), (1;+,+,−) (2;+,+) (4; k, 0;+), (4; k, k;+), (4; n/2, ℓ,+) (8; k, ℓ)
2m − 1 (1;+,+,+) (4; k, 0;+), (4; k, k;+) (8; k, ℓ)
(4; k, 0;+) with 1 ≤ k ≤ ⌊(n − 1)/2⌋;
(4; k, k;+) with 1 ≤ k ≤ ⌊(n − 1)/2⌋;
(4; n/2, ℓ;+) with 1 ≤ ℓ ≤ n/2 − 1;

(8; k, ℓ) with 1 ≤ ℓ ≤ k − 1, 2 ≤ k ≤ ⌊(n − 1)/2⌋

Table 3.7: The number Ñd of the d-dimensional irreducible representations of D4 ⋉ (Zn × Zn) contained in the

permutation representation T for the square lattice.

n \ d 1 2 4 8

Ñ1 Ñ2 Ñ4 Ñ8

∑
Ñd

1 1 1

2 2 1 3

3 1 2 3

4 2 1 3 6

5 1 4 1 6

6 2 1 6 1 10

7 1 6 3 10

8 2 1 9 3 15

9 1 8 6 15

10 2 1 12 6 21

11 1 10 10 21

12 2 1 15 10 28

n \ d 1 2 4 8

Ñ1 Ñ2 Ñ4 Ñ8

∑
Ñd

13 1 12 15 28

14 2 1 18 15 36

15 1 14 21 36

16 2 1 21 21 45

17 1 16 28 45

18 2 1 24 28 55

19 1 18 36 55

20 2 1 27 36 66

21 1 20 45 66
...

...
...

...
...

...

42 2 1 30 190 223
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whereas Table 3.7 shows the values of Ñd for several n. Also note the relation∑
d

dÑd = n2. (3.74)

Remark 3.2. It is a basic fact that a permutation representation T(g) representing the action of

a group G on a finite set P is multiplicity-free if there exists some g ∈ G such that g · p = q

and g · q = p (e.g., see Proposition 1.4.8 of Ceccherini-Silberstein et al., 2010). The permutation

representation T(g) in (3.64)–(3.67) satisfies this condition as follows. By (3.64), (3.66), and

(3.67), we have

r2p1
i p2

j · (n1, n2) ≡ (−n1 − i, n2 − j) mod n.

Hence, any pair of (n1, n2) and (n′
1
, n′

2
) can be rewritten as

g · (n1, n2) ≡ (n′1, n′2) mod n, g · (n′1, n′2) ≡ (n1, n2) mod n

by g = r2p1
i p2

j with i = n1 − n′
1

and j = n2 − n′
2
.

□

3.4.3. Transformation Matrix for Irreducible Decomposition

For the n × n square lattice with the symmetry of D4 ⋉ (Zn × Zn), we derive the transformation

matrix

Q = (Qµ | µ ∈ D4 ⋉ (Zn × Zn)) (3.75)

for the irreducible decomposition. Note that the column set of Q is partitioned into blocks, each

associated with an irreducible representation µ contained in T(g) (see Table 3.6). Since such µ has

aµ = 1 (multiplicity-free), we have the relation

T(g)Qµ
= QµT µ(g), g ∈ D4 ⋉ (Zn × Zn), (3.76)

where T(g) is the permutation representation given in Section 3.4.1.

The vector λ expressing population distribution is defined as

λ = (λ1, . . . , λK)⊤

= (λ00, . . . , λn−1,0; λ01, . . . , λn−1,1; . . . ; λ0,n−1, . . . , λn−1,n−1)⊤

= (λn1n2
| n1, n2 = 0, . . . , n − 1),

where K = n2 and (λn1n2
| n1, n2 = 0, . . . , n− 1) is a K-dimensional column vector. For a vector on

this lattice with the (n1, n2)-component g(n1, n2), we express its normalization as8

⟨g(n1, n2)⟩ = (g(n1, n2)/
( n−1∑

i=0

n−1∑
j=0

g(i, j)2
)1/2 | n1, n2 = 0, . . . , n − 1). (3.77)

8 The notation ⟨·⟩ here should not be confused with that for the generators of a group.
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Recall that the permutation representation T(g) is specified by (3.64)–(3.67) above. The action

of r on (n1, n2), for example, is expressed by

r · (n1, n2) ≡ (−n2, n1) mod n

in (3.64), which shows that the column of T(r) indexed by (n1, n2) has “1” in the row indexed by

(−n2, n1) mod n. For the present purpose, however, it is convenient to consider T(g) row-wise. It

is seen that the row of T(r) indexed by (n1, n2) has “1” at the column indexed by (n2,−n1) mod n,

since

(n′1, n′2) ≡ (−n2, n1) mod n

can be solved for (n1, n2) as

(n1, n2) ≡ (n′2,−n′1) mod n.

We denote this as

r ∗ (n1, n2) ≡ (n2,−n1) mod n. (3.78)

For s, p1, and p2, a similar argument based on (3.65)–(3.67) yields

s ∗ (n1, n2) ≡ (n1,−n2) mod n, (3.79)

p1 ∗ (n1, n2) ≡ (n1 − 1, n2) mod n, (3.80)

p2 ∗ (n1, n2) ≡ (n1, n2 − 1) mod n. (3.81)

The submatrices Qµ for µ are given by the following proposition, where the notation ⟨·⟩ for

normalization in (3.77) is used.

Proposition 3.4. The submatrices Qµ of the transformation matrix Q on the n × n square lattice

are given by

Q(1;+,+,+)
=

1

n
(1, . . . , 1)⊤ = ⟨1⟩, (3.82)

Q(1;+,+,−)
=

{
[⟨cos(π(n1 − n2))⟩] if n is even,

missing if n is odd,
(3.83)

Q(2;+,+)
=

{
[⟨cos(πn1)⟩, ⟨cos(πn2)⟩] if n is even,

missing if n is odd,
(3.84)

Q(4;k,0,+)
= [⟨cos(2πkn1/n)⟩, ⟨sin(2πkn1/n)⟩, ⟨cos(2πkn2/n)⟩, ⟨sin(2πkn2/n)⟩],

1 ≤ k ≤
⌊
n − 1

2

⌋
, (3.85)

Q(4;k,k,+)
= [⟨cos(2πk(n1 + n2)/n)⟩, ⟨sin(2πk(n1 + n2)/n)⟩,
⟨cos(2πk(−n1 + n2)/n)⟩, ⟨sin(2πk(−n1 + n2)/n)⟩],

1 ≤ k ≤
⌊
n − 1

2

⌋
, (3.86)
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Q(4;n/2,ℓ,+)
=




[⟨cos(πn1 + 2πℓn2/n)⟩, ⟨sin(πn1 + 2πℓn2/n)⟩,
⟨cos(−2πℓn1/n + πn2)⟩, ⟨sin(−2πℓn1/n + πn2)⟩],

1 ≤ ℓ ≤ n
2
− 1 if n is even,

missing if n is odd,

(3.87)

Q(8;k,ℓ)
= [⟨cos(2π(kn1 + ℓn2)/n)⟩, ⟨sin(2π(kn1 + ℓn2)/n)⟩,
⟨cos(2π(−ℓn1 + kn2)/n)⟩, ⟨sin(2π(−ℓn1 + kn2)/n)⟩,
⟨cos(2π(kn1 − ℓn2)/n)⟩, ⟨sin(2π(kn1 − ℓn2)/n)⟩,
⟨cos(2π(−ℓn1 − kn2)/n)⟩, ⟨sin(2π(−ℓn1 − kn2)/n)⟩],

1 ≤ ℓ ≤ k − 1, 2 ≤ k ≤
⌊
n − 1

2

⌋
. (3.88)

Proof. Proof is given in Appendix A.2. □

An example of the transformation matrix Q for n = 4 is presented below by assembling

submatrices Qµ in Proposition 3.4.

Example 3.2. The transformation matrix Q for the 4 × 4 square lattice reads

Q = [Q(1;+,+,+), Q(1;+,+,−), Q(2;+,+), Q(4;1,0,+), Q(4;1,1,+), Q(4;2,1,+)]
= [⟨1⟩ | ⟨cos(π(n1 − n2))⟩ | ⟨cos(πn1)⟩, ⟨cos(πn2)⟩ |
⟨cos(π n1/2)⟩, ⟨sin(π n1/2)⟩, ⟨cos(πn2/2)⟩, ⟨sin(πn2/2)⟩ |
⟨cos(π(n1 + n2)/2)⟩, ⟨sin(π(n1 + n2)/2)⟩, ⟨cos(π(−n1 + n2)/2)⟩, ⟨sin(π(−n1 + n2)/2)⟩ |
⟨cos(πn1 + πn2/2)⟩, ⟨sin(πn1 + πn2/2)⟩, ⟨cos(−πn1/2 + πn2)⟩, ⟨sin(−πn1/2 + πn2)⟩]

=

1

4



1 1 1 1
√

2
√

2
√

2
√

2
√

2
√

2

1 −1 −1 1
√

2
√

2
√

2 −
√

2 −
√

2 −
√

2

1 1 1 1 −
√

2
√

2 −
√

2 −
√

2
√

2 −
√

2

1 −1 −1 1 −
√

2
√

2 −
√

2
√

2 −
√

2
√

2

1 −1 1 −1
√

2
√

2
√

2
√

2
√

2 −
√

2

1 1 −1 −1
√

2
√

2 −
√

2
√

2 −
√

2
√

2

1 −1 1 −1 −
√

2
√

2 −
√

2 −
√

2
√

2
√

2

1 1 −1 −1 −
√

2
√

2
√

2 −
√

2 −
√

2 −
√

2

1 1 1 1
√

2 −
√

2 −
√

2 −
√

2 −
√

2
√

2

1 −1 −1 1
√

2 −
√

2 −
√

2
√

2
√

2 −
√

2

1 1 1 1 −
√

2 −
√

2
√

2
√

2 −
√

2 −
√

2

1 −1 −1 1 −
√

2 −
√

2
√

2 −
√

2
√

2
√

2

1 −1 1 −1
√

2 −
√

2 −
√

2 −
√

2 −
√

2 −
√

2

1 1 −1 −1
√

2 −
√

2
√

2 −
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2
√

2
√

2

1 −1 1 −1 −
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2
√

2
√

2 −
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2
√

2

1 1 −1 −1 −
√

2 −
√

2 −
√

2
√

2
√

2 −
√

2



.

□

3.5. Existence of Bifurcating Solutions with Square Symmetry

We presented fundamental facts about the square lattice in Sections 3.2–3.4. We introduced the

n × n square lattice with periodic boundary conditions as a spatial platform for agglomeration (cf.,
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Section 3.2). We labeled the symmetry of this lattice by the group D4 ⋉ (Zn × Zn), and obtained

the irreducible representations of this group (cf., Section 3.3). We decomposed the representation

matrix for the square lattice into irreducible components to determine the multiplicity aµ of each

irreducible representation µ (cf., Section 3.4).

We would like to investigate the existence of square patterns as bifurcating solutions on the

square lattice. For each irreducible representation µ with aµ ≥ 1, we study bifurcation from a

critical point associated with µ by using group-theoretic bifurcation analysis procedures under

group symmetry. The following two different methods of analysis are available:

(i) The equivariant branching lemma is applied to the bifurcation equation associated with µ

to show the existence of bifurcating solutions with a specified symmetry. This analysis is

algebraic or group-theoretic, which focuses on the symmetry of solutions. The concrete

form of the bifurcation equation need not be derived, and isotropy subgroups play a key role

in this analysis.

(ii) The bifurcation equation is obtained in the form of power series expansions and is solved

asymptotically. This method is more complicated, treating nonlinear terms directly, but is

more informative, giving asymptotic forms of the bifurcating solutions and their directions

in addition to their existence.

In this section, we apply the first method (i), using the equivariant branching lemma, to the

economy on the n × n square lattice with the symmetry of D4 ⋉ (Zn × Zn). We obtain possible

bifurcating square patterns and associated lattice sizes for all the irreducible representations, which

are related to group-theoretic critical points with multiplicity M = 1, 2, 4, 8.

The second method (ii), solving the bifurcation equation, is not based on the equivariant

branching lemma and, in principle, capable of capturing all bifurcating solutions by dealing with

the bifurcation equation explicitly. The first method conducted in this section demands less

analytical effort than the second method and fits to pinpoint the targeted square patterns among

many other bifurcating solutions.

This section is organized as follows. Theoretically predicted bifurcating square patterns are

previewed in Section 3.5.1. Fundamentals of bifurcation analysis are recapitulated in Section 3.5.2.

Bifurcation points of multiplicity M = 1, 2, 4, 8 are respectively studied in Sections 3.5.3–3.5.6.

3.5.1. Summary of Theoretical Results

As a preview of group-theoretic bifurcation analysis to be conducted in Sections 3.5.4–3.5.6,

we present possible bifurcations that produce bifurcating square patterns. Note that all critical

points are assumed to be group-theoretic as explained in Section 3.5.2.

Symmetry of Bifurcating Square Patterns

Recall that the symmetry of the n × n square lattice is labeled by the group

G = ⟨r, s, p1, p2⟩ = D4 ⋉ (Zn × Zn) (3.89)
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in (3.31). The fundamental relations are given as

r4
= s2

= (rs)2 = p1
n
= p2

n
= e, p2p1 = p1p2,

rp1 = p2r, rp2 = p1
−1r, sp1 = p1s, sp2 = p2

−1s (3.90)

in (3.32), where e is the identity element.

Let us consider the governing equation

F(λ, ϕ) = 0 (3.91)

in (2.3), where λ = (λ, . . . , λK)⊤ with K(= n2) is a K-dimensional independent variable vector,

and ϕ is the bifurcation parameter. Among many possible solutions λ to the governing equation in

(3.91), we are particularly interested in those bifurcating solutions that represent square patterns.

To describe square patterns, we introduced a sublattice

H(α, β) = {n1(αℓ1 + βℓ2) + n2(−βℓ1 + αℓ2) | n1, n2 ∈ Z}

= {
[
ℓ1 ℓ2

] [
α −β
β α

] [
n1

n2

]
| n1, n2 ∈ Z} (3.92)

in (3.4), where

ℓ1 = d

[
1

0

]
, ℓ2 = d

[
0

1

]
(3.93)

are basis vectors of length d of the underlying infinite square lattice

H = {n1ℓ1 + n2ℓ2 | n1, n2 ∈ Z} (3.94)

in (3.2). In this chapter, we adopt the parameter space

{(α, β) ∈ Z2 | α > 0, β ≥ 0} (3.95)

in (3.9) of Proposition 3.1, instead of {(α, β) ∈ Z2 | α ≥ β ≥ 0, α , 0} in (3.10), unless otherwise

stated. We characterized the size of a square patternH(α, β) by

D = D(α, β) = α2
+ β2 (3.96)

in (3.7).

The n × n square lattice is described by

Hn = {n1ℓ1 + n2ℓ2 | ni ∈ Z, 0 ≤ ni ≤ n − 1 (i = 1, 2)} (3.97)

in (3.25). The symmetry of a square pattern H(α, β) ∩ Hn on this lattice is represented by the

subgroup G(α, β) of G. This subgroup is classified into three types:

G(α, β) =


⟨r, s, p1

α, p2
α⟩ = Σ(α, 0) if α ≥ 1, β = 0 (type V),

⟨r, s, p1
βp2

β, p1
−βp2

β⟩ = Σ(β, β) if α = β, β ≥ 1 (type M),

⟨r, p1
αp2

β, p1
−βp2

α⟩ = Σ0(α, β) otherwise (type T)

(3.98)
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in (3.36). It is convenient to introduce a convention

Σ0(0, 0) = ⟨r⟩, Σ(0, 0) = ⟨r, s⟩, Σ(1, 0) = ⟨r, s, p1, p2⟩. (3.99)

We have the compatibility condition in (3.30) between (α, β) and n given as

n =




mα (α ≥ 1) for type V,

2mβ (β ≥ 1) for type M,

mD(α, β)/gcd(α, β) for type T,

(3.100)

where m = 1, 2, . . . .

The objective of this section is to look for a solution λ to (3.91) such that the isotropy subgroup

Σ(λ) for the symmetry of λ coincides with one of the subgroups in (3.98).

Square Patterns Engendered by Direct Bifurcations

The main message of this section is that bifurcating solutions for square patterns do arise

from the mathematical model on the square lattice with pertinent lattice sizes, and therefore these

patterns can be understood within the framework of group-theoretic bifurcation theory. The major

results to be derived in Sections 3.5.4–3.5.6 are summarized as follows:

Proposition 3.5. A bifurcating solution with the square symmetry expressed by the subgroup in

(3.98) exists for pertinent lattice sizes n. To be specific, we have the following, where m denotes a

positive integer.

• For (α, β; n) = (α, 0;αm) (2 ≤ α ≤ n), a square pattern of type V with symmetry Σ(α, 0)
branches at a bifurcation point with multiplicity M = 2 (α = 2), M = 4 (α ≥ 3), or M = 8

(α ≥ 5).

• For (α, β; n) = (β, β; 2βm) (1 ≤ β ≤ n/2), a square pattern of type M with symmetry Σ(β, β)
branches at a bifurcation point with multiplicity M = 1 (β = 1), M = 4 (β ≥ 2), or M = 8

(β ≥ 4).

• For (α, β; n) = (α, β; mD(α, β)/gcd(α, β)), where 1 ≤ α ≤ n − 1, 1 ≤ β ≤ n − 1, and

α , β, a square pattern of type T with symmetry Σ0(α, β) branches at a bifurcation point

with multiplicity M = 8.

Proof. This is proved in Sections 3.5.4–3.5.6. □

Possible square patterns for each value of (α, β; n) in Proposition 3.5 are summarized as follows:

(α, β; n) M Type

α = 2 2

(α, 0;αm) α ≥ 3 4 V

α ≥ 5 8

β = 1 1

(β, β; 2βm) β ≥ 2 4 M

β ≥ 4 8(
α, β;

mD(α, β)
gcd(α, β)

)
1 ≤ α ≤ n − 1, 1 ≤ β ≤ n − 1, α , β 8 T
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where m = 1, 2, . . . .

The following proposition plays a pivotal role in the search for square patterns.

Proposition 3.6. The existence of square patterns depends on the divisors of the lattice size n as

follows:

(i) If n has a divisor α (2 ≤ α ≤ n), a square pattern of type V with symmetry Σ(α, 0) exists.

(ii) If n has a divisor 2β (1 ≤ β ≤ n/2), a square pattern of type M with symmetry Σ(β, β)
exists.

(iii) If n has a divisor D(α, β)/gcd(α, β), where 1 ≤ α ≤ n − 1, 1 ≤ β ≤ n − 1, and α , β, a

square pattern of type T with symmetry Σ0(α, β) exists.

Proof. This follows from Proposition 3.5. □

Possible square patterns emerging via direct bifurcations for several values of n, obtained from

Proposition 3.6, are listed in Tables 3.8 and 3.9.

3.5.2. Analysis Procedure Using Equivariant Branching Lemma

We summarize a bifurcation analysis procedure resorting to the equivariant branching lemma.

Bifurcation and Symmetry of Solutions

Let us consider the governing equation

F(λ, ϕ) = 0 (3.101)

in (2.3) endowed with the equivariance to G = D4 ⋉ (Zn × Zn) as

T(g)F(λ, ϕ) = F(T(g)λ, ϕ), g ∈ G (3.102)

in (2.7). Recall that ϕ, being the trade freeness, serves as the bifurcation parameter, λ ∈ RK is

an independent variable vector of dimension K = n2 expressing a pattern of mobile population,

F : RK×R→ RK is the nonlinear function, and T is the K-dimensional permutation representation

in Section 3.4.1 of the group G = D4 ⋉ (Zn × Zn).
Let (λc, ϕc) be a critical point of multiplicity M (≥ 1), at which the Jacobian matrix of F has a

rank deficiency M . The critical point (λc, ϕc) is assumed to be G-symmetric in the sense of

T(g)λc = λc, g ∈ G. (3.103)

Moreover, it is assumed to be group-theoretic, which means, by definition, that the M-dimensional

kernel space of the Jacobian matrix at (λc, ϕc) is irreducible with respect to the representation T .

Then the critical point (λc, ϕc) is associated with an irreducible representation µ of G, and the

multiplicity M corresponds to the dimension of the irreducible representation µ. We denote the

representation matrix for µ by T µ(g).
By the Liapunov–Schmidt reduction with symmetry,9 the full system in (3.101) is reduced, in

a neighborhood of the critical point (λc, ϕc), to a system of M equations

F̃(w, ϕ̃) = 0 (3.104)

9 For details on the Liapunov–Schmidt reduction, see Sattinger (1979), Chow and Hale (1982), and Golubitsky

et al. (1988).
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Table 3.8: Possible square patterns for several lattice sizes n (n = 2–17).

n (α, β) D Type G(α, β) M

2 (2, 0) 4 V Σ(2, 0) 2

(1, 1) 2 M Σ(1, 1) 1

3 (3, 0) 9 V Σ(3, 0) 4

4 (2, 0) 4 V Σ(2, 0) 2

(4, 0) 16 V Σ(4, 0) 4

(1, 1) 2 M Σ(1, 1) 1

(2, 2) 8 M Σ(2, 2) 4

5 (5, 0) 25 V Σ(5, 0) 4 or 8

(2, 1) 5 T Σ0(5, 0) 4

6 (2, 0) 4 V Σ(2, 0) 2

(3, 0) 9 V Σ(3, 0) 4

(6, 0) 36 V Σ(6, 0) 4 or 8

(1, 1) 2 M Σ(1, 1) 1

(3, 3) 18 M Σ(3, 3) 4

7 (7, 0) 49 V Σ(7, 0) 4 or 8

8 (2, 0) 4 V Σ(2, 0) 2

(4, 0) 16 V Σ(4, 0) 4

(8, 0) 64 V Σ(8, 0) 4 or 8

(1, 1) 2 M Σ(1, 1) 1

(2, 2) 8 M Σ(2, 2) 4

(4, 4) 32 M Σ(4, 4) 4 or 8

9 (3, 0) 9 V Σ(3, 0) 4

(9, 0) 81 V Σ(9, 0) 4 or 8

10 (2, 0) 4 V Σ(2, 0) 2

(5, 0) 25 V Σ(5, 0) 4 or 8

(10, 0) 100 V Σ(10, 0) 4 or 8

(1, 1) 2 M Σ(1, 1) 1

(5, 5) 50 M Σ(5, 5) 4 or 8

(2, 1) 5 T Σ0(2, 1) 8

(3, 1) 10 T Σ0(3, 1) 8

(4, 2) 20 T Σ0(4, 2) 8

n (α, β) D Type G(α, β) M

11 (11, 0) 121 V Σ(11, 0) 4 or 8

12 (2, 0) 4 V Σ(2, 0) 2

(3, 0) 9 V Σ(3, 0) 4

(4, 0) 16 V Σ(4, 0) 4

(6, 0) 36 V Σ(6, 0) 4 or 8

(12, 0) 144 V Σ(12, 0) 4 or 8

(1, 1) 2 M Σ(1, 1) 1

(2, 2) 8 M Σ(2, 2) 4

(3, 3) 18 M Σ(3, 3) 4

(6, 6) 72 M Σ(6, 6) 4 or 8

13 (13, 0) 169 V Σ(13, 0) 4 or 8

(3, 2) 13 T Σ0(3, 2) 8

14 (2, 0) 4 V Σ(2, 0) 2

(7, 0) 49 V Σ(7, 0) 4 or 8

(14, 0) 196 V Σ(14, 0) 4 or 8

(1, 1) 2 M Σ(1, 1) 1

(7, 7) 98 M Σ(7, 7) 8 or 8

15 (3, 0) 9 V Σ(3, 0) 4

(5, 0) 25 V Σ(5, 0) 4 or 8

(15, 0) 225 V Σ(15, 0) 4 or 8

(2, 1) 5 T Σ0(2, 1) 8

(6, 3) 45 T Σ0(6, 3) 8

16 (2, 0) 4 V Σ(2, 0) 2

(4, 0) 16 V Σ(4, 0) 4

(8, 0) 64 V Σ(8, 0) 4 or 8

(16, 0) 256 V Σ(16, 0) 4 or 8

(1, 1) 2 M Σ(1, 1) 1

(2, 2) 8 M Σ(2, 2) 4

(4, 4) 32 M Σ(4, 4) 4 or 8

(8, 8) 128 M Σ(8, 8) 4 or 8

17 (17, 0) 289 V Σ(17, 0) 4 or 8

(4, 1) 17 T Σ0(4, 1) 8
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Table 3.9: Possible square patterns for several lattice sizes n (n = 18–30).

n (α, β) D Type G(α, β) M

18 (2, 0) 4 V Σ(2, 0) 2

(3, 0) 9 V Σ(3, 0) 4

(6, 0) 36 V Σ(6, 0) 4 or 8

(9, 0) 81 V Σ(9, 0) 4 or 8

(18, 0) 324 V Σ(18, 0) 4 or 8

(1, 1) 2 M Σ(1, 1) 1

(3, 3) 18 M Σ(3, 3) 4

(9, 9) 162 M Σ(9, 9) 4 or 8

19 (19, 0) 361 V Σ(19, 0) 4 or 8

20 (2, 0) 4 V Σ(2, 0) 2

(4, 0) 16 V Σ(4, 0) 4

(5, 0) 25 V Σ(5, 0) 4 or 8

(10, 0) 100 V Σ(10, 0) 4 or 8

(20, 0) 400 V Σ(20, 0) 4 or 8

(1, 1) 2 M Σ(1, 1) 1

(2, 2) 8 M Σ(2, 2) 4

(5, 5) 50 M Σ(5, 5) 4 or 8

(10, 10) 200 M Σ(10, 10) 4 or 8

(2, 1) 5 T Σ0(2, 1) 8

(3, 1) 10 T Σ0(3, 1) 8

(4, 2) 20 T Σ0(4, 2) 8

(6, 2) 40 T Σ0(6, 2) 8

(8, 4) 80 T Σ0(8, 4) 8

21 (3, 0) 9 V Σ(3, 0) 4

(7, 0) 49 V Σ(7, 0) 4 or 8

(21, 0) 441 V Σ(21, 0) 4 or 8

22 (2, 0) 4 V Σ(2, 0) 2

(11, 0) 121 V Σ(11, 0) 4 or 8

(22, 0) 484 V Σ(22, 0) 4 or 8

(1, 1) 2 M Σ(1, 1) 1

(11, 11) 242 M Σ(11, 11) 4 or 8

23 (23, 0) 529 V Σ(23, 0) 4 or 8

24 (2, 0) 4 V Σ(2, 0) 2

(3, 0) 9 V Σ(3, 0) 4

(4, 0) 16 V Σ(4, 0) 4

(6, 0) 36 V Σ(6, 0) 4 or 8

(12, 0) 144 V Σ(12, 0) 4 or 8

(24, 0) 576 V Σ(24, 0) 4 or 8

(1, 1) 2 M Σ(1, 1) 1

(2, 2) 8 M Σ(2, 2) 4

(3, 3) 18 M Σ(3, 3) 4

(4, 4) 32 M Σ(4, 4) 4 or 8

(6, 6) 72 M Σ(6, 6) 4 or 8

(12, 12) 288 M Σ(12, 12) 4 or 8

n (α, β) D Type G(α, β) M

25 (5, 0) 25 V Σ(5, 0) 4 or 8

(25, 0) 625 V Σ(25, 0) 4 or 8

(2, 1) 5 T Σ(2, 1) 8

(4, 3) 25 T Σ(4, 3) 8

(10, 5) 125 T Σ(10, 5) 8

26 (2, 0) 4 V Σ(2, 0) 2

(13, 0) 169 V Σ(13, 0) 4 or 8

(26, 0) 676 V Σ(26, 0) 4 or 8

(1, 1) 2 M Σ(1, 1) 1

(13, 13) 338 M Σ(13, 13) 4 or 8

(3, 2) 13 T Σ0(3, 2) 8

(5, 1) 26 T Σ0(5, 1) 8

(6, 4) 52 T Σ0(6, 4) 8

27 (3, 0) 9 V Σ(3, 0) 4

(9, 0) 81 V Σ(9, 0) 4 or 8

(27, 0) 729 V Σ(27, 0) 4 or 8

28 (2, 0) 4 V Σ(2, 0) 2

(4, 0) 16 V Σ(4, 0) 4

(7, 0) 49 V Σ(7, 0) 4 or 8

(14, 0) 196 V Σ(14, 0) 4 or 8

(28, 0) 784 V Σ(28, 0) 4 or 8

(1, 1) 2 M Σ(1, 1) 1

(2, 2) 8 M Σ(2, 2) 4

(7, 7) 98 M Σ(7, 7) 4 or 8

(14, 14) 392 M Σ(14, 14) 4 or 8

29 (29, 0) 841 V Σ(29, 0) 4 or 8

(5, 2) 29 T Σ0(5, 2) 8

30 (2, 0) 4 V Σ(2, 0) 2

(3, 0) 9 V Σ(3, 0) 4

(5, 0) 25 V Σ(5, 0) 4 or 8

(6, 0) 36 V Σ(6, 0) 4 or 8

(10, 0) 100 V Σ(10, 0) 4 or 8

(15, 0) 225 V Σ(15, 0) 4 or 8

(30, 0) 900 V Σ(30, 0) 4 or 8

(1, 1) 2 M Σ(1, 1) 1

(3, 3) 18 M Σ(3, 3) 4

(5, 5) 50 M Σ(5, 5) 4 or 8

(15, 15) 450 M Σ(15, 15) 4 or 8

(2, 1) 5 T Σ0(2, 1) 8

(3, 1) 10 T Σ0(3, 1) 8

(4, 2) 20 T Σ0(4, 2) 8

(6, 3) 45 T Σ0(6, 3) 8

(9, 3) 90 T Σ0(9, 3) 8

(12, 6) 180 T Σ0(12, 6) 8
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in w ∈ RM , where F̃: RM × R → RM is a function and ϕ̃ = ϕ − ϕc denotes the increment of ϕ.

This reduced system is called the bifurcation equation.

In the reduction process, the equivariance in (3.102) of the full system is inherited by the

reduced system in (3.104). With the use of the representation matrix T µ(g) for the associated

irreducible representation µ, the equivariance of F̃ can be expressed as

T µ(g)F̃(w, ϕ̃) = F̃(T µ(g)w, ϕ̃), g ∈ G. (3.105)

This inherited symmetry plays a key role in determining the symmetry of bifurcating solutions.

The reduced system in (3.104) can possibly admit multiple solutions w = w(ϕ̃) with w(0) = 0

since (w, ϕ̃) = (0, 0) is a singular point of (3.104). This gives rise to bifurcation. Each w uniquely

determines a solution λ to the full system in (3.101), and moreover the symmetry of w is identical

with that of λ. Indeed, we have the following relation:

Gµ ⊆ Σµ(w) = Σ(λ), (3.106)

where Gµ is a subgroup of G as

Gµ
= {g ∈ G | T µ(g) = I}, (3.107)

and Σ(λ) and Σµ(w) are isotropy subgroups defined respectively as

Σ(λ) = Σ(λ; G,T) = {g ∈ G | T(g)λ = λ}, (3.108)

Σ
µ(w) = Σ(w; G,T µ) = {g ∈ G | T µ(g)w = w}. (3.109)

The significance of the relation in (3.106) is twofold. First, unless a subgroup Σ is large enough

to contain Gµ, no bifurcating solution λ exists such that Σ = Σ(λ). Second, the symmetry of a

bifurcating solution λ is known as Σ(λ) = Σµ(w) through analysis of the bifurcation equation in w.

Remark 3.3. We define the variables w = (w1, . . . ,wM)⊤ in the bifurcation equation in (3.104)

with the matrix Q derived in Section 3.4.3. That is, the components of w = (w1, . . . ,wM)⊤ are

assumed to correspond to the column vectors of Qµ
= [qµ

1
, . . . , q

µ

M
]. Then, the equivariance

condition in (3.105) holds for the matrix representations T µ of the irreducible representations µ

derived in Appendix A.1.4.

□

Bifurcation Equation and the Associated Irreducible Representation

To investigate the existence of a bifurcating solution λ with a specified symmetry Σ to the

governing equation F(λ, ϕ) = 0 in (3.101), it is pertinent to apply the equivariant branching

lemma to the bifurcation equation F̃(w, ϕ̃) in (3.104). This is justified by the fact that the isotropy

subgroup Σ(λ) expressing the symmetry of a bifurcating solution λ is identical to the isotropy

subgroup Σµ(w) of the corresponding solution w for the bifurcation equation, i.e., Σ(λ) = Σµ(w)
as shown in (3.106).

The bifurcation equation is associated with an irreducible representation µ of G = D4⋉(Zn×Zn)
as in (3.105). The associated irreducible representation µ is restricted to

µ = (1;+,+,+), (1;+,+,−), (2;+,+), (4; k, 0;+), (4; k, k;+), (4; n/2, ℓ;+), (8; k, ℓ)
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Table 3.10: The irreducible representations of D4 ⋉ (Zn × Zn) to be considered in bifurcation analysis.

n \ d 1 2 4 8

2m (1;+,+,+), (1;+,+,−) (2;+,+) (4; k, 0;+), (4; k, k;+), (4; n/2, ℓ,+) (8; k, ℓ)
2m − 1 (1;+,+,+) (4; k, 0;+), (4; k, k;+) (8; k, ℓ)
(4; k, 0;+) with 1 ≤ k ≤ ⌊(n − 1)/2⌋;
(4; k, k;+) with 1 ≤ k ≤ ⌊(n − 1)/2⌋;
(4; n/2, ℓ;+) with 1 ≤ ℓ ≤ ⌊(n − 1)/2⌋;
(8; k, ℓ) with 1 ≤ ℓ ≤ k − 1, 2 ≤ k ≤ ⌊(n − 1)/2⌋

with k for (4; k, 0;+) in (3.49), k for (4; k, k;+) in (3.50), ℓ for (4; n/2, ℓ;+) in (3.51), and (k, ℓ)
for (8; k, ℓ) in (3.60), as a consequence of the irreducible decomposition (3.72) of the permutation

representation T for the economy on the n×n square lattice. The unit representation (1;+,+,+) has

been excluded since it does not correspond to a symmetry-breaking bifurcation point. Thus we have

to deal with critical points of multiplicity M = 1, 2, 4, 8. As a modified form of Table 3.6, therefore,

we obtain Table 3.10, where the multiplicity M of a critical point is equal to the dimension d of

the associated irreducible representation.

Isotropy Subgroup and Fixed-Point Subspace

In analysis by the equivariant branching lemma, the isotropy subgroup of w with respect to T µ:

Σ
µ(w) = {g ∈ G | T µ(g)w = w} (3.110)

in (3.109) and the fixed-point subspace of Σ for T µ:

Fixµ(Σ) = {w ∈ RM | T µ(g)w = w for all g ∈ Σ} (3.111)

play the major roles. The following facts, though immediate from the definitions, are important

and useful.

• By definition, Σ is an isotropy subgroup if and only if Σ = Σµ(w) for some w , 0.

• If Σ = Σµ(w), then w ∈ Fixµ(Σ) and dim Fixµ(Σ) ≥ 1.

• Not every Σ with the property of dim Fixµ(Σ) ≥ 1 is an isotropy subgroup.

• Σ ⊆ Σµ(w) for every w ∈ Fixµ(Σ).

• Σ is an isotropy subgroup if and only if Σ = Σµ(w) for some w ∈ Fixµ(Σ) with w , 0.

• Unless Σ is an isotropy subgroup, there exists no bifurcating solution w with symmetry Σ.
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Analysis Procedure Using Equivariant Branching Lemma

Equivariant branching lemma is a useful mathematical means to prove the existence of a

bifurcating solution with a specified symmetry without actually solving the bifurcation equation

in (3.104). By the equivariant branching lemma, we shall demonstrate the emergence of square

patterns.

Analysis for the n×n square lattice based on the equivariant branching lemma follows the steps

below.

1. Specify an irreducible representation µ of D4 ⋉ (Zn × Zn) in Table 3.10.

2. Specify a subgroup Σ as a candidate of an isotropy subgroup of a possible bifurcating

solution.

3. Obtain the fixed-point subspace Fixµ(Σ) in (3.111) for the subgroup Σ with respect to the

irreducible representation µ.

4. Search for some w ∈ Fixµ(Σ) such that Σµ(w) = Σ. If no such w exists, then Σ is not an

isotropy subgroup, and hence there exists no solution with the specified symmetry Σ for the

bifurcation equation associated with µ. If such w exists, then we can ensure that Σ is an

isotropy subgroup, and can proceed to the next step.

5. Calculate the dimension dim Fixµ(Σ) of the fixed-point subspace.

6. If dim Fixµ(Σ) = 1, a bifurcating solution with symmetry Σ is guaranteed to exist generically

by the equivariant branching lemma. If dim Fixµ(Σ) ≥ 2, no definite conclusion can be

reached by means of the equivariant branching lemma.

Remark 3.4. The equivariant branching lemma assumes two technical conditions: (i) absolute

irreducibility and (ii) genericity (see Section 2.4.5 of Ikeda and Murota, 2014). The former

condition is satisfied by the group G = D4 ⋉ (Zn ×Zn) since all the irreducible representations over

R of this group are absolutely irreducible (see Appendix A.1.4). The latter condition is a matter

of modeling, and we assume this condition throughout this chapter. For details on the equivariant

branching lemma, see Cicogna (1981), Vanderbauwhede (1982), and Golubitsky et al. (1988).

□

3.5.3. Bifurcation Point of Multiplicity 1

As shown by Table 3.10 in Section 3.5.2, a critical point of multiplicity 1 is associated with the

one-dimensional irreducible representation (1;+,+,−), which exists only when n is even. Recall

from (3.44) that this irreducible representation is given by

T (1;+,+,−)(r) = 1, T (1;+,+,−)(s) = 1, T (1;+,+,−)(p1) = −1, T (1;+,+,−)(p2) = −1. (3.112)

In view of Remark 3.3 in Section 3.5.2, let us assume that the variable w = w for the bifurcation

equation (3.104) corresponds to the column vector of

Q(1;+,+,−)
= q = [⟨cos(π(n1 − n2))⟩] (3.113)

in (3.83). The spatial pattern for this vector is depicted in Fig. 3.7 for n = 6. This is the smallest

square pattern.
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Figure 3.7: A pattern on the 6 × 6 square lattice expressed by the column vector of Q(1;+,+,−). A black circle denotes a

positive component, and a white circle denotes a negative component.

Proposition 3.7. When n is even, a bifurcating solution in the direction of q with the symmetry

of ⟨r, s, p1p2, p1
−1p2⟩ arises from a critical point of multiplicity 1 associated with the irreducible

representation (1;+,+,−).

Proof. The general procedure in Section 3.5.2 is applied to µ = (1;+,+,−) and Σ = ⟨r, s⟩ ⋉
⟨p1p2, p1

−1p2⟩. We have

Fix(1;+,+,−)(Σ) = {w ∈ R}
since

T (1;+,+,−)(r)w = w, T (1;+,+,−)(s)w = w, T (1;+,+,−)(p1p2)w = w, T (1;+,+,−)(p1
−1p2)w = w

by (3.112). Thus the targeted symmetry Σ is an isotropy subgroup with

dim Fix(1;+,+,−)(Σ) = 1.

The equivariant branching lemma then guarantees the existence of a bifurcating path with symmetry

Σ. □

3.5.4. Bifurcation Point of Multiplicity 2

As shown by Table 3.10 in Section 3.5.2, a critical point of multiplicity 2 is associated with

the two-dimensional irreducible representation (2;+,+), which exists only when n is even. Recall

from (3.47) and (3.48) that this irreducible representation is given by

T (2;+,+)(r) =
[

1

1

]
, T (2;+,+)(s) =

[
1

1

]
, (3.114)

T (2;+,+)(p1) =
[
−1

1

]
, T (2;+,+)(p2) =

[
1

−1

]
. (3.115)

In view of Remark 3.3 in Section 3.5.2, let us assume that the variable w = (w1,w2)⊤ for the

bifurcation equation (3.104) corresponds to the column vectors of

Q(2;+,+)
= [q1, q2] = [⟨cos(πn1)⟩, ⟨cos(πn2)⟩] (3.116)

in (3.84). The spatial patterns for these vectors are depicted in Fig. 3.8 for n = 6. The vectors q1

and q2 represent stripe patterns but q1 + q2 expresses a square pattern.
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(a) q1 (⟨r2, s, p1
2, p2⟩) (b) q2 (⟨r2, s, p1, p2

2⟩) (c) q1 + q2 (⟨r, s, p1
2, p2

2⟩)

Figure 3.8: Patterns on the 6 × 6 square lattice expressed by the column vectors of Q(2;+,+). A black circle denotes a

positive component, and a white circle denotes a negative component.

Proposition 3.8. When n is even, bifurcating solutions from a critical point of multiplicity 2

associated with the irreducible representation (2;+,+) exist in the following directions:

(i) q1 + q2 with the symmetry of ⟨r, s, p1
2, p2

2⟩,
(ii) q1 with the symmetry of ⟨r2, s, p1

2, p2⟩, and

(iii) q2 with the symmetry of ⟨r2, s, p1, p2
2⟩.

Proof. (i) The general procedure in Section 3.5.2 is applied to µ = (2;+,+) and Σ = ⟨r, s⟩ ⋉
⟨p1

2, p2
2⟩. Note

Fix(2;+,+)(Σ) = Fix(2;+,+)(⟨r⟩) ∩ Fix(2;+,+)(⟨s, p1
2, p2

2⟩).
Here we have

Fix(2;+,+)(⟨r⟩) = {c(1, 1)⊤ | c ∈ R}
since T (2;+,+)(r)(w1,w2)⊤ = (w2,w1)⊤ by (3.114), whereas

Fix(2;+,+)(⟨s, p1
2, p2

2⟩) = R2

since T (2;+,+)(s) = T (2;+,+)(p1
2) = T (2;+,+)(p2

2) = I by (3.114) and (3.115). Therefore,

Fix(2;+,+)(Σ) = {c(1, 1)⊤ | c ∈ R},
that is, Σ = Σ(2;+,+)(w0) for w0 = (1, 1)⊤. Thus the targeted symmetry Σ is an isotropy subgroup

with dim Fix(2;+,+)(Σ) = 1. The equivariant branching lemma then guarantees the existence of a

bifurcating path with symmetry Σ.

(ii) Next the general procedure is applied to µ = (2;+,+) and Σ = ⟨r2, s, p1
2, p2⟩. Note

Fix(2;+,+)(Σ) = Fix(2;+,+)(⟨p2⟩) ∩ Fix(2;+,+)(⟨r2, s, p1
2⟩).

Here we have

Fix(2;+,+)(⟨p2⟩) = {c(1, 0)⊤ | c ∈ R}
since T (2;+,+)(p2)(w1,w2)⊤ = (w1,−w2)⊤ by (3.114), whereas

Fix(2;+,+)(⟨r2, s, p1
2⟩) = R2

since T (2;+,+)(r2) = T (2;+,+)(s) = T (2;+,+)(p1
2) = I by (3.114) and (3.115). Therefore,

Fix(2;+,+)(Σ) = {c(1, 0)⊤ | c ∈ R},
that is, Σ = Σ(2;+,+)(w0) for w0 = (1, 0)⊤. Thus the targeted symmetry Σ is an isotropy subgroup

with dim Fix(2;+,+)(Σ) = 1. The equivariant branching lemma then guarantees the existence of a

bifurcating path with symmetry Σ. The case of (iii) can be treated similarly. □
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3.5.5. Bifurcation Point of Multiplicity 4

We investigate square patterns branching from bifurcation points of multiplicity 4.

Representation in Complex Variables

As shown by Table 3.10 in Section 3.5.2, a critical point of multiplicity 4 is associated with

one of the four-dimensional irreducible representations

(4; k, 0,+) with 1 ≤ k ≤
⌊
n − 1

2

⌋
, (3.117)

(4; k, k,+) with 1 ≤ k ≤
⌊
n − 1

2

⌋
, (3.118)

(4; n/2, ℓ,+) with 1 ≤ ℓ ≤ n

2
− 1, (3.119)

where n ≥ 3 and (4; n/2, ℓ,+) exists only when n is even.

The irreducible representation (4; k, 0,+) is given by

T (4;k,0,+)(r) =
[

S

I

]
, T (4;k,0,+)(s) =

[
I

S

]
, (3.120)

T (4;k,0,+)(p1) =
[
Rk

I

]
, T (4;k,0,+)(p2) =

[
I

Rk

]
, (3.121)

where

R =

[
cos(2π/n) − sin(2π/n)
sin(2π/n) cos(2π/n)

]
, S =

[
1

−1

]
, I =

[
1

1

]
. (3.122)

The irreducible representation (4; k, k,+) is given by

T (4;k,k,+)(r) =
[

S

I

]
, T (4;k,k,+)(s) =

[
S

S

]
, (3.123)

T (4;k,k,+)(p1) =
[
Rk

R−k

]
, T (4;k,k,+)(p2) =

[
Rk

Rk

]
. (3.124)

The irreducible representation (4; n/2, ℓ,+) is given by

T (4;n/2,ℓ,+)(r) =
[

S

I

]
, T (4;n/2,ℓ,+)(s) =

[
S

I

]
, (3.125)

T (4;n/2,ℓ,+)(p1) =
[
−I

R−ℓ

]
, T (4;n/2,ℓ,+)(p2) =

[
Rℓ

−I

]
. (3.126)

Let us assume that, for (4; k, 0,+), the variablew = (w1,w2,w3,w4)⊤ for the bifurcation equation

(3.104) corresponds to the column vectors of

Q(4;k,0,+)
= [⟨cos(2πk n1/n)⟩, ⟨sin(2πk n1/n)⟩, ⟨cos(2πkn2/n)⟩, ⟨sin(2πkn2/n)⟩] (3.127)
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in (3.85). The variables w for (4; k, k,+) and (4; n/2, ℓ,+) can be defined similarly. The spatial

patterns for these vectors are depicted in Fig. 3.9 for n = 6.

Using complex variables

(z1, z2) = (w1 + iw2,w3 + iw4),
we can express the actions in (4; k, 0,+), given in (3.120) and (3.121) for the four-dimensional

vectors (w1, . . . ,w4), as

r :

[
z1

z2

]
7→

[
z2

z1

]
, s :

[
z1

z2

]
7→

[
z1

z2

]
,

p1 :

[
z1

z2

]
7→

[
ωk z1

z2

]
, p2 :

[
z1

z2

]
7→

[
z1

ωk z2

]
,

(3.128)

where ω = exp(i2π/n). The actions in (4; k, k,+), given in (3.123) and (3.124), are

r :

[
z1

z2

]
7→

[
z2

z1

]
, s :

[
z1

z2

]
7→

[
z2

z1

]
,

p1 :

[
z1

z2

]
7→

[
ωk z1

ω−k z2

]
, p2 :

[
z1

z2

]
7→

[
ωk z1

ωk z2

]
.

(3.129)

The actions in (4; n/2, ℓ,+), given in (3.125) and (3.126), are

r :

[
z1

z2

]
7→

[
z2

z1

]
, s :

[
z1

z2

]
7→

[
z1

z2

]
,

p1 :

[
z1

z2

]
7→

[
−z1

ω−ℓz2

]
, p2 :

[
z1

z2

]
7→

[
ωℓz1

−z2

]
.

(3.130)

The actions of p1 and p2 in (4; k, ℓ,+) are expressed in a unified form as

p1 :

[
z1

z2

]
7→

[
ωk z1

ω−ℓz2

]
, p2 :

[
z1

z2

]
7→

[
ωℓz1

ωk z2

]
. (3.131)

Isotropy Subgroups

To apply the method of analysis in Section 3.5.2, we identify isotropy subgroups for (4; k, 0,+),
(4; k, k,+), and (4; n/2, ℓ,+) that are relevant to square patterns. We denote the isotropy subgroup

of z = (z1, z2) and the fixed-point subspace of Σ with respect to T (4;k,ℓ,+) with ℓ ∈ {0, k} as

Σ
(4;k,ℓ,+)(z) = {g ∈ G | T (4;k,ℓ,+)(g) · z = z}, (3.132)

Fix(4;k,ℓ,+)(Σ) = {z | T (4;k,ℓ,+)(g) · z = z for all g ∈ Σ}, (3.133)

where T (4;k,ℓ,+)(g) · z means the action of g ∈ G = D4 ⋉ (Zn ×Zn) on z given in (3.128) and (3.129).

We also define

ň =
n

gcd(n, k), ǩ =
k

gcd(n, k), ñ =
n

gcd(n, ℓ), ℓ̃ =
ℓ

gcd(n, ℓ), (3.134)
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where gcd(·, ·) means the greatest common divisor of the integers therein.

The symmetries of ⟨r⟩ and ⟨r, s⟩ and the translational symmetry of p1
ap2

b are dealt with in

Propositions 3.9, 3.10, and 3.11 below. In this connection, the isotropy subgroups of z = (z1, z2) =
(1, 1) (i.e., w = (1, 0, 1, 0)⊤) play a crucial role. Remark 3.5 given later should be consulted with

regard to the geometrical interpretation of these propositions.

Proposition 3.9. For (4; k, 0,+) in (3.49), we have the following statements:

(i) Fix(4;k,0,+)(⟨r⟩) = Fix(4;k,0,+)(⟨r, s⟩) = {c(1, 1) | c ∈ R} for each k.

(ii) p1
ap2

b ∈ Σ(4;k,0,+)((1, 1)) if and only if

ǩa ≡ 0, ǩb ≡ 0 mod ň. (3.135)

(iii) Σ(4;k,0,+)((1, 1)) = Σ(ň, 0) and Fix(4;k,0,+)(Σ(ň, 0)) = {c(1, 1) | c ∈ R}. That is, Σ(ň, 0) is the

isotropy subgroup of z = (1, 1) with dim Fix(4;k,0,+)(Σ(ň, 0)) = 1.

(iv) If Σ(α, β) is an isotropy subgroup (for some z), then (α, β) = (ň, 0) and it is the isotropy

subgroup of z = (1, 1).
(v) Σ0(α, β) is not an isotropy subgroup (for any z) for any value of (α, β).

Proof. (i) By (3.128), z = (z1, z2) is invariant to r if and only if (z2, z1) = (z1, z2), which is

equivalent to z1 = z2 ∈ R. Such z is also invariant to s.

(ii) By (3.131) for (4; k, ℓ,+), the invariance of z = (1, 1) to p1
ap2

b is expressed as

ka + ℓb ≡ 0, −ℓa + kb ≡ 0 mod n, (3.136)

For ℓ = 0, this condition reduces to

ka ≡ 0, kb ≡ 0 mod n,

which is equivalent to (3.135).

(iii) (a, b) satisfies (3.135) if and only if both a and b are multiples of ň. The subgroup of G

generated by p1
ap2

b for such (a, b), together with r and s, coincides with Σ(ň, 0).
(iv) This follows from (i) and (iii).

(v) This follows from (v). □

Proposition 3.10. For (4; k, k,+) in (3.50), we have the following statements:

(i) Fix(4;k,k,+)(⟨r⟩) = Fix(4;k,k,+)(⟨r, s⟩) = {c(1, 1) | c ∈ R} for each k.

(ii) p1
ap2

b ∈ Σ(4;k,k,+)((1, 1)) if and only if

ǩ(a + b) ≡ 0, ǩ(−a + b) ≡ 0 mod ň. (3.137)

(iii) If ň is even, then we have

Σ
(4;k,k,+)((1, 1)) = Σ(ň/2, ň/2),

Fix(4;k,k,+)(Σ(ň/2, ň/2)) = {c(1, 1) | c ∈ R};
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that is, Σ(ň/2, ň/2) is the isotropy subgroup of z = (1, 1) with dim Fix(4;k,k,+)(Σ(ň/2, ň/2)) = 1. If

ň is odd, then we have

Σ
(4;k,k,+)((1, 1)) = Σ(ň, 0),

Fix(4;k,k,+)(Σ(ň, 0)) = {c(1, 1) | c ∈ R};

that is, Σ(ň, 0) is the isotropy subgroup of z = (1, 1) with dim Fix(4;k,k,+)(Σ(ň, 0)) = 1.

(iv) If Σ(α, β) is an isotropy subgroup (for some z), then

(α, β) =
{
(ň/2, ň/2) if ň is even,

(ň, 0) if ň is odd.

(v) Σ0(α, β) is not an isotropy subgroup (for any z) for any value of (α, β).

Proof. (i) By (3.129), z = (z1, z2) is invariant to r if and only if (z2, z1) = (z1, z2), which is

equivalent to z1 = z2 ∈ R. Such z is also invariant to s.

(ii) The condition (3.136) for ℓ = k reduces to

k(a + b) ≡ 0, k(−a + b) ≡ 0 mod n,

which is equivalent to (3.137).

(iii) The condition (3.137) is equivalent to the existence of integers p and q such that[
1 1

−1 1

] [
a

b

]
= ň

[
p

q

]
.

Hence a and b satisfy (3.137) if and only if they are integers expressed as

[
a

b

]
= ň

[
1 1

−1 1

]−1 [
p

q

]
=

ň

2

[
1 −1

1 1

] [
p

q

]

for some integers p and q. When ň is odd, this is equivalent to (a, b) = ň(p′, q′) for integers p′ and

q′. Therefore, the subgroup of G generated by p1
ap2

b with such (a, b), together with r and s, is

given by Σ(ň, 0) with (p′, q′) = (1, 0) or Σ(ň/2, ň/2) with (p, q) = (1, 0) according to whether ň is

odd or even .

(iv) This follows from (i) and (iii).

(v) This follows from (i). □

Proposition 3.11. For (4; n/2, ℓ,+) in (3.51), we have the following statements.

(i) Fix(4;n/2,ℓ,+)(⟨r⟩) = Fix(4;n/2,ℓ,+)(⟨r, s⟩) = {c(1, 1) | c ∈ R} for each ℓ.

(ii) p1
ap2

b ∈ Σ(4;n/2,ℓ,+)((1, 1)) if and only if

1

2
ña + ℓ̃b ≡ 0, −ℓ̃a + 1

2
ñb ≡ 0 mod ñ. (3.138)
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(iii) If ñ is odd, then we have

Σ
(4;n/2,ℓ,+)((1, 1)) = Σ(2ñ, 0),

Fix(4;n/2,ℓ,+)(Σ(2ñ, 0)) = {c(1, 1) | c ∈ R};

that is, Σ(2ñ, 0) is the isotropy subgroup of z = (1, 1) with dim Fix(4;n/2,ℓ,+)(Σ(2ñ, 0)) = 1. If ñ is

even and ñ/2 is odd, then we have

Σ
(4;n/2,ℓ,+)((1, 1)) = Σ(ñ/2, ñ/2),

Fix(4;n/2,ℓ,+)(Σ(ñ/2, ñ/2)) = {c(1, 1) | c ∈ R};

that is, Σ(ñ/2, ñ/2) is the isotropy subgroup of z = (1, 1) with dim Fix(4;n/2,ℓ,+)(Σ(ñ/2, ñ/2)) = 1.

If ñ is even and ñ/2 is even, then we have

Σ
(4;n/2,ℓ,+)((1, 1)) = Σ(ñ, 0),

Fix(4;n/2,ℓ,+)(Σ(ñ, 0)) = {c(1, 1) | c ∈ R};

that is, Σ(ñ, 0) is the isotropy subgroup of z = (1, 1) with dim Fix(4;n/2,ℓ,+)(Σ(ñ, 0)) = 1.

(iv) If Σ(α, β) is an isotropy subgroup (for some z), then

(α, β) =


(2ñ, 0) if ñ is odd,

(ñ, 0) if ñ is even, and ñ/2 is even,

(ñ/2, ñ/2) if ñ is even, and ñ/2 is odd.

(v) Σ0(α, β) is not an isotropy subgroup (for any z) for any value of (α, β).
Proof. (i) By (3.130), z = (z1, z2) is invariant to r if and only if (z2, z1) = (z1, z2), which is

equivalent to z1 = z2 ∈ R. Such z is also invariant to s.

(ii) The condition (3.136) for k = n/2 reduces to

n

2
a + ℓb ≡ 0, −ℓa + n

2
b ≡ 0 mod n,

which is equivalent to (3.138).

(iii) When ñ is odd, (3.139) gives p and q are even, that is, (p, q) = (2p′, 2q′) for integers p′

and q′. Then, we have (a, b) = ñ(2p′, 2q′) = 2ñ(p′, q′). When ñ is even, from (3.138), we have

(a, b) = (ñ/2)(p, q) for integers p and q and this equation is rewritten as

ñ

2
p + ℓ̃q ≡ 0, −ℓ̃p +

ñ

2
q ≡ 0 mod 2. (3.139)

When ñ is even and ñ/2 is even, we have ℓ̃ odd and (p, q) = (2p′′, 2q′′). Hence, we have

(a, b) = (ñ/2)(2p′′, 2q′′) = ñ(p′′, q′′) for integers p′′ and q′′. When ñ is even and ñ/2 is odd (ℓ̃

odd), we have (a, b) = (ñ/2)(p, q) for p + q even. Therefore, the subgroup of G generated by

p1
ap2

b with such (a, b), together with r and s, is given by Σ(2ñ, 0)with (p′, q′) = (1, 0), Σ(ñ, 0)with

(p′′, q′′) = (1, 0), or Σ(ñ/2, ñ/2) with (p, q) = (1, 1), according to whether ñ is odd, ñ/2 is even, or

ñ/2 is odd.

(iv) This follows from (i) and (iii).

(v) This follows from (i). □
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The above propositions show that, in either case of (4; k, 0,+), (4; k, k,+), and (4; n/2, ℓ,+), any

isotropy subgroup Σ containing ⟨r⟩, which is of our interest, can be represented as Σ = Σ(4;k,ℓ,+)(z)
for z = (1, 1) and that dim Fix(4;k,ℓ,+)(Σ) = 1. On the basis of this fact, we will investigate possible

occurrences of square patterns for each of the three types V, M, and T in the remaining of this

section.

Remark 3.5. The four-dimensional space of w = (w1,w2,w3,w4)⊤ for the bifurcation equation

(3.104) is spanned by the column vectors of

Q(4;k,ℓ,+)
= [q1, q2, q3, q4], (3.140)

the concrete forms of which are given in (3.85)–(3.87). For example, the spatial patterns for these

vectors with n = 6 are depicted in Fig. 3.9. The two vectors q1 and q3 represent stripe patterns

in different directions. The sum qsum = q1 + q3 of these two vectors, which is associated with

z = (1, 1), represents square patterns.

□

Square Patterns of Type V

Square patterns of type V are here shown to branch from critical points of multiplicity 4.

Recall that a square pattern of type V is characterized by the symmetry of Σ(α, 0) with 2 ≤ α ≤ n

compatible with n (see (3.98) and (3.100)) and that D(α, 0) = α2.

The following proposition is concerned with the square patterns of type V.

Proposition 3.12. Square patterns of type V with the symmetry of Σ(α, 0) (α ≥ 3) arise as

bifurcating solutions from critical points of multiplicity 4 for specific values of n and associated

irreducible representations given by

(α, β) D n (k, ℓ) in (4; k, ℓ,+)
(α, 0) α2 αm (pm, 0)
(α, 0) α2 αm (pm, pm) (α is odd)
(α, 0) α2 αm (αm/2, pm) (α is even, and α/2 is even)
(α, 0) α2 αm (αm/2, 2p′m) (α is even, and α/2 is odd)

(3.141)

where m ≥ 1 and

gcd(p, α) = 1, 1 ≤ p < α/2, (3.142)

gcd(p′, α/2) = 1, 1 ≤ p′ < α/4. (3.143)

Proof. By Propositions 3.9, 3.10, and 3.11, we have three possibilities: (4; k, 0,+), (4; k, k,+),
and (4; n/2, ℓ,+). For (4; k, 0,+), we fix α and look for (k, n) that satisfies (3.117) and ň = α.

For such (k, n), Σ(α, 0) = Σ(ň, 0) is an isotropy subgroup with dim Fix(4;k,0,+) (Σ(α, 0)) = 1 by

Proposition 3.9. Then, the equivariant branching lemma (Section 3.5.2) guarantees the existence

of a bifurcating solution with symmetry Σ(α, 0).
For (4; k, k,+), we fix α that is odd and look for (k, n) that satisfies (3.118) and ñ = α, and

proceed in a similar manner using Proposition 3.10.
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q1 q2 q3 q4 q1 + q3 (⟨r, s⟩)
(a) Q(4;1,0,+)

q1 q2 q3 q4 q1 + q3 (⟨r, s⟩)
(b) Q(4;2,0,+)

q1 q2 q3 q4 q1 + q3 (⟨r, s⟩)
(c) Q(4;1,1,+)

q1 q2 q3 q4 q1 + q3 (⟨r, s⟩)
(d) Q(4;2,2,+)

q1 q2 q3 q4 q1 + q3 (⟨r, s⟩)
(e) Q(4;3,1,+)

q1 q2 q3 q4 q1 + q3 (⟨r, s⟩)
(f) Q(4;3,2,+)

Figure 3.9: Patterns on the 6× 6 square lattice expressed by the column vectors of Qµ for four-dimensional irreducible

representations. A black circle denotes a positive component, and a white circle denotes a negative component.
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For (4; n/2, ℓ,+), we fix α that is even and look for (ℓ, n) that satisfies (3.119) and ñ = α/2 for

α/2 odd and ñ = α for α/2 even, and proceed in a similar manner using Proposition 3.11.

Suppose that (k, n) for (k, ℓ) = (pm, 0) and (pm, pm) is given by (3.141) with (3.142). Then,

m = gcd(k, n) by gcd(p, α) = 1 and ň = n/gcd(k, n) = n/m = α. We have k = pm ≥ 1 and

k/n = p/α < 1/2, thereby showing 1 ≤ k ≤
⌊

n−1
2

⌋
in (3.117) for (4; pm, 0,+) and (3.118) for

(4; pm, pm,+).
Suppose that (ℓ, n) for (k, ℓ) = (αm/2, pm) is given by (3.141) with (3.142). Then m = gcd(n, ℓ)

by gcd(p, α) = 1 and ñ = n/gcd(ℓ, n) = n/m = α. We have ℓ = pm ≥ 1 and ℓ/n = p/α < 1/2,

thereby showing (3.119).

Suppose that (ℓ, n) for (k, ℓ) = (αm/2, 2p′m) is given by (3.141) with (3.143). Then 2m =

gcd(n, ℓ) by gcd(p′, α/2) = 1 and ñ = n/gcd(ℓ, n) = n/(2m) = α/2. We have ℓ = 2p′m ≥ 1 and

ℓ/n = 2p′/α < 1/2, thereby showing (3.119).

Conversely, suppose that (k, n) satisfies ň = α, and (3.117) or (3.118). Then we have α = ň =

n/gcd(k, n), which shows gcd(k, n) = n/α is an integer, say m. We also have k = ǩ gcd(k, n) = mp

for p = ǩ. Then gcd(p, α) = gcd(ǩ, ň) = 1, p = ǩ ≥ 1, and p/α = k/n < 1/2 by (3.117) or (3.118),

thereby showing (3.142).

Suppose that α/2 is even and (ℓ, n) satisfies ñ = α, and (3.119). Then we have α = ñ =

n/gcd(ℓ, n), which shows gcd(ℓ, n) = n/α is an integer, say m. We also have ℓ = ℓ̃ gcd(ℓ, n) = mp

for p = ℓ̃. Then gcd(p, α) = gcd(ℓ̃, ñ) = 1, p = ℓ̃ ≥ 1, and p/α = ℓ/n < 1/2 by (3.119), thereby

showing (3.142).

Suppose that α/2 is odd and (ℓ, n) satisfies 2ñ = α and (3.119). Then we have α = 2ñ =

2n/gcd(ℓ, n), which shows gcd(ℓ, n) = 2n/α is an even integer, say 2m. We also have ℓ =

ℓ̃ gcd(ℓ, n) = 2mp′ for p′ = ℓ̃. Then gcd(p′, α/2) = gcd(ℓ̃, ñ) = 1, p′ = ℓ̃ ≥ 1, and p′/α = ℓ/(2n) <
1/4 by (3.119), thereby showing (3.143).

The above argument is in fact valid for α ≥ 2. For α = 2, however, the condition 1 ≤ p < α/2
or 1 ≤ p′ < α/4 is already a contradiction, which proves the nonexistence of the square pattern

with D = 4 (α = 2). □

Example 3.3. The parameter values of (3.141) in Proposition 3.12 give

(α, β) D n (k, ℓ) in (4; k, ℓ,+)
(3, 0) 9 3m (m, 0); (m,m)
(4, 0) 16 4m (m, 0); (2m,m)
(5, 0) 25 5m (m, 0), (2m, 0); (m,m), (2m, 2m)
(6, 0) 36 6m (m, 0); (3m, 2m)
(7, 0) 49 7m (m, 0), (2m, 0), (3m, 0); (m,m), (2m, 2m), (3m, 3m)
(8, 0) 64 8m (m, 0), (3m, 0); (4m,m), (4m, 3m)

where m ≥ 1. For each α ≥ 3, there exists at least one eligible (k, n) for (4; k, 0,+) in (3.141); for

instance, (k, n) = (m, αm), which corresponds to p = 1.

□

Square Patterns of Type M

Square patterns of type M are shown here to branch from critical points of multiplicity 4. Recall

that a square pattern of type M is characterized by the symmetry of Σ(β, β) with 1 ≤ β ≤ n/2
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compatible with n (see (3.98) and (3.100)) and D(β, β) = 2β2.

The following proposition is concerned with the square patterns of type M.

Proposition 3.13. Square patterns of type M with the symmetry of Σ(β, β) (β ≥ 2) arise as

bifurcating solutions from critical points of multiplicity 4 for specific values of n and associated

irreducible representations given by

(α, β) D n (k, ℓ) in (4; k, ℓ,+)
(β, β) 2β2 2βm (pm, pm)
(β, β) 2β2 2βm (βm, pm) (β is odd)

(3.144)

where m ≥ 1 and

gcd(p, 2β) = 1, 1 ≤ p < β. (3.145)

Proof. By Propositions 3.9, 3.10, and 3.11, we have two possibilities: (4; k, k,+) and (4; n/2, ℓ,+)
and look for (k, n) that satisfies (3.118) or (3.119) and the condition that

for (4; k, k,+): ň is even, and β = ň/2, (3.146)

for (4; n/2, ℓ,+): ň is even, ñ/2 is odd, and β = ñ/2. (3.147)

For such parameter value (k, n) in (3.146), Σ(β, β) = Σ(ň/2, ň/2) is an isotropy subgroup with

dim Fix(4;k,k,+)(Σ(β, β)) = 1 (3.148)

by Proposition 3.10. For such parameter value (ℓ, n) in (3.147), Σ(β, β) = Σ(ñ/2, ñ/2) is an isotropy

subgroup with

dim Fix(4;n/2,ℓ,+)(Σ(β, β)) = 1 (3.149)

by Proposition 3.11. Then, the equivariant branching lemma (Section 3.5.2) guarantees the exis-

tence of a bifurcating solution with symmetry Σ(β, β) for both (4; k, k,+) and (4; n/2, ℓ,+).
For (4; k, k,+), suppose that (k, n) is given by (3.144). Then m = gcd(k, n) by gcd(p, 2β) = 1,

and ň = n/gcd(k, n) = 2β, which shows (3.146). As for the condition (3.118), we first observe that

k/n = p/(2β) < 1/2, which shows k < n/2. The case of (4; n/2, ℓ,+) can be treated similarly.

Conversely, for (4; k, k,+), suppose that (k, n) satisfies (3.118) and (3.146). Put m′ = gcd(k, n)
to obtain n = m′ň = 2m′β and k = m′ǩ = m′p for p = ǩ. Hence we have (k, n) = (pm′, 2βm′),
where gcd(p, 2β) = gcd(ǩ, ň) = 1 and p/(2β) = k/n < 1/2, thereby showing (3.145). The case of

(4; n/2, ℓ,+) can be treated similarly.

The above argument is valid also for β = 1. For β = 1, however, no p satisfies 1 ≤ p < β. This

proves the nonexistence of the square pattern with D = 2. □

Example 3.4. The parameter values of (3.144) in Proposition 3.13 give

(α, β) D n (k, ℓ) in (4; k, ℓ,+)
(2, 2) 8 4m (m,m)
(3, 3) 18 6m (m,m); (3m,m)
(4, 4) 32 8m (m,m), (3m, 3m),
(5, 5) 50 10m (m,m), (3m, 3m); (5m,m), (5m, 3m)
(6, 6) 72 12m (m,m), (5m, 5m)
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where m ≥ 1. For each β ≥ 2, there exists at least one eligible (k, n) in (3.144); for instance,

(k, n) = (m, 2βm), which corresponds to p = 1.

□

Square Patterns of Type T

It is shown that square patterns of type T do not appear from critical points of multiplicity

4. Recall that a square pattern of type T is characterized by the symmetry of Σ0(α, β) with

1 ≤ α ≤ n − 1, 1 ≤ β ≤ n − 1, α , β (see (3.39)). The following proposition denies the existence

of square patterns of type T.

Proposition 3.14. Square patterns of type T with the symmetry of Σ0(α, β) 1 ≤ α ≤ n−1, 1 ≤ β ≤
n − 1, α , β do not arise as bifurcating solutions from critical points of multiplicity 4 for any n.

Proof. By Propositions 3.9, 3.10, and 3.11, Σ0(α, β) is not an isotropy subgroup with respect to

neither (4; k, 0,+), nor (4; k, k,+), nor (4; , n/2, ℓ). □

Possible Square Patterns for Several Lattice Sizes

We have investigated possible occurrences of square patterns for each of the three types V, M,

and T, and enumerated all possible parameter values of n for the lattice size and k for the associated

irreducible representations (4; k, 0,+), (4; k, k,+), and/or (4; n/2, ℓ,+). By compiling the obtained

facts, we can capture, for each n, all square patterns that can potentially arise from critical points

of multiplicity 4. The result is given in Tables 3.11–3.14 for several lattice sizes n.

3.5.6. Bifurcation Point of Multiplicity 8

We investigate square patterns branching from critical points of multiplicity 8. The emergence

of tilted square patterns of type T is the most phenomenal finding of this section. In addition, larger

square patterns of type V and type M also branch.

Representation in Complex Variables

As shown by Table 3.10 in Section 3.5.2, a critical point of multiplicity 8 is associated with the

eight-dimensional irreducible representation (8; k, ℓ) with

1 ≤ ℓ ≤ k − 1, 2 ≤ k ≤
⌊
n − 1

2

⌋
, (3.150)

where n ≥ 5.

Recall from (3.62)–(3.63) that the irreducible representation (8; k, ℓ) is given by

T (8;k,ℓ)(r) =



S

I

I

S


, T (8;k,ℓ)(s) =



I

I

I

I


, (3.151)

T (8;k,ℓ)(p1) =



Rk

R−ℓ

Rk

R−ℓ


, T (8;k,ℓ)(p2) =



Rℓ

Rk

R−ℓ

R−k


(3.152)
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Table 3.11: Square patterns arising from critical points of multiplicity 4 for several lattice sizes n (ň is given for

(4; k, 0,+) and (4; k, k,+), and ñ is given for (4; n/2, ℓ,+)).

n (k, ℓ) in (4; k, ℓ, +) ň ñ (α, β) D Type

3 (1, 0) 3 (3, 0) 9 V

(1, 1)
4 (1, 0) 4 (4, 0) 16 V

(2, 1) 4

(1, 1) 4 (2, 2) 8 M

5 (1, 0), (2, 0) 5 (5, 0) 25 V

(1, 1), (2, 2)
6 (2, 0) 3 (3, 0) 9 V

(2, 2)
(1, 0) 6 (6, 0) 36 V

(3, 2) 3

(1, 1) 6 (3, 3) 18 M

(3, 1) 6

7 (1, 0), (2, 0), (3, 0) 7 (7, 0) 49 V

(1, 1), (2, 2), (3, 3)
8 (2, 0) 4 (4, 0) 16 V

(4, 2) 4

(1, 0), (3, 0) 8 (8, 0) 64 V

(4, 1), (4, 3) 8

(2, 2) 4 (2, 2) 8 M

(1, 1), (3, 3) 8 (4, 4) 32 M

9 (3, 0) 3 (3, 0) 9 V

(3, 3)
(1, 0), (2, 0), (4, 0) 9 (9, 0) 81 V

(1, 1), (2, 2), (4, 4)
10 (2, 0), (4, 0) 5 (5, 0) 25 V

(2, 2), (4, 4)
(1, 0), (3, 0) 10 (10, 0) 100 V

(5, 2), (5, 4) 5

(1, 1), (3, 3) 10 (5, 5) 50 M

(5, 1), (5, 3) 10

11 (1, 0), (2, 0), (3, 0), (4, 0), (5, 0) 11 (11, 0) 121 V

(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)
12 (4, 0) 3 (3, 0) 9 V

(4, 4)
(3, 0) 4 (4, 0) 16 V

(6, 3) 4

(2, 0) 6 (6, 0) 36 V

(6, 4) 3

(1, 0), (5, 0) 12 (12, 0) 144 V

(6, 1), (6, 5) 12

(3, 3) 4 (2, 2) 8 M

(2, 2) 6 (3, 3) 18 M

(6, 2) 6

(1, 1), (5, 5) 12 (6, 6) 72 M

13 (1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0) 13 (13, 0) 169 V

(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)
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Table 3.12: Square patterns arising from critical points of multiplicity 4 for several lattice sizes n (ň is given for

(4; k, 0,+) and (4; k, k,+), and ñ is given for (4; n/2, ℓ,+)).

n (k, ℓ) in (4; k, ℓ, +) ň ñ (α, β) D Type

14 (2, 0), (4, 0), (6, 0) 7 (7, 0) 49 V

(2, 2), (4, 4), (6, 6)
(1, 0), (3, 0), (5, 0) 14 (14, 0) 196 V

(7, 2), (7, 4), (7, 6) 7

(1, 1), (3, 3), (5, 5) 14 (7, 7) 98 M

(7, 1), (7, 3), (7, 5) 14

15 (5, 0) 3 (3, 0) 9 V

(5, 5)
(3, 0), (6, 0) 5 (5, 0) 25 V

(3, 3), (6, 6)
(1, 0), (2, 0), (4, 0), (7, 0) 15 (15, 0) 225 V

(1, 1), (2, 2), (4, 4), (7, 7)
16 (4, 0) 4 (4, 0) 16 V

(8, 4) 4

(2, 0), (6, 0) 8 (8, 0) 64 V

(8, 2), (8, 6) 8

(1, 0), (3, 0), (5, 0), (7, 0) 16 (16, 0) 256 V

(8, 1), (8, 3), (8, 5), (8, 7) 16

(4, 4) 4 (2, 2) 8 M

(2, 2), (6, 6) 8 (4, 4) 32 M

(1, 1), (3, 3), (5, 5), (7, 7) 16 (8, 8) 72 M

17 (1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0), (7, 0), (8, 0) 17 (17, 0) 289 V

(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (7, 7), (8, 8)
18 (6, 0) 3 (3, 0) 9 V

(6, 6)
(3, 0) 6 (6, 0) 36 V

(9, 6) 3

(2, 0), (4, 0), (8, 0) 9 (9, 0) 81 V

(2, 2), (4, 4), (8, 8)
(1, 0), (5, 0), (7, 0) 18 (18, 0) 324 V

(9, 2), (9, 4), (9, 8) 9

(3, 3) 6 (3, 3) 18 M

(9, 3) 6

(1, 1), (5, 5), (7, 7) 18 (9, 9) 162 M

(9, 1), (9, 5), (9, 7) 18

19 (1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0), (7, 0), (8, 0), (9, 0) 19 (19, 0) 361 V

(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (7, 7), (8, 8), (9, 9)
20 (5, 0) 4 (4, 0) 16 V

(10, 5) 4

(4, 0), (8, 0) 5 (5, 0) 25 V

(4, 4), (8, 8)
(2, 0), (6, 0) 10 (10, 0) 100 V

(10, 4), (10, 8) 5

(1, 0), (3, 0), (7, 0), (9, 0) 20 (20, 0) 400 V

(10, 1), (10, 3), (10, 7), (10, 9) 20

(5, 5) 4 (2, 2) 8 M

(2, 2), (6, 6) 10 (5, 5) 50 M

(10, 2), (10, 6) 10

(1, 1), (3, 3), (7, 7), (9, 9) 20 (10, 10) 200 M
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Table 3.13: Square patterns arising from critical points of multiplicity 4 for several lattice sizes n (ň is given for

(4; k, 0,+) and (4; k, k,+), and ñ is given for (4; n/2, ℓ,+)).

n (k, ℓ) in (4; k, ℓ, +) ň ñ (α, β) D Type

21 (7, 0) 3 (3, 0) 9 V

(7, 7)
(3, 0), (6, 0), (9, 0) 7 (7, 0) 49 V

(3, 3), (6, 6), (9, 9)
(1, 0), (2, 0), (4, 0), (5, 0), (8, 0), (10, 0) 21 (21, 0) 441 V

(1, 1), (2, 2), (4, 4), (5, 5), (8, 8), (10, 10)
22 (2, 0), (4, 0), (6, 0), (8, 0), (10, 0) 11 (11, 0) 121 V

(2, 2), (4, 4), (6, 6), (8, 8), (10, 10)
(1, 0), (3, 0), (5, 0), (7, 0), (9, 0) 22 (22, 0) 484 V

(11, 2), (11, 4), (11, 6), (11, 8), (11, 10) 11

(1, 1), (3, 3), (5, 5), (7, 7), (9, 9) 22 (11, 11) 242 M

(11, 1), (11, 3), (11, 5), (11, 7), (11, 9) 22

23 (1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0), (7, 0), (8, 0), (9, 0), (10, 0) 23 (23, 0) 529 V

(11, 0)
(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (7, 7), (8, 8), (9, 9), (10, 10)
(11, 11)

24 (8, 0) 3 (3, 0) 9 V

(8, 8)
(6, 0) 4 (4, 0) 16 V

(12, 6) 4

(4, 0) 6 (6, 0) 36 V

(12, 8) 3

(3, 0), (9, 0) 8 (8, 0) 64 V

(12, 3), (12, 9) 8

(2, 0), (10, 0) 12 (12, 0) 144 V

(12, 2), (12, 10) 12

(1, 0), (5, 0), (7, 0), (11, 0) 24 (24, 0) 576 V

(12, 1), (12, 5), (12, 7)(12, 11) 24

(6, 6) 4 (2, 2) 8 M

(4, 4) 6 (3, 3) 18 M

(12, 4) 6

(3, 3), (9, 9) 8 (4, 4) 32 M

(2, 2), (10, 10) 12 (6, 6) 72 M

(1, 1), (5, 5), (7, 7), (11, 11) 24 (12, 12) 288 M

25 (5, 0), (10, 0) 5 (5, 0) 25 V

(5, 5), (10, 10)
(1, 0), (2, 0), (3, 0), (4, 0), (6, 0), (7, 0), (8, 0), (9, 0), (11, 0), (12, 0) 25 (25, 0) 625 V

(1, 1), (2, 2), (3, 3), (4, 4), (6, 6), (7, 7), (8, 8), (9, 9), (11, 11), (12, 12)
26 (2, 0), (4, 0), (6, 0), (8, 0), (10, 0), (12, 0) 13 (13, 0) 169 V

(2, 2), (4, 4), (6, 6), (8, 8), (10, 10), (12, 12)
(1, 0), (3, 0), (5, 0), (7, 0), (9, 0), (11, 0) 26 (26, 0) 676 V

(13, 2), (13, 4), (13, 6), (13, 8), (13, 10), (13, 12) 13

(1, 1), (3, 3), (5, 5), (7, 7), (9, 9), (11, 11) 26 (13, 13) 338 M

(13, 1), (13, 3), (13, 5), (13, 7), (13, 9), (13, 11) 26
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Table 3.14: Square patterns arising from critical points of multiplicity 4 for several lattice sizes n (ň is given for

(4; k, 0,+) and (4; k, k,+), and ñ is given for (4; n/2, ℓ,+)).

n (k, ℓ) in (4; k, ℓ, +) ň ñ (α, β) D Type

27 (9, 0) 3 (3, 0) 9 V

(9, 9)
(3, 0), (6, 0), (12, 0) 9 (9, 0) 81 V

(3, 3), (6, 6), (12, 12)
(1, 0), (2, 0), (4, 0), (5, 0), (7, 0), (8, 0), (10, 0), (11, 0), (13, 0) 27 (27, 0) 729 V

(1, 1), (2, 2), (4, 4), (5, 5), (7, 7), (8, 8), (10, 10), (11, 11), (13, 13) 27

28 (7, 0) 4 (4, 0) 16 V

(14, 7) 4

(4, 0), (8, 0), (12, 0) 7 (7, 0) 49 V

(4, 4), (8, 8), (12, 12)
(2, 0), (6, 0), (10, 0) 14 (14, 0) 392 V

(14, 4), (14, 8), (14, 12) 7

(1, 0), (3, 0), (5, 0), (9, 0), (11, 0), (13, 0) 28 (28, 0) 784 V

(14, 1), (14, 3), (14, 5), (14, 9), (14, 11), (14, 13) 28

(7, 7) 24 (2, 2) 8 M

(2, 2), (6, 6), (10, 10) 14 (7, 7) 98 M

(14, 2), (14, 6), (14, 10) 14

(1, 1), (3, 3), (5, 5), (9, 9), (11, 11), (13, 13) 28 (14, 14) 392 M

29 (1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0), (7, 0), (8, 0), (9, 0), (10, 0) 29 (29, 0) 841 V

(11, 0), (12, 0), (13, 0), (14, 0)
(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (7, 7), (8, 8), (9, 9), (10, 10)
(11, 11), (12, 12), (13, 13), (14, 14)

30 (10, 0) 3 (3, 0) 9 V

(10, 10)
(6, 0), (12, 0) 5 (5, 0) 25 V

(6, 6), (12, 12)
(5, 0) 6 (6, 0) 36 V

(15, 10) 3

(3, 0), (9, 0) 10 (10, 0) 100 V

(15, 6), (15, 12) 5

(2, 0), (4, 0), (8, 0), (14, 0) 15 (15, 0) 225 V

(2, 2), (4, 4), (8, 8), (14, 14)
(1, 0), (7, 0), (11, 0), (13, 0) 30 (30, 0) 900 V

(15, 2), (15, 4), (15, 8), (15, 14) 15

(5, 5) 6 (3, 3) 18 M

(15, 5) 6

(3, 3), (9, 9) 10 (5, 5) 50 M

(15, 3), (15, 9) 10

(1, 1), (7, 7), (11, 11), (13, 13) 30 (15, 15) 450 M

(15, 1), (15, 7), (15, 11), (15, 13) 30
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(a) q1 (b) q2 (c) q3 (d) q4 (e) q5

(f) q6 (g) q7 (h) q8 (i) q1 + q3 + q5 + q7 (⟨r, s⟩)

Figure 3.10: Patterns on the 6 × 6 square lattice expressed by the column vectors of Q(8;2,1). A black circle denotes a

positive component, and a white circle denotes a negative component.

with

R =

[
cos(2π/n) − sin(2π/n)
sin(2π/n) cos(2π/n)

]
, S =

[
1

−1

]
, I =

[
1

1

]
. (3.153)

Let us assume that the variable w = (w1,w2,w3,w4,w5,w6,w7,w8)⊤ for the bifurcation equation

in (3.104) corresponds to the column vectors of

Q(8;k,ℓ)
= [⟨cos(2π(kn1 + ℓn2)/n)⟩, ⟨sin(2π(kn1 + ℓn2)/n)⟩,
⟨cos(2π(−ℓn1 + kn2)/n)⟩, ⟨sin(2π(−ℓn1 + kn2)/n)⟩,
⟨cos(2π(kn1 − ℓn2)/n)⟩, ⟨sin(2π(kn1 − ℓn2)/n)⟩,
⟨cos(2π(−ℓn1 − kn2)/n)⟩, ⟨sin(2π(−ℓn1 − kn2)/n)⟩],

1 ≤ ℓ ≤ k − 1, 2 ≤ k ≤
⌊
n − 1

2

⌋
. (3.154)

The spatial patterns for these vectors are depicted in Fig. 3.10 for n = 6.

The action given in (3.151) and (3.152) on 8-dimensional vectors (w1, . . . ,w8) can be expressed

for complex variables z j = w2 j−1 + iw2 j ( j = 1, . . . , 4) as

r :



z1

z2

z3

z4


7→



z2

z1

z4

z3


, s :



z1

z2

z3

z4


7→



z3

z4

z1

z2


, (3.155)

p1 :



z1

z2

z3

z4


7→



ωk z1

ω−ℓ z2

ωk z3

ω−ℓ z4


, p2 :



z1

z2

z3

z4


7→



ωℓ z1

ωk z2

ω−ℓ z3

ω−k z4


, (3.156)
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where ω = exp(i2π/n).

Summary of the Theoretical Results

We preview the major ingredients of our analysis for critical points of multiplicity 8 associated

with (8; k, ℓ).
We denote the isotropy subgroup of z = (z1, . . . , z4) with respect to (8; k, ℓ) as

Σ
(8;k,ℓ)(z) = {g ∈ G | T (8;k,ℓ)(g) · z = z}, (3.157)

where T (8;k,ℓ)(g) · z means the action of g ∈ G = D4 ⋉ (Zn × Zn) on z given in (3.155) and (3.156).

It turns out that the isotropy subgroup of z = (1, 1, 0, 0) plays a crucial role in our analysis and that

Σ
(8;k,ℓ)((1, 1, 0, 0)) = Σ0(α, β) (3.158)

for a uniquely determined (α, β) with 0 ≤ β ≤ α ≤ n (see Proposition 3.21). We denote this

correspondence (k, ℓ) 7→ (α, β) = (α(k, ℓ, n), β(k, ℓ, n)) by

Φ(k, ℓ, n) = (α, β). (3.159)

In a sense, (k, ℓ) and (α, β) are dual to each other; (k, ℓ) prescribes the action of the translations p1

and p2, and (α, β) describes the symmetry preserved under this action.10

Whereas the concrete form of the correspondenceΦ is discussed in detail in Appendix A.3, the

following proposition shows the most fundamental formulas connecting (k, ℓ) and (α, β). We use

the notations:

k̂ =
k

gcd(k, ℓ, n), ℓ̂ =
ℓ

gcd(k, ℓ, n), n̂ =
n

gcd(k, ℓ, n), (3.160)

where gcd(k, ℓ, n) means the greatest common divisor of k, ℓ, and n.

Proposition 3.15. Let (α, β) = Φ(k, ℓ, n).
(i)

n̂ =
D(α, β)

gcd(α, β) . (3.161)

(ii)
n̂

gcd(k̂2
+ ℓ̂2, n̂)

= gcd(α, β). (3.162)

Proof. The proof is given in Appendix A.4; see Propositions A.7(ii) and A.8. It is mentioned here

that the proof relies on the Smith normal form for integer matrices. □

Our analysis of bifurcation consists of two stages (see Fig. 3.11):

1. Connect the irreducible representation (k, ℓ) to the associated symmetry represented by (α, β)
by obtaining the function Φ : (k, ℓ) 7→ (α, β).

2. Connect the symmetry represented by (α, β) to the existence of bifurcating solutions on the

basis of the equivariant branching lemma.
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irred. rep.

(k, ℓ) →(Φ)→ symmetry

(α, β) →(Eq. Br. Lemma)→ bifurcating

solution

Figure 3.11: Two stages of bifurcation analysis at a critical point of multiplicity 8.

Proposition 3.16 below is a preview of a major result (Proposition 3.24) in a simplified form.

For classification of bifurcation into several cases, we consider the condition

GCD-div: 2 gcd(k̂, ℓ̂) is not divisible by gcd(k̂2
+ ℓ̂2, n̂), (3.163)

and the negation of this condition is referred to as GCD-div. The set of even integers is denoted

by 2Z below.

Proposition 3.16. For a critical point of multiplicity 8, let (8; k, ℓ) be the associated irreducible

representation and (α, β) = Φ(k, ℓ, n). The bifurcation at this point is classified as follows.

Case 1: GCD-div and gcd(k̂ − ℓ̂, n̂) < 2Z: A bifurcating solution with symmetry Σ(n̂, 0) exists.

This solution is of type V.

Case 2: GCD-div and gcd(k̂ − ℓ̂, n̂) ∈ 2Z: A bifurcating solution with symmetry Σ(n̂/2, n̂/2)
exists. This solution is of type M.

Case 3: GCD-div and gcd(k̂ − ℓ̂, n̂) < 2Z: Bifurcating solutions with symmetries Σ(n̂, 0),
Σ0(α, β), and Σ0(β, α) exist.11 The first solution is of type V, and the other two solutions are of

type T.

Case 4: GCD-div and gcd(k̂ − ℓ̂, n̂) ∈ 2Z: Bifurcating solutions with symmetries Σ(n̂/2, n̂/2),
Σ0(α, β), and Σ0(β, α) exist. The first solution is of type M, and the other two solutions are of type T.

The classification criteria for the above four cases become more transparent when expressed in

terms of (α, β) (= Φ(k, ℓ, n)) rather than (k, ℓ). The expressions in terms of (α, β) can be obtained

from Proposition 3.17 below, where

α̂ =
α

gcd(α, β), β̂ =
β

gcd(α, β), (3.164)

D̂ = α̂2
+ β̂2

=

D(α, β)
(gcd(α, β))2

. (3.165)

It is noted in passing that an alternative expression

D̂ = gcd(k̂2
+ ℓ̂2, n̂) (3.166)

results from (3.161), (3.162), and (3.165).

Proposition 3.17. Let (α, β) = Φ(k, ℓ, n).
(i) gcd(k̂ − ℓ̂, n̂) ∈ 2Z ⇐⇒ D̂ ∈ 2Z.

(ii) GCD-div in (3.163) ⇐⇒ β = 0 or α = β.

10 In an analogy with physics we may compare (k, ℓ) to frequency and (α, β) to wave length.
11 To be precise, Σ0(β, α) should be denoted as Σ0(α′, β′) with (α′, β′) in (3.174), which lies in the parameter space

of (3.95).
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Table 3.15: The classification of bifurcation at a critical point associated with (8; k, ℓ) with (α, β) = Φ(k, ℓ, n).

gcd(k̂ − ℓ̂, n̂) < 2Z gcd(k̂ − ℓ̂, n̂) ∈ 2Z

D̂ < 2Z D̂ ∈ 2Z

GCD-div Case 1: Case 2:

β = 0 or α = β type V type M

GCD-div Case 3: Case 4:

β , 0 and α , β type V and type T type M and type T

Table 3.16: Bifurcation at a critical point associated with (8; k, ℓ) classified in terms of the subgroup Σ0(α, β) for

(α, β) = Φ(k, ℓ, n).

Σ0(α, β) ∩ Σ0(β, α) Σ0(α, β) ∩ Σ0(β, α)
= Σ0(α′′, 0) = Σ0(β′′, β′′)

Σ0(α, β) = Σ0(β, α) Case 1: Case 2:

type V type M

Σ0(α, β) , Σ0(β, α) Case 3: Case 4:

type V and type T type M and type T

Proof. The proof is given in Appendix A.4; see Proposition A.7(i) and Proposition A.12. It is

mentioned here that the proof of the equivalence in (ii) relies on the Smith normal form for integer

matrices and the integer analogue of the Farkas lemma. □

Propositions 3.16 and 3.17 together yield Table 3.15 that summarizes the classification of

bifurcation phenomena into the four cases in terms of both (k, ℓ) and (α, β).
An important observation here is that the classification into the four cases in Proposition 3.16,

as well as in Table 3.15, can also be described in terms of the subgroup Σ0(α, β). The following

proposition shows how the conditions “β = 0 or α = β” and “D̂ ∈ 2Z” can be replaced by

conditions for Σ0(α, β).

Proposition 3.18.

(i) Σ0(α, β) = Σ0(β, α) ⇐⇒ β = 0 or α = β.

(ii)

Σ0(α, β) ∩ Σ0(β, α) =
{
Σ0(α′′, 0) if D̂ < 2Z,

Σ0(β′′, β′′) if D̂ ∈ 2Z
(3.167)

with

α′′ =
D(α, β)

gcd(α, β), β′′ =
D(α, β)

2 gcd(α, β) . (3.168)

Proof. (i) This is obvious from the definition of Σ0(α, β) in (3.98).

(ii) The proof is given in Proposition A.4 in Appendix A.4. □
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By Proposition 3.18 above, we can rewrite Table 3.15 as Table 3.16. In particular, solutions

of type T exist if and only if Σ0(α, β) is asymmetric in the sense of Σ0(α, β) , Σ0(β, α). Not

only is this statement intuitively appealing, but it plays a crucial role in our technical arguments in

Appendix A.4.

Remark 3.6. Some comments are in order about (3.167) in each case corresponding to type V,

type M, or type T.

• If β = 0, we have D̂ = 1 and α′′ = D(α, 0)/gcd(α, 0) = α2/α = α.

• If α = β, we have D̂ = 2 and β′′ = D(β, β)/(2 gcd(β, β)) = (2β2)/(2β) = β.

• For (α, β) with 1 ≤ β < α, we have D̂ = 5, 10, 13, 17, 20, and so on, some of which satisfy

D̂ ∈ 2Z, while others do not.

It should be also mentioned that the identity (3.167) is purely geometric in that it is valid for all

(α, β) that may or may not be related to irreducible representation (8; k, ℓ). If (α, β) is associated

with (8; k, ℓ), we have α′′ = n̂ and β′′ = n̂/2 by (3.161) and (3.168), respectively.

□

Isotropy Subgroups

To apply the method of analysis described in Section 3.5.2, we identify isotropy subgroups for

(8; k, ℓ) related to square patterns.

We denote the fixed-point subspace of Σ in terms of z = (z1, . . . , z4) as

Fix(8;k,ℓ)(Σ) = {z | T (8;k,ℓ)(g) · z = z for all g ∈ Σ}, (3.169)

where T (8;k,ℓ)(g) · z means the action of g ∈ G = D4 ⋉ (Zn × Zn) on z given in (3.155) and (3.156).

Also recall from (3.157) the notation Σ(8;k,ℓ)(z) for the isotropy subgroup of z.

The symmetries of ⟨r⟩ and ⟨r, s⟩ are dealt with in Proposition 3.19 below, and the translational

symmetry p1
ap2

b is considered thereafter. Remark 3.10 below should be consulted with regard to

the geometrical interpretation of the following discussion.

Proposition 3.19.

(i) Fix(8;k,ℓ)(⟨r⟩) = {c(1, 1, 0, 0) + c′(0, 0, 1, 1) | c, c′ ∈ R}.
(ii) Fix(8;k,ℓ)(⟨r, s⟩) = {c(1, 1, 1, 1) | c ∈ R}.

Proof. (i) By (3.155), z is invariant to r if and only if (z2, z1, z4, z3) = (z1, z2, z3, z4), which is

equivalent to z1 = z2 ∈ R and z3 = z4 ∈ R.

(ii) By (3.155), z is invariant to s if and only if (z3, z4, z1, z2) = (z1, z2, z3, z4), which is equivalent

to z1 = z3 and z2 = z4. Hence z is invariant to both r and s if and only if z1 = z2 = z3 = z4 ∈ R. □

The above proposition implies that any isotropy subgroup Σ containing ⟨r⟩, which is of our

interest, can be represented as Σ = Σ(8;k,ℓ)(z) for some vector z of the form

z = c(1, 1, 0, 0) + c′(0, 0, 1, 1), c, c′ ∈ R, (3.170)

and that dim Fix(8;k,ℓ)(Σ) ≤ 2.

We now turn to the invariance to the translational symmetry p1
ap2

b.
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Proposition 3.20.

(i) p1
ap2

b ∈ Σ(8;k,ℓ)((1, 1, 0, 0)) if and only if

k̂a + ℓ̂b ≡ 0, ℓ̂a − k̂b ≡ 0 mod n̂. (3.171)

(ii) p1
ap2

b ∈ Σ(8;k,ℓ)((0, 0, 1, 1)) if and only if

k̂a − ℓ̂b ≡ 0, ℓ̂a + k̂b ≡ 0 mod n̂. (3.172)

Proof. (i) By (3.156), the invariance of z = (1, 1, 0, 0) to p1
ap2

b is expressed as

ka + ℓb ≡ 0, ℓa − kb ≡ 0 mod n,

which is equivalent to (3.171) with the notations in (3.160).

(ii) By (3.156) the invariance of z = (0, 0, 1, 1) to p1
ap2

b is expressed as

ka − ℓb ≡ 0, ℓa + kb ≡ 0 mod n,

which is equivalent to (3.172). □

The isotropy subgroup of z = c(1, 1, 0, 0) + c′(0, 0, 1, 1) of the form of (3.170) is identified in

the following two propositions: the case with cc′ = 0 in Proposition 3.21 and the case with cc′ , 0

in Proposition 3.22.

Proposition 3.21.

(i) For each (k, ℓ), we have

Σ
(8;k,ℓ)((1, 1, 0, 0)) = Σ0(α, β) (3.173)

for a uniquely determined (α, β) with 0 ≤ β < n, 0 < α ≤ n.

(ii) For the (α, β) associated with (k, ℓ) as in (i) above, define

(α′, β′) =
{
(β, α) if β > 0,

(α, 0) if β = 0.
(3.174)

Then we have

Σ
(8;k,ℓ)((0, 0, 1, 1)) = Σ0(α′, β′). (3.175)

Proof. (i) By (3.155), Σ(8;k,ℓ)((1, 1, 0, 0)) contains r and not s. To investigate the translation

symmetry, denote by A(k, ℓ, n) the set of all (a, b) satisfying (3.171). That is,

A(k, ℓ, n) = {(a, b) ∈ Z2 | k̂a + ℓ̂b ≡ 0, ℓ̂a − k̂b ≡ 0 mod n̂}. (3.176)

Then A(k, ℓ, n) is closed under integer combination, i.e., if (a1, b1), (a2, b2) ∈ A(k, ℓ, n), then

n1(a1, b1) + n2(a2, b2) ∈ A(k, ℓ, n) for any n1, n2 ∈ Z. Next, if (a, b) ∈ A(k, ℓ, n), then (a′, b′) =
(−b, a) also belongs to A(k, ℓ, n) since

k̂a′ + ℓ̂b′ = k̂(−b) + ℓ̂a = ℓ̂a − k̂b ≡ 0 mod n̂,

ℓ̂a′ − k̂b′ = ℓ̂(−b) − k̂a = −(k̂a + ℓ̂b) ≡ 0 mod n̂.
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The above argument shows that A(k, ℓ, n) coincides with a set of the form

L(α, β) = {(a, b) ∈ Z2 | (a, b) = n1(α, β) + n2(−β, α), n1, n2 ∈ Z} (3.177)

for some appropriately chosen integers α and β. For such (α, β) we have

Σ
(8;k,ℓ)((1, 1, 0, 0)) = ⟨r⟩ ⋉ ⟨p1

αp2
β, p1

−βp2
α⟩ = Σ0(α, β).

To see the uniqueness of (α, β) we note the obvious correspondence between L(α, β) and the

square sublatticeH(α, β) in (3.4). By Proposition 3.1,H(α, β) is uniquely parameterized by (α, β)
with 0 ≤ β < α. Furthermore, we have α ≤ n as a consequence of the fact that L(α, β) contains

no point (a, b) of the form of (a, b) = x(α, β) + y(−β, α) with 0 < x < 1 and 0 < y < 1, which lies

in the interior of the parallelogram formed by its basis vectors (α, β) and (−β, α). To prove this by

contradiction, suppose that α > n and consider the point (a, b) = (α − n, β). This point belongs to

L(α, β), satisfying the defining conditions in of A(k, ℓ, n) in (3.176), whereas the corresponding

(x, y) satisfies 0 < x < 1 and 0 < y < 1, which is a contradiction.

(ii) Since

(0, 0, 1, 1) = T (8;k,ℓ)(s) · (1, 1, 0, 0),
it follows using the relation for the orbit Σ(T(g)u) = g · Σ(u) · g−1 (g ∈ G), (3.173), (3.32), and

(3.174) in this order that

Σ
(8;k,ℓ)((0, 0, 1, 1)) = s · Σ(8;k,ℓ)((1, 1, 0, 0)) · s−1

= s · Σ0(α, β) · s−1
= Σ0(β, α) = Σ0(α′, β′).

□

We denote the correspondence (k, ℓ) 7→ (α, β) = (α(k, ℓ, n), β(k, ℓ, n)) defined by (3.173) in

Proposition 3.21 as

Φ(k, ℓ, n) = (α, β). (3.178)

Remark 3.7. A preliminary explanation is presented here about how the value of (α, β) = Φ(k, ℓ, n)
can be determined, whereas a systematic method is given in Appendix A.3.

The condition for (a, b) ∈ A(k, ℓ, n) in (3.176) is equivalent to the existence of integers p and

q satisfying [
k̂ ℓ̂

ℓ̂ −k̂

] [
a

b

]
= n̂

[
p

q

]
. (3.179)

Hence a pair of integers (a, b) belongs to A(k, ℓ, n) if and only if

[
a

b

]
= n̂

[
k̂ ℓ̂

ℓ̂ −k̂

]−1 [
p

q

]
=

n̂

k̂2
+ ℓ̂2

[
k̂ ℓ̂

ℓ̂ −k̂

] [
p

q

]
(3.180)

for some integers p and q. There are two cases to consider.
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• If n̂/(k̂2
+ ℓ̂2) is an integer, a simpler method works. In this case, the right-hand side of

(3.180) gives a pair of integers for any integers p and q. Therefore, we set (p, q) = (1, 0) to

obtain an integer vector [
α

β

]
=

n̂

k̂2
+ ℓ̂2

[
k̂

ℓ̂

]
(3.181)

and note that the vectors (a, b)⊤ of integers satisfying (3.179) form a lattice spanned by

(α, β)⊤ and (β,−α)⊤. For (k, ℓ, n) = (3, 1, 20), for example, we have (k̂, ℓ̂, n̂) = (3, 1, 20) and

n̂/(k̂2
+ ℓ̂2) = 20/10 = 2, and hence (3.180) reads[

a

b

]
= 2

[
3 1

1 −3

] [
p

q

]
.

This shows Φ(3, 1, 20) = (α, β) = (6, 2), corresponding to (p, q) = (1, 0).

• If n̂/(k̂2
+ ℓ̂2) is not an integer, number-theoretic considerations are needed to determine

(α, β) = Φ(k, ℓ, n). For (k, ℓ, n) = (18, 2, 42), for instance, we have (k̂, ℓ̂, n̂) = (9, 1, 21) and

k̂2
+ ℓ̂2
= 82, and (3.180) reads [

a

b

]
=

21

82

[
9 1

1 −9

] [
p

q

]
.

With some inspection we could arrive at Φ(18, 2, 42) = (α, β) = (21, 0), which corresponds

to (p, q) = (9, 1). A systematic procedure based on the Smith normal form is given in

Appendix A.3.

□

Remark 3.8. In the following arguments we shall make use of Propositions 3.15, 3.17, and 3.18

presented in Section 3.5.6. The readers may take these propositions for granted in the first reading,

but those who are interested in mathematical issues are advised to have a look at their proofs given

in Appendix A.4.

□

Proposition 3.22. Let (α, β) = Φ(k, ℓ, n), and define

α′′ =
D(α, β)

gcd(α, β), β′′ =
D(α, β)

2 gcd(α, β) . (3.182)

For distinct nonzero real numbers c and c′ (c , c′), we have the following statements:

(i)

Σ
(8;k,ℓ)((c, c, c, c)) =

{
Σ(α′′, 0) if D̂ < 2Z,

Σ(β′′, β′′) if D̂ ∈ 2Z,

where D̂ is defined in (3.165) and D̂ ∈ 2Z means that D̂ is even.

(ii)

Σ
(8;k,ℓ)((c, c, c′, c′)) =

{
Σ0(α′′, 0) if D̂ < 2Z,

Σ0(β′′, β′′) if D̂ ∈ 2Z.
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Proof. We first prove (ii). By (3.155), Σ(8;k,ℓ)((c, c, c′, c′)) contains r and not s. We have

Σ
(8;k,ℓ)((c, c, c′, c′)) = Σ(8;k,ℓ)((1, 1, 0, 0)) ∩ Σ(8;k,ℓ)((0, 0, 1, 1))

= Σ0(α, β) ∩ Σ0(α′, β′),

where the second equality is due to Proposition 3.21. Then the claim follows from Proposi-

tion 3.18(ii).

Next we prove (i). By (3.155), Σ(8;k,ℓ)((c, c, c, c)) contains both r and s. We can proceed in a

similar manner as above while including the element s. Therefore

Σ
(8;k,ℓ)((c, c, c, c)) = Σ(α, β) ∩ Σ(α′, β′),

which implies the claim. □

In Proposition 3.23, we can present the isotropy subgroups containing ⟨r⟩, with a classification

of the irreducible representations (8; k, ℓ) in terms of (α, β) = Φ(k, ℓ, n). See Fig. 3.12 for the

classification.

Proposition 3.23. For an irreducible representation (8; k, ℓ), let (α, β) = Φ(k, ℓ, n), and define

(α′, β′), α′′ and β′′ by (3.174) and (3.182), respectively. Then the isotropy subgroups containing

⟨r⟩ are given by Σ listed below.

Case 1: (α, β) = (α, 0) with 1 ≤ α ≤ n.




(a) Σ = Σ(α, 0) = Σ(8;k,ℓ)((1, 1, 1, 1)),
Fix(8;k,ℓ)(Σ) = {(c, c, c, c) | c ∈ R}, dim Fix(8;k,ℓ)(Σ) = 1.

(b) Σ = Σ0(α, 0) = Σ(8;k,ℓ)((c, c, c′, c′)) (c , c′, c , 0, c′ , 0),
Fix(8;k,ℓ)(Σ) = {(c, c, c′, c′) | c, c′ ∈ R}, dim Fix(8;k,ℓ)(Σ) = 2.

Case 2: (α, β) = (β, β) with 1 ≤ β ≤ n/2.




(a) Σ = Σ(β, β) = Σ(8;k,ℓ)((1, 1, 1, 1)),
Fix(8;k,ℓ)(Σ) = {(c, c, c, c) | c ∈ R}, dim Fix(8;k,ℓ)(Σ) = 1.

(b) Σ = Σ0(β, β) = Σ(8;k,ℓ)((c, c, c′, c′)) (c , c′, c , 0, c′ , 0),
Fix(8;k,ℓ)(Σ) = {(c, c, c′, c′) | c, c′ ∈ R}, dim Fix(8;k,ℓ)(Σ) = 2.

Case 3: (α, β) with 1 ≤ α ≤ n − 1, 1 ≤ β ≤ n − 1, α , β, and D̂ < 2Z.




(a) Σ = Σ(α′′, 0) = Σ(8;k,ℓ)((1, 1, 1, 1)),
Fix(8;k,ℓ)(Σ) = {(c, c, c, c) | c ∈ R}, dim Fix(8;k,ℓ)(Σ) = 1.

(b) Σ = Σ0(α, β) = Σ(8;k,ℓ)((1, 1, 0, 0)),
Fix(8;k,ℓ)(Σ) = {(c, c, 0, 0) | c ∈ R}, dim Fix(8;k,ℓ)(Σ) = 1.

(c) Σ = Σ0(α′, β′) = Σ(8;k,ℓ)((0, 0, 1, 1)),
Fix(8;k,ℓ)(Σ) = {(0, 0, c′, c′) | c′ ∈ R}, dim Fix(8;k,ℓ)(Σ) = 1.

(d) Σ = Σ0(α′′, 0) = Σ(8;k,ℓ)((c, c, c′, c′)) (c , c′, c , 0, c′ , 0),
Fix(8;k,ℓ)(Σ) = {(c, c, c′, c′) | c, c′ ∈ R}, dim Fix(8;k,ℓ)(Σ) = 2.
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A general result

Case 1. (α, β) = (α, 0)
dim FixΣ(α, 0) = 1: type V, z = (1, 1, 1, 1)

dim FixΣ0(α, 0) = 2: non-targeted

Case 2. (α, β) = (β, β)
dim FixΣ(β, β) = 1: type M, z = (1, 1, 1, 1)

dim FixΣ0(β, β) = 2: non-targeted

Case 3. (α, β) : α , β,

1 ≤ α ≤ n − 1, 1 ≤ β ≤ n − 1, D̂ < 2Z

dim FixΣ(α′′, 0) = 1: type V, z = (1, 1, 1, 1)

dim FixΣ0(α, β) = 1: type T, z = (1, 1, 0, 0)

dim FixΣ0(α′, β′) = 1: type T, z = (0, 0, 1, 1)

dim FixΣ0(α′′, 0) = 2: non-targeted

Case 4. (α, β) : α , β,

1 ≤ α ≤ n − 1, 1 ≤ β ≤ n − 1, D̂ ∈ 2Z

dim FixΣ(β′′, β′′) = 1: type M, z = (1, 1, 1, 1)

dim FixΣ0(α, β) = 1: type T, z = (1, 1, 0, 0)

dim FixΣ0(α′, β′) = 1: type T, z = (0, 0, 1, 1)

dim FixΣ0(β′′, β′′) = 2: non-targeted

Figure 3.12: Isotropy subgroups for (8; k, ℓ) with (α, β) = Φ(k, ℓ, n), (α′, β′) in (3.174), and (α′′, β′′) in (3.182).
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Case 4: (α, β) with 1 ≤ α ≤ n − 1, 1 ≤ β ≤ n − 1, α , β, and D̂ ∈ 2Z.




(a) Σ = Σ(β′′, β′′) = Σ(8;k,ℓ)((1, 1, 1, 1)),
Fix(8;k,ℓ)(Σ) = {(c, c, c, c) | c ∈ R}, dim Fix(8;k,ℓ)(Σ) = 1.

(b) Σ = Σ0(α, β) = Σ(8;k,ℓ)((1, 1, 0, 0)),
Fix(8;k,ℓ)(Σ) = {(c, c, 0, 0) | c ∈ R}, dim Fix(8;k,ℓ)(Σ) = 1.

(c) Σ = Σ0(α′, β′) = Σ(8;k,ℓ)((0, 0, 1, 1)),
Fix(8;k,ℓ)(Σ) = {(0, 0, c′, c′) | c′ ∈ R}, dim Fix(8;k,ℓ)(Σ) = 1.

(d) Σ = Σ0(β′′, β′′) = Σ(8;k,ℓ)((c, c, c′, c′)) (c , c′, c , 0, c′ , 0),
Fix(8;k,ℓ)(Σ) = {(c, c, c′, c′) | c, c′ ∈ R}, dim Fix(8;k,ℓ)(Σ) = 2.

Proof. With an observation that Σ0(α, β) , Σ0(α′, β′) in Cases 3 and 4, the above classification

follows immediately from Propositions 3.21 and 3.22. □

Remark 3.9. In Case 1 of Proposition 3.23, we may have α = n, in which case Σ(α, 0) = Σ(0, 0) =
⟨r, s⟩ and Σ0(α, 0) = Σ0(0, 0) = ⟨r⟩, and the translational symmetry is absent.

□

Remark 3.10. The isotropy subgroups in Proposition 3.23 can be understood quite naturally with

reference to the column vectors of the matrix

Q(8;k,ℓ)
= [q1, . . . , q8]

given in (3.88). The spatial patterns for these vectors are depicted in Fig. 3.13, for example,

for (8; 2, 1) with n = 5. Although the four vectors q1, q3, q5, and q7 do not represent square

patterns (Figs. 3.13(a)–(f)), the sum of these four vectors, which is associated with z = (1, 1, 1, 1)
(w = (1, 0, 1, 0, 1, 0, 1, 0)⊤), represents a square pattern of type V with D = 25 (Fig. 3.13(g)).

Moreover, the sum q1 + q3, which is associated with z = (1, 1, 0, 0), represents square pattern of

type T with D = 5 (Fig. 3.13(e)). On the other hand, the pattern in Fig. 3.13(f), which is associated

with z = (0, 0, 1, 1), represents another square pattern of type T with D = 5.

□

Existence of Square Patterns

A combination of Proposition 3.23 with the equivariant branching lemma (Section 3.5.2) shows

the existence of solutions with the targeted symmetry bifurcating from a critical point associated

with (8; k, ℓ).
Bifurcating solutions can be classified in accordance with number-theoretic properties of (k, ℓ).

To be specific, it depends on the following two properties:

2 gcd(k̂, ℓ̂) is divisible by gcd(k̂2
+ ℓ̂2, n̂), (3.183)

gcd(k̂ − ℓ̂, n̂) ∈ 2Z. (3.184)

We refer to the condition (3.183) as GCD-div and its negation as GCD-div. It should be mentioned

that a simplified version of the following proposition has already been presented as Proposition 3.16

in Section 3.5.6. See also Table 3.15.
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(a) q1 (b) q3 (c) q5 (d) q7

(⟨p1
2p2, p1

−1p2
2⟩) (⟨p1

2p2, p1
−1p2

2⟩) (⟨p1p2
2, p1

−2p2⟩) (⟨p1p2
2, p1

−2p2⟩)

(e) q1 + q3 (f) q5 + q7 (g)
∑

i=1,3,5,7 qi
(Σ0(2, 1) = ⟨r, p1

2p2, p1
−1p2

2⟩) (Σ0(1, 2) = ⟨r, p1p2
2, p1

−2p2⟩) (D4 = ⟨r, s⟩)

Figure 3.13: Patterns on the 5 × 5 square lattice expressed by the column vectors of Q(8;2,1). A black circle denotes a

positive component, and a white circle denotes a negative component.

Proposition 3.24. From a critical point associated with the irreducible representation (8; k, ℓ),
solutions with the following symmetries emerge as bifurcating solutions, where (α, β) = Φ(k, ℓ, n)
and (α′, β′) is defined in (3.174). We have four cases.

Case 1: GCD-div and gcd(k̂ − ℓ̂, n̂) < 2Z: We have Φ(k, ℓ, n) = (α, β) = (n̂, 0). A bifurcating

solution with symmetry Σ(n̂, 0), which corresponds to z(1) = c(1, 1, 1, 1), exists. This solution is of

type V.

Case 2: GCD-div and gcd(k̂ − ℓ̂, n̂) ∈ 2Z: We have Φ(k, ℓ, n) = (α, β) = (n̂/2, n̂/2). A

bifurcating solution with symmetry Σ(n̂/2, n̂/2), corresponding to z(1) = c(1, 1, 1, 1), exists. This

solution is of type M.

Case 3: GCD-div and gcd(k̂ − ℓ̂, n̂) < 2Z: We have Φ(k, ℓ, n) = (α, β) with 1 ≤ α ≤
n − 1, 1 ≤ β ≤ n − 1, α , β, and D̂ < 2Z. Bifurcating solutions with symmetries Σ(n̂, 0), Σ0(α, β),
and Σ0(α′, β′), corresponding to z(1) = c(1, 1, 1, 1), z(2) = c(1, 1, 0, 0), and z(3) = c(0, 0, 1, 1),
respectively, exist. The first solution is of type V, and the other two solutions are of type T.

Case 4: GCD-div and gcd(k̂ − ℓ̂, n̂) ∈ 2Z: We haveΦ(k, ℓ, n) = (α, β) with 1 ≤ α ≤ n−1, 1 ≤
β ≤ n − 1, α , β, and D̂ ∈ 2Z. Bifurcating solutions with symmetries Σ(n̂/2, n̂/2), Σ0(α, β),
and Σ0(α′, β′), corresponding to z(1) = c(1, 1, 1, 1), z(2) = c(1, 1, 0, 0), and z(3) = c(0, 0, 1, 1),
respectively, exist. The first solution is of type M, and the other two solutions are of type T.

Proof. By Proposition 3.17, as well as Remark 3.6 in Section 3.5.6, the above four cases correspond

to those in Proposition 3.23. In all cases, the relevant subgroup Σ is an isotropy subgroup with

dim Fix(8;k,ℓ)(Σ) = 1 by Proposition 3.23. Then the equivariant branching lemma (Section 3.5.2)

guarantees the existence of a bifurcating solution with symmetry Σ. □
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Remark 3.11. The subgroup Σ = Σ0(α, 0), Σ0(β, β), Σ0(n̂, 0) or Σ0(n̂/2, n̂/2) appearing in Propo-

sition 3.23 is an isotropy subgroup with dim Fix(8;k,ℓ)(Σ) = 2, for which the equivariant branching

lemma is not effective. It is emphasized that Proposition 3.24 does not assert the nonexistence of

solutions of these symmetries. Nonetheless, we do not have to deal with these subgroups since

none of these symmetries corresponds to square patterns (see (3.98)).

□

Square Patterns of Type V

Square patterns of type V (with D ≥ 25) are predicted to branch from critical points of

multiplicity 8, whereas smaller square patterns of type V with D = 4, 9, 16 do not exist. Recall that

a square pattern of type V is characterized by the symmetry of Σ(α, 0) with 2 ≤ α ≤ n (see (3.98))

and that D(α, 0) = α2.

The following propositions show such nonexistence and existence of square patterns of type V.

Proposition 3.25. Square patterns of type V with D = 4, 9, 16 do not arise as bifurcating solutions

from critical points of multiplicity 8 for any n.

Proof. The proof is given at the end of the proof of Proposition 3.26. □

Proposition 3.26. Square patterns of type V with the symmetry of Σ(α, 0) (5 ≤ α ≤ n) arise as

bifurcating solutions from critical points of multiplicity 8 for specific values of n and irreducible

representations given by

(α, β) D n (k, ℓ) in (8; k, ℓ)
(α, 0) α2 αm ((p + q)m, qm) (3.185)

with m ≥ 1 and
p ≥ 1, q ≥ 1, gcd(p, q, α) = 1, gcd(p, α) < 2Z,{

2(p + q + 1) ≤ α n is even, and m = 1,

2(p + q) + 1 ≤ α otherwise.

(3.186)

Proof. Type V occurs in Case 1 and Case 3 in Proposition 3.24, characterized by the condition

of gcd(k̂ − ℓ̂, n̂) < 2Z. Put k̂ = p + q and ℓ̂ = q for some p, q ∈ Z and note n̂ = α. Since

gcd(k̂ − ℓ̂, n̂) = gcd(p, α), the condition gcd(k̂ − ℓ̂, n̂) < 2Z holds if and only if gcd(p, α) < 2Z. We

have (k, ℓ, n) = ((p + q)m, qm, αm) for m = gcd(k, ℓ, n). Here we must have

1 = gcd(k̂, ℓ̂, n̂) = gcd(p + q, q, α) = gcd(p, q, α).

The inequality constraint in (3.150) is translated as

1 ≤ ℓ ≤ k − 1, 2 ≤ k ≤
⌊
n − 1

2

⌋
⇐⇒

p ≥ 1, q ≥ 1,

{
2(p + q + 1) ≤ α if n is even and m = 1,

2(p + q) + 1 ≤ α otherwise.

Proposition 3.26 is thus obtained.

To prove Proposition 3.25, we note that, for α = 2, 3, 4, no (p, q) satisfies (3.186), which proves

the nonexistence of the smaller square patterns claimed in Proposition 3.25. □
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Table 3.17: Correspondence of irreducible representation (8; k, ℓ) to (α, β) for square patterns of type V.

(α, β) D n (k, ℓ) in (8; k, ℓ)
(5, 0) 25 5m (2m,m)∗
(6, 0) 36 6m (2m,m)
(7, 0) 49 7m (2m,m), (3m,m), (3m, 2m)
(8, 0) 64 8m (2m,m), (3m, 2m)
(9, 0) 81 9m (2m,m), (3m,m), (3m, 2m), (4m,m), (4m, 2m), (4m, 3m)
(10, 0) 100 10m (2m,m)∗, (3m, 2m), (4m,m), (4m, 3m)∗
(11, 0) 121 11m (2m,m), (3m,m), (3m, 2m), (4m,m), (4m, 2m), (4m, 3m),

(5m,m), (5m, 2m), (5m, 3m), (5m, 4m)
(12, 0) 144 12m (2m,m), (3m, 2m), (4m,m), (4m, 3m), (5m, 2m), (5m, 4m)
m = 1, 2, . . . ; (·)∗ indicates coexistence of type T (Case 3)

Example 3.5. The parameter values of (3.185) in Proposition 3.26 give Table 3.17. The asterisk

(·)∗ indicates coexistence of type T (see (3.189)), i.e., Case 3 of Proposition 3.24, whereas unmarked

cases correspond to Case 1 of Proposition 3.24, where no solution of type T coexists.

□

Remark 3.12. In all cases in (3.185), the compatibility condition (3.100) is satisfied for Σ(α, 0) as

n = mα with m = gcd(k, ℓ, n), since we have

gcd(k, ℓ, n) = ((p + q)m, qm, αm) = m gcd(p + q, q, α) = m gcd(p, q, α) = m

by (3.185) and (3.186).

□

Square Patterns of Type M

Larger square patterns of type M (with D ≥ 32) are predicted to branch from critical points of

multiplicity 8, whereas smaller square patterns of type M with D = 2, 8, 18 do not exist. Recall

that a square pattern of type M is characterized by the symmetry of Σ(β, β) with 1 ≤ β ≤ n/2 (see

(3.98)) and that D(β, β) = 2β2.

The following propositions show such nonexistence and existence of square patterns of type M.

Proposition 3.27. Square patterns of type M with D = 2, 8, 18 do not arise as bifurcating solutions

from critical points of multiplicity 8 for any n.

Proof. The proof is given at the end of the proof of Proposition 3.28. □

Proposition 3.28. Square patterns of type M with the symmetry of Σ(β, β) (4 ≤ β ≤ n/2) arise as

bifurcating solutions from critical points of multiplicity 8 for specific values of n and irreducible

representations given by

(α, β) D n (k, ℓ) in (8; k, ℓ)
(β, β) 2β2 2βm ((2p + q)m, qm) (3.187)
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Table 3.18: Correspondence of irreducible representation (8; k, ℓ) to (α, β) for square patterns of type M.

(α, β) D n (k, ℓ) in (8; k, ℓ)
(4, 4) 32 8m (3m,m)
(5, 5) 50 10m (3m,m)∗
(6, 6) 72 12m (3m,m), (5m,m), (5m, 3m)
(7, 7) 98 14m (3m,m), (5m,m), (5m, 3m)
(8, 8) 128 16m (3m,m), (5m,m), (5m, 3m), (7m,m), (7m, 3m), (7m, 5m)
(9, 9) 162 18m (3m,m), (5m,m), (5m, 3m), (7m,m), (7m, 3m), (7m, 5m)
(10, 10) 162 20m (3m,m)∗, (5m,m), (5m, 3m), (7m,m)∗, (7m, 3m), (7m, 5m),

(9m,m), (9m, 3m)∗, (9m, 5m), (9m, 7m)∗
(11, 11) 242 22m (3m,m), (5m,m), (5m, 3m), (7m,m), (7m, 3m), (7m, 5m),

(9m,m), (9m, 3m), (9m, 5m), (9m, 7m)
(12, 12) 288 24m (3m,m), (5m,m), (5m, 3m), (7m,m), (7m, 3m), (7m, 5m),

(9m,m), (9m, 5m), (9m, 7m), (11m,m), (11m, 3m), (11m, 5m),
(11m, 7m), (11m, 9m)

m = 1, 2, . . . ; (·)∗ indicates coexistence of type T (Case 3)

where m ≥ 1 and

p ≥ 1, q ≥ 1, 2p + q ≤ β − 1, q < 2Z, gcd(p, q, β) = 1. (3.188)

Proof. Type M occurs in Case 2 and Case 4 in Proposition 3.24, characterized by the condition of

gcd(k̂ − ℓ̂, n̂) ∈ 2Z. For k̂ − ℓ̂ ∈ 2Z to be true, we can put k̂ = 2p + q and ℓ̂ = q for some p, q ∈ Z.

Then (k, ℓ, n) = ((2p + q)m, qm, 2βm) for m = gcd(k, ℓ, n). Since

1 = gcd(k̂, ℓ̂, n̂) = gcd(2p + q, q, 2β) = gcd(2p, q, 2β),

we must have q < 2Z and gcd(p, q, β) = 1. The inequality constraint in (3.150) is translated as

1 ≤ ℓ ≤ k − 1, 2 ≤ k ≤
⌊
n − 1

2

⌋
⇐⇒ p ≥ 1, q ≥ 1, 2p + q ≤ β − 1.

Proposition 3.28 is thus proved.

Finally, for β = 1, 2, 3, no (p, q) satisfies (3.188), which proves the nonexistence of the smaller

square patterns claimed in Proposition 3.27. □

Example 3.6. The parameter values of (3.187) in Proposition 3.28 give Table 3.17. The asterisk

(·)∗ indicates the coexistence of type T (see (3.189)), i.e., Case 4 of Proposition 3.24. The other

(unmarked) cases correspond to Case 2 of Proposition 3.24, where no solution of type T coexists.

The coexistence of type T is a relatively rare event; it does not occur for n = 8m, 12m, 14m, but it

recurs for n = 10m.

□
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Remark 3.13. In all cases in (3.187), the compatibility condition (3.100) for Σ(β, β) is satisfied as

n = 2mβ with m = gcd(k, ℓ, n), since

gcd(k, ℓ, n) = gcd((2p + q)m, qm, 2βm) = m gcd(2p + q, q, 2β) = m gcd(2p, q, 2β) = m

by (3.187) and (3.188).

□

Square Patterns of Type T

Square patterns of type T are shown here to branch from critical points of multiplicity 8. Recall

that a square pattern of type T is characterized by the symmetry of Σ0(α, β) with 1 ≤ α ≤ n − 1,

1 ≤ β ≤ n − 1, and α , β (see (3.98)).

The following proposition is concerned with the five square patterns of type T with D = 5, 10,

13, 17 and 20 among ten smallest square patterns.

Proposition 3.29. Square patterns of type T with D = 5, 10, 13, 17, and 20 arise as bifurcating

solutions from critical points of multiplicity 8 for specific values of n and irreducible representations

given by

(α, β) D n (k, ℓ) in (8; k, ℓ)
z(2) = c(1, 1, 0, 0) z(3) = c(0, 0, 1, 1)

(2, 1) 5 5m (2m,m) none

(1, 2) none (2m,m)
(3, 1) 10 10m (3m,m) none

(1, 3) none (3m,m)
(3, 2) 13 13m (3m,m), (6m, 4m) (5m,m)
(2, 3) (5m,m) (3m,m), (6m, 4m)
(4, 1) 17 17m (4m,m), (7m, 6m), (8m, 2m) (5m, 3m)
(1, 4) (5m, 3m) (4m,m), (7m, 6m)(8m, 2m)
(4, 2) 20 20m (4m, 2m) (8m, 6m)
(2, 4) (8m, 6m) (4m, 2m)

(3.189)

where m ≥ 1 is an integer.

Proof. By Proposition 3.24 (Case 3 and 4), a bifurcating solution with symmetry Σ0(α, β) exists

for (k, ℓ) such thatΦ(k, ℓ, n) = (α, β), where the bifurcating solution corresponds to z = c(1, 1, 0, 0).
For such (k, ℓ), another bifurcating solution exists, which corresponds to z = c(0, 0, 1, 1) and is

endowed with the symmetry Σ0(α′, β′) for (α′, β′) given by (3.174). The list of parameters in

(3.189) is obtained by searching for such (k, ℓ) in the range of (3.150) using the method given in

Appendix A.3, which was previewed in Remark 3.7. Alternatively, we can search for such (k, ℓ) in
the range of (3.150) satisfying (3.171) for a given (a, b). □

For square patterns of type T, in general, the above statement extends as follows.
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Proposition 3.30. Assume 1 ≤ α ≤ n − 1, 1 ≤ β ≤ n − 1, and α , β for (α, β).
(i) Square patterns of type T with the symmetry of Σ0(α, β) arise as bifurcating solutions from

critical points of multiplicity 8 associated with the irreducible representation (8; k, ℓ) such that

Φ(k, ℓ, n) = (α, β) or (α′, β′), where (α′, β′) is defined by (3.174).

(ii) Some (k, ℓ, n) exist such that Φ(k, ℓ, n) = (α, β) or (α′, β′).
Proof. The proof is given in Appendix A.5. □

Square patterns of type T appear in Cases 3 and 4 in Proposition 3.24, and these two cases are

characterized by a single condition

GCD-div: 2 gcd(k̂, ℓ̂) is not divisible by gcd(k̂2
+ ℓ̂2, n̂). (3.190)

This observation yields the following statement:

Proposition 3.31. A bifurcating solution of type T exists if and only if GCD-div holds.

In addition, we have the following statement for some concrete cases.

Proposition 3.32. A bifurcating solution of type T does not exist for the cases (n̂, k̂, ℓ̂) = (4k̂, k̂, ℓ̂),
(4ℓ̂, k̂, ℓ̂), and (2k̂ + 2ℓ̂, k̂, ℓ̂).
Proof. The proof is given in Appendix A.5. □

Remark 3.14. The compatibility condition (3.100) for Σ0(α, β) is satisfied as

n = m
D(α, β)

gcd(α, β)
with m = gcd(k, ℓ, n) by (3.161) with (3.160).

□

Possible Square patterns for Several Lattice Sizes

In the previous subsections, we have investigated possible occurrences of square patterns for

each of the three types V, M, and T and have enumerated all possible combinations of lattice size

n and irreducible representation (8; k, ℓ) that can potentially engender square patterns. Compiling

these results, we can capture, for each n, all square patterns that can potentially arise from critical

points of multiplicity 8. The results are given in Tables 3.19 and 3.20 for several lattice sizes. The

results are also incorporated in Table 3.8. Recall from Proposition 3.24 that bifurcating square

patterns are associated with

z =




z(1) = c(1, 1, 1, 1) for type V or type M,

z(2) = c(1, 1, 0, 0) for type T,

z(3) = c(0, 0, 1, 1) for type T.

For n = 5, square patterns of type T exist for the irreducible representation (8; k, ℓ) = (8; 2, 1)
with Σ0(α, β) = Σ0(2, 1) and Σ0(1, 2). For a composite number n = 20 with several divisors, square

patterns of various kinds exist. Subgroups of D4 ⋉ (Zn × Zn) expressing square patterns satisfy the

inclusion relations given below.
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Table 3.19: Square patterns of types V, M, and T arising from critical points of multiplicity 8 for the n × n square

lattices with n = 5, 6, 10, 13, 17, 18 (D̂ is defined in (3.165)).

n (k, ℓ) in (8; k, ℓ) n̂ z (α, β) D D̂ Type

5 (2, 1) 5 z(1) (5, 0) 25 1 V

5 z(2) (2, 1) 5 5 T

5 z(3) (1, 2) 5 5 T

6 (2, 1) 6 z(1) (6, 0) 36 1 V

10 (4, 2) 5 z(1) (5, 0) 25 1 V

z(2) (2, 1) 5 5 T

z(3) (1, 2) 5 5 T

(3, 1) 10 z(1) (5, 5) 50 2 M

z(2) (3, 1) 10 10 T

z(3) (1, 3) 10 10 T

(2, 1) 10 z(1) (10, 0) 100 1 V

z(2) (4, 2) 20 20 T

z(3) (2, 4) 20 20 T

(4, 3) 10 z(1) (10, 0) 100 1 V

z(2) (2, 4) 20 20 T

z(3) (4, 2) 20 20 T

(3, 2), (4, 1) 10 z(1) (10, 0) 100 1 V

13 (3, 2), (6, 4) 13 z(1) (13, 0) 169 1 V

z(2) (3, 2) 13 13 T

z(3) (2, 3) 13 13 T

(5, 1) 13 z(1) (13, 0) 169 1 V

z(2) (2, 3) 13 13 T

z(3) (3, 2) 13 13 T

other (k, ℓ)’s 13 z(1) (13, 0) 169 1 V

17 (4, 1), (7, 6), (8, 2) 17 z(1) (17, 0) 172 1 V

z(2) (4, 1) 17 17 T

z(3) (1, 4) 17 17 T

(5, 3) 17 z(1) (17, 0) 172 1 V

z(2) (1, 4) 17 17 T

z(3) (4, 1) 17 17 T

other (k, ℓ)’s 17 z(1) (17, 0) 172 1 V

18 (6, 3) 6 z(1) (6, 0) 36 1 V

(4, 2), (6, 2), (6, 4), (8, 2), (8, 4), (8, 6) 9 z(1) (9, 0) 81 1 V

(2, 1), (3, 2), (4, 1), (4, 3), (5, 2), (5, 4), (6, 1), (6, 5) 18 z(1) (18, 0) 182 1 V

(7, 2), (7, 4), (7, 6), (8, 1), (8, 3), (8, 5), (8, 7)
(3, 1), (5, 1), (5, 3), (7, 1), (7, 3), (7, 5) 18 z(1) (9, 9) 162 2 M

82



Table 3.20: Square patterns of types V, M, and T arising from critical points of multiplicity 8 for the n × n square

lattice with n = 20, 24 (D̂ is defined in (3.165)).

n (k, ℓ) in (8; k, ℓ) n̂ z (α, β) D D̂ Type

20 (8, 4) 5 z(1) (5, 0) 25 1 V

z(2) (2, 1) 5 5 T

z(3) (1, 2) 5 5 T

(6, 2) 10 z(1) (5, 5) 50 2 M

z(2) (3, 1) 10 10 T

z(3) (1, 3) 10 10 T

(4, 2) 10 z(1) (10, 0) 100 1 V

z(2) (4, 2) 20 20 T

z(3) (2, 4) 20 20 T

(8, 6) 10 z(1) (10, 0) 100 1 V

z(2) (2, 4) 20 20 T

z(3) (4, 2) 20 20 T

(3, 1), (9, 3) 20 z(1) (10, 10) 200 2 M

z(2) (6, 2) 40 40 T

z(3) (2, 6) 40 40 T

(7, 1), (9, 7) 20 z(1) (10, 10) 200 2 M

z(2) (2, 6) 40 40 T

z(3) (6, 2) 40 40 T

(4, 3), (7, 4), (8, 1), (9, 8) 20 z(1) (20, 0) 400 1 V

z(2) (8, 4) 80 80 T

z(3) (4, 8) 80 80 T

(2, 1), (6, 3), (7, 6), (9, 2) 20 z(1) (20, 0) 400 1 V

z(2) (4, 8) 80 80 T

z(3) (8, 4) 80 80 T

(6, 4), (8, 2) 10 z(1) (10, 0) 100 1 V

(3, 2), (4, 1), (5, 2), (5, 4), (6, 1), (6, 5) 20 z(1) (20, 0) 400 1 V

(7, 2), (8, 3), (8, 5), (8, 7), (9, 4), (9, 6)
(5, 1), (5, 3), (7, 3), (7, 5), (9, 1), (9, 5) 10 z(1) (10, 10) 200 2 M

24 (8, 4) 6 z(1) (6, 0) 36 1 V

(6, 3), (9, 6) 8 z(1) (8, 0) 64 1 V

(4, 2), (6, 4), (8, 2), (8, 6), (10, 4), (10, 8) 12 z(1) (12, 0) 144 1 V

(2, 1), (3, 2), (4, 1), (4, 3), (5, 2), (5, 4), (6, 1), (6, 5) 24 z(1) (24, 0) 242 1 V

(7, 2), (7, 4), (7, 6), (8, 1), (8, 3), (8, 5), (8, 7), (9, 2)
(9, 4), (9, 8), (10, 1), (10, 3), (10, 5), (10, 7), (10, 9)
(11, 2), (11, 4), (11, 6, (11, 8), (11, 10)
(9, 3) 8 z(1) (4, 4) 32 2 M

(6, 2), (10, 2), (10, 6) 12 z(1) (6, 6) 72 2 M

(3, 1), (5, 1), (5, 3), (7, 1), (7, 3), (7, 5), (9, 1) 24 z(1) (12, 12) 288 2 M

(9, 5), (9, 7), (11, 1), (11, 3), (11, 5), (11, 7), (11, 9)
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Table 3.21: Square patterns of types V and M arising from for critical points of all kinds of multiplicity (M = 1, 2, 4, 8)
for the n × n square lattice with n = 18, 24.

n µ or (k, ℓ) in (4; k, ℓ) or (k, ℓ) in (8; k, ℓ) (α, β) D Type M

18 (1;+, +, −) (1, 1) 2 M 1

(2;+, +) (2, 0) 4 V 2

(6, 0) (3, 0) 9 V 4

(6, 6)
(3, 0) (6, 0) 36 V

(9, 6)
(2, 0), (4, 0), (8, 0) (9, 0) 81 V

(2, 2), (4, 4), (8, 8)
(1, 0), (5, 0), (7, 0) (18, 0) 324 V

(9, 2), (9, 4), (9, 8)
(3, 3) (3, 3) 18 M

(9, 3) 18 M

(1, 1), (5, 5), (7, 7) (9, 9) 162 M

(9, 1), (9, 5), (9, 7) 162 M

(6, 3) (6, 0) 36 V 8

(4, 2), (6, 2), (6, 4), (8, 2), (8, 4), (8, 6) (9, 0) 81 V

(2, 1), (3, 2), (4, 1), (4, 3), (5, 2), (5, 4), (6, 1), (6, 5) (18, 0) 182 V

(7, 2), (7, 4), (7, 6), (8, 1), (8, 3), (8, 5), (8, 7)
(3, 1), (5, 1), (5, 3), (7, 1), (7, 3), (7, 5) (9, 9) 162 M

24 (1;+, +, −) (1, 1) 2 M 1

(2;+, +) (2, 0) 4 V 2

(8, 0) (3, 0) 9 V 4

(8, 8)
(6, 0) (4, 0) 16 V

(12, 6)
(4, 0) (6, 0) 36 V

(12, 8)
(3, 0), (9, 0) (8, 0) 64 V

(12, 3), (12, 9)
(2, 0), (10, 0) (12, 0) 144 V

(12, 2), (12, 10)
(1, 0), (5, 0), (7, 0), (11, 0) (24, 0) 576 V

(12, 1), (12, 5), (12, 7)(12, 11)
(6, 6) (2, 2) 8 M

(4, 4) (3, 3) 18 M

(12, 4)
(3, 3), (9, 9) (4, 4) 32 M

(2, 2), (10, 10) (6, 6) 72 M

(1, 1), (5, 5), (7, 7), (11, 11) (12, 12) 288 M

(8, 4) (6, 0) 36 V 8

(6, 3), (9, 6) (8, 0) 64 V

(4, 2), (6, 4), (8, 2), (8, 6), (10, 4), (10, 8) (12, 0) 144 V

(2, 1), (3, 2), (4, 1), (4, 3), (5, 2), (5, 4), (6, 1), (6, 5) (24, 0) 242 V

(7, 2), (7, 4), (7, 6), (8, 1), (8, 3), (8, 5), (8, 7), (9, 2)
(9, 4), (9, 8), (10, 1), (10, 3), (10, 5), (10, 7), (10, 9)
(11, 2), (11, 4), (11, 6), (11, 8), (11, 10)
(9, 3) (4, 4) 32 M

(6, 2), (10, 2), (10, 6) (6, 6) 72 M

(3, 1), (5, 1), (5, 3), (7, 1), (7, 3), (7, 5), (9, 1) (12, 12) 288 M

(9, 5), (9, 7), (11, 1), (11, 3), (11, 5), (11, 7), (11, 9)
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Table 3.22: Square patterns of types V, M, and T arising from for critical points of all kinds of multiplicity (M =
1, 2, 4, 8) for the n × n square lattice with n = 20.

n µ or (k, ℓ) in (4; k, ℓ) or (k, ℓ) in (8; k, ℓ) (α, β) D Type M

20 (1;+, +, −) (1, 1) 2 M 1

(2;+, +) (2, 0) 4 V 2

(5, 0) (4, 0) 16 V 4

(10, 5)
(4, 0), (8, 0) (5, 0) 25 V

(4, 4), (8, 8)
(2, 0), (6, 0) (10, 0) 100 V

(10, 4), (10, 8)
(1, 0), (3, 0), (7, 0), (9, 0) (20, 0) 400 V

(10, 1), (10, 3), (10, 7), (10, 9)
(5, 5) (2, 2) 8 M

(2, 2), (6, 6) (5, 5) 50 M

(10, 2), (10, 6)
(1, 1), (3, 3), (7, 7), (9, 9) (10, 10) 200 M

(8, 4) (5, 0) 25 V 8

(2, 1) 5 T

(1, 2) 5 T

(6, 2) (5, 5) 50 M

(3, 1) 10 T

(1, 3) 10 T

(4, 2) (10, 0) 100 V

(4, 2) 20 T

(2, 4) 20 T

(8, 6) (10, 0) 100 V

(2, 4) 20 T

(4, 2) 20 T

(3, 1), (9, 3) (10, 10) 200 M

(6, 2) 40 T

(2, 6) 40 T

(7, 1), (9, 7) (10, 10) 200 M

(2, 6) 40 T

(6, 2) 40 T

(4, 3), (7, 4), (8, 1), (9, 8) (20, 0) 400 V

(8, 4) 80 T

(4, 8) 80 T

(2, 1), (6, 3), (7, 6), (9, 2) (20, 0) 400 V

(4, 8) 80 T

(8, 4) 80 T

(6, 4), (8, 2) (10, 0) 100 V

(3, 2), (4, 1), (5, 2), (5, 4), (6, 1), (6, 5) (20, 0) 400 V

(7, 2), (8, 3), (8, 5), (8, 7), (9, 4), (9, 6)
(5, 1), (5, 3), (7, 3), (7, 5), (9, 1), (9, 5) (10, 10) 200 M
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Example 3.7. For n = 20, possible square patterns are of types V, M, and T. Subgroups for square

patterns of type T have inclusion relations

Σ0(2, 1) ⊃
{
Σ0(1, 3) ⊃ Σ0(2, 6)
Σ0(4, 2) ⊃ Σ0(8, 4)

}
⊃ Σ0(20, 0) = ⟨r⟩,

Σ0(1, 2) ⊃
{
Σ0(3, 1) ⊃ Σ0(6, 2)
Σ0(2, 4) ⊃ Σ0(4, 8)

}
⊃ Σ0(20, 0) = ⟨r⟩,

and satisfy

Σ0(3, 1) ∩ Σ0(1, 3) = Σ0(5, 5),
Σ0(4, 2) ∩ Σ0(2, 4) = Σ0(10, 0),
Σ0(6, 2) ∩ Σ0(2, 6) = Σ0(10, 10),
Σ0(8, 4) ∩ Σ0(4, 8) = Σ0(20, 0) = ⟨r⟩.

In addition, subgroups for square patterns of types V and M satisfy

Σ(1, 0) ⊃
{
Σ(1, 1) ⊃ Σ(2, 0) ⊃ Σ(2, 2) ⊃ Σ(4, 0) ⊃ Σ(4, 4)
Σ(5, 0) ⊃ Σ(5, 5) ⊃ Σ(10, 0) ⊃ Σ(10, 10)

}
⊃ Σ(20, 0) = ⟨r, s⟩.

□

In particular, possible square patterns for n = 18, 20, 24 for critical points of all kinds of

multiplicity (M = 1, 2, 4, 8) are classified in Tables 3.21 and 3.22.

3.6. Stability of Bifurcating Solutions

In Section 3.5, we showed the existence of square patterns by using the equivariant branching

lemma. In this section, we explain another approach of group-theoretic bifurcation analysis with

bifurcation equations. As worked out in Appendix A.6, we can show the existence of bifurcating

solutions by solving bifurcation equations. In addition, we can investigate the stability of bifurcating

solutions by using the Jacobian matrix of a bifurcation equation.

3.6.1. Illustration of Analysis

Let us consider the bifurcation equation

F̃(w, ϕ̃) = 0 (3.191)

in (3.104), where F̃ : RM × R → RM is a function, and ϕ̃ = ϕ − ϕc denotes the increment of ϕ.

With the use of the matrix representation T µ(g) for the associated irreducible representation µ of

the group G = D4 ⋉ (Zn × Zn), we have the equivariance condition

T µ(g)F̃(w, ϕ̃) = F̃(T µ(g)w, ϕ̃), g ∈ G (3.192)

in (3.105).
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q
(2;+,+)
1

q
(2;+,+)
2

q
(2;+,+)
1

+ q
(2;+,+)
2

(a) Stripe patterns (b) A square pattern

Figure 3.14: Patterns of the eigenvectors q
(2;+,+)
1

and q
(2;+,+)
2

on the 6 × 6 square lattice. A black circle denotes a

positive component and a white circle denotes a negative component of the associated eigenvector. The size of a circle

represents the magnitude of the associated component.

We demonstrate, for example, group-theoretic bifurcation analysis of a critical point of multi-

plicity 2 associated with the irreducible representation µ = (2;+,+). The matrices T̃ µ(g) in (3.192)

for µ = (2;+,+) are represented as

T (2;+,+)(r) =
[

1

1

]
, T (2;+,+)(s) =

[
1

1

]
,

T (2;+,+)(p1) =
[
−1

1

]
, T (2;+,+)(p2) =

[
1

−1

]
.

By the equivariance condition in (3.192), we see that F̃i (i = 1, 2) in (3.191) take the form

F̃1(w1,w2, ϕ̃) = w1

∞∑
a=0

∞∑
b=0

A2a+1,2b(ϕ̃)w1
2a
w2

2b, (3.193)

F̃2(w1,w2, ϕ̃) = w2

∞∑
a=0

∞∑
b=0

A2a+1,2b(ϕ̃)w2
2a
w1

2b (3.194)

with coefficients A2a+1,2b ∈ R (see Appendix A.6.3 for the proof). We use the column vectors

q
(2;+,+)
1

and q
(2;+,+)
2

of Q(2;+,+) in (3.84) as the basis vectors of the two-dimensional space for

w = (w1,w2). Fig. 3.14(a) depicts the spatial patterns of q
(2;+,+)
1

and q
(2;+,+)
2

. We see that these two

vectors represent stripe patterns.

Using the equations in (3.193) and (3.194), we have the following propositions for the existence

and the symmetry of bifurcating solutions.

Proposition 3.33. For a critical point of multiplicity 2 associated with µ = (2;+,+), we have the

following bifurcating solutions:

• the stripe pattern: wstripe = (w, 0) (w ∈ R) [Fig. 3.14(a)],

• the square pattern: wsq = (w,w) (w ∈ R) [Fig. 3.14(b)].

Proof. Substituting wstripe = (w, 0) into (3.193), we have

F̃1(w, 0, ϕ̃) = w

∞∑
a=0

A2a+1,0(ϕ̃)w2a ≈ w
{

A′10(0)ϕ̃ + A30(0)w2
}

(3.195)
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with A′
10
(0) = ∂A10/∂ϕ̃(0). Thus, F̃1(w, 0, ϕ̃) = 0 represents the ϕ̃ versus w relation for wstripe.

Substituting wstripe into (3.194), we see that F̃2(w, 0, ϕ̃) = 0 is satisfied for any w. Thus, there is a

bifurcating curve satisfying F̃1 = F̃2 = 0 for wstripe. Similar discussion holds for wsq. □

Proposition 3.34. For a critical point of multiplicity 2 associated with µ = (2;+,+), the two

bifurcating solutions (w, ϕ̃) and (−w, ϕ̃) are conjugate for w = wsq, wstripe.

Proof. Since w = (w, 0) and (−w, 0) satisfy the same relation
∑∞

a=0 A2a+1,0(ϕ̃)w2a
= 0 (cf., (3.195)),

F̃1(w, 0, ϕ̃) is an odd function in w, that is, F̃1(−w, 0, ϕ̃) = −F̃1(w, 0, ϕ̃). Thus, (wstripe, ϕ̃) and

(−wstripe, ϕ̃) are conjugate solutions for F̃1 = 0. Similar discussion holds for wsq. □

We evaluate the stability of bifurcating solutions. The Jacobian matrix of F̃ becomes

J̃(w, ϕ̃) ≈
[
A′

10
(0)ϕ̃ + 3A30(0)w1

2
+ A12(0)w2

2 2A12(0)w1w2

2A12(0)w1w2 A′
10
(0)ϕ̃ + 3A30(0)w2

2
+ A12(0)w1

2

]
(3.196)

with A′
10
(0) = ∂A10/∂ϕ̃(0). Evaluating the eigenvalues of J̃ for each bifurcating solution and

employing the assumption that the pre-bifurcation distribution is stable, we have the following

proposition (see Appendix A.6.3 for the proof):

Proposition 3.35. For a critical point of multiplicity 2 associated with µ = (2;+,+), under the

assumption that all the eigenvalues of the Jacobian matrix other than those for µ = (2;+,+) are

negative, we have the following statements in the neighborhood of the critical point.

• If A30(0) < A12(0) < −A30(0) is satisfied, the square pattern wsq is stable.

• If A12(0) < A30(0) < 0 is satisfied, the stripe pattern wstripe is stable.

• The two solutions wsq and wstripe are not stable simultaneously.

Proposition 3.35 implies possible existence of stable bifurcating solutions from the uniform

distribution for economic geography models on the square lattice. This makes a sharp contrast

with a knowledge on SN invariant space and a hexagonal lattice, for which all bifurcating paths

are unstable in the neighborhood of the bifurcation points (Elmihirst, 2004; Ikeda et al., 2018a;

Aizawa et al., 2020).

3.6.2. Summary of Theoretical Results

Similarly to the case of a critical point of multiplicity 2, we also investigate the existence

and the stability of bifurcating solutions for other bifurcation points. We summarize theoretically

predicted bifurcating solutions in Table 3.23. For these bifurcating solutions, we have the following

propositions (see Appendices A.6.4 and A.6.5 for the proofs):

Proposition 3.36. For a critical point of multiplicity 4, we have the following statements:

• For µ = (4; k, 0,+) and µ = (4; k, k,+) with ň = 3, under the assumption that all the

eigenvalues of the Jacobian matrix other than those for µ = (4; k, 0,+) and (4; k, k,+) are

negative, the bifurcating solutions wsq and wstripeI are always unstable in the neighborhood

of the critical point. The bifurcating curve takes the form ϕ̃ ≈ cw for some constant c.
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Table 3.23: Theoretically predicted bifurcating solutions for critical points with multiplicity M .

M Bifurcating solutions (w ∈ R) Existence conditions

1 w if n is even

2 wsq = (w,w) if n is even

wstripe = (w, 0) if n is even

4 wsq = (w, 0,w, 0) Always

wstripeI = (w, 0, 0, 0) Always

wstripeII = (0,w, 0, 0) if ň is even

8 wsqVM = (w, 0,w, 0,w, 0,w, 0) Always

wsqT = (w, 0,w, 0, 0, 0, 0, 0) if 2 gcd(k̂, ℓ̂) is not divisible by gcd(k̂2
+ ℓ̂2, n̂)

wupside−downI = (w, 0, 0, 0,w, 0, 0, 0) if (k̂ + ℓ̂) gcd(k̂ + ℓ̂, k̂ − ℓ̂) is not divisible by gcd(2k̂ ℓ̂, n̂)
wupside−downII = (0,w, 0, 0, 0,w, 0, 0) if n̂ is even and

(k̂ + ℓ̂) gcd(k̂ + ℓ̂, k̂ − ℓ̂) is not divisible by gcd(2k̂ ℓ̂, n̂)
wstripeI = (w, 0, 0, 0, 0, 0, 0, 0) if k̂2

+ ℓ̂2, 2k̂ ℓ̂, and k̂2 − ℓ̂2 are not divisible by n̂

wstripeII = (0,w, 0, 0, 0, 0, 0, 0) if n̂ is even and

k̂2
+ ℓ̂2, 2k̂ ℓ̂, and k̂2 − ℓ̂2 are not divisible by n̂

ň = n/gcd(k, n) for M = 4 in (3.134);

n̂ = n/gcd(k, ℓ, n), k̂ = k/gcd(k, ℓ, n), ℓ̂ = ℓ/gcd(k, ℓ, n) for M = 8 in (3.160)
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• For any other cases, the stability of wsq, wstripeI, and wstripeII depends on the values of the

coefficients of the power series expansion of the bifurcation equation. The bifurcating curve

takes the form ϕ̃ ≈ cw2 for some constant c.

Proposition 3.37. For a critical point of multiplicity 8, we have the following statements:

• For µ = (8; k, ℓ) with (n̂, k̂, ℓ̂) = (5, 2, 1), under the assumption that all the eigenvalues of the

Jacobian matrix other than those for µ = (8; k, ℓ) are negative, the bifurcating solution wsqT

is always unstable in the neighborhood of the critical point. The bifurcating curve takes the

form ϕ̃ ≈ cw for some constant c.

• For any other cases, the stability of wstripeI, wstripeII, wupside−downI, wupside−downII, wsqT, and

wsqVM depends on the values of the coefficients of the power series expansion of the bifurca-

tion equation. The bifurcating curve takes the form ϕ̃ ≈ cw2 for some constant c.

Propositions 3.36 and 3.37 indicate that for particular lattice sizes n, several types of bifurcating

solutions are always unstable in the neighborhood of the critical point. Note that these are common

results for any models with the equivariance to the group G = D4 ⋉ (Zn × Zn).

3.7. Bifurcation Behavior of Economic Geography Models

In this section, we conduct numerical bifurcation analysis for economic geography models on

the square lattice. To demonstrate the applicability of theoretical results in this chapter, we employ

three types of economic geography models: the FO model (Forslid and Ottaviano, 2003), the Hm

model (Helpman, 1998), and the PS model (Pflüger and Südekum, 2008). We demonstrate the

emergence of theoretically predicted bifurcating solutions that were presented in Section 3.5 and

Appendix A.6. We search for bifurcating solution curves and investigate their stability by using

comparative static analysis with respect to the trade freeness, which is one of the major parameter

of economic geography models and is employed here as the bifurcation parameter.

3.7.1. Group Equivariance

The FO model, the Hm model, and the PS model with the replicator dynamics on the n × n

square lattice satisfies the equivariance to G = D4 ⋉ (Zn ×Zn) (see Proposition 2.1 in Section 2.3.2

for the proof):

T(g)F(λ, ϕ) = F(T(g)λ, ϕ), g ∈ G (3.197)

for the K(= n2)-dimensional permutation representation T(g) of G.12 Thus, theoretical results in

this chapter is applicable to these models.

Note that the uniform distribution

λuniform = (1/K, . . . , 1/K)⊤ (3.198)

12 The concrete form of T(g) was given in Section 3.4.1.
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Table 3.24: Bifurcating solutions for the 6 × 6 square lattice.

µ Bifurcating solutions (w ∈ R)

(1;+,+,−) w

(2;+,+) wsq = (w,w), wstripe = (w, 0)
(4; 1, 0,+) wsq = (w, 0,w, 0), wstripeI = (w, 0, 0, 0)
(4; 2, 0,+) wsq = (w, 0,w, 0), wstripeI = (w, 0, 0, 0)
(4; 1, 1,+) wsq = (w, 0,w, 0), wstripeI = (w, 0, 0, 0)
(4; 2, 2,+) wsq = (w, 0,w, 0), wstripeI = (w, 0, 0, 0)
(4; 3, 1,+) wsq = (w, 0,w, 0), wstripeI = (w, 0, 0, 0), wstripeII = (0,w, 0, 0)
(4; 3, 2,+) wsq = (w, 0,w, 0), wstripeI = (w, 0, 0, 0), wstripeII = (0,w, 0, 0)
(8; 2, 1) wsqVM = (w, 0,w, 0,w, 0,w, 0),

wupside−downI = (w, 0, 0, 0,w, 0, 0, 0), wupside−downII = (0,w, 0, 0, 0,w, 0, 0),
wstripeI = (w, 0, 0, 0, 0, 0, 0, 0), wstripeII = (0,w, 0, 0, 0, 0, 0, 0),

on the n × n square lattice satisfies the governing equation in (2.3) for any ϕ.13 All places have the

same economic environments with the same indirect utility vi = v̄ (i = 1, . . . , n2). The uniform

distribution satisfies

T(g)λuniform = λuniform, g ∈ G, (3.199)

and hence this solution is G-symmetric. We investigate group-theoretic critical points on the

uniform distribution in the following subsections.

3.7.2. Theoretically Predicted Bifurcating Solutions

We focus on the 6 × 6 square lattice that accommodates various kinds of bifurcating solutions.

As a consequence of the irreducible decomposition (3.72) of the permutation representation T for

this lattice, the irreducible representation µ of the group G = D4 ⋉ (Z6 × Z6) to be considered in

bifurcation analysis is restricted to

µ = (1;+,+,+), (1;+,+,−), (2;+,+), (4; 1, 0,+), (4; 2, 0,+),
(4; 1, 1,+), (4; 2, 2,+), (4; 3, 1,+), (4; 3, 2,+), (8; 2, 1). (3.200)

Theoretically possible bifurcating solutions associated with µ in (3.200) are listed in Table 3.24

and depicted in Fig. 3.15. Note that for µ = (4; 2, 0,+) and µ = (4; 2, 2,+), the two solutions wsq

and −wsq, which have opposite signs, represent different physical behaviour. The same holds for

the solutions wstripeI and −wstripeI. Other bifurcating solutions with opposite signs represent the

same physical behaviour. See Appendix A.6.4 for theoretical details.

Remark 3.15. For the 6 × 6 square lattice, we have the following statements:

13 We call such distributions as invariant patterns. See Proposition 4.2 in Section 4.3.
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w wsq wstripe wsq wstripeI

(a) µ = (1;+,+,−) (b) µ = (2;+,+) (c) µ = (4; 1, 0,+)

wsq wstripeI wsq wstripeI wsq wstripeI

(d) µ = (4; 2, 0,+) (e) µ = (4; 1, 1,+) (f) µ = (4; 2, 2,+)

wsq wstripeI wstripeII wsq wstripeI wstripeII

(g) µ = (4; 3, 1,+) (h) µ = (4; 3, 2,+)

wsqVM wstripeI wstripeII wupside−downI wupside−downII

(i) µ = (8; 2, 1)

Figure 3.15: Bifurcating solutions for the 6×6 square lattice. A black circle denotes a positive component, and a white

circle denotes a negative component. The size of a circle represents the magnitude of the associated component.
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• For µ = (4; 1, 0,+), (4; 2, 0,+), (4; 1, 1,+), (4; 2, 2,+), the solution wstripeII = (0,w, 0, 0) does

not exist. See Proposition A.17 in Section A.6.4. Note that the condition in Proposition A.17

is not satisfied since ň is odd for these cases.

• For µ = (8; 2, 1), the solution wsqT = (w, 0,w, 0, 0, 0, 0, 0) does not exist. See Proposition

3.32 in Section 3.5.6. This case corresponds to the case (n̂, k̂, ℓ̂) = (2k̂ + 2ℓ̂, k̂, ℓ̂). In fact,

2 gcd(k̂, ℓ̂) = 2 gcd(2, 1) = 2. This is divisible by gcd(k̂2
+ ℓ̂2, n̂) = gcd(6, 6) = 1. Hence,

GCD-div in (3.190) is not satisfied.

□

3.7.3. Numerical Bifurcation Analysis

We conduct comparative static analysis for the FO model (Forslid and Ottaviano, 2003), the

Hm model (Helpman, 1998), and the PS model (Pflüger and Südekum, 2008) with respect to the

trade freeness ϕ ∈ (0, 1). We aim to demonstrate the applicability of theoretical results in this

chapter for these models. We focus on group-theoretic critical points on the uniform distribution

λ0 = (1/36, . . . , 1/36)⊤ associated with the irreducible representations µ = (1;+,+,−), µ =
(2;+,+), and µ = (4; 1, 0,+) in (3.200) and compute bifurcating solution curves from these points.

Figures 3.16–3.18 show the results of numerical simulations, in which λmax = max(λ1, . . . , λK) is
plotted against ϕ.

For these three models, the elasticity of substitution σ ∈ (1,∞) and the expenditure share of

manufacturing goods µ ∈ (0, 1) are model parameters. Note that the expenditure share of housing

goods γ ∈ (0, 1) is another model parameter for the PS model. Bifurcating curves for other

irreducible representations are presented in Appendix A.7 for the FO model.

FO model

Figure 3.16 shows equilibrium curves of the FO model. Following Fujita et al. (1999b), we

choose the parameter values as σ = 6.0, µ = 0.4. In the early state where ϕ is small, the uniform

distribution is the only stable equilibrium. When ϕ reaches ϕ∗ in Fig. 3.16(a), the first bifurcation

occurs at the bifurcation point P associated with µ = (1;+,+,−). A 18-centric distribution emerges

and becomes stable at the point B. From the bifurcation point Q associated with µ = (2;+,+), a 9-

centric distribution and a stripe one emerge simultaneously (see Fig. 3.16(b)). From the bifurcation

point R associated with µ = (4; 1, 0,+), a diffused distribution and another stripe one emerge (see

Fig. 3.16(c)). This diffused distribution tends to be agglomerated to a single place and arrives at

the mono-centric distribution that becomes stable when ϕ is close to 1.

The state A of each diagram is consistent with theoretically predicted bifurcating solutions in

Fig. 3.15. After the bifurcation, population tends to be agglomerated completely to places with

the largest positive components of the bifurcation mode. Note that all the bifurcating solutions are

unstable just after the bifurcation. Stable ones are theoretically possible and may exist for other

parameter values.
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(a) µ = (1;+,+,−)

(b) µ = (2;+,+)

(c) µ = (4; 1, 0,+)

Figure 3.16: Equilibrium curves of the FO model for several irreducible representations µ. Solid curves represent

stable stationary points, and dashed curves represent unstable ones.
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(a) µ = (1;+,+,−)

(b) µ = (2;+,+)

(c) µ = (4; 1, 0,+)

Figure 3.17: Equilibrium curves of the Hm model for several irreducible representations µ. Solid curves represent

stable stationary points, and dashed curves represent unstable ones.
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Hm model

Figure 3.17 shows equilibrium curves of the Hm model. We choose the parameter values

as σ = 2.0, µ = 0.8 in order to realise bifurcation from the uniform distribution.14 When ϕ is

close to 1, the uniform distribution is stable, unlike the FO model. When ϕ decreases to ϕ∗∗ in

Fig. 3.17(c), the first bifurcation occurs at the bifurcation point R associated with µ = (4; 1, 0,+),
and the stable mono-centric agglomeration pattern emerges. Note that this bifurcating solution is

stable (supercritical bifurcation), while the others are unstable.

Similarly to the case of the FO model, we see that population tends to be agglomerated to

places with the largest positive components of the bifurcation mode. Progress of stable equilibria

of the Hm model as ϕ increases from 0 to 1, however, is significantly different from that of the FO

model. For small ϕ, while the uniform distribution prevails for the FO model, the mono-centric

distribution prevails for the Hm model. Thus, the stability of a particular distribution is model

dependent.

PS model

Figure 3.18 shows equilibrium curves of the PS model. We choose the parameter values as

σ = 3.0, µ = 0.6, γ = 0.2 in reference to Akamatsu et al. (2021); in the early state where ϕ is small,

the stable equilibrium is the uniform distribution. The first bifurcation occurs at the supercritical

bifurcation point P associated with µ = (1;+,+,−) when ϕ decreases to ϕ∗∗∗ in Fig. 3.18(a). Then,

a stable 18-centric distribution emerges. The progress of stable equilibria as ϕ increases of the PS

model is similar to that of the FO model.

3.8. Concluding Remarks

This chapter has tried to exhaustively find bifurcating solutions of economic geography models

on an n × n square lattice by group-theoretic bifurcation analysis. We presented a complete list of

typical bifurcating solutions from the uniform distribution for an arbitrary lattice size n. Possible

bifurcating solutions elucidated in this chapter were square, stripe, and upside-down patterns. In

numerical analysis of several economic geography models, we demonstrated the emergence of

these bifurcating solutions. The stability of bifurcating solutions and the order of occurrence of

particular bifurcations are found to be dependent on the models.

The main message of this chapter is not only to demonstrate the emergence of bifurcating

solutions for particular models but also to develop a general theory to understand bifurcation

behaviour for any economic geography model. This chapter would provide a contribution of

nonlinear mathematics to the study of economic agglomerations in spatial economics.

14 For the Hm model, the uniform distribution is the unique equilibrium, and no bifurcation occurs when (1−µ)σ > 1

(Redding and Sturm, 2008). For the parameter values (σ, µ) = (6.0, 0.4) used for the FO model, no bifurcation,

accordingly, takes place for the Hm model.
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(a) µ = (1;+,+,−)

(b) µ = (2;+,+)

(c) µ = (4; 1, 0,+)

Figure 3.18: Equilibrium curves of the PS model for several irreducible representations µ. Solid curves represent

stable stationary points, and dashed curves represent unstable ones.
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Figure 4.1: Equilibrium curves from the uniform distribution on a square lattice for the FO model (σ = 6.0, µ = 0.4).

Square domains denote population distributions for the associated equilibria. The horizontal axis shows the bifurcation

patameter (trade freeness), and the vertical axis shows the maximum population. Solid curves represent stable stationary

points, and dashed curves represent unstable ones.

4. Invariant Patterns for the Replicator Dynamics

This chapter presents details of our published paper (Kogure et al., 2021).

4.1. Introduction

A plethora of direct and further bifurcating patterns from the uniform distribution that form

a complicated network of equilibrium curves has come to be observed for economic geography

models on lattice economies (Ikeda and Murota, 2014; Ikeda et al., 2012b, 2014, 2017b, 2018a).

This chapter aims to elucidate the mechanism of this complicated network in the light of geometrical

symmetry.

As a hint of this, we refer to an example of bifurcation diagrams for an economic geography

model with the replicator dynamics on a square lattice shown in Fig. 4.1. From the curve OA of the

uniform distribution, a bifurcating curve AB branches and arrives at the curve BC of an 18-centric

distribution. It is to be noted that the curves OA and BC are horizontal as the population distribution

remains constant along these curves when the bifurcation parameter changes. We may wonder

why these curves are horizontal. The existence of such constant distributions, called invariant

patterns (Ikeda et al., 2018b), has come to be acknowledged in economic geography models with

the replicator dynamics, which is widely used in economics (Sandholm, 2010). The horizontal

curves are connected by a non-horizontal one AB. Moreover, we encounter, in Section 4.4, a

complicated mesh-like structure with a large number of horizontal and non-horizontal curves, just

like threads of warp and weft.

That said, this chapter aims to carry out a theoretical study of invariant patterns for the replicator

dynamics on a square lattice. We consider an n × n square lattice that has symmetry expressed

by the finite group D4 ⋉ (Zn × Zn) . Exploiting the geometrical symmetry and the structure of
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the replicator dynamics, we obtain invariant patterns exhaustively, including the uniform, mono-

centric, and poly-centric distributions. A list of invariant patterns advanced in this chapter would

be of assistance in the study of economic agglomerations.

In addition, we combine invariant patterns with bifurcation mechanisms due to the geometrical

symmetry. We propose the following innovative bifurcation analysis procedure to find stable

equilibria:

• Obtain all invariant patterns and investigate their stability.

• Search for bifurcating equilibrium curves that connect stable invariant patterns and investigate

their stability.

We apply such a procedure to the FO model (Forslid and Ottaviano, 2003) and the PS model

(Pflüger and Südekum, 2008) to observe network structures of equilibrium curves. We elucidate

the connectivity between the uniform distribution and invariant patterns: Population tends to

be agglomerated to places with the largest positive components of a bifurcating solution from

the uniform distribution, and then the spatial distribution arrives at an invariant pattern via a

bifurcating curve. We see that when two half branches at a bifurcation point are symmetric

(respectively, asymmetric), they would arrive at one (respectively, two) invariant patterns.

Economic agglomerations are studied for several spatial platforms, including the two-places

economy (Fujita et al., 1999b; Baldwin et al., 2011), a long narrow economy (Fujita and Mori,

1997; Mori, 1997; Fujita et al., 1999a), and a racetrack economy (Tabuchi and Thisse, 2011;

Mossay and Picard, 2011; Akamatsu et al., 2012). Invariant patterns on a racetrack economy

were observed in several studies (Castro et al., 2012; Ikeda et al., 2012a, 2019b). A knowledge

of invariant patterns has come to be used in analysis of economic geography models to capture a

series of agglomeration patterns of economic interest (Takayama et al., 2020; Osawa et al., 2020).

We use a systematic procedure proposed for a hexagonal lattice (Ikeda et al., 2019a) and obtain

invariant patterns exhaustively.

This chapter is organized as follows. A general framework of economic geography models

with the replicator dynamics is presented in Section 4.2. A theory of invariant patterns for the

replicator dynamics is introduced in Section 4.3. Numerical stability analysis of invariant patterns

on the square lattice is conducted for the FO model and PS model in Section 4.4. The bifurcation

behaviour of the FO model is investigated in detail in Section 4.5 by focusing on the connectivity

of bifurcating solutions from the uniform distribution to invariant patterns.

4.2. Spatial Equilibrium and the Replicator Dynamics

We employ a general framework of economic geography models with the replicator dynamics

that was introduced in Section 2.1. We briefly explain a spatial equilibrium of the economy

comprising K places. Mobile agents (e.g., skilled workers for the FO model) can migrate among

the K places.

Let P = {1, . . . ,K} be the set of places. Define the payoff function vector v = v(λ, ϕ) ∈ RK

as a continuous function of the spatial distribution of mobile agents λ (λi ≥ 0; i ∈ P) and the

trade freeness ϕ. Define a spatial equilibrium as a spatial distribution that satisfies the following
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Figure 4.2: Square lattice.

conditions: {
v
∗ − vi = 0 if λi > 0,

v
∗ − vi ≤ 0 if λi = 0,

(4.1)

and ∑
i∈P

λi = 1, (4.2)

where v
∗ denotes the equilibrium payoff level. This condition means that there is no incentive for

mobile agents to change the location choice.

We consider the replicator dynamics:

dλ

dt
= F(λ, ϕ), (4.3)

where F(λ, ϕ) = (Fi(λ, ϕ) | i ∈ P), and Fi takes the form

Fi(λ, ϕ) = λi(vi(λ, ϕ) − v̄(λ, ϕ)), i ∈ P. (4.4)

Here, v̄ =
∑

i∈P λivi represents the weighted average payoff. We can restate a problem to obtain

a set of stable spatial equilibria by another problem to find a set of stable stationary points of the

replicator dynamics (Sandholm, 2010). A stationary point (λ, ϕ) of the replicator dynamics is a

solution to the governing equation:

F(λ, ϕ) = 0. (4.5)

A stationary point is linearly stable if every eigenvalue of the Jacobian matrix J = ∂F/∂λ has a

negative real part.

4.3. Theory of Invariant Patterns

In this section, we explain a theory of invariant patterns for the replicator dynamics. Consider

a system of places allocated at each node of the n× n square lattice: Figure 4.2 depicts an example

for n = 2 by the dashed lines. The n× n square lattice provides uniformly distributed n× n discrete

regions (K = n2), which are connected by links of the same length d forming a square mesh.

The symmetry of the n × n square lattice is described by the group

G = ⟨r, s, p1, p2⟩ = D4 ⋉ (Zn × Zn), (4.6)

where ⟨· · · ⟩ denotes a group generated by the elements therein, and
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• r: counterclockwise rotation about the origin at an angle of π/2,

• s: reflection y 7→ −y,

• p1: periodic translation along the ℓ1-axis (i.e., the x-axis), and

• p2: periodic translation along the ℓ2-axis (i.e., the y-axis).

The symmetry of the n × n square lattice ensures the equivariance in the sense that

T(g)F(λ, ϕ) = F(T(g)λ, ϕ), g ∈ G. (4.7)

Therein, T(g) (g ∈ G) denotes an orthogonal matrix representation of the group G on the K-

dimensional space RK . The concrete form of T(g) was presented in Section 3.4.

Stationary points of the replicator dynamics form solution curves (λ∗(ϕ), ϕ). In general, a

spatial distribution λ∗(ϕ) changes as the value of ϕ along a solution curve. In contrast, there can

be a special solution curve (λ∗(ϕ), ϕ) = (λ̄, ϕ) that has a constant spatial distribution λ̄ along a

solution curve.15 Such a distribution λ̄ is called an invariant pattern, and (λ̄, ϕ) is a solution for any

ϕ. In contrast, a solution curve with distribution λ∗(ϕ) that varies with ϕ is called a non-invariant

pattern. Thus, stationary points are classified into{
invariant pattern: λ∗ = λ̄,

non-invariant pattern: λ∗ = λ∗(ϕ).

Rearranging the order of the components of λ∗ pertinently, we introduce (λ+, λ0) with λ+ =

{λi > 0 | i = 1, . . . ,m} and λ0 = 0 for later discussion of invariant patterns, and rearrange the

order of Fi accordingly to arrive at F̃i. As a candidate of invariant patterns, we consider a spatial

distribution of a special form

(λ+, λ0) =
(

1

m
1, 0

)
, 1 ≤ m ≤ K (4.8)

with an m-dimensional vector 1 = (1, . . . , 1)⊤. This distribution expresses equal complete ag-

glomeration to m places and can be an invariant pattern under some symmetry conditions in the

following proposition:

Proposition 4.1. A spatial distribution (λ+, λ0) = ( 1
m

1, 0) of an economic geography model with

the replicator dynamics is an invariant pattern if this distribution satisfies

(i) (λ+, λ0) = ( 1
m

1, 0) is invariant to some subgroup G′ of G.

(ii) The set of points for λ+ belongs to an orbit of G′.

Proof. Since the m places of λ+ belong to an orbit, we have v1 = · · · = vm. Then, we have

v̄ =
∑m

i=1 λivi = vi and vi − v̄ = 0 (i = 1, . . . ,m). Hence, we have F̃i( 1
m

1, 0, ϕ) = 0 (i = 1, . . . ,m).
For K − m places with no population, we have λ j = 0 ( j = m + 1, . . . ,K). Hence, we have

F̃i( 1
m

1, 0, ϕ) = 0 (i = m + 1, . . . ,K). This shows that (λ+, λ0, ϕ) = ( 1
m

1, 0, ϕ) is a solution for any ϕ.

Hence, ( 1
m

1, 0) is an invariant pattern. □

15 Such a solution curve was observed in the two-place economy (Fujita et al., 1999b).
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Remark 4.1. The concept of invariant patterns is not applicable to some kind of models. We

employ the replicator dynamics and admit λ to have zero components. Hence, it cannot be applied

to models that do not take corner solutions due to the existence of the housing market such as

Helpman (1998) and Allen and Arkolakis (2014) models. Also it cannot be applied to other

dynamics such as the logit dynamics in (2.6). □

Spatial distributions for m = 1, 2,K in (4.8) are called mono-centric, duo-centric, and uniform

distribution, respectively.16 We have the following propositions for these distributions.

Proposition 4.2. A mono-centric distribution at any place is an invariant pattern for any economy.

Proof. Consider λ1 = 1 and λi = 0 (i = 2, . . . ,K). Then, we have v̄ =
∑m

i=1 λivi = v1. Thus, we

have v1 − v̄ = 0. Hence, we have F̃1(1, 0, ϕ) = 0. For K − 1 places with no population, we have

λi = 0. Hence, we have F̃i(1, 0, ϕ) = 0 (i = 2, . . . ,K). This shows that (λ+, λ0, ϕ) = (1, 0, ϕ) serves

as a solution for any ϕ. Hence, a mono-center at one place is an invariant pattern. □

Proposition 4.3. The uniform and a duo-centric distribution are invariant patterns for an n × n

square lattice.

Proof. Consider two nodes (n1, n2) and (n′
1
, n′

2
). Then, we have

r2p1
i p2

j · (n1, n2) ≡ (−n1 − i,−n2 − j) mod n.

Hence, for any pair of (n1, n2) and (n′
1
, n′

2
), we see that

g · (n1, n2) ≡ (n′1, n′2), g · (n′1, n′2) ≡ (n1, n2) mod n

by g = r2p1
i p2

j with i = −n1 − n′
1

and j = −n2 − n′
2
. By choosing G′ = ⟨r3p1

i p2
j⟩, we see

that a duo-center (m = 2) at any places is an invariant pattern by Proposition 4.1. The uniform

distribution can be shown as an invariant pattern by extending the proof for the duo-center. □

We search for invariant patterns on the n × n square lattice by finding a set of m nodal points

and a subgroup G′ that satisfy Proposition 4.1. We propose the following procedure to obtain all

invariant patterns.

• Choose a set of m nodal points among a total of n2 nodal points.

• Find elements of G that retain the set of points invariant.

• If these elements form a group and permute any two of the m nodal points, this group is

chosen as G′ in Proposition 4.1 to ensure that the set of points gives an invariant pattern.

In this procedure, it is convenient to note that the number m of agglomerated places is not arbitrary

but depends on the lattice size n as explained in the following proposition:

Proposition 4.4. If a spatial distribution (λ+, λ0) = ( 1
m

1, 0) is an invariant pattern on an n × n

square lattice, then the number m (1 ≤ m ≤ n2) divides 8n2.
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1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

37 38 39 40 41 42

Figure 4.3: List of invariant patterns for the 6× 6 square lattice. The size of a circle represents the mass of population

in each place.
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43 44 45 46 47 48

49 50 51 52 53 54

55 56 57 58 59 60

61 62 63 64 65 66

67 68 69 70 71 72

73 74 75 76 77 78

79 80 81 82 83

Figure 4.4: List of invariant patterns for the 6× 6 square lattice. The size of a circle represents the mass of population

in each place.
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Proof. Since G′ is a subgroup of G with |G | = |⟨r, s, p1, p2⟩| = 8n2, |G′| divides 8n2 by Lagrange’s

theorem. The number m of elements of an orbit divides |G′| (e.g., see §3.1.2 of Kochendörfer,

1970). Hence, 8n2 is divisible by m. □

For example, a list of invariant patterns for n = 6 are depicted in Figs. 4.3 and 4.4.

4.4. Stable Invariant Patterns for Economic Geography Models

In this section, we investigate the stability of invariant patterns by numerical analysis. We

employ the FO model (Forslid and Ottaviano, 2003) and the PS model (Pflüger and Südekum,

2008) as specific examples of economic geography models (see Section 2.3.1 for the FO and the

PS models). Note that these models with the replicator dynamics on the n× n square lattice satisfy

the equivariance to G = D4 ⋉ (Zn × Zn) (see Proposition 2.1 in Section 2.3.2 for the proof):

T(g)F(λ, ϕ) = F(T(g)λ, ϕ), g ∈ G (4.9)

for the K(= n2)-dimensional permutation representation T(g) of G.17 Thus, the theoretical predic-

tion of invariant patterns in Section 4.3 is applicable to these two models.

We show the stability of invariant patterns on the 6 × 6 square lattice by comparative static

analysis with respect to the bifurcation parameter (trade freeness) ϕ ∈ (0, 1) for each model. We

use the same settings of the model parameters as in Section 3.7. Note that we can systematically

investigate the stability of invariant patterns also for the other parameter settings.

FO model

For the FO model, Figure 4.5 depicts by solid lines the range of ϕwhere the associated invariant

patterns are stable. Parameter values are chosen as σ = 6.0, µ = 0.4. There are as many as 22

invariant patterns that are stable for some range of ϕ. We see a tendency that when the trade freeness

ϕ increases from 0 to 1, the number of places with positive population decreases. Although most of

the invariant patterns are not connected directly to the uniform distribution, some of them may be

activated through secondary and further bifurcations from the uniform distribution or bifurcations

from other invariant patterns.

PS model

For the PS model, Figure 4.6 depicts by solid lines the range of ϕ where the associated patterns

are stable. Parameter values are chosen asσ = 3.0, µ = 0.6, γ = 0.2. There are 8 invariant patterns

that are stable for some range of ϕ. Unlike the FO model, invariant patterns with small number of

agglomerated places (e.g., mono-centric and duo-centric distributions) are not stable. When ϕ is

close to 0, the uniform distribution is stable. As ϕ increases from 0, the uniform distribution loses

its stability. When ϕ is close to 1, the uniform distribution becomes stable again. The 8-centric

(51) and 12-centric (65) distributions also show the same feature as the uniform distribution.

16 These three distributions are proved to be invariant patterns for the hexagonal lattice (Ikeda et al., 2019a).
17 The concrete form of T(g) was given in Section 3.4.1.
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0 0.6 10.40.2 0.8

�NIFORM ����
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�UO�CENTRIC �	
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Tri-centric (12)

QUAD�CENTRIC ����

QUAD�CENTRIC ��
�

QUAD�CENTRIC ����

QUAD�CENTRIC ��
�

QUAD�CENTRIC ����

QUAD�CENTRIC ��
�

QUAD�CENTRIC ����

6-centric (45)

6-centric (47)

6-centric (49)

8-centric (61)

8-centric (62)

8-centric (63)

12-centric (71)

12-centric (76)

18-centric (80)

�UO�CENTRIC ���

�ONO�CENTRIC �	�

Mono-centric (1) Duo-centric (8) Duo-centric (9) Duo-centric (10) Tri-centric (12)

Quad-centric (24) Quad-centric (26) Quad-centric (29) Quad-centric (30) Quad-centric (33)

Quad-centric (36) Quad-centric (37) 6-centric (45) 6-centric (47) 6-centric (49)

8-centric (61) 8-centric (62) 8-centric (63) 12-centric (71) 12-centric (76)

18-centric (80) Uniform (83)

Figure 4.5: The ranges of ϕ for stable invariant patterns on the 6× 6 square lattice for the FO model with σ = 6.0, µ =

0.4. The number in the label of each invariant pattern corresponds to that is Figs. 4.3 and 4.4.
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�NIFORM ����
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��8CENTRIC ����

8-centric (51) 12-centric (65) 12-centric (69) 12-centric (70) 12-centric (74)

16-centric (77) 16-centric (78) Uniform (83)

Figure 4.6: The ranges of ϕ for stable invariant patterns on the 6× 6 square lattice for the PS model with σ = 3.0, µ =

0.6, γ = 0.2. The number in the label of each invariant pattern corresponds to that in Figs. 4.3 and 4.4.
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Figure 4.7: Stable invariant patterns engendered by direct bifurcation on the 6×6 square lattice for the FO model. The

vertical axis shows λmax = max(λ1, . . . , λK ). M represents the multiplicity of critical points. Solid curves represent

stable equilibria, and dashed ones represent unstable ones. A number in the label of each invariant pattern corresponds

to Figs. 4.3 and 4.4.

4.5. Bifurcation Behaviour of the Forslid and Ottaviano (2003) Model

In this section, we conduct numerical bifurcation and stability analysis of the FO model (Forslid

and Ottaviano, 2003) on the 6×6 square lattice, focusing on the connectivity of bifurcating solutions

to invariant patterns. We would like to show the usefulness of a knowledge of invariant patterns in

bifurcation analysis of economic geography models.

4.5.1. Path Tracing Focusing on Invariant Patterns

Figure 4.7 depicts the λmax = max(λ1, . . . , λK) versus ϕ relation of the equilibrium curves.

When the trade freeness ϕ increases from 0, the uniform distribution (83) in Fig. 4.5 loses its

stability at the bifurcation point A associated with µ = (1;+,+,−). Then, the bifurcating solution

q
(1;+,+,−)
1

emerges, and the solution curve connects to an invariant pattern of 18-centric distribution

(80) in Fig. 4.5. During this process, population tends to be agglomerated completely to places

with the largest positive components of the bifurcating solution. There is the same tendency for

the solution curves from the bifurcation points B, C, D, E, F, and G associated with the irreducible

representations (4; 2, 2,+), (4; 3, 1,+), (8; 2, 1), (4; 2, 0,+), (4; 1, 1,+), and (4; 1, 0,+), respectively.

Figure 4.7 captures stable invariant patterns engendered from the uniform distribution and

solution curves for non-invariant patterns connecting the uniform distribution to these invariant

patterns. So far as these solution curves are concerned, stable equilibria are always invariant

patterns, and non-invariant patterns are all unstable. These unstable non-invariant patterns often

regain their stability upon arriving at stable invariant patterns. We have observed a mesh-like

structure of the horizontal curves for stable invariant patterns and unstable non-invariant ones in

Fig. 4.7. As we have seen, a knowledge of invariant patterns is useful in the understanding of the

mechanism of such network-like structure of the bifurcation behaviour.
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Table 4.1: Bifurcating solutions for the 6 × 6 square lattice

µ Bifurcating solutions (w ∈ R)

(1;+,+,−) w

(2;+,+) wsq = (w,w), wstripe = (w, 0)
(4; 1, 0,+) wsq = (w, 0,w, 0), wstripeI = (w, 0, 0, 0)
(4; 2, 0,+) wsq = (w, 0,w, 0), wstripeI = (w, 0, 0, 0)
(4; 1, 1,+) wsq = (w, 0,w, 0), wstripeI = (w, 0, 0, 0)
(4; 2, 2,+) wsq = (w, 0,w, 0), wstripeI = (w, 0, 0, 0)
(4; 3, 1,+) wsq = (w, 0,w, 0), wstripeI = (w, 0, 0, 0), wstripeII = (0,w, 0, 0)
(4; 3, 2,+) wsq = (w, 0,w, 0), wstripeI = (w, 0, 0, 0), wstripeII = (0,w, 0, 0)
(8; 2, 1) wsqVM = (w, 0,w, 0,w, 0,w, 0),

wupside−downI = (w, 0, 0, 0,w, 0, 0, 0), wupside−downII = (0,w, 0, 0, 0,w, 0, 0),
wstripeI = (w, 0, 0, 0, 0, 0, 0, 0), wstripeII = (0,w, 0, 0, 0, 0, 0, 0),

4.5.2. Connectivity of Bifurcating Solutions to Invariant Patterns

We can observe the connectivity of the uniform distribution to invariant patterns via bifurcating

solutions. As a consequence of the irreducible decomposition (3.72) in Section 3.4.2 of the

permutation representation T for the 6 × 6 square lattice, the irreducible representation µ of the

group G = D4 ⋉ (Z6 × Z6) to be considered in bifurcation analysis is restricted to

µ = (1;+,+,+), (1;+,+,−), (2;+,+), (4; 1, 0,+), (4; 2, 0,+),
(4; 1, 1,+), (4; 2, 2,+), (4; 3, 1,+), (4; 3, 2,+), (8; 2, 1). (4.10)

Theoretically possible bifurcating solutions associated with µ in (4.10) are listed in Table 4.1 and

depicted in Fig. 4.8. Note that for µ = (4; 2, 0,+) and µ = (4; 2, 2,+), the two solutions wsq and

−wsq, which have opposite signs, represent different physical behaviour. The same holds for the

solutions wstripeI and −wstripeI. Other bifurcating solutions with opposite signs represent the same

physical behaviour.

We can observe the connectivity of the uniform distribution to invariant patterns via bifurcating

solutions presented in Fig. 4.8. The eigenvector of a bifurcating solution at the left and the

associated invariant pattern at the right that are connected by an arrow→ forms a pair and several

pairs are presented in Figs 4.9–4.11. Each pair displays similar geometrical patterns. In numerical

bifurcation analysis of the FO model from the uniform distribution in Section 4.5.1, we see how such

connectivity arises from a bifurcation mechanism. Population in places with positive components

of bifurcating solutions tended to increase, while population in places with negative components

of bifurcating solutions tended to decrease along all bifurcating curves.

Based on this tendency, we predict that invariant patterns shown in Figs. 4.9–4.11 can be

engendered from the uniform distribution via direct bifurcations. For example, a mono-center can

be engendered from a critical point associated with q
(4;1,0)
1

+ q
(4;1,0)
3

(see the top-left of Fig. 4.9).

Such connectivity is also observed for other pairs connected by the arrow→. This prediction is
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w wsq wstripe wsq wstripeI

(a) µ = (1;+,+,−) (b) µ = (2;+,+) (c) µ = (4; 1, 0,+)

wsq wstripeI wsq wstripeI wsq wstripeI

(d) µ = (4; 2, 0,+) (e) µ = (4; 1, 1,+) (f) µ = (4; 2, 2,+)

wsq wstripeI wstripeII wsq wstripeI wstripeII

(g) µ = (4; 3, 1,+) (h) µ = (4; 3, 2,+)

wsqVM wstripeI wstripeII wupside−downI wupside−downII

(i) µ = (8; 2, 1)

Figure 4.8: Bifurcating solutions for the 6× 6 square lattice. A black circle denotes a positive component, and a white

circle denotes a negative component. The size of a circle represents the magnitude of the associated component.
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→ →

∑
i=1,3 q

(4;1,0,+)
i

Mono-centric (1)
∑

i=1,5 q
(8;2,1)
i

Duo-centric (4)

→ →

∑
i=1,3 q

(4;1,1,+)
i

Duo-centric (10)
∑

i=2,6 q
(8;2,1)
i

Quad-centric (30)

→ →

q
(4;1,0,+)
1

6-centric (38) q
(4;3,2,+)
1

6-centric (44)

→ →

q
(4;3,1,+)
1

6-centric (45) q
(8;2,1)
1

6-centric (47)

Figure 4.9: Invariant patterns that are engendered through asymmetric bifurcating solutions from the uniform distri-

bution for the 6 × 6 square lattice. Figures to the left represent bifurcating solutions, and ones to the right represent

corresponding invariant patterns. The number (·) in the parenthesis for each invariant pattern corresponds to that in

Figs. 4.3 and 4.4.
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→ →

q
(4;1,1,+)
1

6-centric (48)
∑

i=1,2 q
(2;+,+)
i

9-centric (64)

→ →

q
(8;2,1)
2

12-centric (71) q
(4;3,1,+)
2

12-centric (72)

→ →

q
(4;3,2,+)
2

12-centric (73) q
(2;+,+)
1

18-centric (79)

→

q
(1;+,+,−)
1

18-centric (80)

Figure 4.10: Invariant patterns that are engendered through asymmetric bifurcating solutions from the uniform

distribution for the 6 × 6 square lattice. Figures to the left represent bifurcating solutions, and ones to the right

represent corresponding invariant patterns. The number (·) in the parenthesis for each invariant pattern corresponds

to that in Figs. 4.3 and 4.4.
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∑
i=1,3 q

(4;2,0,+)
i

↗

↘

Quad-centric (29)

16-centric (77)

q
(4;2,0,+)
1

↗

↘

12-centric (67)

24-centric (81)

∑
i=1,3 q

(4;2,2,+)
i

↗

↘

Quad-centric (29)

16-centric (78)

q
(4;2,2,+)
2

↗

↘

12-centric (76)

24-centric (82)

Figure 4.11: Invariant patterns that are engendered through asymmetric bifurcating solutions from the uniform

distribution for the 6 × 6 square lattice. Figures to the left represent bifurcating solutions, and ones to the right

represent corresponding invariant patterns. The number (·) in the parenthesis for each invariant pattern corresponds

to that in Figs. 4.3 and 4.4.

113



fairly in line with the bifurcation behaviour of the FO model that was investigated in Section 4.5.1

and is insightful in the understanding of spatial economic agglomerations.

A remark is on the symmetry/asymmetry of the bifurcating solutions. When the solutions in

the positive and the negative directions from the bifurcation point are conjugate, these solutions

can arrive at the same invariant pattern (see Figs. 4.9 and 4.10). When the two solutions are not

conjugate, these solutions can arrive at two different patterns (see Fig. 4.11).

4.6. Concluding Remarks

This chapter has assessed the usefulness of invariant patterns for analysis of economic geogra-

phy models with the replicator dynamics. In view of invariant patterns, we proposed a systematic

procedure to find stable equilibria of economic geography models: (i) obtaining all invariant pat-

terns and investigate their stability, and (ii) searching for bifurcating equilibrium curves connecting

stable invariant patterns. In the numerical analysis of the FO model and PS model, we demonstrated

the usefulness of this procedure in the elucidation of the agglomeration behaviour of economic

geography models.

Invariant patterns on an n × n square lattice display characteristic geometrical patterns, includ-

ing mono-centric and poly-centric distributions. Using the FO model, we showed the connectivity

between such invariant patterns and bifurcating solutions via bifurcation from the uniform distri-

bution. We demonstrated that such connectivity produces a mesh-like structure of the equilibrium

curves for stable invariant patterns and unstable non-invariant ones.

The main contribution of this chapter is not only revealing the agglomeration behaviour of

particular models but also proposing a general framework to understand bifurcation behaviour for

any economic geography model that has corner solutions under the replicator dynamics. Using

the procedure proposed in this chapter, we can completely figure out bifurcation behaviour for any

economic geography model.
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5. Bifurcation Mechanism from the Mono-centric Distribution on a Square Domain

5.1. Introduction

Central place theory (Christaller, 1933; Lösch, 1940) put forward agglomeration patterns of

one large core city surrounded by small satellite cities. In fact, such agglomeration patterns prosper

worldwide. Using population data of Germany and the U.S., Ikeda et al. (2018c, 2022) detected

such core–periphery distributions by group-theoretic spectrum analysis.

Several studies in spatial economics dealt with the emergence of cities. The formation of

satellite cities around a single large city was explored in a linear space (Fujita and Krugman, 1995;

Mori, 1997; Fujita and Mori, 1997; Fujita et al., 1999a). A hub city formation from a central mono-

center was investigated in three regions on a line segment (Ago et al., 2006). The spatial platforms

in these studies, however, are restricted to be one-dimensional. To describe the mechanism of

economic agglomerations in the real world, spatial platforms for economic geography models are

to be extended to two-dimensional spaces or various network topologies. For example, Barbero

and Zofío (2016) analyzed the agglomeration and dispersion forces of a canonical core–periphery

model with a homogeneous ring and heterogeneous star network topologies.

That said, this chapter aims to elucidate a bifurcation mechanism from the mono-centric

distribution in a two-dimensional space for economic geography models. This can be interpreted

as the formation of satellite cities. In search of realistic agglomeration patterns, we employ a

square lattice with ordinary boundaries, that is, a two-dimensional square domain where discrete

places are evenly distributed. Places at the border of a square lattice with ordinary boundaries have

locational disadvantage, unlike a square lattice with periodic boundaries in Chapter 3. Focusing

on a bifurcation mechanism due to the geometrical symmetry, we present an exhaustive list of

bifurcating solutions from the mono-centric distribution. This list would be of assistance in the

study of spatial economics.

In numerical analysis, we demonstrate the emergence of theoretically predicted bifurcating

solutions. We use the FO model (Forslid and Ottaviano, 2003) and the PS model (Pflüger and

Südekum, 2008) as specific examples of economic geography models. For each parameter value of

these models, we investigate which bifurcating solution occurs from the mono-centric distribution

as the trade freeness (transportation cost) changes.

This chapter is organized as follows. Basic assumptions of economic geography models with

the replicator dynamics are presented in Section 5.2. A square lattice and its orbit decomposition is

explained in Section 5.3. Bifurcation from the mono-centric distribution is studied in Section 5.4.

Numerical bifurcation analysis of economic geography models on the square lattice is conducted

in Section 5.5.

5.2. Spatial Equilibrium and the Replicator Dynamics

We employ a general framework of economic geography models with the replicator dynamics

that was introduced in Section 2.1. We briefly explain a spatial equilibrium of the economy

comprising K places. Mobile agents (e.g., skilled workers for the FO model) can migrate among

the K places.

Let P = {1, . . . ,K} be the set of places. Define the payoff function vector v = v(λ, ϕ) ∈ RK

as a continuous function of the spatial distribution of mobile agents λ (λi ≥ 0; i ∈ P) and the
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X

Y

Figure 5.1: A square lattice with 25 places.

trade freeness ϕ. Define a spatial equilibrium as a spatial distribution that satisfies the following

conditions: {
v
∗ − vi = 0 if λi > 0,

v
∗ − vi ≤ 0 if λi = 0,

(5.1)

and ∑
i∈P

λi = 1, (5.2)

where v
∗ denotes the equilibrium payoff level.

We consider the replicator dynamics:

dλ

dt
= F(λ, ϕ), (5.3)

where F(λ, ϕ) = (Fi(λ, ϕ) | i ∈ P), and Fi takes the form

Fi(λ, ϕ) = λi(vi(λ, ϕ) − v̄(λ, ϕ)), i ∈ P. (5.4)

Here, v̄ =
∑

i∈P λivi represents the weighted average payoff. We can restate a problem to obtain

a set of stable spatial equilibria by another problem to find a set of stable stationary points of the

replicator dynamics (Sandholm, 2010). A stationary point (λ, ϕ) of the replicator dynamics is a

solution to the governing equation:

F(λ, ϕ) = 0. (5.5)

A stationary point is linearly stable if every eigenvalue of the Jacobian matrix J = ∂F/∂λ has a

negative real part.

5.3. Square Lattice and Orbit Decomposition of Places

We employ a square lattice with K places at the nodal points (cf., Fig. 5.1 for K = 25). In the

description of spatial distributions on this lattice, it is essential to resort to its symmetry labeled by

the dihedral group:

G = D4 = {e, r, . . . , r3, s, sr, . . . , sr3}, (5.6)

where e is the identity transformation, s is a reflection y 7→ −y, and r j is a counterclockwise

rotation about the center of this lattice by an angle of π j/2 ( j = 0, 1, 2, 3).
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(a) D4

(b) D2

(b) D1

(d) C4 (d) C2 (d) C1

Figure 5.2: Orbit decomposition of places on a square lattice with respect to subgroups of G.
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We can decompose the K places into subsets, called orbits. Each orbit has some geometrical

symmetry described by a subgroup of G. Subgroups of G are given as follows:

D4 = {e, r, r2, r3, s, sr, sr2, sr3} : square symmetry,

D2 = {e, r2, s, sr2} : diagonal symmetry,

D1 = {e, s} : bilateral symmetry,

C4 = {e, r, r2, r3} : (π/2)−rotation symmetry,

C2 = {e, r2} : π−rotation symmetry,

E = C1 = {e} : asymmetry.

The set of places P is decomposed into disjoint orbits with respect to a subgroup G′ of G:

P =
∪
l∈L

Pl, (5.7)

where Pl is an orbit, and L is the whole set of orbits with the symmetry labeled by G′. Orbit

decomposition with respect to each subgroup other than E is depicted in Fig. 5.2, while each node

becomes an orbit for G′ = E . The same symbols in Fig. 5.2 (such as ◦ or □) imply that they belong

to the same orbit.

We assume that the symmetry of a square lattice ensures the equivariance with respect to the

payoff function:

T(g)v(λ, ϕ) = v(T(g)λ, ϕ), g ∈ G, (5.8)

where T(g) is a matrix representation of G that permutes place numbers. Under this assumption,

we have the following lemma:

Lemma 1. The payoff function vi in the same orbit for a subgroup takes the same value when a

spatial distribution is symmetric with respect to this subgroup.

Proof. The spatial distribution is symmetric with respect to a subgroup G′ of G, that is, T(g)λ = λ

for g ∈ G′. Hence, we have T(g)v(λ, ϕ) = v(λ, ϕ) for g ∈ G′ by virtue of the equivariance in (5.8).

This means that vi in the same orbit is permutable. This suffices for the proof. □

5.4. Bifurcating Solutions from the Mono-centric Distribution

Let λFA
= (1, 0, . . . , 0) be the mono-centric distribution,18 which represents the full agglom-

eration to the place at the center of a square lattice. We investigate bifurcation points on the

mono-centric distribution. Recall that a bifurcation occurs when the Jacobian matrix becomes

singular. The following lemma provides the form of the Jacobian matrix at the mono-centric

distribution.

18 Note that the mono-centric distribution is an invariant pattern, which satisfies the governing equation in (5.5) for

any ϕ (cf., Proposition 4.3 in Section 4.3).
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{1} α1 α2 α3 α4 β1

Figure 5.3: Orbits with respect to D4 for a square lattice with 25 places.

Lemma 2. The Jacobian matrix at the mono-centric distribution takes the following form:

J(λFA, ϕ) =
(
−v1 J+0

O J0

)
, (5.9)

where

J+0 = (−v2, . . . ,−vK), J0 = diag(v2 − v1, . . . , vK − v1). (5.10)

Proof. Since the replicator dynamics takes Fi = λi(vi − v̄) (i = 1, . . . ,K), we have

∂Fi

∂λi

= vi − v̄ + λi

(
∂vi

∂λi

− vi −
K∑

k=1

λk

∂vk

∂λi

)
, i = 1, . . . ,K, (5.11)

∂Fi

∂λ j

= λi

(
∂vi

∂λ j

− v j −
K∑

k=1

λk

∂vk

∂λ j

)
, i, j = 1, . . . ,K, j , i. (5.12)

Note that v̄ =
∑K

j=1 λ jv j = v1 at λ = λFA. Substituting λ = λFA into (5.11) and (5.12), we have

∂Fi

∂λi

����
λ=λFA

=

{
−v1 (i = 1)
vi − v1 (i , 1)

, (5.13)

∂Fi

∂λ j

����
λ=λFA

=

{
−v j (i = 1)
0 (i , 1)

. (5.14)

Thus, the Jacobian matrix J = ∂F/∂λ(λFA, ϕ) takes the form (5.9) with (5.10). □

Note that the mono-centric distribution is symmetric with respect to the group D4:

T(g)λFA
= λFA, g ∈ D4. (5.15)

Thus, we carry out orbit decomposition with respect to D4 in order to apply Lemma 1 to the mono-

centric distribution. As a result, each orbit other than the center of the square lattice comprises

four or eight places. We denote these orbits by

P = {1} ∪ α1 ∪ . . . ∪ αn1
∪ β1 ∪ . . . ∪ βn2

, (5.16)
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(a) Type αi orbit (b) Type βi orbit

Figure 5.4: Definition of variables for each orbit.

(a) Square-I (b) Duo-I (c) Duo-II (d) Mono-I

Figure 5.5: Geometrical configurations of bifurcating solutions from the mono-centric distribution for Type αi orbit.

where {1} represents an orbit comprising only the place at the center, αi (i = 1, . . . , n1) represents

an orbit with square-shaped four places, and βi (i = 1, . . . , n2) represents an orbit with eight places.

For example, Figure 5.3 depicts orbits for K = 25 places (n1 = 4, n2 = 1).
By Lemma 1, the payoff function vi in the same orbit with respect to D4 takes the same value

at the mono-centric distribution. We denote such values as

vα1
, . . . , vαn1

for αi (i = 1, . . . , n1),
vβ1
, . . . , vβn2

for βi (i = 1, . . . , n2).
(5.17)

Then, we have the following condition:

Lemma 3. A bifurcating solution in the space
∑K

j=1 λ j = 1 emerges from the mono-centric

distribution if one of the following conditions is satisfied:

vαi − v1 = 0 for some αi (i = 1, . . . , n1), (5.18)

vβi − v1 = 0 for some βi (i = 1, . . . , n2). (5.19)

Proof. The Jacobian matrix (5.9) becomes singular if one of the following conditions is satisfied:

v1 = 0, (5.20)

vαi − v1 = 0 for some αi (i = 1, . . . , n1), (5.21)

vβi − v1 = 0 for some βi (i = 1, . . . , n2). (5.22)

For (5.20), no bifurcating solution emerges in the space
∑K

i=1 λi = 1 since the direction of this

solution is (1, 0, . . . , 0). Thus, only (5.21) and (5.22) are the bifurcating conditions from the

mono-center. □

Let ϕk
c be the trade freeness at vk − v1 = 0 (k ∈ P − {1}). In analysis of bifurcating solutions

from a critical point (λFA, ϕk
c ), we employ the bifurcation equation. The bifurcation equation for

Type αi orbit takes the following form (see Appendix B.1.1 for the proof):
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(a) Square-II (b) Square-III (c) Quad-I (d) Quad-II

(e) Duo-III (f) Duo-IV (g) Duo-V (h) Duo-VI (i) Duo-VII (j) Mono-II

Figure 5.6: Geometrical configurations of bifurcating solutions from the mono-centric distribution for Type βi orbit.

Lemma 4. For a bifurcation point associated with Type αi orbit, the bifurcation equation is

four-dimensional and is expressed as follows (cf., Fig. 5.4 (a)):

F̃1(x1, x2, x3, x4, ψ) = x1R(x1, x2, x3, x4, ψ) = 0,

F̃2(x1, x2, x3, x4, ψ) = x2R(x2, x3, x4, x1, ψ) = 0,

F̃3(x1, x2, x3, x4, ψ) = x3R(x3, x4, x1, x2, ψ) = 0,

F̃4(x1, x2, x3, x4, ψ) = x4R(x4, x1, x2, x3, ψ) = 0,

(5.23)

where x = (x1, x2, . . . , x4) = {λ j | j ∈ αi}, and R is a function with

R(x1, x2, x3, x4, ψ) = R(x1, x4, x3, x2, ψ). (5.24)

Solving the bifurcation equation for Type αi orbit, we obtain the following bifurcating solutions

(see Appendix B.1.2 for the proof):

Proposition 5.1. The bifurcation equation for a bifurcation point associated with Type αi orbit has

the following solutions (cf., Fig. 5.5):

x =




w(1, 1, 1, 1): Square-I,

w(1, 1, 0, 0): Duo-I,

w(1, 0, 1, 0): Duo-II,

w(1, 0, 0, 0): Mono-I

(5.25)

for some w > 0.

On the other hand, the bifurcation equation for Type βi orbit takes the following form (see

Appendix B.2.1 for the proof):

Lemma 5. For a bifurcation point associated with Type βi orbit, the bifurcation equation is
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eight-dimensional and is expressed as follows (cf., Fig. 5.4(b)):

F̃1(x, ψ) = x1R(x1, x2, x3, x4, x5, x6, x7, x8, ψ) = 0,

F̃2(x, ψ) = x2R(x2, x1, x8, x7, x6, x5, x4, x3, ψ) = 0,

F̃3(x, ψ) = x3R(x3, x4, x5, x6, x7, x8, x1, x2, ψ) = 0,

F̃4(x, ψ) = x4R(x4, x3, x2, x1, x8, x7, x6, x5, ψ) = 0,

F̃5(x, ψ) = x5R(x5, x6, x7, x8, x1, x2, x3, x4, ψ) = 0,

F̃6(x, ψ) = x6R(x6, x5, x4, x3, x2, x1, x8, x7, ψ) = 0,

F̃7(x, ψ) = x7R(x7, x8, x1, x2, x3, x4, x5, x6, ψ) = 0,

F̃8(x, ψ) = x8R(x8, x7, x6, x5, x4, x3, x2, x1, ψ) = 0,

(5.26)

where x = (x1, x2, . . . , x8) = {λ j | j ∈ βi} , and R is a function.

Solving the bifurcation equation for Type βi orbit, we obtain the following bifurcating solutions

(see Appendix B.2.2 for the proof):

Proposition 5.2. The bifurcation equation for a bifurcation point associated with Type βi orbit has

the following bifurcating solutions (cf., Fig. 5.6):

x =




w(1, 1, 1, 1, 1, 1, 1, 1): Square-II,

w(1, 0, 1, 0, 1, 0, 1, 0): Square-III,

w(1, 1, 0, 0, 1, 1, 0, 0): Quad-I,

w(1, 0, 0, 1, 1, 0, 0, 1): Quad-II,

w(1, 1, 0, 0, 0, 0, 0, 0): Duo-III,

w(1, 0, 0, 1, 0, 0, 0, 0): Duo-IV,

w(1, 0, 0, 0, 1, 0, 0, 0): Duo-V,

w(1, 0, 0, 0, 0, 1, 0, 0): Duo-VI,

w(1, 0, 0, 0, 0, 0, 0, 1): Duo-VII,

w(1, 0, 0, 0, 0, 0, 0, 0): Mono-II

(5.27)

for some w > 0.

Note that the stability of all the bifurcating solutions depend on cases. See Appendix B.1.3 for

Type αi orbit and Appendix B.2.3 for Type βi orbit.

5.5. Bifurcation Behaviour of Economic Geography Models

Based on theoretically possible bifurcating solutions presented in Section 5.4, we conduct

numerical bifurcation analysis of the FO model (Forslid and Ottaviano, 2003) and the PS model

(Pflüger and Südekum, 2008) on a square lattice. For these two models, the elasticity of substitution

σ ∈ (1,∞) and the expenditure share of manufacturing goods µ ∈ (0, 1) are model parameters.

Note that the expenditure share of housing goods γ ∈ (0, 1) is another model parameter for the PS

model. The trade freeness ϕ ∈ (0, 1) serves as the bifurcation parameter.
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(a) σ = 6.0 (b) σ = 3.0

Figure 5.7: The stability areas of the mono-centric distribution on a square lattice with 25 places for the FO model in

(ϕ, µ) ∈ (0, 1) × (0, 1).

5.5.1. Forslid and Ottaviano (2003) Model

We conduct numerical bifurcation analysis of the FO model (Forslid and Ottaviano, 2003) on a

square lattice. We investigate the influence of model parameters σ and µ on the types of bifurcating

solutions from the stable mono-centric distribution. We additionally discuss the influence of the

boundary conditions of a square lattice.

Bifurcation Behaviour

We employ a square lattice with 25 places (cf., Fig. 5.1) and demonstrate the bifurcation

behaviour of the FO model on this lattice. The 25 places can be decomposed into six kinds of

orbits (cf., Fig. 5.3):



{1}: a place at the center,

α1, . . . , α4: 4 places,

β1: 8 places.

(5.28)

There are five kinds of bifurcation points associated with Type α1, . . . , α4, and β1 orbits, whereas

the orbit {1} is not associated with bifurcation.

We investigate the stability of the mono-centric distribution. Figures 5.7(a) and (b) show the

stability areas of the mono-centric distribution in the space of (ϕ, µ) ∈ (0, 1)×(0, 1) for σ = 6.0 and

σ = 3.0, respectively. For each µ, the mono-centric distribution loses its stability at a bifurcation

point when ϕ decreases from 1. An increase of µ expands a range of ϕ for the stability areas

where the mono-centric distribution becomes stable. Comparing Figs. 5.7(a) and (b), we see that

a decrease of σ expands the stability area of the mono-centric distribution.

We show the emergence of bifurcating solutions from the stable mono-centric distribution.

Figure 5.8 shows equilibrium curves for (σ, µ) = (6.0, 0.4). When ϕ decreases from 1, a bifurcation

occurs at the point E. The bifurcating path EA shows that the stable agglomeration pattern shifts
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(a) Equilibrium curves

→

E A

(b) The progress of stable equilibria observed as ϕ decreases

B C D

(c) Unstable bifurcating solutions

Figure 5.8: Equilibrium curves for the FO model with (σ, µ) = (6.0, 0.4) on a square lattice with 25 places. The

horizontal axis shows the trade freeness, and the vertical axis shows the size of population at the center. Solid curves

represent stable equilibria, and dashed ones represent unstable ones. A blue circle shows the size of population at each

place.
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(a) Equilibrium curves

→

E A

(b) The progress of stable equilibria observed as ϕ decreases

B C D

(c) Unstable bifurcating solutions

Figure 5.9: Equilibrium curves for the FO model with (σ, µ) = (3.0, 0.4) on a square lattice with 25 places. The

horizontal axis shows the trade freeness, and the vertical axis shows the size of population at the center. Solid curves

represent stable equilibria, and dashed ones represent unstable ones. A blue circle shows the size of population at each

place.

from the mono-centric distribution to Square-I pattern for Type α3 orbit (cf., α3 in Fig. 5.3). The

other bifurcating paths EB, EC, and ED are all unstable.

Figure 5.9 depicts equilibrium curves for (σ, µ) = (3.0, 0.4). The stable bifurcating path

EA represents Square-I pattern for Type α4 orbit (cf., α4 in Fig. 5.3) unlike that for the case of

(σ, µ) = (6.0, 0.4).

Influence of Model Parameters

The types of bifurcating solutions from a bifurcation point on the stable mono-centric distribu-

tion vary with the values of model parameters σ and µ (cf., Figs. 5.8 and 5.9). With this in mind,

we investigate the influence of model parameters σ and µ on bifurcation behaviour. Figure 5.10

shows the parameter dependence of the types of bifurcating solutions from the stable mono-centric

distribution. The areas painted using different colors express the emergence of different bifurcating

solutions.19 Figure 5.10 indicates that places where population emerges are dependent on an ag-

glomeration force: As an agglomeration force increases (1/σ and µ become close to 1), population

emerges at places away from the center.

19 For the FO model, no bifurcation occurs in the area of µ > σ − 1. This is the violation of the no-black-hole

condition (Robert-Nicoud, 2005).
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(a) 25 places (b) 49 places

(c) 81 places (d) 121 places

Figure 5.10: The dependence of the types of bifurcating solutions on the values of (1/σ, µ) ∈ (0, 1) × (0, 1) for the FO

model on a square lattice. A blue circle shows the size of population at each place.
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A square lattice with 25 places shows that only two types of bifurcating solutions can occur as

depicted in Fig. 5.10(a). The number of possible bifurcating solutions increases as the size of a

square lattice increases. A bifurcating solution that can be interpreted as the formation of satellite

places surrounding the center occurs when µ or 1/σ is close to 0 (cf., the area painted using blue

in Figs. 5.10(b), (c), and (d)). The exogenous disadvantages of places near the borders get worse

as the size of a square lattice increases. A square lattice with 81 places and that with 121 places

show that bifurcating solutions with population at the corners do not arise. (cf., the area painted

using green in Fig. 5.10(c) and that painted using yellow in Fig. 5.10(d)).

Influence of Boundary Conditions

We investigate the influence of boundary conditions for a square lattice on bifurcation behaviour.

We employ an n×n square lattice with periodic boundaries that was introduced in Chapter 3, while

we have used a square lattice with ordinary boundaries in this chapter. Note that periodic boundaries

reduce the exogenous disadvantages of places near the borders.

Figure 5.11 shows the parameter dependence of the types of bifurcating solutions from the

stable mono-centric distribution. This result indicates that bifurcating solutions with population

at places near the center do not arise. That is, bifurcating solutions that represent the formation

of satellite places surrounding the center do not arise, while those can occur on a square lattice

with ordinary boundaries. For n = 5, population emerges at the corners for any value of σ and

µ. For n = 7, n = 9, and n = 11, there are two possible bifurcating solutions. The areas where

population emerges at the corners decreases as the size of a square lattice increases (cf., the area

painted using cyan in Fig. 5.11(b), that painted using yellow in Fig. 5.11(c), and that painted using

red in Fig. 5.11(d)).

5.5.2. Pflüger and Südekum (2008) Model

We conduct numerical bifurcation analysis of the PS model (Pflüger and Südekum, 2008) on a

square lattice.

Bifurcation Behaviour

We examine bifurcation points on the stable mono-centric distribution. Figures 5.12(a) and

(b) show the stability areas of the mono-centric distribution in (ϕ, µ, γ) ∈ (0, 1) × (0, 1) × (0, 1) for

σ = 6.0 and σ = 3.0, respectively. Comparing (a) and (b), we see that a decrease of σ expands

the stability area of the mono-centric distribution.

For each case in Fig. 5.12, the mono-centric distribution is unstable when ϕ is relatively small

(ϕ < 0.5). The plane at γ = 0.2 indicates that the mono-centric distribution becomes stable at

a bifurcation point as ϕ increases from 0. The stable mono-centric distribution loses its stability

when ϕ reaches another bifurcation point. This observation implies that the stable mono-centric

distribution encounters two kinds of bifurcation points as the value of ϕ changes. Thus, the PS

model can potentially describe the formation of satellite places due to an increase and also due to

a decrease of ϕ.

We demonstrate the emergence of bifurcating solutions from the stable mono-centric distribu-

tion. Figure 5.13 shows equilibrium curves for (σ, µ, γ) = (3.0, 0.6, 0.2). The path AEE′F shows

the progress of stable equilibria when ϕ increases from 0 to 1. The stable path AE represents
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(a) n = 5 (b) n = 7

(c) n = 9 (d) n = 11

Figure 5.11: The dependence of the types of bifurcating solutions on the values of (1/σ, µ) ∈ (0, 1) × (0, 1) for the FO

model on an n × n square lattice with periodic boundaries. A blue circle shows the size of population at each place.
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(a) σ = 6.0

(b) σ = 3.0

Figure 5.12: The stability areas of the mono-centric distribution on a square lattice with 25 places for the PS model in

(ϕ, µ, γ) ∈ (0, 1) × (0, 1) × (0, 1).

129



(a) Equilibrium curves

→ →

A E F

(b) The progress of stable equilibria observed as ϕ increases

B C D G H I

(c) Unstable bifurcating solutions

Figure 5.13: Equilibrium curves for the PS model with (σ, µ, γ) = (3.0, 0.6, 0.2) on a square lattice with 25 places.

The vertical axis shows the size of population at the center. Solid curves represent stable equilibria, and dashed ones

represent unstable ones. A blue circle shows the size of population at each place.
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(a) The bifurcation point E (b) The bifurcation point E′

Figure 5.14: The dependence of the types of bifurcating solutions on the values of (1/σ, µ) ∈ (0, 1) × (0, 1) for the PS

model with γ = 0.2 on a square lattice with 25 places. A blue circle shows the size of population at each place.

Square-I pattern for Type α1 orbit (cf., α1 in Fig. 5.3). As ϕ increases from the point A, population

surrounding the center disappears. The mono-centric distribution becomes stable at the bifurca-

tion point E and loses its stability at another bifurcation point E′. The stable path E′A represents

Square-I pattern for Type α1 orbit again. The other bifurcating paths are all unstable.

Influence of Model Parameters

For the PS model, the stable mono-centric distribution encounters two kinds of bifurcation

points (cf., the bifurcation points E and E′ in Fig. 5.13). Bifurcating solutions EA, EB, EC, and ED

emerge from the bifurcation point E when ϕ decreases. On the other hand, bifurcating solutions

emerge from the bifurcation point E′ when ϕ increases. With these in mind, we investigate

the dependence of the types of bifurcating solutions from the two bifurcation points on model

parameters.

Figure 5.14 shows the dependence of the types of bifurcating solutions on the values of model

parameters σ and µ for K = 25. For the bifurcation point E, population tends to emerge away

from the center as an agglomeration force increases (1/σ and µ become close to 1). For the

bifurcation point E′, bifurcating solutions with population surrounding the center is the only

possibility regardless of the value of σ and µ.

Figure 5.15 shows the dependence of the types of bifurcating solutions from the bifurcation

point E on the values of model parameters σ and µ for K = 49, K = 81, and K = 121, respectively.

For each case, population emerges at places surrounding the center when 1/σ and µ are close to

0. These bifurcating solutions represent the formation of satellite places surrounding the center.

As an agglomeration force increases (1/σ and µ become close to 1), population emerges at places
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(a) 49 places

(b) 81 places (c) 121 places

Figure 5.15: The dependence of the types of bifurcating solutions from the bifurcation point E on the values of

(1/σ, µ) ∈ (0, 1) × (0, 1) for the PS model with γ = 0.2 on a square lattice. A blue circle shows the size of population

at each place.
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(a) The bifurcation point E (b) The bifurcation point E′

Figure 5.16: The dependence of the types of bifurcating solutions on the values of (1/σ, µ) ∈ (0, 1) × (0, 1) for the PS

model with γ = 0.2 on a 5 × 5 square lattice with periodic boundaries. A blue circle shows the size of population at

each place.

away from the center. Note that for the bifurcation point E′, bifurcating solutions with population

surrounding the center is the only possibility regardless of the value of σ and µ.

Influence of Boundary Conditions

Figure 5.16 shows the dependence of the types of bifurcating solutions on the values of model

parameters σ and µ for n = 5. Bifurcation behaviour is common with that for a square lattice with

ordinary boundaries: For the bifurcation point E, population tends to emerge away from the center

as 1/σ and µ become close to 1. For the bifurcation point E′, bifurcating solutions with population

surrounding the center is the only possibility regardless of the value of σ and µ.

Figure 5.17 shows the dependence of the types of bifurcating solutions from the bifurcation

point E, on the values of model parameters σ and µ for n = 7, n = 9, and n = 11. For each case,

population tends to emerge away from the center as 1/σ and µ become close to 1. Bifurcating

solutions that represent the formation of satellite places surrounding the center do not arise, while

those can occur on a square lattice with ordinary boundaries. Note that for the bifurcation point

E′, bifurcating solutions with population surrounding the center is the only possibility regardless

of the value of σ and µ.

5.6. Concluding Remarks

This chapter has elucidated a bifurcation mechanism from the mono-centric distribution on

a square lattice with ordinary boundaries. We derived bifurcating solutions, including spatial

distributions that represent the formation of satellite places surrounding a central place, from

the mono-centric distribution on a square lattice by group-theoretic bifurcation analysis. We
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(a) n = 7

(b) n = 9 (c) n = 11

Figure 5.17: The dependence of the types of bifurcating solutions from the bifurcation point E on the values of

(1/σ, µ) ∈ (0, 1) × (0, 1) for the PS model with γ = 0.2 on an n × n square lattice with periodic boundaries. A blue

circle shows the size of population at each place.
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demonstrated the emergence of theoretically predicted bifurcating solutions from the stable mono-

centric distribution by numerical analysis of the FO model and the PS model. We also investigated

the influence of model parameters on the types of bifurcating solutions for these models.

The main contribution of this chapter is to propose a general theory to understand bifurcation

behaviour of economic geography models from the mono-centric distribution. It is emphasized

that theoretical analysis conducted in this chapter relies only on the symmetry of spatial platforms.

Thus, this analysis procedure would be applicable to any economic geography model that takes

the mono-centric distribution under the replicator dynamics. It is a future topic to apply such

investigation to many other economic geography models.
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(a) Stelder (2005) (b) Allen and Arkolakis (2014)

Figure 6.1: A spatial platform of Europe in Stelder (2005) and that of the U.S. in Allen and Arkolakis (2014).

6. Interacting Local and Global Platforms for Economic Geography Models

6.1. Introduction

A hierarchical spatial structure of economic agglomerations comprising countries, cities, towns,

and so on, is observed worldwide. Central place theory proposed the geometrical mechanism of the

self-organization of such a hierarchical structure (Christaller, 1933; Lösch, 1940) but failed to im-

plement microeconomic mechanisms. Krugman (1991) elucidated the microeconomic mechanism

of the emergence of core and periphery places from two identical places, highlighting bifurcation as

a catalyst to engender the simplest two-level hierarchy. Economic geography models mushroomed

thereafter but mostly dealt with two places that is too simple to represent such a hierarchical struc-

ture. Qualitative spatial economics (Redding and Rossi-Hansberg, 2017) has been developed to

deal with a realistic spatial platform with a large number of places, but does not necessarily have

insightful bifurcation mechanisms.

Figure 6.1 shows a spatial platform of Europe in Stelder (2005) and that of the U.S. in Allen

and Arkolakis (2014). Stelder (2005) used a grid of land points in Europe and conducted a

simulation of agglomeration. Allen and Arkolakis (2014) used a geography based on the data of

highway, rail, and navigable water networks in the U.S. and estimated the topography of trade costs,

productivities, and amenities. Sheard (2021) studied the influence of the network of airports in the

U.S on employment. Such spatial platforms with irregular and asymmetric networks can express

detailed and complicated geometries but rely too heavily on numerical analysis.

This chapter aims to develop a spatial platform that can present a hierarchical structure but

can still retain the insightfulness of a bifurcation mechanism. We consider a two level hierarchy

of global and local systems. A global system is made up of a system of cities and expresses the

geographical distribution of cites. Each city has a micro structure comprising a system of local

places and has its particular population size and geography. The number of grid points in a local

system is used to index the amount of mobile population of a city, and the distribution of these

points to express its geographical properties.
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(a) Two places (b) Line segment (c) Equidistant

(d) Radial network (e) Square lattice (f) Hexagonal lattice

Figure 6.2: Examples of spatial platforms for economic geography models. Each node represents a place to locate,

and each edge indicates a transportation link.

Candidates of local and/or global spatial platforms are depicted in Fig. 6.2. The two places in

(a) is most popular but does not have much spatial structure. The line segment in (b) expresses a

chain of cities. The equidistant economy in (c) represents a system of cities connected each other

by airplanes. The radial network in (d) can be seen in many traditional cities such as Paris. The

square and hexagonal lattices in (e) and (f), respectively, are suitable in modeling densely and

regularly distributed locations.

In the selection of a local spatial platform, it is to be noted that square road networks prosper

worldwide. Chicago (the U.S.) and Kyoto (Japan), for example, are well-known to accommodate

such square networks historically (see Fig. 6.3). Accordingly, this chapter employs a square lattice

as a local spatial platform, whereas a hexagonal lattice network would be suitable in other cases.

In fact, several studies of spatial economic agglomerations have been conducted on square lattices

(a) Chicago (the U.S.) (b) Kyoto (Japan)

Figure 6.3: Satellite photographs of cities provided by the Google Map displaying square road networks.
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G ≃ D2 G ≃ D1

Figure 6.4: Systems comprising two local platforms connected at the borders. A group G represents the symmetry of

a system.

(Clarke and Wilson, 1983, 1985; Weidlich and Haag, 1987; Munz and Weidlich, 1990; Brakman

et al., 1999).

As a global spatial platform, this chapter employs an equidistant economy. This economy is

welcomed as a simplifying assumption and is popular in spatial economics (Puga, 1999; Tabuchi

et al., 2005; Bosker et al., 2010; Gaspar et al., 2018, 2020). Break and sustain bifurcations of an

equidistant economy with arbitrary many regions were studied in Aizawa et al. (2020) extending the

analysis for break bifurcation for the symmetric group SN for N objects (Golubitsky and Stewart,

2002; Elmihirst, 2004).

We intend to investigate the bifurcation behaviour of economic geography models on local-

global systems. In numerical analysis for the demonstration of the performance of local-global

systems, we use the FO model (Forslid and Ottaviano, 2003) as an example.

This chapter is organized as follows. The extension of spatial platforms for economic geography

models is discussed in Section 6.2. A local-global system with two identical local platforms is

introduced, and its symmetry is explained in Section 6.3. Systems with different local platforms

are treated in Section 6.4.

6.2. Extension of Spatial Platforms for Economic Geography Models

In this section, we discuss the extension of spatial platforms, which is applicable to hub

airports in the U.S. that is presented as a future target in Section 6.5, for conventional economic

geography models. We explain the concept of local-global systems for realistic modeling of global

transportation networks.

As a first step, we consider systems that are made up of two local platforms. The left of Fig. 6.4

depicts a system comprising two identical local platforms that are connected at the borders. The

right of Fig. 6.4 depicts a system with two different ones. This kind of connections reduces the

symmetry of the whole space. The symmetry of such systems is labeled by the dihedral groups

G ≃ D2 and G ≃ D1 with simple structures. Here, DN represents the N-dimensional dihedral

group.

We next introduce hierarchical spatial platforms, called local-global systems, by connecting

the centers of the local platforms as depicted in Fig. 6.5. These systems can describe economic

interactions between local and global scales. Such a way of connection retains the symmetry
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G ≃ (D4 × D4) ∔ S2 G ≃ D4 × D4

Figure 6.5: Systems comprising two local platforms connected at the centers (local-global systems). A group G

represents the symmetry of a system.
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Figure 6.6: A local-global system with two identical square lattices. A number associated with each node represents

the label of each place.

of each local platform and provides rich bifurcation mechanisms. The group G describing the

symmetry is represented by larger groups G ≃ (D4 × D4) ∔ S2 and G ≃ D4 × D4. Here, S2

represents the two-dimensional symmetric group.

Note that radial and square lattices are suitable to represent local transportation networks in

France (Paris) and Germany, respectively. We would like to employ systems comprising these two

different lattices in Section 6.4 as extended examples.

6.3. Local-global System with Two Identical Local Platforms

In this section, we consider two identical local platforms. We employ the general framework

of economic geography models with the replicator dynamics that was introduced in Chapter 2. As

candidates of stable equilibria of the system, we obtain invariant patterns that were explained in

Chapter 4.

6.3.1. Symmetry of the System

We consider the local-global system in Fig. 6.6 that is made up of two identical square lat-

tices, which represent intra-regional (local scale) transportation networks such as local roads and

railroads. The centers of the square lattices are connected by an inter-regional (global scale) trans-

portation networks such as a high-speed train or an airplane. A set of 18 places are allocated at the

nodal points.
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Figure 6.7: An orbit decomposition of the local-global system with two identical square lattices with respect to

G ≃ (D4 × D4) ∔ S2.

The symmetry of this local-global system is described by the group

G = (G1 × G2) ∔ G3 ≃ (D4 × D4) ∔ S2. (6.1)

A group G1 is isomorphic to D4 and is described as

G1 = {e1, r1, r1
2, r1

3, s1, s1r1, s1r1
2, s1r1

3}, (6.2)

where e1 is the identity transformation, s1 is the reflection with respect to the x1-axis, and r1
j is a

counterclockwise rotation about the origin (x1, y1) = (0, 0) by an angle of π j/2 ( j = 0, 1, 2, 3). A

group G2 is also isomorphic to D4 and is described as

G2 = {e2, r2, r2
2, r2

3, s2, s2r2, s2r2
2, s2r2

3}, (6.3)

where e2 is the identity transformation, s2 is the reflection with respect to the x2-axis, and r2
j is a

counterclockwise rotation about the origin (x2, y2) = (0, 0) by an angle of π j/2 ( j = 0, 1, 2, 3). A

group G3 is isomorphic to S2 and is described as

G3 = {e3, s3} ≃ S2, (6.4)

where s3 is the permutation among the coordinates (x1, y1, x2, y2) 7→ (x2, y2, x1, y1), and e3 is the

identity transformation.

A set of the nodal points is decomposed into disjoint subsets, called orbits for a subgroup of

G. For example, Figure 6.7 depicts an orbit decomposition with respect to G ≃ (D4 ×D4) ∔ S2. In

Fig. 6.7, places belonging to the same orbit are labeled by the same symbol ◦.

6.3.2. Invariant Patterns

Recall the concept of invariant patterns for the replicator dynamics in Section 4.3. For the

present local-global system, an identical complete agglomeration to places in the same orbit with

respect to a subgroup of G becomes an invariant pattern. An orbit decomposition with respect to

G ≃ (D4 × D4) ∔ S2 was shown in Fig. 6.7.

Conducting orbit decompositions with respect to all subgroups of G, we can obtain invariant

patterns for this local-global system exhaustively. This local-global system has 18 invariant patterns

depicted in Fig. 6.8. Through numerical stability analysis of the FO model to be conducted in

Section 6.3.3, it turns out that the mono-centric distribution at i = 1 or 10 (at the center of a square

lattice) and the duo-centric one at i = 1 and 10 are superior in stability.
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1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

Figure 6.8: A list of invariant patterns for the local-global system with two identical square lattices. The size of a blue

circle represents the size of population at each place.

6.3.3. Bifurcation Behaviour of the Forslid and Ottaviano (2003) Model

We investigate by numerical analysis the bifurcation behaviour of the local-global system

with two identical square lattices for the FO model (Forslid and Ottaviano, 2003). Recall a

general framework of the FO model that was introduced in Section 2.3. We introduce two

kinds of bifurcation parameters, ϕlocal and ϕglobal, which represent trade freeness of local and

global scales, respectively. We investigate the stability of invariant patterns for the whole set

(ϕlocal, ϕglobal) ∈ (0, 1] × (0, 1] of the two parameters to find stable equilibria in the space of

(ϕlocal, ϕglobal). We obtain bifurcating solution curves emanating from the equilibrium curves of

these invariant patterns to observe the transition of stable equilibria.

Basic Assumptions

We label nodal number of places as I1 = {1, . . . , 9} for the square lattice at the left and

I2 = {10, . . . , 18} for that at the right for the present local-global system. We set the transportation

cost τi j in (2.9) as follows:

τi j =

{
exp[m(i, j)τlocal] for i, j ∈ Ik (k = 1, 2),
exp[(m(i, 1) + m(10, j))τlocal + m(1, 10)τglobal] for i ∈ I1, j ∈ I2,

(6.5)

τji = τi j . (6.6)

Here, τlocal and τglobal represent transportation cost parameters for intra-regional and inter-regional

transportation, respectively; m(i, j) denotes the shortest distance between places i and j. We choose

the nominal length of the two local platforms as the unity, i.e., m(1, 2) = 1, and set the distance

between the centers of the two local platforms to be also the unity, i.e., m(1, 10) = 1. Other

distances m(i, j)’s within each lattice follow geometrically.

Define the spatial discounting factor di j as

di j = τi j
−(σ−1). (6.7)
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(a) The stability areas of spatial distributions

A B

(b) Stable invariant patterns

C D E F

G H I J

(c) Stable non-invariant patterns

Figure 6.9: The stability areas of spatial distributions that become stable for some (ϕlocal, ϕglobal).

Then, di j is evaluated to

di j =

{
ϕlocal

m(i, j) for i, j ∈ Ik (k = 1, 2),
ϕlocal

m(i,1)ϕlocal
m(10, j)ϕglobal

m(1,10) for i ∈ I1, j ∈ I2,
(6.8)

where

ϕlocal = exp[−(σ − 1)τlocal],
ϕglobal = exp[−(σ − 1)τglobal].

We use ϕlocal and ϕglobal as the bifurcation parameters.

Numerical Simulations

We conduct numerical bifurcation and stability analysis of the FO model on the present local-

global system. We choose parameter values of the FO model as (σ, µ) = (6.0, 0.4).
We numerically investigated the stability of spatial distributions, which are either invariant or

non-invariant patterns, for (ϕlocal, ϕglobal) ∈ (0, 1) × (0, 1). Figure 6.9 shows the stability areas of

spatial distributions that become stable for some (ϕlocal, ϕglobal).
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• Among all the invariant patterns in Fig. 6.8, only two patterns, the mono-centric distribution

at the center of a square lattice (Pattern A in Fig. 6.9(b)) and the duo-centric one at the

centers of the square lattices (Pattern B), are stable for some (ϕlocal, ϕglobal). The stability

areas of these two invariant patterns are disjoint.

• There are non-invariant Patterns C, D, . . ., J that are stable for some (ϕlocal, ϕglobal).

We can observe several characteristic features that are apparent from the information of stability

zones presented above.

• When ϕlocal is relatively high (ϕlocal > 0.389), either the mono-centric or the duo-centric

distribution is stable for any ϕglobal. A stable invariant pattern shifts from the duo-centric

distribution to the mono-centric one at ϕglobal = 0.745 as ϕ increases from 0. Such transition

is similar to that observed for the two-places economy (Krugman, 1991).

• When ϕlocal is low (ϕlocal < 0.227), the presence of local spatial platform takes effect. There

is no stable invariant pattern for any ϕglobal and non-invariant Patterns C, D, . . ., J become

stable. The two local lattices display the same behavior for low ϕglobal but have different

distributions for high ϕglobal.

• When both ϕglobal and ϕlocal are low, nearly uniform Pattern J prevails.

It is noteworthy that the information of the stability zones for those spatial distributions is

useful in the prediction of the agglomeration behavior for a given ϕglobal when the value of ϕlocal is

changed (or vice versa). For example, we can predict the following transitions:

ϕlocal = 0.5 B⇒A when ϕglobal increases,

ϕlocal = 0.3 F→B⇒A when ϕglobal increases,

ϕlocal = 0.2 J→F⇒E when ϕglobal increases,

ϕlocal = 0.1 J⇒I when ϕglobal increases,

ϕglobal = 0.8 I→E→C→A when ϕlocal increases,

ϕglobal = 0.2 J→F→B when ϕlocal increases,
(⇒ denotes an occurrence of bifurcation)

These transitions are actually observed below.

With Fig. 6.9 in mind, we first fix the local trade freeness ϕlocal to some particular values

and investigate the transition of stable equilibria when the global trade freeness ϕglobal increases.

Figure 6.10 shows equilibrium curves for ϕlocal = 0.5. In this case, stable equilibria consist of

two invariant patterns: mono-centric and duo-centric distributions. A curve of an unstable non-

invariant solution connects these two invariant patterns. Such bifurcation behaviour is similar to

that observed for the two-places economy (Krugman, 1991). This behaviour can be seen to prevail

for ϕlocal > 0.5 from Fig. 6.9.

Figure 6.11 shows equilibrium curves for ϕlocal = 0.3. The equilibrium curves for ϕglobal >

0.355 are similar to those for the case of ϕlocal = 0.5 in Fig. 6.10. For ϕglobal < 0.355, we

see the emergence of satellite places at the corners of the two square lattices (cf., the state A).

A bifurcation occurs from the duo-centric distribution at the point B of ϕglobal = 0.355. The
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A B

Figure 6.10: Equilibrium curves for ϕlocal = 0.5. The vertical axis shows λmax = max(λ1, . . . , λ18). Solid curves

represent stable equilibria, and dashed ones represent unstable ones.

A B C

Figure 6.11: Equilibrium curves for ϕlocal = 0.3. The vertical axis shows λmax = max(λ1, . . . , λ18). Solid curves

represent stable equilibria, and dashed ones represent unstable ones.
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A B B′

C

Figure 6.12: Equilibrium curves for ϕlocal = 0.2. The vertical axis shows λmax = max(λ1, . . . , λ18). Solid curves

represent stable equilibria, and dashed ones represent unstable ones.

population agglomerates from the corners to the centers. Such agglomeration of population cannot

be expressed by the two-places economy. It shows the importance of the use of square lattices as

local platforms.

Figure 6.12 shows equilibrium curves for ϕlocal = 0.2. In this case, no invariant pattern is stable,

and some non-invariant patterns are stable. In the search of equilibrium curves, we employ a nearly

uniform distribution as an initial distribution (cf., the state A). The population at the centers of the

two square lattices increases along the curve ABB′ as ϕglobal increases. A bifurcation occurs at the

point B′ of ϕglobal = 0.616. Then, the population at the center of a square lattice becomes zero,

while the population at the center of another square lattice increases (cf., the state C).

Figure 6.13 shows equilibrium curves for ϕlocal = 0.1. Similarly to the case of ϕlocal = 0.2,

no invariant pattern is stable. In the early state A, a nearly uniform distribution is stable. At the

point A′ of ϕglobal = 0.504, a bifurcation occurs. The population at the center of a square lattice

becomes zero, while the population at the center of another lattice increases (cf., the state B). The

number of agglomerated places decreases along the curve BCD as ϕglobal increases.

The results depicted in Figs. 6.10–6.13 imply that agglomeration behavior varies greatly with

the value of ϕlocal. Note that the agglomeration behaviour on this local-global system is similar to

that on the two-places economy when ϕlocal is high (cf., Figs. 6.10 and 6.11). When ϕlocal is low

(cf., Figs. 6.12 and 6.13), the imbalance between the two local platforms becomes predominant

due to the relative superiority of the global trade.

We next fix the global trade freeness ϕglobal to some particular values and examine the transition

of stable equilibria when the local trade freeness ϕlocal increases. Figure 6.14 shows equilibrium

curves for ϕglobal = 0.8. For any value of ϕlocal, the population at the center of a square lattice

is zero. The population at the center of another square lattice increases as ϕlocal increases. At

the point E of ϕlocal = 0.261, the mono-centric distribution becomes stable and remains stable

thereafter.

Figure 6.15 shows equilibrium curves for ϕglobal = 0.2. In contrast to the case of ϕglobal = 0.8

in Fig. 6.14, the population at the two square lattices remains at some place for any value of ϕlocal.
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A A′ B

C D

Figure 6.13: Equilibrium curves for ϕlocal = 0.1. The vertical axis shows λmax = max(λ1, . . . , λ18). Solid curves

represent stable equilibria, and dashed ones represent unstable ones.

A B C

D E

Figure 6.14: Equilibrium curves for ϕglobal = 0.8. The vertical axis shows λmax = max(λ1, . . . , λ18). Solid curves

represent stable equilibria, and dashed ones represent unstable ones.

146



A B C

Figure 6.15: Equilibrium curves for ϕglobal = 0.2. The vertical axis shows λmax = max(λ1, . . . , λ18). Solid curves

represent stable equilibria, and dashed ones represent unstable ones.

The population at the centers of square lattices increases as ϕlocal increases. At the point C of

ϕlocal = 0.332, the duo-centric distribution becomes stable.

The results depicted in Figs. 6.14 and 6.15 imply that the values of ϕglobal affect the difference

of spatial distributions at each local platform. When ϕglobal is high, population at each square lattice

shows different spatial distributions. We see that the mono-centric distribution at the center of a

square lattice becomes stable. When ϕglobal is low, population at each square lattice shows identical

spatial distributions. We see that the duo-centric distribution at the centers of the two square

lattices becomes stable. It is noteworthy that a large ϕglobal accelerates the imbalance between the

two local systems.

A final remark is on the usefulness of the information on the map of stability areas presented in

Fig. 6.9. The results of comparative statics in Figs. 6.10–6.15 can be grasped a priori from this map.

This kind of map is quite informative and insightful in the investigation of spatial agglomerations.

6.4. Systems with Two Different Local Platforms

In this section, we consider systems comprising two different local platforms, which were

discussed in Section 6.2. We show the usefulness of the bifurcation mechanism of a local-global

system with reference to numerical simulations of the FO model.

6.4.1. Connection at the Borders

We introduce a spatial platform where the borders of the two local platforms are connected as

depicted in Fig. 6.16. Such a simple way of connection has been used widely in spatial economics.

Figure 6.17 shows equilibrium curves for the FO model on this spatial platform. Continuing from

the previous section, we chose the parameter values as σ = 6.0 and µ = 0.4. In the early state

A with low trade freeness, the population distributes almost uniformly. As the trade freeness ϕ

increases, the population agglomerates mostly at places i = 1 and 10, and 13 in the state J (cf.,

Fig. 6.16 for node numbers). Along the curve JKL, places i = 1 and 10 lose their population. At

the end, the mono-centric distribution at i = 13 (the left border of the square lattice at the right)

becomes stable.
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Figure 6.16: A system comprising two different local platforms connected at the borders proposed by J.-F. Thisse to

K. Ikeda. A number associated with each node represents the label of each place.

A B C D E F

G H I J K L

Figure 6.17: Equilibrium curves for the connection of two different local platforms at the borders. The vertical axis

shows the size of population at i = 1 (the center of the radial network). Solid curves represent stable equilibria.
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Figure 6.18: A local-global system with two different local platforms. A number associated with each node represents

the label of each place.

6.4.2. Connection between the Centers: Local-global System

We introduce a local-global system with two different local platforms the centers of which are

connected directly as depicted in Fig. 6.18. This system retains the geometrical symmetry of each

local platform unlike the system with simple connection in Section 6.4.1. Thus, there exist invariant

patterns and associated bifurcation mechanisms. Continuing from the previous section, we use the

FO model (σ = 6.0, µ = 0.4) for numerical bifurcation and stability analysis. We set the distances

as m(1, 2) = 1, m(1, 10) = 1, m(10, 11) = 1, and the other distances follow geometrically.

Figure 6.19 depicts all invariant patterns for this local-global system. Almost all patterns

correspond to those of each local platform. Note that the duo-centric distribution at i = 1 and 10

becomes an invariant pattern since places i = 1 and 10 are in the same geometrical connectivity

with other places.20

To find stable equilibria for this local-global system, we focus on invariant patterns in Fig. 6.19

and investigate the stability of these patterns. Among all these patterns, only three patterns, the

mono-centric distribution at i = 1, the mono-centric one at i = 10, and the duo-centric one at

i = 1 and 10, are stable for some (ϕlocal, ϕglobal). Figure 6.20 shows the stability areas of these

three patterns. Note that the stability areas of the two mono-centric distributions and that of the

duo-centric one are disjoint and is separated by the horizontal line at ϕglobal = 0.745.

We fix the local trade freeness ϕlocal to some particular values to investigate the influence of the

local trade freeness ϕglobal on the progress of stable equilibria. Figures 6.21–6.23 show equilibrium

curves for ϕlocal = 0.5, 0.3, and 0.1, respectively. When ϕlocal is high (cf., Figs. 6.21 and 6.22), the

mono-centric distributions and the duo-centric one are stable for a wide range of ϕglobal like the

two-places economy. When ϕlocal is low (cf., Fig. 6.23), the population agglomerates to the center

of the radial network as ϕglobal increases; this shows the relative superiority of this center for ϕlocal

small. Such bifurcation behaviour is quite similar to that of the system with two identical square

lattices in Section 6.3.3.

We fix the global trade freeness ϕglobal to some particular values to examine the influence of

the local trade freeness ϕlocal on the progress of stable equilibria. Figures 6.24 and 6.25 show

20 Note that Proposition 4.1 in Section 4.3 provides sufficient conditions for invariant patterns based only on their

geometrical configurations although it is not obvious geometrically.
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1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19

Figure 6.19: A list of invariant patterns for the local-global system with two different local platforms. The size of a

blue circle represents the size of population at each place.

A B C

Figure 6.20: The stability areas of invariant patterns with local square symmetry that become stable for some

(ϕlocal, ϕglobal).
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A B C

Figure 6.21: Equilibrium curves for ϕlocal = 0.5. The vertical axis shows the size of population at i = 1 (the center of

the radial network). Solid curves represent stable equilibria, and dashed ones represent unstable ones.

A B C

D E

Figure 6.22: Equilibrium curves for ϕlocal = 0.3. The vertical axis shows the size of population at i = 1 (the center of

the radial network). Solid curves represent stable equilibria, and dashed ones represent unstable ones.
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A B C

D

Figure 6.23: Equilibrium curves for ϕlocal = 0.1. The vertical axis shows the size of population at i = 1 (the center of

the radial network). Solid curves represent stable equilibria.

A B C D E

F G H

Figure 6.24: Equilibrium curves for ϕglobal = 0.8. The vertical axis of a diagram to the left shows the size of population

at i = 10 (the center of the square lattice), while that of a diagram to the right shows the size of population at i = 1

(the center of the radial network). Solid curves represent stable equilibria, and dashed ones represent unstable ones.
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A B C

D E

Figure 6.25: Equilibrium curves for ϕglobal = 0.2. The vertical axis shows the size of population at i = 1 (the center

of the radial network). Solid curves represent stable equilibria.

equilibrium curves for ϕglobal = 0.8 and 0.2, respectively. When ϕglobal is high (cf., Fig. 6.24), we

find two kinds of stable equilibrium paths. The path ABCDE represents transition of equilibria

from a spatial distribution where the center of the square lattice attracts population to the mono-

centric distribution at the center of the square lattice. The path FGH shows transition of equilibria

from a spatial distribution where the center of the radial network gains large population to the

mono-centric distribution at the center of the radial network. When ϕglobal is low (cf., Fig. 6.25),

population at each local platform shows similar behaviour. The duo-centric distribution at the

centers of the two local platforms becomes stable for a wide range of ϕlocal. Similarly to the case of

the system with two identical square lattices in Section 6.3.3, a large ϕglobal facilitates the imbalance

between the two local systems.

6.5. Concluding Remarks

This chapter has introduced local-global systems that can express a hierarchical spatial structure

and can retain the insightfulness of bifurcation mechanisms. We obtained invariant patterns on

these systems as candidates of stable equilibria. As a specific model for numerical bifurcation and

stability analysis, we employed the FO model We considered two kinds of bifurcation parameters,

the local and global trade freeness. It turns out that the mono-centric and the duo-centric invariant

patterns are stable for wide ranges of the local and global trade freeness.

The main contribution of this chapter is to propose a general framework to explain economic

interaction between local and global scales for any economic geography model. This chapter,

however, focused on prototype local-global systems that are made up of two local platforms. It is

a future topic to consider local-global systems comprising three or more local platforms. Such a

research direction is essential to elucidate the mechanism of economic agglomerations on realistic

global transportation networks.

Future Topic: Modeling of Hub Airports in the U.S.

We would like to target a direction of the Qualitative Spatial Economics (Redding and Rossi-

Hansberg, 2017), which is based on the framework of conventional economic geography models. A
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DallasLos Angels
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Figure 6.26: Seven largest hub cities in the U.S. (plotted on the Google Map). Population is expressed by the area of

the red circles.

spatial structure in mind, for example, is the seven hub cities in the U.S. in 2019 that are connected

by airlines in Fig. 6.26.

We model a network of hub cities in the U.S. focusing on the seven cities with the first to the

seventh largest enplaned passengers as listed in Table 6.1(a). The populations of these seven cities

are listed in Table 6.1(b) and are normalized using λ∗ = 330, 000 as a normalizing constant.

With Table 6.1 in mind, we model the local transportation networks of these seven cities by

either a two-places economy or a square lattice economy as follows:

• Square lattice economy (25 places): New York.

• Square lattice economy (9 places): Los Angels and Chicago.

• Square lattice economy (star economy with 1 + 4 places): Dallas.

• Two-places economy: San Francisco, Denver, and Atlanta.

Figure 6.27 depicts square lattices and two-places economies that represent local transportation

networks in the U.S. We consider a local-global system where the centers of these local platforms

(one of the two places for the two-places economy) are connected equidistantly by inter-regional

transportation networks of airplanes. The symmetry of such a local-global system is described by

the group

G ≃ D4 × {(D4 × D4) ∔ S2} × D4 × {(D2 × D2 × D2) ∔ S3}.
Here, S3 represents the three-dimensional symmetric group.
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Table 6.1: Seven hub airports with the first to the seventh largest enplaned passengers in the U.S. in 2019 by

United States Department of Transportation (https://www.bts.gov/content/passengers-boarded-top-50-us-airports) and

the population of each city in 2021 by World Population Review (https://worldpopulationreview.com/us-cities).

(a) Enplaned passengers at the seven hub airports

City Airport Total enplaned passengers (rank)

Atlanta Hartsfield-Jackson Atlanta International 53,505,357 (1)

Los Angeles Los Angeles International 42,965,731 (2)

Chicago Chicago O’Hare International 40,887,890 (3)

Dallas Dallas/Fort Worth International 35,785,318 (4)

Denver Denver International 33,592,645 (5)

New York John F. Kennedy International 31,123,436 (6)

San Francisco San Francisco International 27,715,305 (7)

(b) The population of each city

City Population Normalized population Lattice size

Atlanta 524,067 1.6 2

Los Angeles 3,983,540 12.0 3 × 3

Chicago 2,679,080 8.1 3 × 3

Dallas 1,347,120 4.1 1 + 4

Denver 749,103 2.3 2

New York 8,230,290 24.9 5 × 5

San Francisco 883,255 2.7 2

New York

Chicago

Atlanta

Denver

DallasLos Angels

San Francisco

Figure 6.27: Seven hub cities in the U.S. modeled by square lattices and two-places economies (plotted on the Google

Map).
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7. Concluding Remarks

The present thesis developed group-theoretic methods for analyzing economic geography mod-

els on a square lattice in collaboration with nonlinear mathematics and spatial economics. Such a

methodology provides an effective approach to elucidate the complicated agglomeration behaviour

of economic geography models systematically in the light of bifurcation mechanisms.

Chapter 3 provided a group-theoretic bifurcation mechanism from the uniform distribution on

an n × n square lattice, which has the symmetry of the group D4 ⋉ (Zn × Zn). We revealed the

self-organization of square patterns as bifurcation phenomena in a system of equations modeled on

the square lattice. Two different approaches, using the equivariant branching lemma and solving

the bifurcation equation, were employed.

We presented in Chapter 3 a complete list of typical bifurcating solutions from the uniform

distribution on the square lattice for an arbitrary lattice size n. To demonstrate the emergence

of these bifurcating solutions, we conducted numerical analysis of economic geography models.

For the FO model, the uniform distribution prevails for small ϕ. For the Fm model, the uniform

distribution dominates for large ϕ. For the PS model, the uniform distribution becomes stable when

ϕ is close to 0 or 1. All the bifurcating solutions are unstable just after the bifurcation for the FO

model and the PS model, while stable bifurcating solutions occur for the Hm model.

Chapter 4 provided a theory of invariant patterns, which are one kind of stationary points of

the replicator dynamics. Invariant patterns retain their spatial distribution when the value of the

bifurcation parameter changes and display characteristic population distribution.

We proposed in Chapter 4 a methodology to find invariant patterns exhaustively. In view

of invariant patterns, we proposed an innovative bifurcation analysis procedure to find stable

equilibria: investigating the stability of invariant patterns and searching for bifurcating equilibrium

curves that connect stable invariant patterns. We applied this procedure to the FO model and

numerically showed the connectivity between bifurcating solutions and invariant patterns via

bifurcating solutions from the uniform state. We found a mesh-like structure of the solution curves

for stable invariant patterns and unstable non-invariant ones.

Chapter 5 provided a group-theoretic bifurcation mechanism from the mono-centric distribution

in a two-dimensional square domain. We obtained bifurcating solutions from the mono-centric

distribution by group-theoretic bifurcation analysis. We demonstrated the emergence of such

bifurcating solutions by numerical analysis of economic geography models. For the FO model,

the mono-centric distribution encounters a bifurcation point as ϕ decreases from 1 to 0. For the

PS model, the mono-centric distribution encounters two bifurcation points as ϕ changes. When ϕ

increases, a bifurcating solution that represents the emergence of satellite cities emerges. When ϕ

decreases, several bifurcating solutions that represent square distributions emerge.

Chapter 6 developed a spatial platform, a local-global system, that can present a hierarchical

structure but can still retain the insightfulness of bifurcation mechanisms. We employed a local-

global system constructed by two identical square lattices. We introduced two kinds of bifurcating

parameter, ϕlocal and ϕglobal, which represent the local trade freeness (related to transportation in a

lattice) and global trade freeness (related to transportation between two lattices), respectively. We

demonstrated complicated bifurcation behaviour due to the change of two bifurcation parameters

by numerical analysis of the FO model.
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A. Appendices for Chapter 3

A.1. Details of Irreducible Representations

In Section 3.3, we listed the matrix forms of the irreducible representations of the group G.

In this section, we describe a systematic method using little groups to construct these irreducible

representations.

A.1.1. Characters

We explain the characters of the irreducible representations of G, which play a vital role in the

method of little groups (Appendix A.1.2).

One-Dimensional Irreducible Representations

The characters χµ(g) = Tr T µ(g), which are equal to T µ(g) for one-dimensional representations,

are given as follows:

g χ(1;+,+,+)(g) χ(1;+,−,+)(g) χ(1;−,+,+)(g) χ(1;−,−,+)(g)
p1

i p2
j 1 1 1 1

rp1
i p2

j 1 1 −1 −1

r2p1
i p2

j 1 1 1 1

r3p1
i p2

j 1 1 −1 −1

srmp1
i p2

j (m : even) 1 −1 1 −1

(m : odd) 1 −1 −1 1

(A.1)

g χ(1;+,+,−)(g) χ(1;+,−,−)(g) χ(1;−,+,−)(g) χ(1;−,−,−)(g)
p1

i p2
j (−1)i+ j (−1)i+ j (−1)i+ j (−1)i+ j

rp1
i p2

j (−1)i+ j (−1)i+ j −(−1)i+ j −(−1)i+ j

r2p1
i p2

j (−1)i+ j (−1)i+ j (−1)i+ j (−1)i+ j

r3p1
i p2

j (−1)i+ j (−1)i+ j −(−1)i+ j −(−1)i+ j

srmp1
i p2

j (m : even) (−1)i+ j −(−1)i+ j (−1)i+ j −(−1)i+ j

(m : odd) (−1)i+ j −(−1)i+ j −(−1)i+ j (−1)i+ j

(A.2)

where i, j = 0, 1, . . . , n − 1 and m = 0, 1, 2, 3.

Two-Dimensional Irreducible Representations

The characters χµ(g) = Tr T µ(g) for two-dimensional irreducible representations are given as

follows. For µ = (2;+), (2;−) in (3.45) and (3.46), we have

g χ(2;+)(g) χ(2;−)(g)
p1

i p2
j 2 (−1)i+ j2

rp1
i p2

j 0 0

r2p1
i p2

j −2 −(−1)i+ j2

r3p1
i p2

j 0 0

srmp1
i p2

j 0 0

(A.3)
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where i, j = 0, 1, . . . , n− 1 and m = 0, 1, 2, 3. For µ = (2;+,+), (2;+,−), (2;−,+), (2;−,−) in (3.47)

and (3.48), we have

g χ(2;+,+)(g) χ(2;+,−)(g) χ(2;−,+)(g) χ(2;−,−)(g)
p1

i p2
j (−1)i + (−1) j (−1)i + (−1) j (−1)i + (−1) j (−1)i + (−1) j

rp1
i p2

j 0 0 0 0

r2p1
i p2

j (−1)i + (−1) j (−1)i + (−1) j −(−1)i − (−1) j −(−1)i − (−1) j

r3p1
i p2

j 0 0 0 0

sp1
i p2

j (−1)i + (−1) j −(−1)i − (−1) j (−1)i − (−1) j −(−1)i + (−1) j

srp1
i p2

j 0 0 0 0

sr2p1
i p2

j (−1)i + (−1) j −(−1)i − (−1) j −(−1)i + (−1) j (−1)i − (−1) j

sr3p1
i p2

j 0 0 0 0

(A.4)

where i, j = 0, 1, . . . , n − 1 and m = 0, 1, 2, 3.

Four-Dimensional Irreducible Representations

The characters χµ(g) = Tr T µ(g) for four-dimensional irreducible representations are given as

follows:

g χ(4;k,0,σ)(g) χ(4;k,k,σ)(g) χ(4;n/2,ℓ,σ)(g)
p1

i p2
j 2[cos(kiθ) 2[cos(k(i + j)θ) 2[(−1)i cos(ℓ jθ)

+ cos(k jθ)] + cos(k(i − j)θ)] +(−1) j cos(ℓiθ)]
rmp1

i p2
j 0 0 0

(m = 1, 2, 3)
sp1

i p2
j 2σ cos(kiθ) 0 2σ(−1) j cos(ℓiθ)

srp1
i p2

j 0 2σ cos(k(i − j)θ) 0

sr2p1
i p2

j 2σ cos(k jθ) 0 2σ(−1)i cos(ℓ jθ)
sr3p1

i p2
j 0 2σ cos(k(i + j)θ) 0

(A.5)

where θ = 2π/n and i, j = 0, 1, . . . , n − 1.

Eight-Dimensional Irreducible Representations

The characters χ(8;k,ℓ)(g) = Tr T (8;k,ℓ)(g) are given as follows. For g = p1
i p2

j , being free from

r and s, we have

χ(8;k,ℓ)(p1
i p2

j) = 2{cos((ki+ℓ j)θ)+cos((−ℓi+ k j)θ)+cos((ki−ℓ j)θ)+cos((−ℓi− k j)θ)}, (A.6)

where θ = 2π/n and i, j = 0, 1, . . . , n − 1. For other g, we have χ(8;k,ℓ)(g) = 0.
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A.1.2. Method of Little Groups

We describe a systematic method, called the method of little groups, for constructing irreducible

representations of a general group with the structure of the semidirect product by an abelian group.

For details about semidirect products, see Section 8.2 of Serre (1977).

Let G be a group that is a semidirect product of a group H and an abelian group A. This means

that A is a normal subgroup of G, and each element g ∈ G is represented uniquely as g = ah with

a ∈ A and h ∈ H.

Since A is abelian, every irreducible representation of A over C is one-dimensional, and is

identified with its character χ. Accordingly, the set of all irreducible representations of A over C

can be denoted as

X = {χi | i ∈ R(A)} (A.7)

with a suitable index set R(A). For χ ∈ X and g ∈ G, we define a function g χ on A by

g χ(a) = χ(g−1ag), a ∈ A, (A.8)

which is also a character of A, belonging to X . This defines an action of G on X .

With reference to the action of G on X , we classify the elements of X into orbits. It should be

noted that, for g = bh with b ∈ A and h ∈ H, we have

g χ(a) = χ((bh)−1a(bh)) = χ(h−1ah) =h χ(a), a ∈ A, (A.9)

in which b−1ab = a since A is abelian. Hence, the orbits can in fact be obtained by the action of

the subgroup H on X , instead of that of G. Denote by

{χi | i ∈ R(A)/H} (A.10)

a system of representatives from the orbits, where R(A)/H is an index set, or the set of “names” of

the orbit. This means that

• χi ∈ X for each i ∈ R(A)/H,

• for distinct i and j in R(A)/H, χi
,

h (χ j) for any h ∈ H, and

• for each χ ∈ X , there exist some i ∈ R(A)/H and h ∈ H such that χ =h (χi).

For each i ∈ R(A)/H, we define

Hi
= {h ∈ H |h (χi) = χi}, (A.11)

which is a subgroup of H associated with the orbit i, and

Gi
= {ah | a ∈ A, h ∈ Hi}, (A.12)

which is a subgroup of G, called the little group. Noting that each element of Gi can be represented

as ah with a ∈ A and h ∈ Hi, we define a function χ̃i on Gi by

χ̃i(ah) = χi(a), a ∈ A, h ∈ Hi, (A.13)
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which is a one-dimensional representation (a character of degree one) of Gi.

Let T µ be an irreducible representation of Hi over C indexed by µ ∈ R(Hi). Then the matrix-

valued function T (i,µ) defined on Gi of (A.12) by

T (i,µ)(ah) = χi(a)T µ(h), a ∈ A, h ∈ Hi (A.14)

is an irreducible representation of Gi. Denote by T̃ (i,µ) the induced representation of G obtained

from T (i,µ) (see Remark A.1 below). Then T̃ (i,µ) is an irreducible representation of G. Moreover,

all the irreducible representations of G can be obtained in this manner, and T̃ (i,µ)’s are mutually

inequivalent for different (i, µ). Thus, the irreducible representations of G are indexed by (i, µ),
i.e.,

R(G) = {(i, µ) | i ∈ R(A)/H, µ ∈ R(Hi)} (A.15)

and

{T̃ (i,µ) | i ∈ R(A)/H, µ ∈ R(Hi)} (A.16)

gives a complete list of irreducible representations of G over C.

Remark A.1. The induced representation is explained here. Let G be a group, G′ be a subgroup

of G, and T ′ be a representation of G′ of dimension N′. Consider the coset decomposition

G = g1G′ + g2G′ + · · · + gmG′, (A.17)

where j = 1, . . . ,m and m = |G |/|G′|. Each g ∈ G causes a permutation of (g1, g2, . . . , gm) to

(gπ(1), gπ(2), . . . , gπ(m)) according to the equation

gg j = gπ( j) f j, f j ∈ G′ (A.18)

for j = 1, . . . ,m. Note that the choice of (g1, g2, . . . , gm) is not unique, but once this is fixed, f j is

uniquely determined for each g.

Define T̃(g) to be an mN′ × mN′ matrix with rows and columns partitioned into m blocks of

size N′ such that the (π( j), j)-block of T̃(g) equals T ′( f j), whereas the (i, j)-block of T̃(g) equals

O if i , π( j). Note that this is well-defined, since f j and π( j) are uniquely determined from g,

and T ′( f j) for j = 1, . . . ,m are assumed to be given. The family of matrices {T̃(g) | g ∈ G} is a

representation of G of dimension mN′, called the induced representation. For example, if m = 3,

(π(1), π(2), π(3)) = (2, 3, 1), we have

T̃(g) =


T ′( f3)
T ′( f1)

T ′( f2)


.

We shall apply this construction to T ′ = T (i,µ) on G′ = Gi to obtain T̃ = T̃ (i,µ), where the

dimension N′ of T (i,µ) is equal to that of T µ by (A.14).

□
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A.1.3. Derivation of the Little Groups

We apply the method of little groups to

A = Zn × Zn = ⟨p1⟩ × ⟨p2⟩, H = D4 = ⟨r, s⟩ (A.19)

to obtain the irreducible representations of G = D4 ⋉ (Zn × Zn).
As the first step we determine the system of representatives (A.10) in the orbit decomposition of

X . Since A = Zn × Zn is an abelian group, all the irreducible representations are one-dimensional.

The set X of irreducible representations of A = Zn × Zn is indexed by

R(A) = {(k, ℓ) | 0 ≤ k ≤ n − 1, 0 ≤ ℓ ≤ n − 1}, (A.20)

where (k, ℓ) denotes a one-dimensional representation (or character) χ(k,ℓ) defined by

χ(k,ℓ)(p1) = ωk, χ(k,ℓ)(p2) = ωℓ (A.21)

with

ω = exp(2πi/n). (A.22)

We extend the notation (k, ℓ) for any integers, to designate the element (k′, ℓ′) of R(A) with k′ ≡ k

mod n and ℓ′ ≡ ℓ mod n.

For the orbit decomposition of X by H, we compute h−1p1h and h−1p2h for h ∈ H, to obtain

h e r r2 r3 s sr sr2 sr3

h−1p1h p1 p2
−1 p1

−1 p2 p1 p2
−1 p1

−1 p2

h−1p2h p2 p1 p2
−1 p1

−1 p2
−1 p1

−1 p2 p1

(A.23)

For example, for h = s, we have (h−1p1h, h−1p2h) = (p1, p2
−1), and we see, by (A.21), that the

action of s in (A.8) is given as s χ(k,ℓ) = χ(k,−ℓ), which is expressed symbolically as (k, ℓ) ⇒ (k,−ℓ).
In this manner, we can obtain the following orbit containing (k, ℓ):

(ℓ,−k) ← (−k,−ℓ)
↓ ↑
(k, ℓ) → (−ℓ, k)
⇓

(k,−ℓ) → (−ℓ,−k)
↑ ↓
(ℓ, k) ← (−k, ℓ)

(A.24)

where “⇓” means the action of s, and “→” (or “←”, “↑”, “↓”) means the action of r . It should be

clear that (ℓ,−k), for example, is understood as (ℓ mod n,−k mod n). The orbit (A.24) is illustrated

in Fig. A.1.

The system of representatives in (A.10) in the orbit decomposition of X with respect to the

action of G is given as follows. In view of Fig. A.1, it is natural to take

R(A)/H = {(k, ℓ) | 0 ≤ ℓ ≤ k ≤ ⌊(n − 1)/2⌋}, (A.25)
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Figure A.1: Orbit of (k, ℓ) in (A.24).

which corresponds to the set of integer lattice points (k, ℓ) contained in the triangle with vertices

at (k, ℓ) = (0, 0), (n/2, 0), (n/2, n/2), where the points on the edges of the triangle are included.

The subgroup Hi
= H(k,ℓ) in (A.11) for i = (k, ℓ), which is expressed as

H(k,ℓ) = {h ∈ D4 | χ(k,ℓ)(h−1ah) = χ(k,ℓ)(a) for all a ∈ Zn × Zn}, (A.26)

is obtained with reference to (A.21) and (A.23). For h ∈ D4, we have h ∈ H(k,ℓ) if and only if

χ(k,ℓ)(hp1h−1) = χ(k,ℓ)(p1), χ(k,ℓ)(hp2h−1) = χ(k,ℓ)(p2). (A.27)

For (k, ℓ) = (0, 0), for example, this condition is satisfied by all h ∈ D4, and hence H(0,0) = ⟨r, s⟩.
In this manner, we obtain

H(k,ℓ) =




⟨r, s⟩ for (k, ℓ) = (0, 0),
⟨r, s⟩ for (k, ℓ) = (n/2, n/2) (n: even),

⟨r2, s⟩ for (k, ℓ) = (n/2, 0) (n: even),

{e, s} for (k, ℓ) = (k, 0) (1 ≤ k ≤
⌊

n−1
2

⌋
),

{e, sr3} for (k, ℓ) = (k, k) (1 ≤ k ≤
⌊

n−1
2

⌋
),

{e, sr2} for (k, ℓ) = (n/2, ℓ) (n: even, 1 ≤ ℓ ≤
⌊

n−1
2

⌋
),

{e} for (k, ℓ) (1 ≤ ℓ ≤ k − 1, 2 ≤ k ≤
⌊

n−1
2

⌋
).

(A.28)

The little group Gi
= G(k,ℓ) in (A.12) for i = (k, ℓ) is obtained as the semidirect product of H(k,ℓ)

by A = ⟨p1, p2⟩.

Example A.1. The system of representatives R(A)/H and the associated subgroups H(k,ℓ) in (A.28)

for n = 3, 4, 7, 8, 9 are given as follows:
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n = 3

(k, ℓ) H(k,ℓ)

(0, 0) ⟨r, s⟩
(1, 0) {e, s}
(1, 1) {e, sr3}

n = 4

(k, ℓ) H(k,ℓ)

(0, 0) ⟨r, s⟩
(2, 2) ⟨r, s⟩
(2, 0) ⟨r2, s⟩
(1, 0) {e, s}
(1, 1) {e, sr3}
(2, 1) {e, sr2}

n = 7

(k, ℓ) H(k,ℓ)

(0, 0) ⟨r, s⟩
(1, 0), (2, 0), (3, 0) {e, s}
(1, 1), (2, 2), (3, 3) {e, sr3}
(2, 1), (3, 1), (3, 2) {e}

n = 8

(k, ℓ) H(k,ℓ)

(0, 0) ⟨r, s⟩
(4, 4) ⟨r, s⟩
(4, 0) ⟨r2, s⟩
(1, 0), (2, 0), (3, 0) {e, s}
(1, 1), (2, 2), (3, 3) {e, sr3}
(4, 1), (4, 2), (4, 3) {e, sr2}
(2, 1), (3, 1), (3, 2) {e}

n = 9

(k, ℓ) H(k,ℓ)

(0, 0) ⟨r, s⟩
(1, 0), (2, 0), (3, 0), (4, 0) {e, s}
(1, 1), (2, 2), (3, 3), (4, 4) {e, sr3}
(2, 1), (3, 1), (3, 2) {e}
(4, 1), (4, 2), (4, 3) {e}

□

A.1.4. Construction of the Irreducible Representations

The systematic procedure for constructing irreducible representations over C (absolutely ir-

reducible representations) of G = ⟨r, s, p1, p2⟩ using orbit decomposition and little groups is

summarized as follows.

For each (k, ℓ) ∈ R(A)/H, we have the associated subgroup H(k,ℓ) in (A.28). Let T µ be an

irreducible representation of H(k,ℓ) indexed by µ ∈ R(H(k,ℓ)), and define T (k,ℓ,µ) by

T (k,ℓ,µ)(p1
i p2

j h) = χ(k,ℓ)(p1
i p2

j)T µ(h) = ωki+ℓ jT µ(h), 0 ≤ i, j ≤ n − 1, h ∈ H(k,ℓ), (A.29)

which is an irreducible representation of the little group G(k,ℓ).
The coset decomposition (A.17) takes the form of

G = g1G(k,ℓ) + g2G(k,ℓ) + · · · + gmG(k,ℓ) (A.30)

with m = |G |/|G(k,ℓ) | = |D4 |/|H(k,ℓ) | = 8/|H(k,ℓ) |. Since G(k,ℓ) ⊇ ⟨p1, p2⟩, we may assume that

g j ∈ ⟨r, s⟩ for j = 1, . . . ,m and g1 = e.

The induced representation T̃ (k,ℓ,µ)(g) is determined by its values at g = p1, p2, r, s that generate

the group G. Hence, it suffices to consider g = p1, p2, r, s in the equation (A.18):

gg j = gπ( j) f j, (A.31)

where π( j) and f j ∈ G(k,ℓ) are to be found for j = 1, . . . ,m. The induced representation T̃ (k,ℓ,µ)

is an irreducible representation of dimension mN µ
= 8N µ/|H(k,ℓ) | over C, where N µ denotes the

dimension of T µ.
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Table A.1: Induced irreducible representations of D4 ⋉ (Zn × Zn).

(k, ℓ) H(k,ℓ) m Induced irreducible representations

(0, 0) ⟨r, s⟩ 1 (1;+,+,+), (1;+,−,+), (1;−,+,+), (1;−,−,+), (2;+)
(n/2, n/2) ⟨r, s⟩ 1 (1;+,+,−), (1;+,−,−), (1;−,+,−), (1;−,−,−), (2;−)
(n/2, 0) ⟨r2, s⟩ 2 (2;+,+), (2;+,−), (2;−,+), (2;−,−)
(k, 0) {e, s} 4 (4; k, 0,+), (4; k, 0,−)
(k, k) {e, sr3} 4 (4; k, k,+), (4; k, k,−)
(n/2, ℓ) {e, sr2} 4 (4; n/2, ℓ,+), (4; n/2, ℓ,−)
(k, ℓ) {e} 8 (8; k, ℓ)
(k, ℓ) = (n/2, n/2) and (n/2, 0) exist if n is even;

(k, 0) with 1 ≤ k ≤
⌊
n−1

2

⌋
in (3.49);

(k, k) with 1 ≤ k ≤
⌊
n−1

2

⌋
in (3.50);

(n/2, ℓ) with 1 ≤ ℓ ≤
⌊
n−1

2

⌋
in (3.51);

(k, ℓ) with 1 ≤ ℓ ≤ k − 1, 2 ≤ k ≤ ⌊(n − 1)/2⌋ in (3.60)

According to the general theory, T̃ (k,ℓ,µ) obtained in this manner is not a representation over R

but over C, as is evident from the fact that ω appearing in (A.29) is a complex number defined

by (A.22). Fortunately, however, all irreducible representations thus obtained are representable

over R. We can thus determine a complete list of irreducible representations over R of the group

G = D4 ⋉ (Zn × Zn). Table A.1 is a summary of the derivations below.

Case of (k, ℓ) = (0, 0)
For (k, ℓ) = (0, 0), χ(k,ℓ) is the unit representation by (A.21), and therefore

H(k,ℓ) = ⟨r, s⟩ = D4,

as is shown in (A.28). D4 has four one-dimensional irreducible representations (+,+,+), (+,−,+),
(−,+,+), (−,−,+), and one two-dimensional irreducible representation (2;+) (e.g., see Kim, 1999;

Kettle, 2007).

Since G(k,ℓ) = G, the coset decomposition (A.30) is trivial with m = 1 and g1 = e, and the

equation (A.31) reads g · g1 = g1 · g for every g ∈ G. For each µ, the induced representation

T̃ (0,0,µ)(g) for g = p1
i p2

j h with h ∈ D4 is given by (A.29) as

T̃ (0,0,µ)(g) = T̃ (0,0,µ)(p1
i p2

j h) = χ(0,0)(p1
i p2

j)T µ(h) = T µ(h).
With this result, we have the one-dimensional irreducible representations (1;+,+,+), (1;+,−,+),
(1;−,+,+), (1;−,−,+), and the two-dimensional irreducible representation (2;+) as the irreducible

representations for the group D4 ⋉ (Zn × Zn).

Case of (k, ℓ) = (n/2, n/2)
In this case, χ = χ(k,ℓ) = χ(n/2,n/2) is given by (A.21) as χ(p1) = χ(p2) = ωn/2

= −1. For

(k, ℓ) = (n/2, n/2), we have

H(k,ℓ) = ⟨r, s⟩ = D4,

as is shown in (A.28). Hence we have the one-dimensional irreducible representations (1;+,+,−),
(1;+,−,−), (1;−,+,−), (1;−,−,−), and the two-dimensional irreducible representation (2;−).
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Case of (k, ℓ) = (n/2, 0)
The case of (k, ℓ) = (n/2, 0) occurs when n is even. In this case, χ = χ(k,ℓ) = χ(n/2,0) is given

by (A.21) as χ(p1) = −1 and χ(p2) = 1, and therefore

H(k,ℓ) = {e, r2, s, sr2} = ⟨r2, s⟩ ≃ D2,

as is shown in (A.28). This group has four one-dimensional irreducible representations, say,

µ = (σr, σs) = (+,+), (+,−), (−,+), (−,−) defined by

T µ(r2) = σr = ±1, T µ(s) = σs = ±1.

Since G(k,ℓ) = ⟨r2, s, p1, p2⟩, the coset decomposition in (A.30) is given by

G = g1G(k,ℓ) + g2G(k,ℓ) = e · ⟨r2, s, p1, p2⟩ + r · ⟨r2, s, p1, p2⟩

with m = 2, g1 = e and g2 = r . The equation (A.31) for g = p1, p2, r, s reads as follows:

p1 · g j = gπ( j) · f j p2 · g j = gπ( j) · f j r · g j = gπ( j) · f j s · g j = gπ( j) · f j

p1 · e = e · p1 p2 · e = e · p2 r · e = r · e s · e = e · s
p1 · r = r · p2

−1 p2 · r = r · p1 r · r = e · r2 s · r = r · sr2

For the one-dimensional representation µ = (σ) with σ ∈ {+,−}, the induced representation

T̃ = T̃ (n/2,0,µ) is given by

T̃(p1) =
[
χ(p1)T µ(e)

χ(p2
−1)T µ(e)

]
=

[
−1

1

]
,

T̃(p2) =
[
χ(p2)T µ(e)

χ(p1)T µ(e)

]
=

[
1

−1

]
,

T̃(r) =
[

χ(e)T µ(r2)
χ(e)T µ(e)

]
=

[
σr

1

]
,

T̃(s) =
[
χ(e)T µ(s)

χ(e)T µ(sr2)

]
= σs

[
1

σr

]
,

where (A.29) is used and the nonzero blocks here are determined with reference to π( j) and f j

computed above (see Remark A.1).

Case of (k, ℓ) = (k, 0), (k, k), (n/2, ℓ)
For (k, ℓ) = (k, 0) in (3.49), we have χ(k,ℓ)(p1) = ωk and χ(k,ℓ)(p2) = 1 by (A.21), and therefore

H(k,ℓ) = {e, s},

as is shown in (A.28). For (k, ℓ) = (k, k) in (3.50), we have χ(k,ℓ)(p1) = χ(k,ℓ)(p2) = ωk , and

therefore

H(k,ℓ) = {e, sr3}.
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For (k, ℓ) = (n/2, ℓ) in (3.51), we have χ(k,ℓ)(p1) = −1 and χ(k,ℓ)(p2) = ωℓ, and therefore

H(k,ℓ) = {e, sr2}.

Let h0 = s for (k, ℓ) = (k, 0), h0 = sr3 for (k, ℓ) = (k, k), and h0 = sr2 for (k, ℓ) = (n/2, ℓ). In either

case H(k,ℓ) = {e, h0} is isomorphic to D1 and has two one-dimensional irreducible representations,

say, µ = µ1, µ2 defined by

T µ1(h0) = 1, T µ2(h0) = −1.

That is, T µ(h0) = σµ with σµ1 = 1 and σµ2 = −1. The notation is summarized as follows:

(k, ℓ) H(k,ℓ) h0 T µ1(h0) T µ2(h0)
(k, 0) {e, s} sr 1 −1

(k, k) {e, sr3} sr3 1 −1

(n/2, ℓ) {e, sr2} sr2 1 −1

The coset decomposition in (A.30) is given by G(k,ℓ) = ⟨h0, p1, p2⟩, m = 4, and g j = r j−1 for

j = 1, . . . , 4. The equation (A.31) for g = p1, p2, r, s reads as follows (see (A.23) for p1 and p2):

p1 · g j = gπ( j) · f j p2 · g j = gπ( j) · f j r · g j = gπ( j) · f j

p1 · e = e · p1 p2 · e = e · p2 r · e = r · e
p1 · r = r · p2

−1 p2 · r = r · p1 r · r = r2 · e
p1 · r2

= r2 · p1
−1 p2 · r2

= r2 · p2
−1 r · r2

= r3 · e
p1 · r3

= r3 · p2 p2 · r3
= r3 · p1 r · r3

= e · e

s · g j = gπ( j) · f j

(k, 0) (k, k) (n/2, ℓ)
s · e = e · s s · e = r3 · sr3 s · e = r2 · sr2

s · r = r3 · s s · r = r2 · sr3 s · r = r · sr2

s · r2
= r2 · s s · r2

= r · sr3 s · r2
= e · sr2

s · r3
= r · s s · r3

= e · sr3 s · r3
= r3 · sr2

For (k, ℓ) = (k, 0), (k, k), (n/2, ℓ) and µ = µ1, µ2, the induced representation T̃ (k,ℓ,µ) is given,

with ω = exp(2π i/n), by

T̃ (k,ℓ,µ)(p1) = diag(χ(p1), χ(p2
−1), χ(p1

−1), χ(p2)) = diag(ωk, ω−ℓ, ω−k, ωℓ),
T̃ (k,ℓ,µ)(p2) = diag(χ(p2), χ(p1), χ(p2

−1), χ(p1
−1)) = diag(ωℓ, ωk, ω−ℓ, ω−k),

T̃ (k,ℓ,µ)(r) = T µ(e)



1

1

1

1


=



1

1

1

1


,
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and

T̃ (k,0,µ)(s) = T µ(s)



1

1

1

1


=



1

1

1

1


,

T̃ (k,k,µ)(s) = T µ(sr3)



1

1

1

1


= σµ



1

1

1

1


,

T̃ (n/2,ℓ,µ)(s) = T µ(sr2)



1

1

1

1


= σµ



1

1

1

1


.

The above representation over C can be transformed to a real representation. By permuting the

rows and columns as (1, 3, 2, 4), we obtain

T̂ (k,ℓ,µ)(p1) T̂ (k,ℓ,µ)(p2) T̂ (k,ℓ,µ)(r)

=



ωk

ω−k

ω−ℓ

ωℓ


, =



ωℓ

ω−ℓ

ωk

ω−k


, =



1

1

1

1


,

T̂ (k,0,µ)(s) T̂ (k,k,µ)(s) T̂ (n/2,ℓ,µ)(s)

= σµ



1

1

1

1


, = σµ



1

1

1

1


, = σµ



1

1

1

1


.

It is apparent that these representations are equivalent, respectively, to the four-dimensional real

irreducible representations (4; k, 0, σ) and (4; k, k, σ) with σ = σµ.

Case of General (k, ℓ)
For (k, ℓ) in (3.60), χ = χ(k,ℓ) is given by (A.21), and H(k,ℓ) = {e}. The unit representation µ

is the only irreducible representation of H(k,ℓ).
The coset decomposition in (A.30) is given by G(k,ℓ) = ⟨p1, p2⟩, m = 8, and

g1 = e, g2 = r, g3 = r2, g4 = r3, g5 = s, g6 = sr, g7 = sr2, g8 = sr3.
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The equation (A.31) for g = p1, p2, r, s reads as follows:

p1 · g j = gπ( j) · f j p2 · g j = gπ( j) · f j r · g j = gπ( j) · f j s · g j = gπ( j) · f j

p1 · e = e · p1 p2 · e = e · p2 r · e = r · e s · e = s · e
p1 · r = r · p2

−1 p2 · r = r · p1 r · r = r2 · e s · r = sr · e
p1 · r2

= r2 · p1
−1 p2 · r2

= r2 · p2
−1 r · r2

= r3 · e s · r2
= sr2 · e

p1 · r3
= r3 · p2 p2 · r3

= r3 · p1
−1 r · r3

= e · e s · r3
= sr3 · e

p1 · s = s · p1 p2 · s = s · p2
−1 r · s = sr3 · e s · s = e · e

p1 · sr = sr · p2
−1 p2 · sr = sr · p1

−1 r · sr = s · e s · sr = r · e
p1 · sr2

= sr2 · p1
−1 p2 · sr2

= sr2 · p2 r · sr2
= sr · e s · sr2

= r2 · e
p1 · sr3

= sr3 · p2 p2 · sr3
= sr3 · p1 r · sr3

= sr2 · e s · sr3
= r3 · e

The induced representation T̃ = T̃ (k,ℓ,µ), of dimension 8, is given in terms of ω = exp(2πi/n)
as follows:

T̃(p1) = diag(ωk, ω−ℓ, ω−k, ωℓ, ωk, ω−ℓ, ω−k, ωℓ),
T̃(p2) = diag(ωℓ, ωk, ω−ℓ, ω−k, ω−ℓ, ω−k, ωℓ, ωk),

T̃(r) =
[
C O

O C⊤

]
, T̃(s) =

[
O I

I O

]

with

C =



1

1

1

1


, I =



1

1

1

1


.

The above representation over C can be transformed to a real representation. By permuting the

rows and columns as (1, 3, 2, 4, 5, 7, 6, 8), we obtain

T̂(p1) =
[
Ω1

Ω1

]
, T̂(p2) =

[
Ω2

Ω3

]
, T̂(r) =

[
D

D⊤

]
, T̂(s) =

[
I

I

]

with

Ω1 =



ωk

ω−k

ω−ℓ

ωℓ


, Ω2 =



ωℓ

ω−ℓ

ωk

ω−k


,

Ω3 =



ω−ℓ

ωℓ

ω−k

ωk


, D =



1

1

1

1


.

This representation is easily seen to be equivalent to the eight-dimensional real irreducible repre-

sentation (8; k, ℓ).
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A.2. Construction of the Transformation Matrix

We will now show that the relation T(g)Qµ
= QµT µ(g) in (3.76) is satisfied by Qµ in Propo-

sition 3.4 for r , s, p1, and p2 that generate the group D4 ⋉ (Zn × Zn). Recall the actions of r , s,

p1, and p2 given in (3.78)–(3.81). We demonstrate the proof for µ = (2;+,+) and (8; k, ℓ), and the

other cases can be treated similarly.

Two-Dimensional Irreducible Representation

We shall prove that

Q(2;+,+)
= [⟨cos(πn1)⟩, ⟨cos(πn2)⟩] (A.32)

satisfies (3.76) for µ = (2;+,+). Recall that (2;+,+) exists when n is even and T (2;+,+)(g) is defined

by (3.47) and (3.48).

The action of r on the wave numbers (n1, n2) in (A.32) is given, by a formal calculation using

(3.78), as

r ∗ (n1, n2) = (r ∗ n1, r ∗ n2) ≡ (n2,−n1 mod n).
In the matrix form, this gives

T(r)Q(2;+,+)
= [⟨cos(πn2)⟩, ⟨cos(−πn1)⟩]
= [⟨cos(πn2)⟩, ⟨cos(πn1)⟩]

= [cos(πn1), cos(πn2)]
[

1

1

]

= Q(2;+,+)T (2;+,+)(r).

The action of p1 on the wave numbers (n1, n2) is given by (3.80) as

p1 ∗ (n1, n2) ≡ (n1 − 1 mod n, n2),

which, in the matrix form, yields

T(p1)Q(2;+,+)
= [⟨cos(π(n1 − 1))⟩, ⟨cos(πn2)⟩]
= [⟨− cos(πn1)⟩, ⟨cos(πn2)⟩]

= [⟨cos(πn1)⟩, ⟨cos(πn2)⟩]
[
−1

1

]

= Q(2;+,+)T (2;+)(p1).

The cases of s and p2 can be treated similarly. Thus, we have

T(g)Q(2;+,+)
= Q(2;+,+)T (2;+,+)(g), g = r, s, p1, p2.

This completes the proof for µ = (2;+,+).
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Eight-Dimensional Irreducible Representations

We shall prove that

Q(8;k,ℓ)
= [⟨cos(2π(kn1 + ℓn2)/n)⟩, ⟨sin(2π(kn1 + ℓn2)/n)⟩,
⟨cos(2π(−ℓn1 + kn2)/n)⟩, ⟨sin(2π(ℓn1 + kn2)/n)⟩,
⟨cos(2π(kn1 − ℓn2)/n)⟩, ⟨sin(2π(kn1 − ℓn2)/n)⟩,
⟨cos(2π(−ℓn1 − kn2)/n)⟩, ⟨sin(2π(−ℓn1 − kn2)/n)⟩],

1 ≤ ℓ ≤ k − 1, 2 ≤ k ≤
⌊
n − 1

2

⌋
(A.33)

satisfies (3.76) for (8; k, ℓ) where n ≥ 5. Recall the definition of T (8;k,ℓ)(g) for g = r, s, p1, p2 in

(3.62) and (3.63), as well as the notations

R =

[
cos(2π/n) − sin(2π/n)
sin(2π/n) cos(2π/n)

]
, S =

[
1

−1

]
. (A.34)

The action of r on the four wave numbers in (A.33) is given by (3.78) as

r ∗



kn1 + ℓn2

−ℓn1 + kn2

kn1 − ℓn2

−ℓn1 − kn2


≡



−ℓn1 + kn2

−(kn1 + ℓn2)
−(−ℓn1 − kn2)

kn1 − ℓn2


mod n,

which permutes and changes the sign of the column vectors of Q(8;k,ℓ) in (A.33) as

T(r)Q(8;k,ℓ)
= Q(8;k,ℓ)



S

I

I

S


= Q(8;k,ℓ)T (8;k,ℓ)(r).

The action of s on the four wave numbers in (A.33) is given by (3.79) as

s ∗



kn1 + ℓn2

−ℓn1 + kn2

kn1 − ℓn2

−ℓn1 − kn2


≡



kn1 − ℓn2

−ℓn1 − kn2

kn1 + ℓn2

−ℓn1 + kn2


mod n,

which gives

T(s)Q(8;k,ℓ)
= Q(8;k,ℓ)



I

I

I

I


= Q(8;k,ℓ)T (8;k,ℓ)(s).
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The action of p1 on the four wave numbers in (A.33) is given by (3.80) as

p1 ∗



kn1 + ℓn2

−ℓn1 + kn2

kn1 − ℓn2

−ℓn1 − kn2


≡



kn1 + ℓn2 − k

−ℓn1 + kn2 + ℓ

kn1 − ℓn2 − k

−ℓn1 − kn2 + ℓ


mod n,

which gives

T(p1)Q(8;k,ℓ)
= Q(8;k,ℓ)



Rk

R−ℓ

Rk

R−ℓ


= Q(8;k,ℓ)T (8;k,ℓ)(p1).

The action of p2 on the four wave numbers in (A.33) is given by (3.81) as

p2 ∗



kn1 + ℓn2

−ℓn1 + kn2

kn1 − ℓn2

−ℓn1 − kn2


≡



kn1 + ℓn2 − ℓ
−ℓn1 + kn2 − k

kn1 − ℓn2 + ℓ

−ℓn1 − kn2 + k


mod n,

which gives

T(p2)Q(8;k,ℓ)
= Q(8;k,ℓ)



Rℓ

Rk

R−ℓ

R−k


= Q(8;k,ℓ)T (8k,ℓ)(p2).

Thus, we have the following relation to complete the proof for µ = (8; k, ℓ):

T(g)Q(8;k,ℓ)
= Q(8;k,ℓ)T (8;k,ℓ)(g), g = r, s, p1, p2.

A.3. Construction of the Function Φ

A systematic construction procedure of the function Φ in (3.178) is given here.

Basic Facts about Integer Matrices

We present here some basic facts about integer matrices21 that are used in the construction of

the correspondence Φ and in the proofs in Appendix A.4.

A square integer matrix U is called unimodular if its determinant is equal to±1; U is unimodular

if and only if its inverse U−1 exists and is an integer matrix. For an integer matrix A, the

kth determinantal divisor, denoted dk(A), is the greatest common divisor of all k × k minors

(subdeterminants) of A. By convention we put d0(A) = 1.

The first theorem states that every integer matrix can be brought to the Smith normal form by a

bilateral unimodular transformation.

21 See Schrijver (1998) for more details on integer matrices.
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Theorem A.1. Let A be an m × n integer matrix. There exist unimodular matrices U and V such

that

U AV =



α1 0
. . . 0r,n−r

0 αr

0m−r,r 0m−r,n−r


, (A.35)

where r = rank A and α1 ≤ α2 ≤ · · · ≤ αr are positive integers with the divisibility property:22

α1 | α2 | · · · | αr .

Such integers α1, α2, . . . , αr are uniquely determined by A, and are expressed as

αk =
dk(A)

dk−1(A)
, k = 1, . . . , r,

in terms of the determinantal divisors d1(A), d2(A), . . . , dr(A) of A.

The second theorem gives a solvability criterion for a system of linear equations in unknown

integer vectors.

Theorem A.2. Let A be an m × n integer matrix and b an m-dimensional integer vector. The

following two conditions (a) and (b) are equivalent.

(a) The system of equations Ax = b admits an integer solution x.

(b) Two matrices A and [A | b] share the same determinantal divisors, i.e., rank A = rank [A | b]
and dk(A) = dk([A | b]) for all k.

As a corollary of Theorem A.2 we can obtain the following facts.

Proposition A.1. Let a1, . . . , an be integers.

(i) gcd(a1, . . . , an) = 1 if and only if there exist some integers x1, . . . , xn such that a1x1 + · · · +
anxn = 1.

(ii) An integer b is divisible by gcd(a1, . . . , an) if and only if there exist some integers x1, . . . , xn

such that a1x1 + · · · + anxn = b.

The third theorem is a kind of duality theorem, which is sometimes referred to as the integer

analogue of the Farkas lemma.

Theorem A.3. Let A be an m × n integer matrix and b an m-dimensional integer vector. The

following two conditions (a) and (b) are equivalent.

(a) The system of equations Ax = b admits an integer solution x.

(b) We have “y⊤A ∈ Zn
=⇒ y⊤b ∈ Z” for any m-dimensional vector y.

22 Notation “a | b” means that a divides b, that is, b is a multiple of a.
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Construction of Φ via the Smith Normal Form

The correspondence Φ : (k, ℓ) 7→ (α, β) can be constructed with the aid of the Smith normal

form. Recall notations

k̂ =
k

gcd(k, ℓ, n), ℓ̂ =
ℓ

gcd(k, ℓ, n), n̂ =
n

gcd(k, ℓ, n)

in (3.160), for which

gcd(k̂, ℓ̂, n̂) = 1. (A.36)

By the definition of the correspondence Φ of (3.178) in Proposition 3.21, we have

A(k, ℓ, n) = L(α, β) for (α, β) = Φ(k, ℓ, n), (A.37)

where

A(k, ℓ, n) = {(a, b) ∈ Z2 | k̂a + ℓ̂b ≡ 0, ℓ̂a − k̂b ≡ 0 mod n̂}, (A.38)

L(α, β) = {(a, b) ∈ Z2 | (a, b) = n1(α, β) + n2(−β, α), n1, n2 ∈ Z}. (A.39)

The condition in the definition of A(k, ℓ, n) can be rewritten in a matrix form as[
k̂ ℓ̂

ℓ̂ −k̂

] [
a

b

]
≡

[
0

0

]
mod n̂. (A.40)

We define matrices K and A as

K =

[
k̂ ℓ̂

ℓ̂ −k̂

]
, A =

[
α −β
β α

]
, (A.41)

which play the key role in our analysis. Note that

L(α, β) =
{
(a, b) |

[
a

b

]
= A

[
n1

n2

]
; n1, n2 ∈ Z

}
(A.42)

by (A.39).

The condition for A(k, ℓ, n) in (A.40) is equivalent to the existence of integers p and q such

that [
k̂ ℓ̂ −n̂ 0

ℓ̂ −k̂ 0 −n̂

] 

a

b

p

q


=

[
0

0

]
. (A.43)

Since the determinantal divisors d1 and d2 of this 2 × 4 coefficient matrix are

d1 = gcd(k̂, ℓ̂, n̂) = 1,

d2 = gcd(k̂2
+ ℓ̂2, k̂ n̂, ℓ̂n̂, n̂2) = gcd(k̂2

+ ℓ̂2, n̂ gcd(k̂, ℓ̂, n̂))
= gcd(k̂2

+ ℓ̂2, n̂),
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the Smith normal form of that matrix is given (see Theorem A.1) as

U

[
k̂ ℓ̂ −n̂ 0

ℓ̂ −k̂ 0 −n̂

]
V =

[
1 0 0 0

0 κ 0 0

]
, (A.44)

where U and V are unimodular matrices and

κ = gcd(k̂2
+ ℓ̂2, n̂). (A.45)

The 4×4 matrix V for the Smith normal form in (A.44) affords an explicit representation of the

correspondence Φ that is defined rather implicitly by the relationship in (A.37). As stated in the

following proposition, the correspondence (α, β) = Φ(k, ℓ, n) is encoded in the upper-right block

of a suitably chosen matrix V . Partition the matrix V into 2 × 2 submatrices as

V =

[
V11 V12

V21 V22

]
,

and recall the matrix A in (A.41) that is parameterized by (α, β).

Proposition A.2. We can take V such that V12 = A for some (α, β) with α > β ≥ 0. Then

Φ(k, ℓ, n) = (α, β).

Proof. Putting

a =

[
a

b

]
, p =

[
p

q

]
,

[
x

y

]
= V−1

[
a

p

]

and using (A.44), we can rewrite (A.43) as

U[K | −n̂I]V · V−1

[
a

p

]
=

[
1 0 0 0

0 κ 0 0

] [
x

y

]
= 0.

This shows that x = 0 and y is free. Therefore, the solutions of (A.43) are given as[
a

p

]
= V

[
0

y

]
=

[
V12

V22

]
y, y ∈ Z2.

This means, by (A.37), that

L(α, β) = {a = (a, b)⊤ | a = V12y, y ∈ Z2}.

By comparing this with (A.42), we see that the column vectors of V12 and those of A are both basis

vectors of the same lattice. As is well-known, this implies that the matrices V12 and A are related

as V12W = A for some unimodular matrix W . Therefore,

Ṽ = V

[
I O

O W

]
=

[
Ṽ11 Ṽ12

Ṽ21 Ṽ22

]

is also a valid choice for the Smith normal form (A.44), with the property that Ṽ12 = A. □
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In what follows we assume V12 = A, i.e.,

V =

[
V11 V12

V21 V22

]
=

[
V11 A

V21 V22

]
. (A.46)

Remark A.2. In Remark 3.7. we indicated a simpler construction ofΦ that works when n̂/(k̂2
+ ℓ̂2)

is an integer. This simpler construction can also be understood in the framework of the general

method here. Let U and V11 be some unimodular matrices that transform the matrix K in (A.41) to

its Smith normal form: UKV11 = diag (1, κ). By choosing

V12 =
n̂

k̂2
+ ℓ̂2

[
k̂ −ℓ̂
ℓ̂ k̂

]
, V21 =

[
0 0

0 0

]
, V22 =

[
1 0

0 −1

]

in (A.46), we obtain a unimodular matrix V since | det V | = | det V11 | · | det V22 | = 1. Then

we have (A.44), and therefore (α, β) = Φ(k, ℓ, n) is obtained from the first column of V12, i.e.,

(α, β) = m(k̂, ℓ̂) with m = n̂/(k̂2
+ ℓ̂2).

□

The use of the Smith normal form is demonstrated below when n̂/(k̂2
+ ℓ̂2) is not an integer,

whereas when n̂/(k̂2
+ ℓ̂2) is an integer, the simpler method of construction in Remark 3.7 is used.

The example is a case with a solution of type V and without one of type T.

Example A.2. [Case 1 of Proposition 3.23] For (k, ℓ, n) = (2m,m, 6m) with m ≥ 1, we have

(k̂, ℓ̂, n̂) = (2, 1, 6), k̂2
+ ℓ̂2

= 5, and κ = gcd(5, 6) = 1. The transformation to the Smith normal

form in (A.44) is given as

[
−1 0

0 −1

] [
2 1 −6 0

1 −2 0 −6

] 

2 1 6 0

1 −2 0 6

1 0 2 1

0 1 1 −2


=

[
1 0 0 0

0 1 0 0

]
.

This shows A(2m,m, 6m) = L(6, 0), i.e., Φ(2m,m, 6m) = (6, 0) = (α, β). We have α = n̂ = 6 and

(α′, β′) = (6, 0) by (3.174). This is a case of (α, β) = (α′, β′), and we have

Σ0(α, β) = Σ0(α′, β′) = Σ0(α, β) ∩ Σ0(α′, β′) = Σ0(6, 0).

When m = 1, Σ0(6, 0) reduces to ⟨r⟩. We have (α̂, β̂) = (1, 0), D̂ = 1 < 2Z, gcd(k̂ − ℓ̂, n̂) =
gcd(1, 6) = 1 < 2Z, and GCD-div since 2 gcd(k̂, ℓ̂) = 2 gcd(2, 1) = 2 is divisible by κ = 1.

□

A.4. Proofs of Propositions 3.15, 3.17, and 3.18

In this section, we establish a series of propositions, which together serve as the proofs of

Propositions 3.15, 3.17, and 3.18 presented in Section 3.5.6.

We first focus on Proposition 3.18.
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Proposition A.3.

(i) gcd(α̂ + β̂, α̂ − β̂) ∈ {1, 2}.
(ii) gcd(α̂ + β̂, α̂ − β̂) = 2 ⇐⇒ D̂ ∈ 2Z.

(iii) gcd(α̂ + β̂, α̂ − β̂) = 1 ⇐⇒ D̂ < 2Z.

Proof. (i) Since gcd(α̂, β̂) = 1, Proposition A.1(i) implies the existence of integers x and y such

that xα̂ + y β̂ = 1. For p = x + y, q = x − y, we have

p(α̂ + β̂) + q(α̂ − β̂) = 2(xα̂ + y β̂) = 2.

Then Proposition A.1(ii) shows that 2 is divisible by gcd(α̂ + β̂, α̂ − β̂), which is equivalent to the

statement of (i) of this proposition.

(ii) We have {1, 2} ∋ gcd(α̂ + β̂, α̂ − β̂) = gcd(α̂ + β̂, 2α̂). Therefore, gcd(α̂ + β̂, α̂ − β̂) = 2 if

and only if α̂+ β̂ ∈ 2Z. Finally we note a simple identity D̂ = (α̂+ β̂)2−2α̂ β̂ to see that α̂+ β̂ ∈ 2Z

if and only if D̂ ∈ 2Z.

(iii) This is obvious from (i) and (ii) above. □

Proposition A.4.

Σ0(α, β) ∩ Σ0(β, α) =
{
Σ0(α′′, 0) if D̂ < 2Z,

Σ0(β′′, β′′) if D̂ ∈ 2Z
(A.47)

with

α′′ =
D(α, β)

gcd(α, β), β′′ =
D(α, β)

2 gcd(α, β) . (A.48)

Proof. First note that Σ0(α, β) ∩ Σ0(β, α) is the subgroup generated by r and pa
1
pb

2
for (a, b) ∈

L(α, β) ∩ L(β, α). In considering L(α, β) of (A.39), it is convenient to have H(α, β) of (3.92)

in mind, as it has a natural correspondence with L(α, β). The set H(α, β) ∩ H(β, α) is a square

sublattice with the reflection symmetry with respect to the x-axis, and hence it can be represented

asH(α′′, 0) orH(β′′, β′′) for some α′′ or β′′. Such α′′ is determined as the minimum α′′ satisfying

L(α′′, 0) ⊆ L(α, β), and β′′ as the minimum β′′ satisfying L(β′′, β′′) ⊆ L(α, β). Then L(α, β) ∩
L(β, α) coincides with the larger of L(α′′, 0) and L(β′′, β′′).

The parameter α′′ is determined as follows. The inclusion L(α′′, 0) ⊆ L(α, β) holds if and

only if integers n1 and n2 exist such that[
α −β
β α

] [
n1

n2

]
=

[
α′′

0

]
.

By the solvability criterion using determinantal divisors given in Theorem A.2, this holds if and

only if

d1

( [
α −β α′′

β α 0

] )
equals d1

( [
α −β
β α

] )
= gcd(α, β),

d2

( [
α −β α′′

β α 0

] )
equals d2

( [
α −β
β α

] )
= D(α, β).
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The former condition is equivalent to α′′ being a multiple of gcd(α, β), and the latter to α′′ being

a multiple of D(α, β)/gcd(α, β). Hence we have α′′ = D(α, β)/gcd(α, β), which is a multiple of

gcd(α, β) since D(α, β)/gcd(α, β) = D̂ gcd(α, β).
The parameter β′′ is determined as follows. The inclusion L(β′′, β′′) ⊆ L(α, β) holds if and

only if integers n1 and n2 exist such that[
α −β
β α

] [
n1

n2

]
=

[
β′′

β′′

]
.

Again by Theorem A.2, this holds if and only if

d1

( [
α −β β′′

β α β′′

] )
equals d1

( [
α −β
β α

] )
= gcd(α, β),

d2

( [
α −β β′′

β α β′′

] )
equals d2

( [
α −β
β α

] )
= D(α, β).

The former condition is equivalent to β′′ being a multiple of gcd(α, β), and the latter to β′′ being a

multiple of
D(α, β)

gcd(α + β, α − β) =
D(α, β)

gcd(α, β) gcd(α̂ + β̂, α̂ − β̂)
.

Then by Proposition A.3, we obtain

β′′ =

{
D(α, β)/gcd(α, β) if D̂ < 2Z,

D(α, β)/(2 gcd(α, β)) if D̂ ∈ 2Z.

We have L(α′′, 0) ⊃ L(β′′, β′′) (with β′′ = α′′) if D̂ < 2Z, and L(β′′, β′′) ⊃ L(α′′, 0) (with

β′′ = α′′/2) if D̂ ∈ 2Z. This completes the proof. □

We next focus on Proposition 3.15(i). With this aim in mind, we rephrase (A.47) in Proposi-

tion A.4 in terms of (k, ℓ) instead of (α, β).

Proposition A.5.

(i) gcd(k̂ + ℓ̂, k̂ − ℓ̂, n̂) ∈ {1, 2}.
(ii) gcd(k̂ + ℓ̂, k̂ − ℓ̂, n̂) = 2 ⇐⇒ gcd(k̂ − ℓ̂, n̂) ∈ 2Z.

(iii) gcd(k̂ + ℓ̂, k̂ − ℓ̂, n̂) = 1 ⇐⇒ gcd(k̂ − ℓ̂, n̂) < 2Z.

Proof. (i) Since gcd(k̂, ℓ̂, n̂) = 1, Proposition A.1(i) implies the existence of integers a, b, and c

such that ak̂ + bℓ̂ + cn̂ = 1. For p = a + b, q = a − b, r = 2c, we have

p(k̂ + ℓ̂) + q(k̂ − ℓ̂) + rn̂ = 2(ak̂ + bℓ̂ + cn̂) = 2.

Then Proposition A.1(ii) shows that 2 is divisible by gcd(k̂ + ℓ̂, k̂ − ℓ̂, n̂), which is equivalent to the

claim in (i).

(ii) We have {1, 2} ∋ gcd(k̂ + ℓ̂, k̂ − ℓ̂, n̂) = gcd(k̂ − ℓ̂, 2ℓ̂, n̂). Hence follows the claim.

(iii) This is obvious from (i) and (ii) above. □
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Proposition A.6.

Σ0(α, β) ∩ Σ0(β, α) =
{
Σ0(n̂, 0) if gcd(k̂ − ℓ̂, n̂) < 2Z,

Σ0(n̂/2, n̂/2) if gcd(k̂ − ℓ̂, n̂) ∈ 2Z.
(A.49)

Proof. Recall the notation A(k, ℓ, n) in (A.38). By the same argument as in the proof of Propo-

sition A.4, we compute the minimum α′′ satisfying (α′′, 0) ∈ A(k, ℓ, n) and the minimum β′′

satisfying (β′′, β′′) ∈ A(k, ℓ, n). Then L(α, β) ∩ L(β, α) coincides with the larger of L(α′′, 0) and

L(β′′, β′′).
By the definition of A(k, ℓ, n) in (A.38) we have (α′′, 0) ∈ A(k, ℓ, n) if and only if

k̂α′′ ≡ 0, ℓ̂α′′ ≡ 0 mod n̂.

Since gcd(k̂, ℓ̂, n̂) = 1, the smallest α′′ satisfying this condition is given by α′′ = n̂. As for β′′, we

have (β′′, β′′) ∈ A(k, ℓ, n) if and only if

(k̂ + ℓ̂)β′′ ≡ 0, (k̂ − ℓ̂)β′′ ≡ 0 mod n̂.

The smallest β′′ satisfying this condition is given by

β′′ =
n̂

gcd(k̂ + ℓ̂, k̂ − ℓ̂, n̂)
=

{
n̂ if gcd(k̂ − ℓ̂, n̂) < 2Z,

n̂/2 if gcd(k̂ − ℓ̂, n̂) ∈ 2Z,

where Proposition A.5 is used. We finally note L(n̂, n̂) ⊂ L(n̂, 0) and L(n̂, 0) ⊂ L(n̂/2, n̂/2) if

n̂ ∈ 2Z. This completes the proof. □

Proposition A.7.

(i) gcd(k̂ − ℓ̂, n̂) ∈ 2Z ⇐⇒ D̂ ∈ 2Z.

(ii)

n̂ =
D(α, β)

gcd(α, β) . (A.50)

Proof. This follows from a comparison of Proposition A.4 with Proposition A.6. □

We next focus on Proposition 3.15(ii).

Proposition A.8.
n̂

gcd(k̂2
+ ℓ̂2, n̂)

= gcd(α, β). (A.51)

Proof. We rely on the representation of Φ given in Proposition A.2 in terms of the transformation

matrix V in the Smith normal form of [K | −n̂I] in (A.44) with (A.41). Let

W =

[
W11 W12

W21 W22

]
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be the inverse of the matrix V in (A.44). We have | det V | = 1 since V is unimodular. By a

well-known formula in linear algebra and V12 = A in (A.46), we have

| det W12 | = | det V12 |/| det V | = | det A| = D(α, β). (A.52)

On the other hand, it follows from (A.44) with V = W−1 that

U

[
k̂ ℓ̂ −n̂ 0

ℓ̂ −k̂ 0 −n̂

]
=

[
1 0 0 0

0 κ 0 0

] [
W11 W12

W21 W22

]
.

This implies

−n̂U =

[
1 0

0 κ

]
W12,

which shows

n̂2
= κ | det W12 | (A.53)

since | det U | = 1.

Combining (A.52) and (A.53) with the expression (A.45) of κ, we obtain

n̂2
= κ D(α, β) = gcd(k̂2

+ ℓ̂2, n̂) · D(α, β).

By eliminating D(α, β) using (A.50), we obtain (A.51). □

Propositions A.9–A.12 below are concerned with the symmetry ofA(k, ℓ, n) of (A.38), or that

of Σ0(α, β). Interestingly, such symmetry consideration leads to the proof of Proposition 3.17 of

duality nature.

Proposition A.9. The four conditions (a), (b), (c), and (d) below are equivalent.

(a) (u1, u2) ∈ Z2 exists such that

[
u1 u2

] [
k̂ ℓ̂

ℓ̂ −k̂

]
≡

[
ℓ̂ k̂

]
mod n̂. (A.54)

(b) An integer matrix U exists such that

U

[
k̂ ℓ̂

ℓ̂ −k̂

]
≡

[
ℓ̂ k̂

k̂ −ℓ̂

]
mod n̂. (A.55)

(c) gcd(k̂2 − ℓ̂2, 2k̂ ℓ̂) is divisible by gcd(k̂2
+ ℓ̂2, n̂) .

(d) GCD-div in (3.163):

2 gcd(k̂, ℓ̂) is divisible by gcd(k̂2
+ ℓ̂2, n̂).

Proof. First, we show (a)⇔ (b). For (u1, u2) ∈ Z2 satisfying (A.54), the matrix U =

[
u1 u2

−u2 u1

]
is

an integer matrix that satisfies (A.55). This shows (a)⇒ (b), whereas (b)⇒ (a) is obvious.
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Next, we show (a)⇔ (c). The condition (a) is equivalent to the existence of integers u1, u2, p,

and q that satisfy

[
k̂ ℓ̂ −n̂ 0

ℓ̂ −k̂ 0 −n̂

] 

u1

u2

p

q


=

[
ℓ̂

k̂

]
.

By the solvability criterion using determinantal divisors given in Theorem A.2, this holds if and

only if

d1

( [
k̂ ℓ̂ −n̂ 0 ℓ̂

ℓ̂ −k̂ 0 −n̂ k̂

] )
equals d1

( [
k̂ ℓ̂ −n̂ 0

ℓ̂ −k̂ 0 −n̂

] )
= 1,

d2

( [
k̂ ℓ̂ −n̂ 0 ℓ̂

ℓ̂ −k̂ 0 −n̂ k̂

] )
equals d2

( [
k̂ ℓ̂ −n̂ 0

ℓ̂ −k̂ 0 −n̂

] )
.

The former condition imposes nothing and the latter reduces to (c). We have thus shown (a)⇔ (c).

Finally, we show (c)⇔ (d). Since k̂2
+ ℓ̂2 is a multiple of κ = gcd(k̂2

+ ℓ̂2, n̂), k̂2− ℓ̂2 is divisible

by κ if and only if (k̂2 − ℓ̂2) + (k̂2
+ ℓ̂2) = 2k̂2 is divisible by κ. Therefore, gcd(k̂2 − ℓ̂2, 2k̂ ℓ̂) is

divisible by κ if and only if gcd(2k̂2, 2k̂ ℓ̂) = 2k̂ gcd(k̂, ℓ̂) is divisible by κ. Since gcd(k̂, n̂) = 1,

gcd(k̂2 − ℓ̂2, 2k̂ ℓ̂) is divisible by κ if and only if 2 gcd(k̂, ℓ̂) is divisible by κ. □

Proposition A.10. The following two conditions are equivalent.

(a) A(k, ℓ, n) = A(ℓ, k, n).
(b) (a, b) ∈ A(k, ℓ, n) =⇒ (b, a) ∈ A(k, ℓ, n).

Proof. The defining equations in (A.38) for A(k, ℓ, n) are invariant under the change of variables

(a, b, k, ℓ) 7→ (b, a, ℓ, k), and therefore, A(ℓ, k, n) = {(b, a) | (a, b) ∈ A(k, ℓ, n)}. This shows the

equivalence of (a) and (b). □

Proposition A.11. The following two conditions are equivalent.

(a) A(k, ℓ, n) = A(ℓ, k, n).
(b) An integer matrix U exists such that (A.55) holds.

Proof. Although the claim is intuitively obvious from symmetry, we provide here a rigorous proof

on the basis of Theorem A.3 (the integer analogue of the Farkas lemma).

As in the proof of Proposition A.9, the condition (b) is equivalent to the existence of integer

tuples (u1, u2, p, q) and (u′
1
, u′

2
, p′, q′) such that

[
k̂ ℓ̂ −n̂ 0

ℓ̂ −k̂ 0 −n̂

] 

u1

u2

p

q


=

[
ℓ̂

k̂

]
,

[
k̂ ℓ̂ −n̂ 0

ℓ̂ −k̂ 0 −n̂

] 

u′
1

u′
2

p′

q′


=

[
k̂

−ℓ̂

]
.

By Theorem A.3, the existence of such (u1, u2, p, q) is equivalent to the following condition:

[
y1 y2

] [
k̂ ℓ̂ −n̂ 0

ℓ̂ −k̂ 0 −n̂

]
∈ Z4

=⇒
[
y1 y2

] [
ℓ̂

k̂

]
∈ Z,
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which can be rewritten as

[k̂y1 + ℓ̂y2, ℓ̂y1 − k̂y2, −n̂y1, −n̂y2 ] ∈ Z4
=⇒ ℓ̂y1 + k̂y2 ∈ Z.

Integrality condition for the third and fourth components allows us to put y1 = a/n̂ and y2 = b/n̂
with integers a and b. Then we can rewrite the above as

k̂a + ℓ̂b ≡ 0, ℓ̂a − k̂b ≡ 0 mod n̂ =⇒ ℓ̂a + k̂b ≡ 0 mod n̂.

Similarly, the existence of (u′
1
, u′

2
, p′, q′) above is equivalent to the following condition:

k̂a + ℓ̂b ≡ 0, ℓ̂a − k̂b ≡ 0 mod n̂ =⇒ k̂a − ℓ̂b ≡ 0 mod n̂.

The above two conditions together are nothing but the statement that (a, b) ∈ A(k, ℓ, n) implies

(b, a) ∈ A(k, ℓ, n), which is equivalent to (a) by Proposition A.10. □

Proposition A.12. Let (α, β) = Φ(k, ℓ, n).
(i) Σ0(α, β) = Σ0(β, α) ⇐⇒ β = 0 or α = β.

(ii) Σ0(α, β) = Σ0(β, α) ⇐⇒ GCD-div in (3.163).

Proof. (i) is obvious, and (ii) follows from Propositions A.9 and A.11. Note that Σ0(α, β) is the

subgroup generated by r and p1
ap2

b for (a, b) ∈ A(k, ℓ, n). □

A.5. Proofs of Propositions 3.30 and 3.32

In this section, we provide the proofs of Propositions 3.30 and 3.32 presented in Section 3.5.6.

Proof of Proposition 3.30

(i) The proof is the same as the proof of Proposition 3.29.

(ii) We can assume α > β by replacing (α, β) by (α′, β′) if necessary. Take

(k, ℓ, n) = m(α̂, β̂,D(α, β)/gcd(α, β)),

for instance. Then m = gcd(k, ℓ, n) and (k̂, ℓ̂, n̂) = (α̂, β̂,D(α, β)/gcd(α, β)), and therefore

k̂2
+ ℓ̂2
= α̂2

+ β̂2
= n̂/gcd(α, β).

This shows that the simpler method of computingΦ(k, ℓ, n), described in Remark 3.7, is applicable.

The right-hand side of (3.181) is calculated as

n̂

k̂2
+ ℓ̂2

[
k̂

ℓ̂

]
= gcd(α, β)

[
α̂

β̂

]
=

[
α

β

]
,

which shows Φ(k, ℓ, n) = (α, β).
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We also note that the chosen parameter (k, ℓ) lies in the range of (3.150). The inequality

1 ≤ ℓ ≤ k − 1 is immediate from β ≥ 1 and α > β, whereas 2 ≤ k ≤
⌊

n−1
2

⌋
is shown as follows.

The inequality k ≥ 2 holds since α̂ ≥ 2. When n is odd,

2

m

(⌊
n − 1

2

⌋
− k

)
=

1

m
(n − 1 − 2k) = gcd(α, β)(α̂2

+ β̂2) − 1

m
− 2α̂

≥ (α̂2
+ β̂2) − 1 − 2α̂ = α̂(α̂ − 2) + β̂2 − 1 ≥ 0.

where α̂ ≥ 2 and β̂ ≥ 1 is used in the last inequality. When n is even,

2

m

(⌊
n − 1

2

⌋
− k

)
=

1

m
(n − 2 − 2k) = gcd(α, β)(α̂2

+ β̂2) − 2

m
− 2α̂.

If n̂ is odd, we have m even since n is even and

2

m

(⌊
n − 1

2

⌋
− k

)
≥ (α̂2

+ β̂2) − 1 − 2α̂ = α̂(α̂ − 2) + β̂2 − 1 ≥ 0.

If n̂ is even,

2

m

(⌊
n − 1

2

⌋
− k

)
≥ (α̂2

+ β̂2) − 2 − 2α̂ = [α̂(α̂ − 2) + β̂2 − 1] − 1 ≥ 0

because [α̂(α̂ − 2) + β̂2 − 1 ≥ 1 as (α̂, β̂) = (2, 1), which gives n̂ = 5, is excluded by n̂ even.

Proof of Proposition 3.32

First, we show that (n̂, k̂, ℓ̂) = (4k̂, k̂, ℓ̂) contradicts the condition GCD-div in (3.190). Let

gcd(k̂, ℓ̂) = α. Then, we have n̂ = 4k̂ = 4α(k̂/α). Recall that gcd(k̂, ℓ̂, n̂) = 1. If α , 1, then

n̂, k̂, and ℓ̂ have a common divisor α ≥ 2. This contradicts gcd(k̂, ℓ̂, n̂) = 1. Hence, we have

gcd(k̂, ℓ̂) = α = 1. Thus, we rewrite (3.190) as

GCD-div for (n̂, k̂, ℓ̂) = (4k̂, k̂, ℓ̂): 2 is not divisible by gcd(k̂2
+ ℓ̂2, 4k̂). (A.56)

This condition is equivalent to that k̂2
+ ℓ̂2 and 4k̂ have 4 or a prime number m ≥ 3 as a common

divisor.

• For the case that k̂2
+ ℓ̂2 and 4k̂ have 4 as a common divisor, we have

k̂2
+ ℓ̂2
= 4p. (A.57)

Here, p is a positive integer. Using k̂2
+ ℓ̂2
= (k̂ − ℓ̂)2 + 2k̂ ℓ̂, we have

(k̂ − ℓ̂)2 + 2k̂ ℓ̂ = 4p. (A.58)

Recall that gcd(k̂, ℓ̂) = 1. Hence, either k̂ or ℓ̂, or both are odd. When we consider either k̂

or ℓ̂ is odd, we see that k̂ − ℓ̂ is odd. Hence, (k̂ − ℓ̂)2 is odd. Thus, (k̂ − ℓ̂)2 + 2k̂ ℓ̂ is odd.

This contradicts (A.58). On the other hand, when we consider both k̂ and ℓ̂ are odd, we see

that k̂ − ℓ̂ is even. Hence, (k̂ − ℓ̂)2 is divisible by 4. Since k̂ ℓ̂ is odd, 2k̂ ℓ̂ is not divisible by

4. Hence, (k̂ − ℓ̂)2 + 2k̂ ℓ̂ is not divisible by 4. This contradicts (A.58).

182



• For the case that k̂2
+ ℓ̂2 and 4k̂ have a prime number m ≥ 3 as a common divisor, we have

k̂2
+ ℓ̂2
= mp, (A.59)

4k̂ = mq. (A.60)

Here, p and q are positive integers. Multiplying the both sides of (A.59) by q, we have

q(k̂2
+ ℓ̂2) = mpq. (A.61)

Multiplying the both sides of (A.60) by p, we have

4pk̂ = mpq. (A.62)

Combining (A.61) and (A.62), we have q(k̂2
+ ℓ̂2) = 4pk̂. Hence, we have qℓ̂2

= k̂(4p− qk̂).
Since gcd(k̂, ℓ̂) = 1, q is divisible by k̂. Hence, we have q = r k̂ with some positive integer r .

Substituting this into (A.60), we have m = 4/r . Recall that m ≥ 3. From this, we have r = 1.

Hence, we have m = 4/r = 4. Thus, we have q = r k̂ = k̂. Substituting this into (A.61), we

have k̂2
+ ℓ̂2
= 4p. Using k̂2

+ ℓ̂2
= (k̂ − ℓ̂)2 + 2k̂ ℓ̂, we have

(k̂ − ℓ̂)2 + 2k̂ ℓ̂ = 4p. (A.63)

This condition is equivalent to (A.58) in the above case. Hence, we have contradiction in a

similar manner to the above case.

Thus, we see that (n̂, k̂, ℓ̂) = (4k̂, k̂, ℓ̂) contradicts GCD-div. In the same way, we can see that

(n̂, k̂, ℓ̂) = (4ℓ̂, k̂, ℓ̂) contradicts GCD-div.

Next, we show that (n̂, k̂, ℓ̂) = (2k̂ + 2ℓ̂, k̂, ℓ̂) contradicts the condition GCD-div in (3.190).

Let gcd(k̂, ℓ̂) = α. Then, n̂ = 2k̂ + 2ℓ̂ = 2α(k̂ + ℓ̂)/α. Recall that gcd(k̂, ℓ̂, n̂) = 1. If α , 1,

then n̂, k̂, and ℓ̂ have a common divisor α. This contradicts gcd(k̂, ℓ̂, n̂) = 1. Hence, we have

gcd(k̂, ℓ̂) = α = 1. Thus, we rewrite GCD-div as

GCD-div for (n̂, k̂, ℓ̂) = (2k̂ + 2ℓ̂, k̂, ℓ̂): 2 is not divisible by gcd(k̂2
+ ℓ̂2, 2k̂ + 2ℓ̂). (A.64)

This condition is equivalent to that k̂2
+ ℓ̂2 and 2k̂ + 2ℓ̂ have 4 or a prime number m ≥ 3 as a

common divisor.

• For the case that k̂2
+ ℓ̂2 and 2k̂ + 2ℓ̂ have 4 as a common divisor, we have

k̂2
+ ℓ̂2
= 4p, (A.65)

2k̂ + 2ℓ̂ = 4q. (A.66)

Here, p and q are positive integers. From (A.66), we have k̂+ℓ̂ = 2q. Since gcd(k̂, ℓ̂) = α = 1,

k̂ and ℓ̂ are not both even. Hence, we have

k̂ = 2r + 1, (A.67)

ℓ̂ = 2s + 1. (A.68)
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Here, r and s are positive integers. Substituting (A.67) and (A.68) into (A.65), we have

(2r + 1)2 + (2s + 1)2 = 4p. Rearranging this, we have

p − r(r + 1) − s(s + 1) = 1/2. (A.69)

This equality has contradiction since p − r(r + 1) − s(s + 1) is an integer.

• For the case that k̂2
+ ℓ̂2 and 2k̂ + 2ℓ̂ have a prime number m ≥ 3 as a common divisor, we

have

k̂2
+ ℓ̂2
= mp, (A.70)

2k̂ + 2ℓ̂ = mq. (A.71)

Here, p and q are positive integers. Using k̂2
+ ℓ̂2
= (k̂ + ℓ̂)2 − 2k̂ ℓ̂, we have

(k̂ + ℓ̂)2 − 2k̂ ℓ̂ = mp. (A.72)

Substituting (A.71) into (A.72), we have q2m2/4 − 2k̂ ℓ̂ = mp. Rearranging this, we have

8k̂ ℓ̂/m = −4p + mq2. (A.73)

Hence, k̂/m or ℓ̂/m is an integer. When we consider k̂/m is an integer, we have k̂ = mr

with some positive integer r . From (A.71), we have ℓ̂ = m(q − r). Hence, ℓ̂ and k̂ has m as

a common divisor. This contradicts gcd(k̂, ℓ̂) = 1. When we consider ℓ̂/m is an integer, we

have contradiction in a similar manner.

Thus, we see that (n̂, k̂, ℓ̂) = (2k̂ + 2ℓ̂, k̂, ℓ̂) contradicts GCD-div.

A.6. Details of Stability Analysis

We introduced the n×n square lattice as a two-dimensional discretized space and presented the

group D4⋉(Zn×Zn) labeling the symmetry of this lattice in Section 3.2. We obtained the irreducible

decomposition of the permutation representation of the group D4 ⋉ (Zn × Zn) in Sections 3.3 and

3.4 to identify the irreducible representations. We presented the equivariant branching lemma in

Section 3.5 as a pertinent and sufficient means to show the existence of the square patterns for each

irreducible representation.

In this section, we advance bifurcation analysis by solving bifurcation equations as a more

informative means to investigate the properties of bifurcating solutions for each irreducible repre-

sentations. We derive the expanded forms of bifurcation equations by exploiting the symmetry of

the square lattice. We evaluate the stability of bifurcating solutions and present stability conditions.

This section is organized as follows. Fundamentals of analysis are summarized in Ap-

pendix A.6.1. Bifurcation points of multiplicity 1, 2, 4, and 8 are studied in Appendices A.6.2–

A.6.5, respectively.
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Table A.2: Irreducible representations of D4 ⋉ (Zn × Zn) to be considered in bifurcation analysis.

n \ M 1 2 4 8

2m (1;+,+,+), (1;+,+,−) (2;+,+) (4; k, 0;+), (4; k, k;+), (4; n/2, ℓ,+) (8; k, ℓ)
2m − 1 (1;+,+,+) (4; k, 0;+), (4; k, k;+) (8; k, ℓ)
(4; k, 0;+), (4; k, k;+) with 1 ≤ k ≤ ⌊(n − 1)/2⌋;
(4; n/2, ℓ;+) with 1 ≤ ℓ ≤ ⌊(n − 1)/2⌋;
(8; k, ℓ) with 1 ≤ ℓ ≤ k − 1, 2 ≤ k ≤ ⌊(n − 1)/2⌋

A.6.1. Analysis Procedure Solving Bifurcation Equations

Let us consider the governing equation

F(λ, ϕ) = 0 (A.74)

in (2.3) endowed with the equivariance to the group G = D4 ⋉ (Zn × Zn) as

T(g)F(λ, ϕ) = F(T(g)λ, ϕ), g ∈ G (A.75)

in (2.7). Recall that ϕ is the bifurcation parameter, λ ∈ RK is a K = n2 dimensional independent

variable vector expressing a distribution of mobile population, F : RK × R → RK is a nonlinear

function, and T is the K-dimensional permutation representation of the group G. The Jacobian

matrix of F is an K × K matrix expressed as

J(λ, ϕ) =
(
∂Fi

∂λ j

���� i, j = 1, . . . ,K

)
. (A.76)

Let (λc, ϕc) be a critical point of multiplicity M (≥ 1), at which the Jacobian matrix of F has a

rank deficiency M . The critical point (λc, ϕc) is assumed to be G-symmetric in the sense of

T(g)λc = λc, g ∈ G. (A.77)

Moreover, it is assumed to be group-theoretic, which means, by definition, that the M-dimensional

kernel space of the Jacobian matrix at (λc, ϕc) is irreducible with respect to the representation T .

The critical point (λc, ϕc) is associated with one of the irreducible representations µ of G in Table

A.2. The multiplicity M corresponds to the dimension of µ, and a matrix representation for µ is

denoted by T µ(g).
By the Liapunov–Schmidt reduction with symmetry (Sattinger, 1979; Chow and Hale, 1982;

Golubitsky et al., 1988), the full system of the governing equation in (A.74) is reduced, in the

neighborhood of the critical point (λc, ϕc), to a system of M equations

F̃(w, ϕ̃) = 0 (A.78)

in w ∈ Ker(Jc), where F̃: RM ×R→ RM is a function, ϕ̃ = ϕ− ϕc denotes the increment of ϕ, and

Ker(Jc) is the kernel space of J(λc, ϕc). We define variables w = (w1, . . . ,wM)⊤ in the bifurcation
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equation in (A.78) by using the column vectors of Qµ
= [qµ

1
, . . . , q

µ

M
] in Section 3.4.3 that span

Ker(Jc).
In the reduction process, the equivariance in (A.75) of the full system is inherited by the reduced

system in (A.78). With the use of the matrix representation T µ(g) for the associated irreducible

representation µ, the equivariance of F̃ can be expressed as

T µ(g)F̃(w, ϕ̃) = F̃(T µ(g)w, ϕ̃), g ∈ G. (A.79)

The reduced equation (A.78) can possibly admit multiple solutions w = w(ϕ̃) with w(0) = 0,

since (w, ϕ̃) = (0, 0) is a singular point of (A.78). This gives rise to bifurcation. Each w uniquely

determines a solution λ to the full system (A.74).

Group-theoretic bifurcation analysis to investigate the stability of a bifurcating solution for a

critical point proceeds as follows:

• Specify an irreducible representation µ of D4 ⋉ (Zn × Zn) in Table A.2.

• Obtain the expanded form of the bifurcation equation by exploiting the symmetry.

• Obtain a bifurcating solution by using the equivariant branching lemma (Cicogna, 1981;

Vanderbauwhede, 1982; Golubitsky et al., 1988) or solving the bifurcation equation.

• Obtain the Jacobian matrix of F̃.

• Substitute the bifurcating solution into the Jacobian matrix and evaluate the eigenvalues to

determine their stability as{
linearly stable: every eigenvalue has a negative real part,

linearly unstable: at least one eigenvalue has a positive real part.

We showed the existence of square patterns by using the equivariant branching lemma in

Section 3.5. Additionally, in this section, we show the existence of some other bifurcating solutions

by solving bifurcation equations. Theoretically predicted bifurcating solutions are summarized in

Table A.3. Stability analysis for these solutions is also conducted in this section.

A.6.2. Bifurcation Point of Multiplicity 1

We consider a critical point associated with the one-dimensional irreducible representation

µ = (1;+,+,−) of the group D4 ⋉ (Zn × Zn). The action in (1;+,+,−) on a variable w ∈ R can be

expressed as

r, s : w 7→ w, p1, p2 : w 7→ −w. (A.80)

This case is nothing but pitchfork bifurcation and is well-known.

The bifurcation equation for a critical point of multiplicity 1 is a one-dimensional equation

over R as

F̃(w, ϕ̃) = 0, (A.81)
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Table A.3: Theoretically predicted bifurcating solutions for critical points with multiplicity M .

M Bifurcating solutions (w ∈ R) Existence conditions

1 w if n is even

2 wsq = (w,w) if n is even

wstripe = (w, 0) if n is even

4 wsq = (w, 0,w, 0) Always

wstripeI = (w, 0, 0, 0) Always

wstripeII = (0,w, 0, 0) if ň is even

8 wsqVM = (w, 0,w, 0,w, 0,w, 0) Always

wsqT = (w, 0,w, 0, 0, 0, 0, 0) if 2 gcd(k̂, ℓ̂) is not divisible by gcd(k̂2
+ ℓ̂2, n̂)

wupside−downI = (w, 0, 0, 0,w, 0, 0, 0) if (k̂ + ℓ̂) gcd(k̂ + ℓ̂, k̂ − ℓ̂) is not divisible by gcd(2k̂ ℓ̂, n̂)
wupside−downII = (0,w, 0, 0, 0,w, 0, 0) if n̂ is even and

(k̂ + ℓ̂) gcd(k̂ + ℓ̂, k̂ − ℓ̂) is not divisible by gcd(2k̂ ℓ̂, n̂)
wstripeI = (w, 0, 0, 0, 0, 0, 0, 0) if k̂2

+ ℓ̂2, 2k̂ ℓ̂, and k̂2 − ℓ̂2 are not divisible by n̂

wstripeII = (0,w, 0, 0, 0, 0, 0, 0) if n̂ is even and

k̂2
+ ℓ̂2, 2k̂ ℓ̂, and k̂2 − ℓ̂2 are not divisible by n̂

ň = n/gcd(k, n) for M = 4 in (A.113);

n̂ = n/gcd(k, ℓ, n), k̂ = k/gcd(k, ℓ, n), ℓ̂ = ℓ/gcd(k, ℓ, n) for M = 8 in (A.249)

187



where (w, ϕ̃) = (0, 0) is assumed to correspond to the critical point. We expand F̃ into a power

series as

F̃(w, ϕ̃) =
∑
a=0

Aa(ϕ̃)wa (A.82)

with coefficients Aa(ϕ̃) ∈ R. Since (w, ϕ̃) = (0, 0) corresponds to the critical point, we have

A0(0) = 0, A1(0) = 0.

Hence, we have

A1(ϕ̃) ≈ A′1(0)ϕ̃.
for A′

1
(0), which is generically nonzero.23

The equivariance of the bifurcation equation to the group D4 ⋉ (Zn × Zn) is identical to the

equivariance to the actions of the four elements r , s, p1, and p2 generating this group. Hence, the

equivariance condition in (A.79) of the bifurcation equation is written for (A.82) as

r, s : F̃(w, ϕ̃) = F̃(w, ϕ̃), (A.83)

p1, p2 : − F̃(w, ϕ̃) = F̃(−w, ϕ̃). (A.84)

From the equivariance condition (A.84), we have∑
a=0

(−Aa(ϕ̃))wa
=

∑
a=0

Aa(ϕ̃)(−w)a.

This condition implies (−1)a = −1, that is,

a = 2b + 1, b ∈ Z+,

where Z+ represents the set of nonnegative integers. Hence, (A.82) is restricted to

F̃(w, ϕ̃) = w

∑
b=0

A2b+1(ϕ̃)w2b. (A.85)

The form of (A.85) implies that F̃(w, ϕ̃) = 0 has the trivial solution and a bifurcating solution.

Note that F̃(w, ϕ̃) is an odd function in w. Thus, (w, ϕ̃) and (−w, ϕ̃) are conjugate solutions for

F̃ = 0. We hereafter call the two solutions that are conjugate as symmetric bifurcating solutions

and those that are not as asymmetric ones.

We evaluate the stability of the bifurcating solution by considering the asymptotic form of the

bifurcation equation. The asymptotic form of the bifurcation equation in (A.85) becomes

F̃(w, ϕ̃) ≈ w(A′1(0)ϕ̃ + A3(0)w2), (A.86)

23 Notation A′
1
(0)means the derivative of A1(ϕ̃)with respect to ϕ̃, evaluated at ϕ̃ = 0. Generically we have A′

1
(0) , 0

since the group symmetry imposes no condition.
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and the Jacobian of F̃ becomes

J̃(w, ϕ̃) = ∂F̃

∂w
≈ A′1(0)ϕ̃ + 3A3(0)w2. (A.87)

Solving F̃ = 0, we have

ϕ̃ = ϕ̃sq ≈ −w2 A3(0)
A′

1
(0) .

Substituting ϕ̃sq into (A.87), we have

J̃(w, ϕ̃sq) ≈ 2w2 A3(0). (A.88)

Hence, the stability of the bifurcating solution in the neighborhood of the critical point depends on

the sign of A3(0), that is, {
A3(0) < 0: stable,

A3(0) > 0: unstable.

A.6.3. Bifurcation Point of Multiplicity 2

We consider a critical point associated with the two-dimensional irreducible representation

µ = (2;+,+) of the group D4 ⋉ (Zn × Zn). The action in (2;+,+) on a two-dimensional vector

(w1,w2) ∈ R2 can be expressed as

r :

[
w1

w2

]
7→

[
w2

w1

]
, s :

[
w1

w2

]
7→

[
w1

w2

]
, (A.89)

p1 :

[
w1

w2

]
7→

[
−w1

w2

]
, p2 :

[
w1

w2

]
7→

[
w1

−w2

]
. (A.90)

The bifurcation equation for a critical point of multiplicity 2 is a two-dimensional equation in

w = (w1,w2) ∈ R2 expressed as

F̃i(w, ϕ̃) = 0, i = 1, 2, (A.91)

where (w1,w2, ϕ̃) = (0, 0, 0) is assumed to correspond to the critical point. Accordingly, the

Jacobian matrix of F̃ is an 2 × 2 matrix expressed as

J̃(w, ϕ̃) =
(
∂F̃i

∂w j

����� i, j = 1, . . . , 2

)
. (A.92)

We expand F̃1 into a power series as

F̃1(w1,w2, ϕ̃) =
∑
a=0

∑
b=0

Aab(ϕ̃)w1
a
w2

b (A.93)

with coefficients Aab(ϕ̃) ∈ R. Since (w1,w2, ϕ̃) = (0, 0, 0) corresponds to the critical point, we have

A00(0) = 0, A10(0) = A01(0) = 0.
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Since A′
10
(0) is generically nonzero, we have

A10(ϕ̃) ≈ A′10(0)ϕ̃.

The equivariance of the bifurcation equation to the group D4 ⋉ (Zn × Zn) is identical to the

equivariance to the actions of the four elements r , s, p1, and p2 generating this group. Hence, the

equivariance condition (A.79) of the bifurcation equation is written for (A.91) as

r : F̃2(w1,w2) = F̃1(w2,w1), (A.94)

F̃1(w1,w2) = F̃2(w2,w1), (A.95)

s : F̃1(w1,w2) = F̃1(w1,w2), (A.96)

F̃2(w1,w2) = F̃2(w1,w2), (A.97)

p1 : − F̃1(w1,w2) = F̃1(−w1,w2), (A.98)

F̃2(w1,w2) = F̃2(−w1,w2), (A.99)

p2 : F̃1(w1,w2) = F̃1(w1,−w2), (A.100)

− F̃2(w1,w2) = F̃2(w1,−w2). (A.101)

From the equivariance condition (A.98) or (A.101), we have∑
a=0

∑
b=0

(−Aab(ϕ̃))w1
a
w2

b
=

∑
a=0

∑
b=0

Aab(ϕ̃)(−w1)aw2
b.

From the equivariance condition (A.99) or (A.100), we have∑
a=0

∑
b=0

Aab(ϕ̃)w1
a
w2

b
=

∑
a=0

∑
b=0

Aab(ϕ̃)w1
a(−w2)b.

These conditions imply that a is odd, and b is even. Thus,

a = 2c + 1, c ∈ Z+,
b = 2d, d ∈ Z+.

where Z+ represents the set of nonnegative integers. Hence, F̃i (i = 1, 2) is restricted to

F̃1(w1,w2, ϕ̃) = w1

∑
c=0

∑
d=0

A2c+1,2d(ϕ̃)w1
2c
w2

2d . (A.102)

F̃2(w1,w2, ϕ̃) = w2

∑
c=0

∑
d=0

A2c+1,2d(ϕ̃)w2
2c
w1

2d . (A.103)

Therein, F̃2 is obtained by (A.94).

We have the following propositions on the existence and the symmetry of bifurcating solutions

by solving the bifurcation equation.
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Proposition A.13. For a critical point of multiplicity 2 associated with µ = (2;+,+), we have the

following bifurcating solutions:

• the stripe pattern wstripe = (w, 0) (w ∈ R),

• the square pattern wsq = (w,w) (w ∈ R).

Proof. Substituting wstripe = (w, 0) into (A.102), we have

F̃1(w, 0, ϕ̃) = w

∞∑
a=0

A2a+1,0(ϕ̃)w2a ≈ w
{

A′10(0)ϕ̃ + A30(0)w2
}

(A.104)

with A′
10
(0) = ∂A10/∂ϕ̃(0). Thus, F̃1(w, 0, ϕ̃) = 0 represents ϕ̃ versus w relation for wstripe.

Substituting wstripe into (A.103), we have F̃2(w, 0, ϕ̃) = 0. Thus, there is a bifurcating curve

satisfying F̃1 = F̃2 = 0 for wstripe. Similar discussion holds for wsq. □

Proposition A.14. For a critical point of multiplicity 2 associated with µ = (2;+,+), the two

bifurcating solutions (w, ϕ̃) and (−w, ϕ̃) are conjugate for w = wsq, wstripe.

Proof. Since wstripe = (w, 0) and −wstripe = (−w, 0) satisfy the same relation (cf., (A.104))

∞∑
a=0

A2a+1,0(ϕ̃)w2a
= 0,

F̃1(w, 0, ϕ̃) is an odd function in w, that is,

F̃1(−w, 0, ϕ̃) = −F̃1(w, 0, ϕ̃).

Thus, (wstripe, ϕ̃) and (−wstripe, ϕ̃) are conjugate solutions for F̃1 = 0. Similar discussion holds for

(wsq, ϕ̃) and (−wsq, ϕ̃). □

We evaluate the stability of the bifurcating solutions by considering the asymptotic form of the

bifurcation equation. The asymptotic form of the bifurcation equation becomes

F̃1(w1,w2, ϕ̃) ≈ w1(A′10(0)ϕ̃ + A30(0)w1
2
+ A12(0)w2

2), (A.105)

F̃2(w1,w2, ϕ̃) ≈ w2(A′10(0)ϕ̃ + A30(0)w2
2
+ A12(0)w1

2), (A.106)

and the Jacobian matrix of F̃ in (A.92) becomes

J̃(w, ϕ̃) ≈
[
A′

10
(0)ϕ̃ + 3A30(0)w1

2
+ A12(0)w2

2 2A12(0)w1w2

2A12(0)w1w2 A′
10
(0)ϕ̃ + 3A30(0)w2

2
+ A12(0)w1

2

]
. (A.107)

Substituting wsq = (w,w) into (A.105) and solving F̃1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃sq ≈ −w2 A30(0) + A12(0)
A′

10
(0) .

191



Evaluating the Jacobian matrix (A.107) at (wsq, ϕ̃sq), we have

J̃(wsq, ϕ̃sq) ≈ 2w2

[
A30(0) A12(0)
A12(0) A30(0)

]
. (A.108)

The eigenvalues of J̃(wsq, ϕ̃sq) are given by

λ1, λ2 ≈ 2w2(A30(0) ± A12(0)).

Hence, the sign of the eigenvalues depends on the values of the coefficients A30(0) and A12(0).
Substituting wstripe = (w, 0) into (A.105) and solving F̃1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃stripe ≈ −w2 A30(0)
A′

10
(0) .

Evaluating the Jacobian matrix (A.107) at (wstripe, ϕ̃stripe), we have

J̃(wstripe, ϕ̃stripe) ≈ w
2

[
2A30(0) 0

0 −A30(0) + A12(0)

]
. (A.109)

The eigenvalues of J̃(wstripe, ϕ̃stripe) are given by

λ1 ≈ 2w2 A30(0),
λ2 ≈ 2w2(A12(0) − A30(0)).

Hence, the sign of the eigenvalues depends on the values of the coefficients A30(0) and A12(0).
To sum up, we have the following proposition:

Proposition A.15. For a critical point of multiplicity 2 associated with µ = (2;+,+), suppose

that all eigenvalues of J(λc, ϕ) other than those for µ = (2;+,+) are negative. Then, we have the

following statements on the stability in the neighborhood of the critical point.

(i) If A30(0) < A12(0) < −A30(0) are satisfied, the square pattern wsq is stable.

(ii) If A12(0) < A30(0) < 0 are satisfied, the stripe pattern wstripe is stable.

(iii) The two solutions wsq and wstripe are not stable simultaneously.

Proof. The first and second statements are obtained by assuming that all the eigenvalues of the

Jacobian matrix at each bifurcating solution are negative. The last statement are obtained by the

fact that A30(0) < A12(0) and A12(0) < A30(0) cannot be satisfied simultaneously. □
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A.6.4. Bifurcation Point of Multiplicity 4

We consider a critical point associated with the four-dimensional irreducible representations µ

of the group D4 ⋉ (Zn × Zn):

(4; k, 0,+) with 1 ≤ k ≤
⌊
n − 1

2

⌋
, (A.110)

(4; k, k,+) with 1 ≤ k ≤
⌊
n − 1

2

⌋
, (A.111)

(4; n/2, ℓ,+) with 1 ≤ ℓ ≤ n

2
− 1, (A.112)

where n ≥ 3 and (4; n/2, ℓ,+) exists when n is even. For (4; k, 0,+) and (4; k, k,+), we use the

following notations:

ň =
n

gcd(k, n), ǩ =
k

gcd(k, n) . (A.113)

For (4; n/2, ℓ,+), we use the following notations:

ñ =
n

gcd(ℓ, n), ℓ̃ =
ℓ

gcd(ℓ, n) . (A.114)

The action in (4; k, 0,+) on a four-dimensional vector (w1, . . . ,w4) ∈ R4 can be expressed for a

two-dimensional vector (z1, z2)with complex variables z j = w2 j−1+ iw2 j ( j = 1, 2) as (cf., (3.128))

r :

[
z1

z2

]
7→

[
z2

z1

]
, s :

[
z1

z2

]
7→

[
z1

z2

]
, (A.115)

p1 :

[
z1

z2

]
7→

[
ωk z1

z2

]
, p2 :

[
z1

z2

]
7→

[
z1

ωk z2

]
(A.116)

with ω = exp(i2π/n). The action in (4; k, k,+) can be expressed as (cf., (3.129))

r :

[
z1

z2

]
7→

[
z2

z1

]
, s :

[
z1

z2

]
7→

[
z2

z1

]
, (A.117)

p1 :

[
z1

z2

]
7→

[
ωk z1

ω−k z2

]
, p2 :

[
z1

z2

]
7→

[
ωk z1

ωk z2

]
, (A.118)

and the action in (4; n/2, ℓ,+) can be expressed as (cf., (3.130))

r :

[
z1

z2

]
7→

[
z2

z1

]
, s :

[
z1

z2

]
7→

[
z1

z2

]
, (A.119)

p1 :

[
z1

z2

]
7→

[
−z1

ω−ℓz2

]
, p2 :

[
z1

z2

]
7→

[
ωℓz1

−z2

]
. (A.120)
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Derivation of Bifurcation Equation

The bifurcation equation for a critical point of multiplicity 4 is a four-dimensional equation in

w = (w1, . . . ,w4) ∈ R4 expressed as

F̃i(w, ϕ̃) = 0, i = 1, . . . , 4, (A.121)

where (w1, . . . ,w4, ϕ̃) = (0, . . . , 0, 0) is assumed to correspond to the critical point. Accordingly,

the Jacobian matrix of F̃ is a 4 × 4 matrix expressed as

J̃(w, ϕ̃) =
(
∂F̃i

∂w j

����� i, j = 1, . . . , 4

)
. (A.122)

The bifurcation equation (A.121) can be represented as a two-dimensional equation in complex

variables z j = w2 j−1 + iw2 j ( j = 1, 2) as

Fi(z1, z2, ϕ̃) = 0, i = 1, 2, (A.123)

where (z1, z2, ϕ̃) = (0, 0, 0) corresponds to the critical point, and there are the following relationship:

F1(z1, z2, ϕ̃) = F̃1 + iF̃2, (A.124)

F2(z1, z2, ϕ̃) = F̃3 + iF̃4. (A.125)

We expand F1 into a power series as

F1(z1, z2, ϕ̃) =
∑
a=0

∑
b=0

∑
c=0

∑
d=0

Aabcd(ϕ̃)z1
az2

b z1
C z2

d (A.126)

with coefficients Aabcd(ϕ̃). Since (z1, z2, ϕ̃) = (0, 0, 0) corresponds to the critical point, we have

A0000(0) = 0, A1000(0) = A0100(0) = A0010(0) = A0001(0) = 0.

In addition, since a1 = A′
1000
(0) is generically nonzero, we have

A1000(ϕ̃) ≈ a1ϕ̃.

The equivariance of the bifurcation equation to the group D4 ⋉ (Zn × Zn) is identical to the

equivariance to the actions of the four elements r , s, p1, and p2 generating this group. The

equivariance condition for (4; k, 0,+) is written as

r : F2(z1, z2) = F1(z2, z1), (A.127)

F1(z1, z2) = F2(z2, z1), (A.128)

s : F1(z1, z2) = F1(z1, z2), (A.129)

F2(z1, z2) = F2(z1, z2), (A.130)

p1 : ωk F1(z1, z2) = F1(ωk z1, z2), (A.131)

F2(z1, z2) = F2(ωk z1, z2), (A.132)

p2 : F1(z1, z2) = F1(z1, ω
k z2), (A.133)

ωk F2(z1, z2) = F2(z1, ω
k z2) (A.134)
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with ω = exp(i2π/n). The equivariance condition for (4; k, k,+) is written as

r : F2(z1, z2) = F1(z2, z1), (A.135)

F1(z1, z2) = F2(z2, z1), (A.136)

s : F2(z1, z2) = F1(z2, z1), (A.137)

F1(z1, z2) = F2(z2, z1), (A.138)

p1 : ωk F1(z1, z2) = F1(ωk z1, ω
−k z2), (A.139)

ω−k F2(z1, z2) = F2(ωk z1, ω
−k z2), (A.140)

p2 : ωk F1(z1, z2) = F1(ωk z1, ω
k z2), (A.141)

ωk F2(z1, z2) = F2(ωk z1, ω
k z2). (A.142)

The equivariance condition for (4; n/2, ℓ,+) is written as

r : F2(z1, z2) = F1(z2, z1), (A.143)

F1(z1, z2) = F2(z2, z1), (A.144)

s : F1(z1, z2) = F1(z1, z2), (A.145)

F2(z1, z2) = F2(z1, z2), (A.146)

p1 : −F1(z1, z2) = F1(−z1, ω
−ℓz2), (A.147)

ω−ℓF2(z1, z2) = F2(−z1, ω
−ℓz2), (A.148)

p2 : ωℓF1(z1, z2) = F1(ωℓz1,−z2), (A.149)

−F2(z1, z2) = F2(ωℓz1,−z2). (A.150)

The equivariance condition with respect to r is equivalent to

F2(z1, z2) = F1(z2, z1), (A.151)

F1(z1, z2) = F1(z1, z2) (A.152)

for each irreducible representation. Hence, we can obtain F2 from F1 by the condition (A.151) and

see that

Aabcd(ϕ̃) ∈ R (A.153)

by the condition (A.152).

The equivariance condition with respect to s is equivalent to F1(z1, z2) = F1(z1, z2) in (A.129),

which gives

Aabcd(ϕ̃) = Aadcb(ϕ̃) (A.154)

for each irreducible representation as explained below. For (4; k, 0,+), the condition (A.129)

applies. For (4; k, k,+), substituting (A.135) into (A.137), we have F1(z2, z1) = F1(z2, z1). This

condition is equivalent to F1(z1, z2) = F1(z1, z2). For (4; n/2, ℓ,+), the condition (A.145) gives

F1(z1, z2) = F1(z1, z2). Using (A.153), we have F1(z1, z2) = F1(z1, z2). Thus, we have F1(z1, z2) =
F1(z1, z2).
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For (4; k, 0,+), the equivariance condition with respect to p1 and p2 is expressed as follows.

The equivariance condition (A.131) for p1 is expressed as∑
a=0

∑
b=0

∑
c=0

∑
d=0

ωk Aabcd(ϕ̃)z1
az2

b z1
C z2

d
=

∑
a=0

∑
b=0

∑
c=0

∑
d=0

Aabcd(ϕ̃)(ωk z1)
a
z2

b(ω−k z1)
C

z2
d,

which implies

ωk(a−c−1)
= exp

[
i2π

n
k(a − c − 1)

]
= 1. (A.155)

The equivariance condition (A.133) for p2 is expressed as∑
a=0

∑
b=0

∑
c=0

∑
d=0

Aabcd(ϕ̃)z1
az2

b z1
C z2

d
=

∑
a=0

∑
b=0

∑
c=0

∑
d=0

Aabcd(ϕ̃)z1
a(ωk z2)

b
z1

C(ω−k z2)
d
,

which implies

ωk(b−d)
= exp

[
i2π

n
k(b − d)

]
= 1. (A.156)

Using (A.151), we rewrite the remaining equivariance conditions (A.132) and (A.134) as

F1(z2, z1) = F1(z2, ω
−k z1),

ωk F1(z2, z1) = F1(ωk z2, z1),

which are expressed as∑
a=0

∑
b=0

∑
c=0

∑
d=0

Aabcd(ϕ̃)z2
a z1

b z2
C z1

d
=

∑
a=0

∑
b=0

∑
c=0

∑
d=0

Aabcd(ϕ̃)z2
a(ω−k z1)

b
z2

C(ωk z1)
d
,

∑
a=0

∑
b=0

∑
c=0

∑
d=0

ωk Aabcd(ϕ̃)z2
a z1

b z2
C z1

d
=

∑
a=0

∑
b=0

∑
c=0

∑
d=0

Aabcd(ϕ̃)(ωk z2)
a

z1
b(ω−k z2)

C
z1

d .

Each of these conditions leads to the same result as (A.156) and (A.155), respectively. To sum up,

from (A.155) and (A.156), we have the following conditions for (4; k, 0,+):

k(a − c − 1) ≡ 0 mod n,

k(b − d) ≡ 0 mod n.

Using (A.113), we rewrite these conditions as

ǩ(a − c − 1) ≡ 0 mod ň,

ǩ(b − d) ≡ 0 mod ň,

which are equivalent to the following condition:

a = c + pň + 1, b = d + qň (p, q ∈ Z). (A.157)
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Then, F1 in (A.126) becomes

F1(z1, z2, ϕ̃) =
∞∑

c=0

∞∑
d=0

∑
p∈Z, c+pň+1≥0

∑
q∈Z, d+qň≥0

Ac+pň+1,d+qň,cd(ϕ̃)z1
c+pň+1z2

d+qň z1
C z2

d .

(A.158)

Note that a = 0 and c = 0 are not satisfied simultaneously in (A.157):

a = 0⇒ c = −pň − 1 , 0, c = 0⇒ a = pň + 1 , 0.

Thus, F1 in (A.158) becomes

F1(z1, z2, ϕ̃) = z1

∞∑
c=0

∞∑
d=0

∑
p∈Z, c+pň+1>0

∑
q∈Z, d+qň≥0

Ac+pň+1,d+qň,cd(ϕ̃)z1
c+pňz2

d+qň z1
C z2

d

+ z1

∞∑
d=0

∞∑
p=1

∑
q∈Z, d+qň≥0

A0,d+qň,pň−1,d(ϕ̃)z2
d+qň z1

pň−2 z2
d . (A.159)

For (4; k, k,+), the equivariance condition (A.139) is expressed as∑
a=0

∑
b=0

∑
c=0

∑
d=0

ωk Aabcd(ϕ̃)z1
az2

b z1
C z2

d
=

∑
a=0

∑
b=0

∑
c=0

∑
d=0

Aabcd(ϕ̃)(ωk z1)
a(ω−k z2)

b(ω−k z1)
C(ωk z2)

d
,

which implies

ωk(a−b−c+d−1)
= exp

[
i2π

n
k(a − b − c + d − 1)

]
= 1. (A.160)

The equivariance condition (A.141) is expressed as∑
a=0

∑
b=0

∑
c=0

∑
d=0

ωk Aabcd(ϕ̃)z1
az2

b z1
C z2

d
=

∑
a=0

∑
b=0

∑
c=0

∑
d=0

Aabcd(ϕ̃)(ωk z1)
a(ωk z2)

b(ω−k z1)
C(ω−k z2)

d
,

which implies

ωk(a+b−c−d−1)
= exp

[
i2π

n
k(a + b − c − d − 1)

]
= 1. (A.161)

Using (A.151), we rewrite the remaining equivariance conditions (A.140) and (A.142) as

ω−k F1(z2, z1) = F1(ω−k z2, ω
−k z1),

ωk F1(z2, z1) = F1(ωk z2, ω
−k z1),

which are expressed as∑
a=0

∑
b=0

∑
c=0

∑
d=0

ω−k Aabcd(ϕ̃)z2
a z1

b z2
C z1

d

=

∑
a=0

∑
b=0

∑
c=0

∑
d=0

Aabcd(ϕ̃)(ω−k z2)
a(ω−k z1)

b(ωk z2)
C(ωk z1)

d
,

∑
a=0

∑
b=0

∑
c=0

∑
d=0

ωk Aabcd(ϕ̃)z2
a z1

b z2
C z1

d

=

∑
a=0

∑
b=0

∑
c=0

∑
d=0

Aabcd(ϕ̃)(ωk z2)
a(ω−k z1)

b(ω−k z2)
C(ωk z1)

d
.
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Each of these conditions leads to the same result as (A.161) and (A.160), respectively. To sum up,

from (A.160) and (A.161), we have the following conditions for (4; k, k,+):

k(a − b − c + d − 1) ≡ 0 mod n,

k(a + b − c − d − 1) ≡ 0 mod n.

We rewrite these conditions as

ǩ(a − b − c + d − 1) ≡ 0 mod ň,

ǩ(a + b − c − d − 1) ≡ 0 mod ň,

which are equivalent to the following condition:

a − b − c + d − 1 = vň, a + b − c − d − 1 = wň (v,w ∈ Z).

Adding and subtracting the two equations from each other, we have

2(a − c − 1) = (v + w)ň, 2(b − d) = (w − v)ň.

This condition is equivalent to

a = c + (v + w)ň/2 + 1, b = d + (w − v)ň/2. (A.162)

Since the indices a, b, c, and d are integers, we have the following condition (p, q ∈ Z):{
v + w = p, w − v = 2q − p if ň is even,

v + w = 2p, w − v = 2(q − p) if ň is odd.
(A.163)

Note that for ň odd, we can replace q − p as q (q ∈ Z). From (A.162) and (A.163), we have the

following condition:{
a = c + pň/2 + 1, b = d + (2q − p)ň/2 if ň is even,

a = c + pň + 1, b = d + qň if ň is odd.
(A.164)

Note that for both cases in (A.164), a = 0 and c = 0 are not satisfied simultaneously:{
a = 0⇒ c = −pň/2 − 1 , 0, c = 0⇒ a = pň/2 + 1 , 0 if ň is even,

a = 0⇒ c = −pň − 1 , 0, c = 0⇒ a = pň + 1 , 0 if ň is odd.

If ň is even, F1 in (A.126) becomes

F1(z1, z2, ϕ̃) = z1

∞∑
c=0

∞∑
d=0

∑
p,q∈Z, c+p ň

2
+1>0, d+(2q−p) ň

2
≥0

Ac+p ň
2
+1,d+(2q−p) ň

2
,cd(ϕ̃)z1

c+p ň
2 z2

d+(2q−p) ň
2 z1

C z2
d

+ z1

∞∑
d=0

∞∑
p=1

∑
q∈Z, d+(2q+p) ň

2
≥0

A0,d+(2q+p) ň
2
,p ň

2
−1,d(ϕ̃)z2

d+(2q+p) ň
2 z1

p ň
2
−2 z2

d . (A.165)
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If ň is odd, F1 in (A.126) becomes

F1(z1, z2, ϕ̃) = z1

∞∑
c=0

∞∑
d=0

∑
p∈Z, c+pň+1>0

∑
q∈Z, d+qň≥0

Ac+pň+1,d+qň,cd(ϕ̃)z1
c+pňz2

d+qň z1
C z2

d

+ z1

∞∑
d=0

∞∑
p=1

∑
q∈Z, d+qň≥0

A0,d+qň,pň−1,d(ϕ̃)z2
d+qň z1

pň−2 z2
d . (A.166)

For (4; n/2, ℓ,+), the equivariance condition (A.147) is expressed as∑
a=0

∑
b=0

∑
c=0

∑
d=0

(−Aabcd(ϕ̃))z1
az2

b z1
C z2

d
=

∑
a=0

∑
b=0

∑
c=0

∑
d=0

Aabcd(ϕ̃)(−z1)a(ω−ℓz2)
b(−z1)C(ωℓ z2)

d
,

which implies

−1 = (−1)a+cωℓ(d−b).

We rewrite this condition as

exp

[
i2π

n

{n

2
(a + c) + ℓ(d − b)

}]
= −1. (A.167)

Therein, we used

(−1)a+c
= exp

[
iπ

n
(a + c)

]
(a, c ∈ Z+),

where Z+ represents the set of nonnegative integers. The equivariance condition (A.149) is

expressed as∑
a=0

∑
b=0

∑
c=0

∑
d=0

(ωℓAabcd(ϕ̃))z1
az2

b z1
C z2

d
=

∑
a=0

∑
b=0

∑
c=0

∑
d=0

Aabcd(ϕ̃)(ωℓz1)
a(−z2)b(ω−ℓ z1)

C(−z2)d,

which implies

ωℓ = (−1)b+dωℓ(a−c).

We rewrite this condition as

exp

[
i2π

n

{n

2
(b + d) + ℓ(a − c − 1)

}]
= 1. (A.168)

Therein, we used

(−1)b+d
= exp

[
iπ

n
(b + d)

]
(b, d ∈ Z+).

Using (A.151), we rewrite the remaining equivariance conditions (A.148) and (A.150) as

ω−ℓF1(z2, z1) = F1(ω−ℓz2,−z1),
−F1(z2, z1) = F1(−z2, ω

−ℓ z1),
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which are expressed as∑
a=0

∑
b=0

∑
c=0

∑
d=0

ω−ℓAabcd(ϕ̃)z2
a z1

b z2
C z1

d
=

∑
a=0

∑
b=0

∑
c=0

∑
d=0

Aabcd(ϕ̃)(ω−ℓz2)
a(−z1)b(ωℓ z2)

C(−z1)d,
∑
a=0

∑
b=0

∑
c=0

∑
d=0

(−Aabcd(ϕ̃))z2
a z1

b z2
C z1

d
=

∑
a=0

∑
b=0

∑
c=0

∑
d=0

Aabcd(ϕ̃)(−z2)a(ω−ℓ z1)
b(−z2)C(ωℓz1)

d
.

Each of these conditions leads to the same result as (A.168) and (A.167), respectively.

To sum up, from (A.167) and (A.168), we have the following conditions for (4; n/2, ℓ,+):
n

2
(a + c − 1) + ℓ(d − b) ≡ 0 mod n,

n

2
(b + d) + ℓ(a − c − 1) ≡ 0 mod n.

We rewrite these conditions as

ñ(a + c − 1) + 2ℓ̃(d − b) ≡ 0 mod 2ñ,

ñ(b + d) + 2ℓ̃(a − c − 1) ≡ 0 mod 2ñ,

which are equivalent to the following condition:

ñ(a + c − 1) + 2ℓ̃(d − b) = 2pñ, ñ(b + d) + 2ℓ̃(a − c − 1) = 2qñ (p, q ∈ Z). (A.169)

We investigate this condition dependent on the parity of ñ.

When ñ is even, the condition (A.169) is equivalent to

(a + c − 1 − 2p)ñ/2 = (b − d)ℓ̃, (a − c − 1)ℓ̃ = −(b + d − 2q)ñ/2.

Since ℓ̃ and ñ are coprime, we have the following conditions (v,w ∈ Z):

b − d = vñ/2, b + d − 2q = wℓ̃, (A.170)

a + c − 1 − 2p = vℓ̃, a − c − 1 = −wñ/2. (A.171)

Adding and subtracting the two equations in (A.170) from each other, we have

2(b − q) = vñ/2 + wℓ̃, 2(d − q) = −vñ/2 + wℓ̃.

This condition is equivalent to [
b

d

]
= q

[
1

1

]
+

1

2

[
vñ/2 + wℓ̃
−vñ/2 + wℓ̃

]
. (A.172)

Since the indices b and d in (A.172) are integers, we have

vñ/2 + wℓ̃ ∈ 2Z. (A.173)
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Note that if the condition (A.173) is satisfied, then −vñ/2 + wℓ̃ ∈ 2Z is also satisfied. Adding and

subtracting the two equations in (A.171) from each other, we have

2(a − 1 − p) = vℓ̃ − wñ/2, 2(c − p) = vℓ̃ + wñ/2.

This condition is equivalent to [
a

c

]
= p

[
1

1

]
+

1

2

[
vℓ̃ − wñ/2
vℓ̃ + wñ/2

]
+

[
1

0

]
. (A.174)

Since the indices a and c in (A.174) are integers, we have

vℓ̃ + wñ/2 ∈ 2Z. (A.175)

Note that if the condition (A.175) is satisfied, then vℓ̃ − wñ/2 ∈ 2Z is also satisfied. Since ℓ̃ and

ñ are coprime, ℓ̃ is odd. Thus, the conditions (A.173) and (A.175) are equivalent to the following

condition (t, u, t′, u′ ∈ Z):{
(v,w) = (2t, 2u) if ñ/2 is even,

(v,w) = (2t, 2u), (2t′ + 1, 2u′ + 1) if ñ/2 is odd.
(A.176)

If ñ/2 is even, the indices a, b, c, and d take the form



a

b

c

d


= p



1

0

1

0


+ q



0

1

0

1


+ t



ℓ̃

ñ/2
ℓ̃

−ñ/2


+ u



−ñ/2
ℓ̃

ñ/2
ℓ̃


+



1

0

0

0


. (A.177)

Note that a = 0 and c = 0 are not satisfied simultaneously:

a = 0⇒ c = uñ − 1 , 0, c = 0⇒ a = −uñ + 1 , 0.

With this result, we define disjoint sets U and V as

U = {(p, q, t, u) ∈ Z4 | a > 0, b ≥ 0, c ≥ 0, d ≥ 0},
V = {(p, q, t, u) ∈ Z4 | a = 0, b ≥ 0, c > 0, d ≥ 0},

which satisfy U ∪ V = ϕ and are rewritten as

U =



(p, q, t, u) ∈ Z4

��������
p + tℓ̃ − uñ/2 + 1 > 0

q + tñ/2 + uℓ̃ ≥ 0

p + tℓ̃ + uñ/2 ≥ 0

q − tñ/2 + uℓ̃ ≥ 0



, (A.178)

V =



(p, q, t, u) ∈ Z4

��������
p + tℓ̃ − uñ/2 + 1 = 0

q + tñ/2 + uℓ̃ ≥ 0

uñ − 1 > 0

q − tñ/2 + uℓ̃ ≥ 0



. (A.179)
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Then, F1 in (A.126) becomes

F1(z1, z2, ϕ̃) = z1

∑
(p,q,t,u)∈U

Ap+tℓ̃−u ñ
2
+1,q+t ñ

2
+uℓ̃,p+tℓ̃+u ñ

2
,q−t ñ

2
+uℓ̃(ϕ̃)z1

p+tℓ̃−u ñ
2 z2

q+t ñ
2
+uℓ̃ z1

p+tℓ̃+u ñ
2 z2

q−t ñ
2
+uℓ̃

+ z1

∑
(p,q,t,u)∈V

A0,q+t ñ
2
+uℓ̃,uñ−1,q−t ñ

2
+uℓ̃(ϕ̃)z2

q+t ñ
2
+uℓ̃ z1

uñ−2 z2
q−t ñ

2
+uℓ̃ . (A.180)

If ñ/2 is odd, the indices a, b, c, and d take the form



a

b

c

d


= p



1

0

1

0


+ q



0

1

0

1


+ t



ℓ̃

ñ/2
ℓ̃

−ñ/2


+ u



−ñ/2
ℓ̃

ñ/2
ℓ̃


+



1

0

0

0


, (A.181)



a

b

c

d


= p′



1

0

1

0


+ q′



0

1

0

1


+ t′



ℓ̃

ñ/2
ℓ̃

−ñ/2


+ u′



−ñ/2
ℓ̃

ñ/2
ℓ̃


+

1

2



ℓ̃ − ñ/2
ℓ̃ + ñ/2
ℓ̃ + ñ/2
ℓ̃ − ñ/2


+



1

0

0

0


. (A.182)

The first relation (A.181) is nothing but (A.177). Note that (A.181) and (A.182) take different

vectors. In fact, assuming (A.181) = (A.182), we have

(p′ − p)



1

0

1

0


+ (q′ − q)



0

1

0

1


+ (t′ − t)



ℓ̃

ñ/2
ℓ̃

−ñ/2


+ (u′ − u)



−ñ/2
ℓ̃

ñ/2
ℓ̃


+

1

2



ℓ̃ − ñ/2
ℓ̃ + ñ/2
ℓ̃ + ñ/2
ℓ̃ − ñ/2


=



0

0

0

0


.

Substituting the first equation into the third equation, we have (u′ − u + 1/2)ñ = 0. This is

a contradiction since u′ − u ∈ Z. In addition, note that a = 0 and c = 0 are not satisfied

simultaneously:{
a = 0⇒ c = uñ − 1 , 0, c = 0⇒ a = −uñ + 1 , 0 for (A.181),

a = 0⇒ c = (2u′ + 1)ň/2 − 1 , 0, c = 0⇒ a = −(2u′ + 1)ň/2 + 1 , 0 for (A.182).

With this result, we can define four disjoint sets U and V in (A.178) and (A.179) and U′ and V ′

from (A.182) as

U′ =



(p, q, t, u) ∈ Z4

��������
p + tℓ̃ − uñ/2 + (ℓ̃ − ñ/2)/2 + 1 > 0

q + tñ/2 + uℓ̃ + (ℓ̃ + ñ/2)/2 ≥ 0

p + tℓ̃ + uñ/2 + (ℓ̃ + ñ/2)/2 ≥ 0

q − tñ/2 + uℓ̃ + (ℓ̃ − ñ/2)/2 ≥ 0



, (A.183)

V ′ =



(p, q, t, u) ∈ Z4

��������
p + tℓ̃ − uñ/2 + (ℓ̃ − ñ/2)/2 + 1 = 0

q + tñ/2 + uℓ̃ + (ℓ̃ + ñ/2)/2 ≥ 0

(2u + 1)ñ/2 − 1 > 0

q − tñ/2 + uℓ̃ + (ℓ̃ − ñ/2)/2 ≥ 0



. (A.184)
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Then, F1 in (A.126) becomes

F1(z1, z2, ϕ̃) = z1

∑
(p,q,t,u)∈U

Ap+tℓ̃−u ñ
2
+1,q+t ñ

2
+uℓ̃,p+tℓ̃+u ñ

2
,q−t ñ

2
+uℓ̃(ϕ̃)z1

p+tℓ̃−u ñ
2 z2

q+t ñ
2
+uℓ̃ z1

p+tℓ̃+u ñ
2 z2

q−t ñ
2
+uℓ̃

+ z1

∑
(p,q,t,u)∈V

A0,q+t ñ
2
+uℓ̃,uñ−1,q−t ñ

2
+uℓ̃(ϕ̃)z2

q+t ñ
2
+uℓ̃ z1

uñ−2 z2
q−t ñ

2
+uℓ̃

+ z1

∑
(p,q,t,u)∈U ′

Ap+tℓ̃−u ñ
2
+

1
2
(ℓ̃− ñ

2
)+1,q+t ñ

2
+uℓ̃+ 1

2
(ℓ̃+ ñ

2
),p+tℓ̃+u ñ

2
+

1
2
(ℓ̃+ ñ

2
),q−t ñ

2
+uℓ̃+ 1

2
(ℓ̃− ñ

2
)(ϕ̃)

× z1
p+tℓ̃−u ñ

2
+

1
2
(ℓ̃− ñ

2
)z2

q+t ñ
2
+uℓ̃+ 1

2
(ℓ̃+ ñ

2
) z1

p+tℓ̃+u ñ
2
+

1
2
(ℓ̃+ ñ

2
) z2

q−t ñ
2
+uℓ̃+ 1

2
(ℓ̃− ñ

2
)

+ z1

∑
(p,q,t,u)∈V ′

A0,q+t ñ
2
+uℓ̃+ 1

2
(ℓ̃+ ñ

2
),(2u+1) ñ

2
−1,q−t ñ

2
+uℓ̃+ 1

2
(ℓ̃− ñ

2
)(ϕ̃)

× z2
q+t ñ

2
+uℓ̃+ 1

2
(ℓ̃+ ñ

2
) z1
(2u+1) ñ

2
−2 z2

q−t ñ
2
+uℓ̃+ 1

2
(ℓ̃− ñ

2
). (A.185)

When ñ is odd, the condition (A.169) is rewritten as

(a + c − 1 − 2p)ñ = 2ℓ̃(b − d), 2ℓ̃(a − c − 1) = −(b + d − 2q)ñ.

Since 2ℓ̃ and ñ are coprime, we have the following conditions (v,w ∈ Z):

b − d = vñ, b + d − 2q = 2wℓ̃, (A.186)

a + c − 1 − 2p = 2vℓ̃, a − c − 1 = −wñ. (A.187)

Adding and subtracting the two equations in (A.186) from each other, we have

2(b − q) = vñ + 2wℓ̃, 2(d − q) = −vñ + 2wℓ̃.

This condition is equivalent to [
b

d

]
= q

[
1

1

]
+

1

2
v

[
ñ

−ñ

]
+ w

[
ℓ̃

ℓ̃

]
. (A.188)

Since the indices b and d in (A.188) are integers, and ñ is odd, we have v ∈ 2Z. Therefore, we

replace v as 2t (t ∈ Z). Adding and subtracting the two equations in (A.187) from each other, we

have

2(a − 1 − p) = 2vℓ̃ − wñ, 2(c − p) = 2vℓ̃ + wñ.

This condition is equivalent to[
a

c

]
= p

[
1

1

]
+ v

[
ℓ̃

ℓ̃

]
+

1

2
w

[
−ñ

ñ

]
+

[
1

0

]
. (A.189)
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Since the indices a and c in (A.189) are integers, and ñ is odd, we have w ∈ 2Z. Therefore, we

replace w as 2u (u ∈ Z). To sum up, we have



a

b

c

d


= p



1

0

1

0


+ q



0

1

0

1


+ t



2ℓ̃

ñ

2ℓ̃

−ñ


+ u



−ñ

2ℓ̃

ñ

2ℓ̃


+



1

0

0

0


. (A.190)

Note that a = 0 and c = 0 are not satisfied simultaneously:

a = 0⇒ c = 2uñ − 1 , 0, c = 0⇒ a = −uñ + 1 , 0.

Similarly to the case that ñ is even, we define sets U and V as

U =



(p, q, t, u) ∈ Z4

��������
p + 2tℓ̃ − uñ + 1 > 0

q + tñ + 2uℓ̃ ≥ 0

p + 2tℓ̃ + uñ ≥ 0

q − tñ + 2uℓ̃ ≥ 0



, (A.191)

V =



(p, q, t, u) ∈ Z4

��������
p + 2tℓ̃ − uñ + 1 = 0

q + tñ + 2uℓ̃ ≥ 0

2uñ − 1 > 0

q − tñ + 2uℓ̃ ≥ 0



. (A.192)

Then, F1 in (A.126) becomes

F1(z1, z2, ϕ̃) = z1

∑
(p,q,t,u)∈U

Ap+2tℓ̃−uñ+1,q+tñ+2uℓ̃,p+2tℓ̃+uñ,q−tñ+2uℓ̃(ϕ̃)z1
p+2tℓ̃−uñz2

q+tñ+2uℓ̃ z1
p+2tℓ̃+uñ z2

q−tñ+2uℓ̃

+ z1

∑
(p,q,t,u)∈V

A0,q+tñ+2uℓ̃,2uñ−1,q−tñ+2uℓ̃(ϕ̃)z2
q+tñ+2uℓ̃ z1

2uñ−2 z2
q−tñ+2uℓ̃ . (A.193)

Symmetry of Square Patterns

For the irreducible representations µ = (4; k, 0,+), (4; k, k,+), (4; n/2, ℓ,+), a system of the

bifurcation equations F1 = F2 = 0 has a bifurcating solution, which represent the square pattern:

(z1, z2) = (w,w) (w ∈ R). In Section 3.5.5, we showed the existence of this bifurcating solution by

using the equivariant branching lemma (see Propositions 3.9–3.11). In this section, we discuss the

symmetry of this bifurcating solution.

Consider µ = (4; k, 0,+). Substituting the square pattern (z1, z2) = (w,w) into (A.159), we have

F1(w,w, ϕ̃) = w

∞∑
c=0

∞∑
d=0

∑
p∈Z, c+pň+1>0

∑
q∈Z, d+qň≥0

Ac+pň+1,d+qň,cd(ϕ̃)w2(c+d)+(p+q)ň

+ w

∞∑
d=0

∞∑
p=1

∑
q∈Z, d+qň≥0

A0,d+qň,pň−1,d(ϕ̃)w2d+(p+q)ň−2

≈ w
{

A′1000(0)ϕ̃ + (A1101(0) + A2010(0))w2
+ A00,ň−1,0(0)wň−2

}
.
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If ň is even, then F1(w,w, ϕ̃) becomes an odd function in w, and hence the two bifurcating solutions

(w,w, ϕ̃) and (−w,−w, ϕ̃) are conjugate. If ň is odd, the two solutions are not conjugate.

Consider µ = (4; k, k,+) with ň even. Substituting the square pattern (z1, z2) = (w,w) into

(A.165), we have

F1(w,w, ϕ̃) = w

∞∑
c=0

∞∑
d=0

∑
p,q∈Z, c+p ň

2
+1>0, d+(2q−p) ň

2
≥0

Ac+p ň
2
+1,d+(2q−p) ň

2
,cd(ϕ̃)w

2(c+d)+qň

+ w

∞∑
d=0

∞∑
p=1

∑
q∈Z, d+(2q+p) ň

2
≥0

A0,d+(2q+p) ň
2
,p ň

2
−1,d(ϕ̃)w

2d+qň−2

≈ w{A′1000(0)ϕ̃ + (A1101(0) + A2010(0))w2

+ (A00,ň−1,0(0) + A0, ň
2
, ň

2
−1,0(0) + A00, ň

2
−1, ň

2
(0))wň−2}.

Since ň is even, F1(w,w, ϕ̃) is an odd function in w. Hence, the two bifurcating solutions (w,w, ϕ̃)
and (−w,−w, ϕ̃) are conjugate.

Consider µ = (4; k, k,+) with ň odd. Substituting the square pattern (z1, z2) = (w,w) into

(A.166), we have

F1(w,w, ϕ̃) = w

∞∑
c=0

∞∑
d=0

∑
p∈Z, c+pň+1>0

∑
q∈Z, d+qň≥0

Ac+pň+1,d+qň,cd(ϕ̃)w2(c+d)+(p+q)ň

+ w

∞∑
d=0

∞∑
p=1

∑
q∈Z, d+qň≥0

A0,d+qň,pň−1,d(ϕ̃)w2d+(p+q)ň−2

≈ w
{

A′1000(0)ϕ̃ + (A1101(0) + A2010(0))w2
+ A00,ň−1,0(0)wň−2

}
.

Since ň is odd, F1(w,w, ϕ̃) is not an odd function in w. Hence, the two bifurcating solutions

(w,w, ϕ̃) and (−w,−w, ϕ̃) are not conjugate.

Consider µ = (4; n/2, ℓ,+) with ñ/2 even. Substituting the square pattern (z1, z2) = (w,w) into

(A.180), we have

F1(w,w, ϕ̃) = w

∑
(p,q,t,u)∈U

Ap+tℓ̃−u ñ
2
+1,q+t ñ

2
+uℓ̃,p+tℓ̃+u ñ

2
,q−t ñ

2
+uℓ̃(ϕ̃)w2(p+q)+2(t+u)ℓ̃

+ w

∑
(p,q,t,u)∈V

A0,q+t ñ
2
+uℓ̃,uñ−1,q−t ñ

2
+uℓ̃(ϕ̃)w2q+2u(ℓ̃+ ñ

2
)−2

≈ w
{

A′1000(0)ϕ̃ + (A1101(0) + A2010(0))w2
+ A00,ñ−1,0(0)wñ−2

}
.

Then, F1(w,w, ϕ̃) is an odd function in w. Hence, the two bifurcating solutions (w,w, ϕ̃) and

(−w,−w, ϕ̃) are conjugate.

Consider µ = (4; n/2, ℓ,+) with ñ/2 odd. Substituting the square pattern (z1, z2) = (w,w) into
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(A.185), we have

F1(z1, z2, ϕ̃) = w

∑
(p,q,t,u)∈U1

Ap+tℓ̃−u ñ
2
+1,q+t ñ

2
+uℓ̃,p+tℓ̃+u ñ

2
,q−t ñ

2
+uℓ̃(ϕ̃)w2(p+q)+2(t+u)ℓ̃

+ w

∑
(p,q,t,u)∈V1

A0,q+t ñ
2
+uℓ̃,uñ−1,q−t ñ

2
+uℓ̃(ϕ̃)w2q+2u(ℓ̃+ ñ

2
)−2

+ w

∑
(p,q,t,u)∈U2

Ap+tℓ̃−u ñ
2
+

1
2
(ℓ̃− ñ

2
)+1,q+t ñ

2
+uℓ̃+ 1

2
(ℓ̃+ ñ

2
),p+tℓ̃+u ñ

2
+

1
2
(ℓ̃+ ñ

2
),q−t ñ

2
+uℓ̃+ 1

2
(ℓ̃− ñ

2
)(ϕ̃)

× w2(p+q)+2(t+u+1)ℓ̃

+ w

∑
(p,q,t,u)∈V2

A0,q+t ñ
2
+uℓ̃+ 1

2
(ℓ̃+ ñ

2
),(2u+1) ñ

2
−1,q−t ñ

2
+uℓ̃+ 1

2
(ℓ̃− ñ

2
)(ϕ̃)w

2q+(2u+1)(ℓ̃+ ñ
2
)−2

≈ w
{

A′1000(0)ϕ̃ + (A1101(0) + A2010(0))w2
+ A00,ñ−1,0(0)wñ−2

}
.

Since ℓ̃ + ñ/2 is even, F1(w,w, ϕ̃) is an odd function in w. Hence, the two bifurcating solutions

(w,w, ϕ̃) and (−w,−w, ϕ̃) are conjugate.

Consider µ = (4; n/2, ℓ,+) with ñ odd. Substituting the square pattern (z1, z2) = (w,w) into

(A.193), we have

F1(w,w, ϕ̃) = w

∑
(p,q,t,u)∈U

Ap+2tℓ̃−uñ+1,q+tñ+2uℓ̃,p+2tℓ̃+uñ,q−tñ+2uℓ̃(ϕ̃)w2(p+q)+4(t+u)ℓ̃

+ w

∑
(p,q,t,u)∈V

A0,q+tñ+2uℓ̃,2uñ−1,q−tñ+2uℓ̃(ϕ̃)w2q+2u(2ℓ̃+ñ)−2

≈ w
{

A′1000(0)ϕ̃ + (A1101(0) + A2010(0))w2
}
.

Then, F1(w,w, ϕ̃) is an odd function in w. Hence, the two bifurcating solutions (w,w, ϕ̃) and

(−w,−w, ϕ̃) are conjugate.

To sum up, we have the following proposition on the symmetry of the square pattern.

Proposition A.16. For a critical point of multiplicity 4, the two bifurcating solutions (w,w, ϕ̃) and

(−w,−w, ϕ̃) (w ∈ R) are conjugate for the following cases:

• µ = (4; k, 0,+), (4; k, k,+) with ň = n/gcd(n, k) even,

• µ = (4; n/2, ℓ,+) for any ñ = n/gcd(n, ℓ),

and are not conjugate for µ = (4; k, 0,+), (4; k, k,+) with ň odd.

Existence and Symmetry of Stripe Patterns

In this section, we would like to show the existence and the symmetry of two types of stripe

patterns, which are represented as

Type I stripe pattern: (z1, z2) = (w, 0) (w ∈ R),
Type II stripe pattern: (z1, z2) = (iw, 0) (w ∈ R).
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Consider µ = (4; k, 0,+). Substituting Type I stripe pattern (z1, z2) = (w, 0) into (A.159), we

have

F1(w, 0, ϕ̃) = w

∞∑
c=0

∑
p∈Z, c+pň+1>0

Ac+pň+1,0c0(ϕ̃)w2c+pň
+ w

∞∑
p=1

A00,pň−1,0(ϕ̃)wpň−2

≈ w
{

A′1000(0)ϕ̃ + A2010(0)w2
+ A00,ň−1,0(0)wň−2

}
.

Thus, F1(w, 0, ϕ̃) = 0 has the trivial solution w = 0 and a bifurcating solution. From (A.151), we

have F2(w, 0) = F1(0,w), and hence we have F1 = F2 = 0 for (z1, z2) = (w, 0). If ň is even, then

F1(w, 0, ϕ̃) becomes an odd function in w, and hence the two bifurcating solutions (w, 0, ϕ̃) and

(−w, 0, ϕ̃) are conjugate. If ň is odd, the two solutions are not conjugate. Next, substituting Type

II stripe pattern (z1, z2) = (iw, 0) into (A.159), we have

F1(iw, 0, ϕ̃) = iw

∞∑
c=0

∑
p∈Z, c+pň+1>0

Ac+pň+1,0c0(ϕ̃)ipň
w

2c+pň − iw

∞∑
p=1

A00,pň−1,0(ϕ̃)(−i)pň−2
w

pň−2

≈ iw
{

A′1000(0)ϕ̃ + A2010(0)w2 − A00,ň−1,0(0)(−i)ň−2
w

ň−2
}
.

If ň is even (ipň and (−i)pň−2 are real), then F1(iw, 0, ϕ̃) = 0 has the trivial solution (w = 0) and a

bifurcating solution, and a discussion similar to that for Type I stripe pattern holds.

Consider µ = (4; k, k,+) with ň even. Substituting Type I stripe pattern (z1, z2) = (w, 0) into

(A.165), we have

F1(w, 0, ϕ̃) = w

∞∑
c=0

∑
q∈Z, c+qň+1>0

Ac+qň+1,0c0(ϕ̃)w2c+qň
+ w

∞∑
p=1

A00,qň−1,0(ϕ̃)wqň−2

≈ w
{

A′1000(0)ϕ̃ + A2010(0)w2
+ A00,ň−1,0(0)wň−2

}
.

Thus, F1(w, 0, ϕ̃) = 0 has the trivial solution (w = 0) and a bifurcating solution. From (A.151), we

have F2(w, 0) = F1(0,w), and hence we have F1 = F2 = 0 for (z1, z2) = (w, 0). Since ň is even,

F1(w, 0, ϕ̃) is an odd function in w, and hence the two bifurcating solutions (w, 0, ϕ̃) and (−w, 0, ϕ̃)
are conjugate. Next, substituting Type II stripe pattern (z1, z2) = (iw, 0) into (A.165), we have

F1(iw, 0, ϕ̃) = iw

∞∑
c=0

∑
q∈Z, c+qň+1>0

Ac+qň+1,0c0(ϕ̃)iqň
w

2c+qň − iw

∞∑
q=1

A00,qň−1,0(ϕ̃)(−i)qň−2
w

qň−2

≈ iw
{

A′1000(0)ϕ̃ + A2010(0)w2 − A00,ň−1,0(0)(−i)ň−2
w

ň−2
}
.

Since ň is even (iqň and (−i)qň−2 are real), F1(iw, 0, ϕ̃) = 0 has the trivial solution (w = 0) and a

bifurcating solution, and a discussion similar to that for Type I stripe pattern holds.

Consider µ = (4; k, k,+) with ň odd. Substituting Type I stripe pattern (z1, z2) = (w, 0) into

(A.166), we have

F1(w, 0, ϕ̃) = w

∞∑
c=0

∑
p∈Z, c+pň+1>0

Ac+pň+1,0c0(ϕ̃)w2c+pň
+ w

∞∑
p=1

A00,pň−1,0(ϕ̃)wpň−2

≈ w
{

A′1000(0)ϕ̃ + A2010(0)w2
+ A00,ň−1,0(0)wň−2

}
.
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Thus, F1(w, 0, ϕ̃) = 0 has the trivial solution (w = 0) and a bifurcating solution. From (A.151),

we have F2(w, 0) = F1(0,w), and hence we have F1 = F2 = 0 for (z1, z2) = (w, 0). Since ň is

odd, F1(w, 0, ϕ̃) is not an odd function in w, and hence the two bifurcating solutions (w, 0, ϕ̃) and

(−w, 0, ϕ̃) are not conjugate. Next, substituting Type II stripe pattern (z1, z2) = (iw, 0) into (A.166),

we have

F1(iw, 0, ϕ̃) = iw

∞∑
c=0

∑
p∈Z, c+pň+1>0

Ac+pň+1,0c0(ϕ̃)ipň
w

2c+pň − iw

∞∑
p=1

A00,pň−1,0(ϕ̃)(−i)pň−2
w

pň−2.

Since ň is odd (ipň and (−i)pň−2 can be imaginary), F1(iw, 0, ϕ̃) = 0 cannot be solved for ϕ̃.

Consider µ = (4; n/2, ℓ,+) with ñ/2 even. In (A.177), we have{
b = q + tñ/2 + uℓ̃ = 0

d = q − tñ/2 + uℓ̃ = 0
⇒

{
q = −uℓ̃

t = 0
.

Thus, we have

F1(z1, 0, ϕ̃) = z1

∑
p,u∈Z, p−u ñ

2
+1>0, p+u ñ

2
≥0

Ap−u ñ
2
+1,0,p+u ñ

2
,0(ϕ̃)z1

p−u ñ
2 z1

p+u ñ
2 + z1

∞∑
u=1

A00,uñ−1,0(ϕ̃)z1
uñ−2.

(A.194)

Substituting Type I stripe pattern (z1, z2) = (w, 0) into (A.194), we have

F1(w, 0, ϕ̃) = w

∑
p,u∈Z, p−u ñ

2
+1>0, p+u ñ

2
≥0

Ap−u ñ
2
+1,0,p+u ñ

2
,0(ϕ̃)w2p

+ w

∞∑
u=1

A00,uñ−1,0(ϕ̃)wuñ−2

≈ w
{

A′1000(0)ϕ̃ + A2010(0)w2
+ A00,ñ−1,0(0)wñ−2

}
.

Thus, F1(w, 0, ϕ̃) = 0 has the trivial solution (w = 0) and a bifurcating solution. From (A.151),

we have F2(w, 0) = F1(0,w). Thus, we have F1 = F2 = 0 for (z1, z2) = (w, 0). Since ñ is even,

F1(w, 0, ϕ̃) is an odd function in w. Hence, the two bifurcating solutions (w, 0, ϕ̃) and (−w, 0, ϕ̃) are

conjugate. Next, substituting Type II stripe pattern (z1, z2) = (iw, 0) into (A.194), we have

F1(iw, 0, ϕ̃)

= iw
∑

p,u∈Z, p−u ñ
2
+1>0, p+u ñ

2
≥0

Ap−u ñ
2
+1,0,p+u ñ

2
,0(ϕ̃)(−1)p+u ñ

2 i2p
w

2p − iw

∞∑
u=1

A00,uñ−1,0(ϕ̃)iuñ−2
w

uñ−2

≈ iw
{

A′1000(0)ϕ̃ + A2010(0)w2 − A00,ñ−1,0(0)iñ−2
w

ñ−2
}
.

Since ñ is even (iuñ−2 is real), F1(iw, 0, ϕ̃) = 0 has the trivial solution (w = 0) and a bifurcating

solution. Then, a discussion similar to that for Type I stripe pattern holds.

Consider µ = (4; n/2, ℓ,+) with ñ/2 odd. In (A.182), we have{
b = q + tñ/2 + uℓ̃ + (ℓ̃ + ñ/2)/2 = 0

d = q − tñ/2 + uℓ̃ + (ℓ̃ − ñ/2)/2 = 0
⇒ 2q + (2u + 1)ℓ̃ = 0.
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Since ℓ̃ is odd, this relation is a contradiction. Hence, b = 0 and d = 0 are not satisfied

simultaneously. In (A.181), we have{
b = q + uℓ̃ + tñ/2 = 0

d = q + uℓ̃ − tñ/2 = 0
⇒

{
q = −uℓ̃

t = 0
.

To sum up, we have

F1(z1, 0, ϕ̃) = z1

∑
p,u∈Z, p−u ñ

2
+1>0, p+u ñ

2
≥0

Ap−u ñ
2
+1,0,p+u ñ

2
,0(ϕ̃)z1

p−u ñ
2 z1

p+u ñ
2 + z1

∞∑
u=1

A00,uñ−1,0(ϕ̃)z1
uñ−2.

Then, a discussion similar to that for µ = (4; n/2, ℓ,+) with (ℓ̃, ñ/2) = (odd, even) holds.

Consider µ = (4; n/2, ℓ,+) with ñ odd. In (A.190), we have{
b = q + tñ + 2uℓ̃ = 0

d = q − tñ + 2uℓ̃ = 0
⇒

{
q = −2uℓ̃

t = 0
.

Thus, we have

F1(z1, 0, ϕ̃) = z1

∑
p,u∈Z, p−uñ+1>0, p+uñ≥0

Ap−uñ+1,0,p+uñ,0(ϕ̃)z1
p−uñ z1

p+uñ
+ z1

∞∑
u=1

A00,2uñ−1,0(ϕ̃)z1
2(uñ−1).

(A.195)

Substituting Type I stripe pattern (z1, z2) = (w, 0) into (A.195), we have

F1(w, 0, ϕ̃) = w

∑
p,u∈Z, p−uñ+1>0, p+uñ≥0

Ap−uñ+1,0,p+uñ,0(ϕ̃)w2p
+ w

∞∑
u=1

A00,2uñ−1,0(ϕ̃)w2(uñ−1)

≈ w
{

A′1000(0)ϕ̃ + A2010(0)w2
}
.

Thus, F1(w, 0, ϕ̃) = 0 has the trivial solution (w = 0) and a bifurcating solution. From (A.151), we

have F2(w, 0) = F1(0,w). Thus, we have F1 = F2 = 0 for (z1, z2) = (w, 0). We see that F1(w, 0, ϕ̃)
is an odd function in w. Hence, the two bifurcating solutions (w, 0, ϕ̃) and (−w, 0, ϕ̃) are conjugate.

Next, substituting Type II stripe pattern (z1, z2) = (iw, 0) into (A.195), we have

F1(w, 0, ϕ̃)

= iw
∑

p,u∈Z, p−uñ+1>0, p+uñ≥0

Ap−uñ+1,0,p+uñ,0(ϕ̃)(−1)p+uñi2p
w

2p − iw

∞∑
u=1

A00,2uñ−1,0(ϕ̃)i2(uñ−1)
w

2(uñ−1)

≈ iw
{

A′1000(0)ϕ̃ + A2010(0)w2
}
.

Since the indices of i are real, F1(iw, 0, ϕ̃) = 0 has the trivial solution (w = 0) and a bifurcating

solution. Then, a discussion similar to that for Type I stripe pattern holds.

To sum up, we have the following propositions on the existence and the symmetry of the stripe

patterns.
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Proposition A.17. For a critical point of multiplicity 4, the stripe patterns z = (w, 0), (iw, 0)
(w ∈ R) exist for the following cases:

• µ = (4; k, 0,+), (4; k, k,+) of Type I for any ň = n/gcd(n, k) and Type II with ň even,

• µ = (4; n/2, ℓ,+) of Type I and Type II for any ñ = n/gcd(n, ℓ).

Proposition A.18. For a critical point of multiplicity 4, the two bifurcating solutions (z, ϕ̃) and

(−z, ϕ̃) are conjugate for z = (w, 0), (iw, 0) (w ∈ R) for the following cases:

• µ = (4; k, 0,+), (4; k, k,+) with ň = n/gcd(n, k) even,

• µ = (4; n/2, ℓ,+) for any ñ = n/gcd(n, ℓ),

and are not conjugate for z = (w, 0) for µ = (4; k, 0,+), (4; k, k,+) with ň odd.

Stability of bifurcating solutions

In Section 3.5.5, we found square patterns for a critical point of multiplicity 4 by using the

equivariant branching lemma. In the previous subsections, we showed two kinds of stripe patterns

by solving the bifurcation equation. These bifurcating solutions are represented for the bifurcation

equation in real variables in (A.121) as follows (w ∈ R):

wsq = (w, 0,w, 0),
wstripeI = (w, 0, 0, 0),
wstripeII = (0,w, 0, 0).

We would like to evaluate the stability of these bifurcating solutions.

We denote by S the set of nonnegative indices (a, b, c, d) as

S =



{(a, b, c, d) ∈ Z4

+
| (A.157)} for µ = (4; k, 0,+),

{(a, b, c, d) ∈ Z4
+
| (A.164)} for µ = (4; k, k,+),

{(a, b, c, d) ∈ Z4
+
| (A.169)} for µ = (4; n/2, ℓ,+),

(A.196)

where Z4
+

represents the set of nonnegative integers in Z4. Note that (a, b, c, d) must belong to S

when Aabcd(ϕ̃) , 0. Hence, we replace the power series (A.126) with

F1(z1, z2, ϕ̃) =
∑

S

Aabcd(ϕ̃)z1
az2

b z1
c z2

d . (A.197)

To obtain the asymptotic form of the bifurcation equation and the Jacobian matrix, we elucidate the

elements of S in (A.196) and specify the form of the power series in (A.197). In other words, we

investigate which coefficient Aabcd(ϕ̃) becomes nonzero in (A.197). We focus on the coefficients of

linear terms, quadratic terms, and cubic terms, which play a vital role as leading terms in (A.197).

For this purpose, we take (a, b, c, d) ∈ Z4
+

with a + b + · · · + h ≤ 3 exhaustively and investigate

whether it belongs to S or not. For (4; k, 0,+), (4; k, k,+), and (4; n/2, ℓ,+), we can see

(1, 0, 0, 0), (1, 1, 0, 1), (2, 0, 1, 0) ∈ S.
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In addition, for some specific cases, we can see

(0, 0, 2, 0) ∈ S for (4; k, 0,+) with ň = 3,

(0, 0, 3, 0) ∈ S for (4; k, 0,+) with ň = 4,

(0, 0, 2, 0) ∈ S for (4; k, k,+) with ň = 3,

(0, 0, 3, 0), (0, 2, 1, 0), (0, 0, 1, 2) ∈ S for (4; k, k,+) with ň = 4,

(0, 0, 3, 0) ∈ S for (4; n/2, ℓ,+) with ñ = 4.

Based on the above results, Fi (i = 1, 2) in (A.123) is restricted to the form of

Fi = a1ϕ̃zi + FC
i + (other terms), i = 1, 2, (A.198)

where

FC
1 = a2z1z2z2 + a3z1

2z1, (A.199)

FC
2 = a2z2z1z1 + a3z2

2z2 (A.200)

with the following notations:

a1 = A′1000(0), a2 = A1101(0), a3 = A2010(0). (A.201)

Therein, F2 is obtained by (A.151). The form of “(other terms)” depends on the type of the

irreducible representations in (A.196). Accordingly, F̃i (i = 1, . . . , 4) in (A.121) is restricted to the

form of

F̃i = a1ϕ̃wi + F̃C
i + (other terms), i = 1, . . . , 4 (A.202)

with

F̃C
1 = a2w1(w3

2
+ w4

2) + a3w1(w1
2
+ w2

2), (A.203)

F̃C
2 = a2w2(w3

2
+ w4

2) + a3w2(w1
2
+ w2

2), (A.204)

F̃C
3 = a2w3(w1

2
+ w2

2) + a3w3(w3
2
+ w4

2), (A.205)

F̃C
4 = a2w4(w1

2
+ w2

2) + a3w4(w3
2
+ w4

2). (A.206)

In (A.198), FC
i

corresponds to cubic terms, and the form of “(other terms)” varies with the

irreducible representations. For the case (4; k, 0,+) with ň = 3, we have quadratic terms as leading

terms. For any other cases, we have cubic terms as leading terms that vary with the irreducible

representations. From this point of view, we can classify the form of the bifurcation equation as

shown in Table A.4 for each irreducible representation.

As mentioned earlier, the form of “(other terms)” in (A.202) depends on the type µ of the

irreducible representations in (A.196). Therefore, we checked all the possible cases numerically

and classified each case by the form of leading terms. All the possible cases and stability conditions

for the bifurcating solutions are summarized in Table A.5. The main finding of this section is as

follows:

Proposition A.19. For a critical point of multiplicity 4, we have the following statements:
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Table A.4: Nonzero coefficients of leading terms which belong to "other terms" in (A.198).

µ Cases Nonzero coefficients

(4; k, 0,+) General ň None

ň = 3 A0020(0)
ň = 4 A0030(0)

(4; k, k,+) General ň None

ň = 3 A0020(0)
ň = 4 A0030(0), A0210(0), A0012(0)

(4; n/2, ℓ,+) General ñ None

ñ = 4 A0030(0)
ň = n/gcd(k, n) in (A.113); ñ = n/gcd(ℓ, n) in (A.114)

• For µ = (4; k, 0,+) and µ = (4; k, k,+) with ň = 3, the bifurcating solutions wsq and wstripeI

are always unstable in the neighborhood of the critical point, and the bifurcating curve takes

the form ϕ̃ ≈ cw for some constant c.

• For any other cases, the stability of the bifurcating solutions wsq, wstripeI, and wstripeII depends

on the values of the coefficients of the power series expansion of the bifurcation equation in

(A.197), and the bifurcating curve takes the form ϕ̃ ≈ cw2 for some constant c.

To show these results, we derive the asymptotic form of the bifurcation equation for each case and

conduct stability analysis for the bifurcating solutions in the remainder of this section.

Case 1: General (4; k, 0,+)
For general (4; k, 0,+), we have

(1, 0, 0, 0), (1, 1, 0, 1), (2, 0, 1, 0) ∈ S,

and the other elements of S correspond to higher order terms. Then, the asymptotic form of

Fi (i = 1, 2) in (A.198) becomes

F1(z1, z2, ϕ̃) ≈ a1ϕ̃z1 + FC
1 , (A.207)

F2(z1, z2, ϕ̃) ≈ a1ϕ̃z2 + FC
2 , (A.208)

where FC
i
(i = 1, 2) is given in (A.199) and (A.200). By (A.124) and (A.125), the asymptotic form

of F̃i (i = 1, . . . , 4) in (A.121) becomes

F̃1 ≈ a1ϕ̃w1 + F̃C
1 , (A.209)

F̃2 ≈ a1ϕ̃w2 + F̃C
1 , (A.210)

F̃3 ≈ a1ϕ̃w3 + F̃C
1 , (A.211)

F̃4 ≈ a1ϕ̃w4 + F̃C
1 , (A.212)
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Table A.5: Stability conditions of bifurcating solutions for group-theoretic critical points with multiplicity 4.

µ Cases Solutions Stability conditions

(4; k, 0,+) ň = 3 wsq Always unstable

wstripeI Always unstable

wstripeII Does not exist

ň = 4 wsq a3 < −a5 < 0, a3 + a5 < −|a2 |
wstripeI a3 < −a5 < 0, a2 < a3 + a5

wstripeII a3 < −a5 < 0, a2 < a3 + a5

(4; k, k,+) ň = 3 wsq Always unstable

wstripeI Always unstable

wstripeII Does not exist

ň = 4 wsq a5 + a6 > 0, a3 + a5 < −|a2 + 2a6 |
wstripeI a3 < −a5 < 0, −2|a6 | < a3 + a5

wstripeII a3 < −a5 < 0, −2|a6 | < a3 + a5

(4; n/2, ℓ,+) ñ = 4 wsq a3 < −a5 < 0, a3 + a5 < −|a2 |
wstripeI a3 < −a5 < 0, a2 < a3 + a5

wstripeII a3 < −a5 < 0, a2 < a3 + a5

µ Cases Solutions Stability conditions (necessary condition)

(4; k, 0,+) General ň wsq a3 < −|a2 |
wstripeI a2 < a3 < 0

wstripeII a2 < a3 < 0 if ň is even

Does not exist if ň is odd

(4; k, k,+) General ň wsq a3 < −|a2 |
wstripeI a2 < a3 < 0

wstripeII a2 < a3 < 0 if ň is even

Does not exist if ň is odd

(4; n/2, ℓ,+) General ñ wsq a3 < −|a2 |
wstripeI a2 < a3 < 0

wstripeII a2 < a3 < 0

ň = n/gcd(k, n) in (A.113); ñ = n/gcd(ℓ, n) in (A.114);

a2 = A1101(0), a3 = A2010(0), a4 = A0020(0), a5 = A0030(0), a6 = A0210(0) in (A.197)
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where F̃C
i
(i = 1, . . . , 4) is given in (A.203) – (A.206). Hence, the asymptotic form of the Jacobian

matrix in (A.122) becomes

J̃(w, ϕ̃) ≈ a1ϕ̃I4 + BC (A.213)

with

BC = a2B2 + a3B3, (A.214)

B2 =



w3
2
+ w4

2 0 2w1w3 2w1w4

0 w3
2
+ w4

2 2w2w3 2w2w4

2w1w3 2w2w3 w1
2
+ w2

2 0

2w1w4 2w2w4 0 w1
2
+ w2

2


,

B3 =



3w1
2
+ w2

2 2w1w2 0 0

2w1w2 w1
2
+ 3w2

2 0 0

0 0 3w3
2
+ w4

2 2w3w4

0 0 2w3w4 w3
2
+ 3w4

2


.

Substituting wsq into (A.209) and solving F̃1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃sq ≈ −
a2 + a3

a1

w
2.

Evaluating the Jacobian matrix (A.213) at (wsq, ϕ̃sq), we have

J̃(wsq, ϕ̃sq) ≈ 2w2



a3 0 a2 0

0 0 0 0

a2 0 a3 0

0 0 0 0


+O(w3). (A.215)

Then, the eigenvalues of the matrix J̃(wsq, ϕ̃sq) are given by

λ1, λ2 ≈ 2(a3 ± a2)w2,

λ3 ≈ O(w3) (repeated twice).

A necessary condition where wsq is stable is a3 < −|a2 |. A more rigorous stability condition relies

on the concrete form of the terms of O(w3) for λ3. Thus, the stability of wsq depends on the values

of a2 and a3.

Substituting wstripeI into (A.209) and solving F̃1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃stripeI ≈ −
a3

a1

w
2.

Evaluating the Jacobian matrix (A.213) at (wstripeI, ϕ̃stripeI), we have

J̃(wstripeI, ϕ̃stripeI) ≈ w
2



2a3 0 0 0

0 0 0 0

0 0 a2 − a3 0

0 0 0 a2 − a3


+O(w3). (A.216)
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Then, the eigenvalues of the matrix J̃(wstripeI, ϕ̃stripeI) are given by the diagonal components, i.e.,

λ1 ≈ 2a3w
2,

λ2 ≈ O(w3),
λ3 ≈ (a2 − a3)w2 (repeated twice).

Necessary conditions where wstripeI is stable are a2 < a3 < 0. A more rigorous stability condition

relies on the concrete form of the terms of O(w3) for λ2. Thus, the stability of wstripeI depends on

the values of a2 and a3.

Substituting wstripeII into (A.210) and solving F̃2 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃stripeII ≈ −
a3

a1

w
2.

Evaluating the Jacobian matrix (A.213) at (wstripeII, ϕ̃stripeII), we have

J̃(wstripeII, ϕ̃stripeII) ≈ w
2



0 0 0 0

0 2a3 0 0

0 0 a2 − a3 0

0 0 0 a2 − a3


+O(w3). (A.217)

The eigenvalues of the matrix J̃(wstripeII, ϕ̃stripeII) are equivalent to that for wstripeI. Hence, stability

conditions for wstripeII are equivalent to that for wstripeI.

Case 2: (4; k, 0,+) with ň = 3

For the case (4; k, 0,+) with ň = 3, we have

(0, 0, 2, 0) ∈ S

as well as

(1, 0, 0, 0), (1, 1, 0, 1), (2, 0, 1, 0) ∈ S.

Then, the asymptotic form of Fi (i = 1, 2) in (A.198) becomes

F1(z1, z2, ϕ̃) ≈ a1ϕ̃z1 + a4z1
2
+ FC

1 , (A.218)

F2(z1, z2, ϕ̃) ≈ a1ϕ̃z2 + a4z2
2
+ FC

2 (A.219)

with a4 = A0020(0), where FC
i
(i = 1, 2) is given in (A.199) and (A.200). By (A.124) and (A.125),

the asymptotic form of F̃i (i = 1, . . . , 4) in (A.121) becomes

F̃1 ≈ a1ϕ̃w1 + a4(w1
2 − w2

2) + F̃C
1 , (A.220)

F̃2 ≈ a1ϕ̃w2 − 2a4w1w2 + F̃C
2 , (A.221)

F̃3 ≈ a1ϕ̃w3 + a4(w3
2 − w4

2) + F̃C
3 , (A.222)

F̃4 ≈ a1ϕ̃w4 − 2a4w3w4 + F̃C
4 , (A.223)
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where F̃C
i
(i = 1, . . . , 4) is given in (A.203)–(A.206). Hence, the asymptotic form of the Jacobian

matrix in (A.122) becomes

J̃(w, ϕ̃) ≈ a1ϕ̃I4 + a4B4 + BC (A.224)

with

B4 = 2



w1 −w2 0 0

−w2 −w1 0 0

0 0 w3 −w4

0 0 −w4 −w3


,

where BC is given in (A.214).

Substituting wsq into (A.220) and solving F̃1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃sq ≈ −
a4

a1

w.

Evaluating the Jacobian matrix (A.224) at (wsq, ϕ̃sq), we have

J̃(wsq, ϕ̃sq) ≈ a4w



1 0 0 0

0 −3 0 0

0 0 1 0

0 0 0 −3


. (A.225)

Then, the eigenvalues of the matrix J̃(wsq, ϕ̃sq) are given by the diagonal components, i.e., a4w

(repeated twice) and −3a4w (repeated twice). Since the eigenvalues a4w and −3a4w have opposite

signs, the bifurcating solution wsq is always unstable.

Substituting wstripeI into (A.220) and solving F̃1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃stripeI ≈ −
a4

a1

w.

Evaluating the Jacobian matrix (A.224) at (wstripeI, ϕ̃stripeI), we have

J̃(wstripeI, ϕ̃stripeI) ≈ a4w



1 0 0 0

0 −3 0 0

0 0 −1 0

0 0 0 −1


. (A.226)

Then, the eigenvalues of the matrix J̃(wstripeI, ϕ̃stripeI) are given by the diagonal components, i.e.,

a4w, −3a4w and −a4w (repeated twice). Since the eigenvalues a4w and −3a4w have opposite

signs, the bifurcating solution wstripeI is always unstable.

Remark A.3. Since ň is odd, wstripeII does not exist for the case (4; k, 0,+) with ň = 3. See

Proposition A.17.

□
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Case 3: (4; k, 0,+) with ň = 4

For the case (4; k, 0,+) with ň = 4, we have

(0, 0, 3, 0) ∈ S

as well as

(1, 0, 0, 0), (1, 1, 0, 1), (2, 0, 1, 0) ∈ S.

Then, the asymptotic form of Fi (i = 1, 2) in (A.198) becomes

F1(z1, z2, ϕ̃) ≈ a1ϕ̃z1 + a5z1
3
+ FC

1 , (A.227)

F2(z1, z2, ϕ̃) ≈ a1ϕ̃z2 + a5z2
3
+ FC

2 (A.228)

with a5 = A0030(0), where FC
i
(i = 1, 2) is given in (A.199) and (A.200). By (A.124) and (A.125),

the asymptotic form of F̃i (i = 1, . . . , 4) in (A.121) becomes

F̃1 ≈ a1ϕ̃w1 + a5w1(w1
2 − 3w2

2) + F̃C
1 , (A.229)

F̃2 ≈ a1ϕ̃w2 + a5w2(w2
2 − 3w1

2) + F̃C
2 , (A.230)

F̃3 ≈ a1ϕ̃w3 + a5w3(w3
2 − 3w4

2) + F̃C
3 , (A.231)

F̃4 ≈ a1ϕ̃w4 + a5w4(w4
2 − 3w3

2) + F̃C
4 , (A.232)

where F̃C
i
(i = 1, . . . , 4) is given in (A.203) – (A.206). Hence, the asymptotic form of the Jacobian

matrix in (A.122) becomes

J̃(w, ϕ̃) ≈ a1ϕ̃I4 + a5B5 + BC (A.233)

with

B5 = 3



w1
2 − w2

2 −2w1w2 0 0

−2w1w2 w2
2 − w1

2 0 0

0 0 w3
2 − w4

2 −2w3w4

0 0 −2w3w4 w4
2 − w3

2


, (A.234)

where BC is given in (A.214).

Substituting wsq into (A.229) and solving F̃1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃sq ≈ −
a5 + a2 + a3

a1

w
2.

Evaluating the Jacobian matrix (A.233) at (wsq, ϕ̃sq), we have

J̃(wsq, ϕ̃sq) ≈ 2w2



a5 + a3 0 a2 0

0 −2a5 0 0

a2 0 a5 + a3 0

0 0 0 −2a5


. (A.235)
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Then, the eigenvalues of the matrix J̃(wsq, ϕ̃sq) are given by

λ1, λ2 ≈ 2(a5 + a3 ± a2)w2,

λ3 ≈ −4a5w
2 (repeated twice).

If a3 < −a5 < 0 and a5 + a3 < −|a2 | are satisfied, wsq is stable. Otherwise, wsq is unstable. Thus,

the stability of wsq depends on the values of a2, a3 and a5.

Substituting wstripeI into (A.229) and solving F̃1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃stripeI ≈ −
a5 + a3

a1

w
2.

Evaluating the Jacobian matrix (A.233) at (wstripeI, ϕ̃stripeI), we have

J̃(wstripeI, ϕ̃stripeI) ≈ w
2



2(a5 + a3) 0 0 0

0 −4a5 0 0

0 0 −a5 + a2 − a3 0

0 0 0 −a5 + a2 − a3


. (A.236)

Then, the eigenvalues of the matrix J̃(wstripeI, ϕ̃stripeI) are given by the diagonal components, i.e.,

λ1 ≈ 2(a5 + a3)w2,

λ2 ≈ −4a5w
2,

λ3 ≈ −(a5 − a2 + a3)w2 (repeated twice).

If a3 < −a5 < 0 and a2 < a5 + a3 are satisfied, wstripeI is stable. Thus, the stability of wstripeI

depends on the values of a2, a3 and a5.

Substituting wstripeII into (A.230) and solving F̃2 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃stripeII ≈ −
a5 + a3

a1

w
2.

Evaluating the Jacobian matrix (A.233) at (wstripeII, ϕ̃stripeII), we have

J̃(wstripeII, ϕ̃stripeII) ≈ w
2



−4a5 0 0 0

0 2(a5 + a3) 0 0

0 0 −a5 + a2 − a3 0

0 0 0 −a5 + a2 − a3


. (A.237)

The eigenvalues of the matrix J̃(wstripeII, ϕ̃stripeII) are equivalent to that for wstripeI. Hence, stability

conditions for wstripeII are equivalent to that for wstripeI.

Case 4: General (4; k, k,+)
For general (4; k, k,+), we have

(1, 0, 0, 0), (1, 1, 0, 1), (2, 0, 1, 0) ∈ S,

and the other elements of S correspond to higher order terms. Then, the asymptotic form of F1 in

(A.203) is equivalent to that for the case 1: General (4; k, 0,+). Hence, a discussion similar to that

for the case 1 holds.
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Case 5: (4; k, k,+) with ň = 3

For the case (4; k, k,+) with ň = 3, we have

(0, 0, 2, 0) ∈ S

as well as

(1, 0, 0, 0), (1, 1, 0, 1), (2, 0, 1, 0) ∈ S.

Then, the asymptotic form of F1 in (A.203) is equivalent to that for the case 2: (4; k, 0,+) with

ň = 3. Hence, a discussion similar to that for the case 2 holds, that is, wsq and wstripeI are always

unstable. Since ň is odd, wstripeII does not exist for this case (see Proposition A.17).

Case 6: (4; k, k,+) with ň = 4

For the case (4; k, k,+) with ň = 4, we have

(0, 0, 3, 0), (0, 2, 1, 0), (0, 0, 1, 2) ∈ S

as well as

(1, 0, 0, 0), (1, 1, 0, 1), (2, 0, 1, 0) ∈ S.

From the condition (A.154), we have A0210(0) = A0012(0). Then, the asymptotic form of Fi (i = 1, 2)
in (A.198) becomes

F1(z1, z2, ϕ̃) ≈ a1ϕ̃z1 + a5z1
3
+ a6z1(z2

2
+ z2

2) + FC
1 , (A.238)

F2(z1, z2, ϕ̃) ≈ a1ϕ̃z2 + a5z2
3
+ a6z2(z1

2
+ z1

2) + FC
2 (A.239)

with a6 = A0210(0), where FC
i
(i = 1, 2) is given in (A.199) and (A.200). By (A.124) and (A.125),

the asymptotic form of F̃i (i = 1, . . . , 4) in (A.121) becomes

F̃1 ≈ a1ϕ̃w1 + a5w1(w1
2 − 3w2

2) + 2a6w1(w3
2 − w4

2) + F̃C
1 , (A.240)

F̃2 ≈ a1ϕ̃w2 + a5w2(w2
2 − 3w1

2) + 2a6w2(w4
2 − w3

2) + F̃C
2 , (A.241)

F̃3 ≈ a1ϕ̃w3 + a5w3(w3
2 − 3w4

2) + 2a6w3(w1
2 − w2

2) + F̃C
3 , (A.242)

F̃4 ≈ a1ϕ̃w4 + a5w4(w4
2 − 3w3

2) + 2a6w4(w2
2 − w1

2) + F̃C
4 , (A.243)

where F̃C
i
(i = 1, . . . , 4) is given in (A.203) – (A.206). Hence, the asymptotic form of the Jacobian

matrix in (A.122) becomes

J̃(w, ϕ̃) ≈ a1ϕ̃I4 + a5B5 + a6B6 + BC (A.244)

with

B5 = 3



w1
2 − w2

2 −2w1w2 0 0

−2w1w2 w2
2 − w1

2 0 0

0 0 w3
2 − w4

2 −2w3w4

0 0 −2w3w4 w4
2 − w3

2


,
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B6 = 2



w3
2 − w4

2 0 2w1w3 −2w1w4

0 w4
2 − w3

2 −2w2w3 2w2w4

2w1w3 −2w2w3 w1
2 − w2

2 0

−2w1w4 2w2w4 0 w2
2 − w1

2


,

where B5 and BC are given in (A.234) and (A.214).

Substituting wsq into (A.240) and solving F̃1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃sq ≈ −
a2 + a3 + a5 + 2a6

a1

w
2.

Evaluating the Jacobian matrix (A.244) at (wsq, ϕ̃sq), we have

J̃(wsq, ϕ̃sq) ≈ 2w2



a5 + a3 0 2a6 + a2 0

0 −2(a5 + a6) 0 0

2a6 + a2 0 a5 + a3 0

0 0 0 −2(a5 + a6)


. (A.245)

Then, the eigenvalues of the matrix J̃(wsq, ϕ̃sq) are given by

λ1, λ2 ≈ 2{(a5 + a3) ± (2a6 + a2)}w2,

λ3 ≈ −4(a5 + a6)w2 (repeated twice).

If a5 + a6 > 0 and a5 + a3 < −|2a6 + a2 | are satisfied, wsq is stable. Otherwise, wsq is unstable.

Thus, the stability of wsq depends on the values of a2, a3, a5 and a6.

Substituting wstripeI into (A.240) and solving F̃1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃stripeI ≈ −
a5 + a3

a1

w
2.

Evaluating the Jacobian matrix (A.244) at (wstripeI, ϕ̃stripeI), we have

J̃(wstripeI, ϕ̃stripeI) ≈ −w2



−2(a5 + a3) 0 0 0

0 4a5 0 0

0 0 a5 − 2a6 + a3 0

0 0 0 a5 + 2a6 + a3


. (A.246)

Then, the eigenvalues of the matrix J̃(wstripeI, ϕ̃stripeI) are given by the diagonal components, i.e.,

λ1 ≈ 2(a5 + a3)w2,

λ2 ≈ −4a5w
2,

λ3, λ4 ≈ −(a5 + a3 ± 2a6)w2,

If a3 < −a5 < 0 and −2|a6 | < a5 + a3 are satisfied, wstripeI is stable. Otherwise, wstripeI is unstable.

Thus, the stability of wstripeI depends on the values of a3, a5 and a6.
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Substituting wstripeII into (A.241) and solving F̃2 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃stripeII ≈ −
a5 + a3

a1

w
2.

Evaluating the Jacobian matrix (A.244) at (wstripeII, ϕ̃stripeII), we have

J̃(wstripeII, ϕ̃stripeII) ≈ −w2



4a5 0 0 0

0 −2(a5 + a3) 0 0

0 0 a5 − 2a6 + a3 0

0 0 0 a5 + 2a6 + a3


. (A.247)

The eigenvalues of the matrix J̃(wstripeII, ϕ̃stripeII) are equivalent to that for wstripeI. Hence, stability

conditions for wstripeII is equivalent to that for wstripeI.

Case 7: General (4; n/2, ℓ,+)
For general (4; n/2, ℓ,+), we have

(1, 0, 0, 0), (1, 1, 0, 1), (2, 0, 1, 0) ∈ S,

and the other elements of S correspond to higher order terms. Then, the asymptotic form of F1 in

(A.203) is equivalent to that for the case 1: General (4; k, 0,+). Hence, a discussion similar to that

for the case 1 holds.

Case 8: (4; n/2, ℓ,+) with ñ = 4

For the case (4; n/2, ℓ,+) with ñ = 4, we have

(0, 0, 3, 0) ∈ S

as well as

(1, 0, 0, 0), (1, 1, 0, 1), (2, 0, 1, 0) ∈ S.

Then, the asymptotic form of F1 in (A.203) is equivalent to that for the case 3: (4; k, 0,+) with

ň = 4. Hence, a discussion similar to that for the case 3 holds.

A.6.5. Bifurcation Point of Multiplicity 8

We consider a critical point associated with eight-dimensional irreducible representations µ of

the group D4 ⋉ (Zn × Zn):

(8; k, ℓ) with 1 ≤ ℓ ≤ k − 1, 2 ≤ k ≤
⌊
n − 1

2

⌋
, (A.248)

where n ≥ 5. For (8; k, ℓ), we use the following notations:

k̂ =
k

gcd(k, ℓ, n), ℓ̂ =
ℓ

gcd(k, ℓ, n), n̂ =
n

gcd(k, ℓ, n) . (A.249)
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The action in (8; k, ℓ) on an eight-dimensional vector (w1, . . . ,w8) ∈ R8 can be expressed for a

four-dimensional vector (z1, . . . , z4) with complex variables z j = w2 j−1 + iw2 j ( j = 1, . . . , 4) as

(cf., (3.155) and (3.156))

r :



z1

z2

z3

z4


7→



z2

z1

z4

z3


, s :



z1

z2

z3

z4


7→



z3

z4

z1

z2


, (A.250)

p1 :



z1

z2

z3

z4


7→



ωk z1

ω−ℓz2

ωk z3

ω−ℓz4


, p2 :



z1

z2

z3

z4


7→



ωℓz1

ωk z2

ω−ℓz3

ω−k z4


(A.251)

with ω = exp(i2π/n).

Derivation of Bifurcation Equations

The bifurcation equation for a critical point of multiplicity 8 is an eight-dimensional equation

in w = (w1, . . . ,w8) ∈ R8 expressed as

F̃i(w, ϕ̃) = 0, i = 1, . . . , 8, (A.252)

where (w1, . . . ,w8, ϕ̃) = (0, . . . , 0, 0) is assumed to correspond to the critical point. Accordingly,

the Jacobian matrix of F̃ is an 8 × 8 matrix expressed as

J̃(w, ϕ̃) =
(
F
∂F̃i

∂w j

����� i, j = 1, . . . , 8

)
. (A.253)

The bifurcation equation (A.252) can be expressed as a four-dimensional equation in complex

variables z j = w2 j−1 + iw2 j ( j = 1, . . . , 4) as

Fi(z1, z2, z3, z4, ϕ̃) = 0, i = 1, . . . , 4, (A.254)

where (z1, . . . , z4, ϕ̃) = (0, . . . , 0, 0) corresponds to the critical point. There are the following

relationships between (A.252) and (A.254):

F1(z1, z2, z3, z4, ϕ̃) = F̃1 + iF̃2, (A.255)

F2(z1, z2, z3, z4, ϕ̃) = F̃3 + iF̃4, (A.256)

F3(z1, z2, z3, z4, ϕ̃) = F̃5 + iF̃6, (A.257)

F4(z1, z2, z3, z4, ϕ̃) = F̃7 + iF̃8. (A.258)

We expand F1 into a power series as

F1(z1, z2, z3, z4, ϕ̃) =
∑
a=0

∑
b=0

∑
c=0

∑
d=0

∑
e=0

∑
f=0

∑
g=0

∑
h=0

Aabcde f gh(ϕ̃)z1
az2

bz3
cz4

d z1
e z2

f z3
g z4

h.

(A.259)
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Since (z1, z2, z3, z4, ϕ̃) = (0, 0, 0, 0, 0) corresponds to the critical point, we have

A00000000(0) = 0, A10000000(0) = A01000000(0) = · · · = A00000001(0) = 0.

Since a1 = A′
10000000

(0) is generically nonzero, we have

A10000000(ϕ̃) ≈ a1ϕ̃.

The equivariance of the bifurcation equation to the group D4 ⋉ (Zn × Zn) is identical to the

equivariance to the actions of the four elements r , s, p1, and p2 generating this group. The

equivariance condition for (8; k, ℓ) is written as

r : F2(z1, z2, z3, z4) = F1(z2, z1, z4, z3), (A.260)

F1(z1, z2, z3, z4) = F2(z2, z1, z4, z3), (A.261)

F4(z1, z2, z3, z4) = F3(z2, z1, z4, z3), (A.262)

F3(z1, z2, z3, z4) = F4(z2, z1, z4, z3), (A.263)

s : F3(z1, z2, z3, z4) = F1(z3, z4, z1, z2), (A.264)

F4(z1, z2, z3, z4) = F2(z3, z4, z1, z2), (A.265)

F1(z1, z2, z3, z4) = F3(z3, z4, z1, z2), (A.266)

F2(z1, z2, z3, z4) = F4(z3, z4, z1, z2), (A.267)

p1 : ωk F1(z1, z2, z3, z4) = F1(ωk z1, ω
−ℓz2, ω

k z3, ω
−ℓz4), (A.268)

ω−ℓF2(z1, z2, z3, z4) = F2(ωk z1, ω
−ℓz2, ω

k z3, ω
−ℓz4), (A.269)

ωk F3(z1, z2, z3, z4) = F3(ωk z1, ω
−ℓz2, ω

k z3, ω
−ℓz4), (A.270)

ω−ℓF4(z1, z2, z3, z4) = F4(ωk z1, ω
−ℓz2, ω

k z3, ω
−ℓz4), (A.271)

p2 : ωℓF1(z1, z2, z3, z4) = F1(ωℓz1, ω
k z2, ω

−ℓz3, ω
−k z4), (A.272)

ωk F2(z1, z2, z3, z4) = F2(ωℓz1, ω
k z2, ω

−ℓz3, ω
−k z4), (A.273)

ω−ℓF3(z1, z2, z3, z4) = F3(ωℓz1, ω
k z2, ω

−ℓz3, ω
−k z4), (A.274)

ω−k F4(z1, z2, z3, z4) = F4(ωℓz1, ω
k z2, ω

−ℓz3, ω
−k z4). (A.275)

The equivariance conditions with respect to r and s are expressed as follows. The equivariance

condition (A.261) for r implies

F2(z1, z2, z3, z4) = F1(z2, z1, z4, z3). (A.276)

The equivariance condition (A.264) and (A.265) for s implies

F3(z1, z2, z3, z4) = F1(z3, z4, z1, z2), (A.277)

F4(z1, z2, z3, z4) = F2(z3, z4, z1, z2). (A.278)
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Combining (A.276) and (A.278), we have

F4(z1, z2, z3, z4) = F1(z4, z3, z2, z1). (A.279)

Hence, we obtain F2, F3 and F4 from F1 by using (A.276), (A.277) and (A.279). Combining

(A.260) and (A.276), we have

F1(z2, z1, z4, z3) = F1(z2, z1, z4, z3). (A.280)

Hence, we have

Aab···h(ϕ̃) ∈ R. (A.281)

It is ensured that the equivariance conditions (A.260) – (A.267) are satisfied by (A.276), (A.277),

(A.279), and (A.280).

The equivariance conditions with respect to p1 and p2 are expressed as follows. The equivari-

ance condition (A.268) for p1 is expressed as∑
a=0

∑
b=0

· · ·
∑
h=0

ωk Aab···h(ϕ̃)z1
az2

bz3
cz4

d z1
e z2

f z3
g z4

h

=

∑
a=0

∑
b=0

· · ·
∑
h=0

ωk(a+c−e−g)−ℓ(b+d− f−h)Aab···h(ϕ̃)z1
az2

bz3
cz4

d z1
e z2

f z3
g z4

h,

which implies

ωk(a+c−e−g−1)−ℓ(b+d− f−h)
= exp

[
2πi

n
{k(a + c − e − g − 1) − ℓ(b + d − f − h)}

]
= 1. (A.282)

The equivariance condition (A.272) for p2 is expressed as∑
a=0

∑
b=0

· · ·
∑
h=0

ωℓAab···h(ϕ̃)z1
az2

bz3
cz4

d z1
e z2

f z3
g z4

h

=

∑
a=0

∑
b=0

· · ·
∑
h=0

ωk(b−d− f+h)+ℓ(a−c−e+g)Aab···h(ϕ̃)z1
az2

bz3
cz4

d z1
e z2

f z3
g z4

h,

which implies

ωk(b−d− f+h)+ℓ(a−c−e+g−1)
= exp

[
2πi

n
{k(b − d − f + h) + ℓ(a − c − e + g − 1)}

]
= 1. (A.283)

Using (A.276), (A.277), or (A.279), we rewrite the equivariance conditions (A.269)–(A.271) for

p1 as follows:

ω−ℓF1(z2, z1, z4, z3) = F1(ω−ℓz2, ω
−k z1, ω

ℓ z4, ω
k z3), (A.284)

ωk F1(z3, z4, z1, z2) = F1(ωk z3, ω
−ℓz4, ω

k z1, ω
−ℓz2), (A.285)

ω−ℓF1(z4, z3, z2, z1) = F1(ω−ℓz4, ω
−k z3, ω

ℓ z2, ω
k z1). (A.286)
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Similarly, we rewrite the equivariance conditions (A.273)–(A.275) for p2 as follows:

ωk F1(z2, z1, z4, z3) = F1(ωk z2, ω
−ℓ z1, ω

k z4, ω
−ℓz3), (A.287)

ω−ℓF1(z3, z4, z1, z2) = F1(ω−ℓz3, ω
−k z4, ω

ℓz1, ω
k z2), (A.288)

ω−k F1(z4, z3, z2, z1) = F1(ω−k z4, ω
ℓ z3, ω

−k z2, ω
ℓz1). (A.289)

The equivariance conditions (A.284), (A.286), and (A.288) lead to the same result as (A.283). The

equivariance conditions (A.285), (A.287), and a complex conjugate of (A.289) lead to the same

result as (A.282). To sum up, we have the following conditions for (8; k, ℓ):

k(a + c − e − g − 1) − ℓ(b + d − f − h) ≡ 0 mod n,

k(b − d − f + h) + ℓ(a − c − e + g − 1) ≡ 0 mod n,

which are equivalent to

k̂(a + c − e − g − 1) − ℓ̂(b + d − f − h) ≡ 0 mod n̂, (A.290)

k̂(b − d − f + h) + ℓ̂(a − c − e + g − 1) ≡ 0 mod n̂. (A.291)

We rewrite the conditions (A.290) and (A.291) in a matrix form as

A

[
k̂

ℓ̂

]
≡

[
0

0

]
mod n̂ (A.292)

with

A =

[
a + c − e − g − 1 −b − d + f + h

b − d − f + h a − c − e + g − 1

]
. (A.293)

This condition is equivalent to the following condition:

∃p, q ∈ Z s.t. A

[
k̂

ℓ̂

]
= n̂

[
p

q

]
. (A.294)

For this condition, we define a set P as

P = {(a, b, . . . , h) ∈ Z8
+
| (A.294) with (A.293)}, (A.295)

where Z+ represents the set of nonnegative integers. Note that (a, b, . . . , h) ∈ Z8
+

must belong to P

when Aab···h(ϕ̃) , 0 in (A.259). Hence, we replace the power series (A.259) with

F1(z1, z2, z3, z4, ϕ̃) =
∑

P

Aabcde f gh(ϕ̃) z1
az2

bz3
cz4

d z1
e z2

f z3
g z4

h. (A.296)

In addition, we have the following proposition:

Proposition A.20. If n̂ = n/gcd(n, k, ℓ) is even, then (a, b, . . . , h) ∈ P satisfies a + b + c + d + e +

f + g + h < 2Z.
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Proof. Since n̂ is even, pn̂ (p ∈ Z) in (A.290) and qn̂ (q ∈ Z) in (A.291) are even. Since n̂, k̂, and

ℓ̂ do not have a common divisor, (k̂, ℓ̂) , (even, even). To prove the statement by contradiction,

assume a + b + c + d + e + f + g + h ∈ 2Z.

• For the case a + c + e + g ∈ 2Z and b + d − f − h ∈ 2Z, we have the following statements:

If (k̂, ℓ̂) = (odd, even), the left-hand side of (A.290) is odd since it takes the form:

(odd) × (odd) + (even) × (even).

If (k̂, ℓ̂) = (even, odd), the left-hand side of (A.291) is odd since it takes the form:

(even) × (even) + (odd) × (odd).

Thus, the condition (A.290) and (A.291) are cannot be satisfied simultaneously.

• For the case a + c + e + g < 2Z and b+ d + f + h < 2Z, we have the following statements: If

(k̂, ℓ̂) = (odd, even), the left-hand side of (A.291) is odd since it takes the form: (odd)+(even).

If (k̂, ℓ̂) = (even, odd), the left-hand side of (A.290) is odd since it takes the form: (even) +

(odd). Thus, the condition (A.290) and (A.291) are cannot be satisfied simultaneously.

Hence, a + b + c + d + e + f + g + h ∈ 2Z is a contradiction. □

Symmetry of Square Patterns

For the irreducible representation µ = (8; k, ℓ), a system of the equations F1 = F2 = F3 = F4 = 0

has the following bifurcating solutions:

Type VM square pattern: (z1, z2, z3, z4) = (w,w,w,w) (w ∈ R),
Type T square pattern: (z1, z2, z3, z4) = (w,w, 0, 0) (w ∈ R).

In Section 3.5.6, we showed that the Type VM solution exists for any (n̂, k̂, ℓ̂), while the Type T

solution exists if the values of (n̂, k̂, ℓ̂) satisfies

GCD-div: 2 gcd(k̂, ℓ̂) is not divisible by gcd(k̂2
+ ℓ̂2, n̂) (A.297)

(see Proposition 3.24).

Substituting the Type VM solution (z1, z2, z3, z4) = (w,w,w,w) into (A.296), we have

F1(w,w,w,w, ϕ̃) =
∑

P

Aabcde f gh(ϕ̃)wa+b+d+e+ f+g+h.

Proposition A.20 shows that if n̂ is even, then F1(w,w,w,w, ϕ̃) becomes an odd function in w. Thus,

the two bifurcating solutions (w,w,w,w, ϕ̃) and (−w,−w,−w,−w, ϕ̃) are conjugate. Substituting

the Type T solution (z1, z2, z3, z4) = (w,w, 0, 0) into (A.296), we have

F1(w,w, 0, 0, ϕ̃) =
∑

(a,b,0,0,e, f ,0,0)∈P

Aab00e f 00(ϕ̃)wa+b+e+ f .

Proposition A.20 shows that if n̂ is even, then a + b + e + f < 2Z for (a, b, 0, 0, e, f , 0, 0) ∈ P.

Thus, F1(w,w, 0, 0, ϕ̃) becomes an odd function in w, and hence the two bifurcating solutions

(w,w, 0, 0, ϕ̃) and (−w,−w, 0, 0, ϕ̃) are conjugate.

To sum up, we have the following proposition on the symmetry of the square patterns.
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Proposition A.21. For a critical point of multiplicity 8 associated with µ = (8; k, ℓ), the two

bifurcating solutions (z, ϕ̃) and (−z, ϕ̃) are conjugate for z = (w,w,w,w), (w,w, 0, 0) (w ∈ R) if

n̂ = n/gcd(n, k, ℓ) is even and are not conjugate if n̂ is odd.

Existence and Symmetry of Stripe Patterns

We would like to show the existence and the symmetry of two types of stripe patterns, which

are represented as

Type I stripe pattern: (z1, z2, z3, z4) = (w, 0, 0, 0) (w ∈ R),
Type II stripe pattern: (z1, z2, z3, z4) = (iw, 0, 0, 0) (w ∈ R).

For both cases, we have (a, b, . . . , h) = (a, 0, 0, 0, e, 0, 0, 0), and hence (A.290) and (A.291) leads to

k̂(a − e − 1) ≡ 0, ℓ̂(a − e − 1) ≡ 0 mod n̂, (A.298)

which imply a = e + pn̂ + 1 (p ∈ Z). Then, F1 in (A.296) is rewritten as

F1(z1, 0, 0, 0, ϕ̃)

=

∞∑
q=0

Aq+1,q(ϕ̃)|z1 |2qz1 +

∞∑
p=1

∞∑
q=0

[Aq+pn̂+1,q(ϕ̃)|z1 |2qz1
pn̂+1
+ Aq,q+pn̂−1(ϕ̃)|z1 |2q z1

pn̂−1] (A.299)

with Aae(ϕ̃) = Aa000e000(ϕ̃).
Substituting the Type I stripe pattern (z1, z2, z3, z4) = (w, 0, 0, 0) into (A.299), we have

F1(w, 0, 0, 0, ϕ̃) = w



∞∑

q=0

Aq+1,q(ϕ̃)w2q
+

∞∑
p=1

∞∑
q=0

[Aq+pn̂+1,q(ϕ̃)w2q+pn̂
+ Aq,q+pn̂−1(ϕ̃)w2q+pn̂−2]




≈ w
{

A′10(0)ϕ̃ + A21(0)w2
+ A0,n̂−1(0)wn̂−2

}
.

We see that F1(w, 0, 0, 0, ϕ̃) = 0 has the trivial solution (w = 0) and a bifurcating solution. Note

that F1(w, 0, 0, 0, ϕ̃) becomes an odd function in w if n̂ is even. Then, the two bifurcating solutions

(w, 0, 0, 0, ϕ̃) and (−w, 0, 0, 0, ϕ̃) are conjugate.

Substituting (z1, z2, z3, z4) = (w, 0, 0, 0) into the equivariance conditions (A.276)–(A.279), we

have
F2(w, 0, 0, 0) = F1(0,w, 0, 0),
F3(w, 0, 0, 0) = F1(0, 0,w, 0),
F4(w, 0, 0, 0) = F1(0, 0, 0,w).

(A.300)

With the use of P in (A.295), we have Fi = 0 (i = 2, 3, 4) in (A.300) if

(0, b, 0, 0, 0, f , 0, 0) < P,

(0, 0, c, 0, 0, 0, g, 0) < P,

(0, 0, 0, d, 0, 0, 0, h) < P.
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The conditions in (A.290) and (A.291) lead to

k̂(b − f ) − ℓ̂ ≡ 0, ℓ̂(b − f ) + k̂ ≡ 0 mod n̂ for (a, b, c, d, e, f , g, h) = (0, b, 0, 0, 0, f , 0, 0),
k̂(c − g) − k̂ ≡ 0, ℓ̂(c − g) + ℓ̂ ≡ 0 mod n̂ for (a, b, c, d, e, f , g, h) = (0, 0, c, 0, 0, 0, g, 0),
k̂(d − h) + ℓ̂ ≡ 0, ℓ̂(d − h) + k̂ ≡ 0 mod n̂ for (a, b, c, d, e, f , g, h) = (0, 0, 0, d, 0, 0, 0, h).

These relations can be expressed in a matrix form as

Ax = b with A =

[
k̂ −n̂ 0

ℓ̂ 0 −n̂

]
. (A.301)

The vectors x and b vary with (a, b, c, d, e, f , g, h) as follows:

x =


b − f

p

q


, b =

[
ℓ̂

−k̂

]
for (a, b, c, d, e, f , g, h) = (0, b, 0, 0, 0, f , 0, 0),

x =


c − g

p

q


, b =

[
k̂

−ℓ̂

]
for (a, b, c, d, e, f , g, h) = (0, 0, c, 0, 0, 0, g, 0),

x =


d − h

p

q


, b =

[
−ℓ̂
−k̂

]
for (a, b, c, d, e, f , g, h) = (0, 0, 0, d, 0, 0, 0, h).

The existence of an integer solution x of (A.301) is investigated by showing the two conditions

(A.302) in Remark A.4 below. The first condition is satisfied since we have

rank A = rank

[
k̂ −n̂ 0

ℓ̂ 0 −n̂

]
= 2

and

rank [A | b] = rank

[
k̂ −n̂ 0 ℓ̂

ℓ̂ 0 −n̂ −k̂

]
= 2 for (a, b, c, d, e, f , g, h) = (0, b, 0, 0, 0, f , 0, 0),

rank [A | b] = rank

[
k̂ −n̂ 0 k̂

ℓ̂ 0 −n̂ −ℓ̂

]
= 2 for (a, b, c, d, e, f , g, h) = (0, 0, c, 0, 0, 0, g, 0),

rank [A | b] = rank

[
k̂ −n̂ 0 −ℓ̂
ℓ̂ 0 −n̂ −k̂

]
= 2 for (a, b, c, d, e, f , g, h) = (0, 0, 0, d, 0, 0, 0, h).

For the second condition, we have

d1(A) = gcd(ℓ̂, k̂, n̂) = 1,

d1([A | b]) = gcd(ℓ̂, k̂, n̂) = 1,

d2(A) = gcd(k̂ n̂, ℓ̂n̂, n̂2) = n̂.
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The value of d2([A | b]) varies with (a, b, c, d, e, f , g, h) as follows:

d2([A | b]) = gcd(n̂, k̂2
+ ℓ̂2) for (a, b, c, d, e, f , g, h) = (0, b, 0, 0, 0, f , 0, 0),

d2([A | b]) = gcd(n̂, 2k̂ ℓ̂) for (a, b, c, d, e, f , g, h) = (0, 0, c, 0, 0, 0, g, 0),
d2([A | b]) = gcd(n̂, k̂2 − ℓ̂2) for (a, b, c, d, e, f , g, h) = (0, 0, 0, d, 0, 0, 0, h).

For (a, b, c, d, e, f , g, h) = (0, b, 0, 0, 0, f , 0, 0), we have d2(A) = d2([A | b])when k̂2
+ ℓ̂2 is divisible

by n̂. Then, the equation (A.301) has an integer solution x. Hence, we have (0, b, 0, 0, 0, f , 0, 0) ∈ P

and, in turn, F2 , 0. On the contrary, we have (0, b, 0, 0, 0, f , 0, 0) < P and, in turn, F2 = 0 when

k̂2
+ ℓ̂2 is not divisible by n̂. In a similar manner, we have (0, 0, c, 0, 0, 0, g, 0) < P and, in turn,

F3 = 0 when 2k̂ ℓ̂ is not divisible by n̂. We have (0, 0, 0, d, 0, 0, 0, h) < P and, in turn, F4 = 0 when

k̂2 − ℓ̂2 is not divisible by n̂. Consequently, a system of the equations F1 = F2 = F3 = F4 = 0 holds

for (z1, z2, z3, z4) = (w, 0, 0, 0) when k̂2
+ ℓ̂2, 2k̂ ℓ̂, and k̂2 − ℓ̂2 are not divisible by n̂.

Remark A.4. Let A be an m × n integer matrix and b an m-dimensional integer vector. A system

of equations Ax = b admits an integer solution x if and only if two matrices A and [A | b] share

the same determinantal divisors, i.e.,

rank A = rank [A | b], dk(A) = dk([A | b]) (A.302)

for all k. Here, dk(A) is the kth determinantal divisor, which is the greatest common divisor of all

k × k minors (subdeterminants) of the integer matrix A.

□

Substituting Type II stripe pattern (z1, z2, z3, z4) = (iw, 0, 0, 0) into (A.299), we have

F1(iw, 0, 0, 0, ϕ̃)

= iw



∞∑

q=0

Aq+1,q(ϕ̃)w2q
+

∞∑
p=1

∞∑
q=0

[Aq+pn̂+1,q(ϕ̃)ipn̂
w

2q+pn̂
+ Aq,q+pn̂−1(ϕ̃)(−i)pn̂

w
2q+pn̂−2]




≈ iw
{

A′10(0)ϕ̃ + A21(0)w2
+ A0,n̂−1(0)(−i)n̂wn̂−2

}
.

Thus, F1(iw, 0, 0, 0, ϕ̃) = 0 has a bifurcating solution if n̂ is even (ipn̂ and (−i)pn̂ are real). Then, a

discussion similar to that for the Type I stripe pattern holds.

To sum up, we have the following propositions on the existence and the symmetry of the stripe

patterns.

Proposition A.22. For a critical point of multiplicity 8 associated with µ = (8; k, ℓ), Type I stripe

pattern exists if the condition

k̂2
+ ℓ̂2, 2k̂ ℓ̂, and k̂2 − ℓ̂2 are not divisible by n̂ (A.303)

is satisfied. Therein, k̂ = k/gcd(n, k, ℓ), ℓ̂ = ℓ/gcd(n, k, ℓ), and n̂ = n/gcd(n, k, ℓ). Type II stripe

pattern exists if the condition (A.303) is satisfied and n̂ is even.

Proposition A.23. For a critical point of multiplicity 8 associated with µ = (8; k, ℓ), the two

bifurcating solutions (z, ϕ̃) and (−z, ϕ̃) are conjugate for z = (w, 0, 0, 0), (iw, 0, 0, 0) (w ∈ R) if

n̂ = n/gcd(n, k, ℓ) is even and are not conjugate for z = (w, 0, 0, 0) if n̂ is odd.
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Existence and Symmetry of Upside-down Patterns

We would like to show the existence and the symmetry of two types of upside-down patterns,

which are represented as

Type I upside-down pattern: (z1, z2, z3, z4) = (w, 0,w, 0) (w ∈ R),
Type II upside-down pattern: (z1, z2, z3, z4) = (iw, 0, iw, 0) (w ∈ R).

For both cases, we have (a, b, . . . , h) = (a, 0, c, 0, e, 0, g, 0), and hence (A.290) and (A.291) leads to

k̂(a − e − 1) + k̂(c − g) ≡ 0 mod n̂,

ℓ̂(a − e − 1) − ℓ̂(c − g) ≡ 0 mod n̂,

which imply a = e + pn̂ + 1 and c = g + qn̂ (p, q ∈ Z). Then, F1 in (A.296) is rewritten as

F1(z1, 0, z3, 0, ϕ̃) =
∞∑

e=0

∞∑
g=0

∑
p∈Z,e+pn̂+1≥0

∑
q∈Z,g+qn̂≥0

Ae+pn̂+1,g+qn̂,e,g(ϕ̃)z1
e+pn̂+1z3

g+qn̂ z1
e z3

g

(A.304)

with Aaceg(ϕ̃) = Aa0c0e0g0(ϕ̃).
Substituting Type I upside-down pattern (z1, z2, z3, z4) = (w, 0,w, 0) into (A.304), we have

F1(w, 0,w, 0, ϕ̃) = w



∞∑

e=0

∞∑
g=0

∑
p∈Z,e+pn̂+1≥0

∑
q∈Z,g+qn̂≥0

Ae+pn̂+1,g+qn̂,e,g(ϕ̃)w2(e+g)+(p+q)n̂



≈ w
{

A′1000(0)ϕ̃ + (A2010(0) + A1101(0))w2
}
.

We see that F1(w, 0,w, 0, ϕ̃) = 0 has the trivial solution (w = 0) and a bifurcating solution. Note

that F1(w, 0,w, 0, ϕ̃) becomes an odd function in w if n̂ is even. Then, the two bifurcating solutions

(w, 0,w, 0, ϕ̃) and (−w, 0,−w, 0, ϕ̃) are conjugate.

Substituting (z1, z2, z3, z4) = (w, 0,w, 0) into the equivariance conditions (A.276)–(A.279), we

have
F2(w, 0,w, 0) = F4(w, 0,w, 0) = F1(0,w, 0,w),
F3(w, 0,w, 0) = F1(w, 0,w, 0).

(A.305)

With the use of P in (A.295), we have Fi = 0 (i = 2, 4) in (A.305) if

(0, b, 0, d, 0, f , 0, h) < P.

The use of (a, b, . . . , h) = (0, b, 0, d, 0, f , 0, h) in (A.290) and (A.291) leads to

−k̂ − ℓ̂(b + d − f − h) ≡ 0 mod n̂,

k̂(b − d − f + h) − ℓ̂ ≡ 0 mod n̂.
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This relation can be expressed in a matrix form as

Ax = b with A =

[
−ℓ̂ −ℓ̂ −n̂ 0

k̂ −k̂ 0 −n̂

]
, x =



b − f

d − h

p

q


, b =

[
k̂

ℓ̂

]
. (A.306)

The existence of an integer solution x of (A.306) is investigated by showing the two conditions

(A.302) in Remark A.4. The first condition is satisfied since

rank A = rank

[
−ℓ̂ −ℓ̂ −n̂ 0

k̂ −k̂ 0 −n̂

]
= 2,

rank [A | b] = rank

[
−ℓ̂ −ℓ̂ −n̂ 0 −k̂

k̂ −k̂ 0 −n̂ ℓ̂

]
= 2.

For the second condition, we have

d1(A) = gcd(ℓ̂, k̂, n̂) = 1,

d1([A | b]) = gcd(ℓ̂, k̂, n̂) = 1,

d2(A) = gcd(2k̂ ℓ̂, k̂ n̂, ℓ̂n̂, n̂2) = gcd(2k̂ ℓ̂, n̂),
d2([A | b]) = gcd(n̂, 2k̂ ℓ̂, k̂2

+ ℓ̂2, k̂2 − ℓ̂2).

Hence, d2(A) = d2([A | b]) is satisfied if

gcd(k̂2
+ ℓ̂2, k̂2 − ℓ̂2) is divisible by gcd(n̂, 2k̂ ℓ̂),

Then, the equation (A.306) has an integer solution x, and hence we have (0, b, 0, d, 0, f , 0, h) ∈ P

and, in turn, F2 = F4 , 0. On the contrary, we have (0, b, 0, d, 0, f , 0, h) < P and, in turn,

F2 = F4 = 0 if (k̂ + ℓ̂) gcd(k̂ + ℓ̂, k̂ − ℓ̂) is not divisible by gcd(n̂, 2k̂ ℓ̂).
Substituting Type II upside-down pattern (z1, z2, z3, z4) = (iw, 0, iw, 0) into (A.304), we have

F1(iw, 0, iw, 0, ϕ̃)

=

∞∑
e=0

∞∑
g=0

∑
p∈Z,e+pn̂+1≥0

∑
q∈Z,g+qn̂≥0

Ae+pn̂+1,g+qn̂,e,g(ϕ̃)(iw)e+pn̂+1(iw)g+qn̂(−iw)e(−iw)g

= iw



∞∑

e=0

∞∑
g=0

∑
p∈Z,e+pn̂+1≥0

∑
q∈Z,g+qn̂≥0

Ae+pn̂+1,g+qn̂,e,g(ϕ̃)ipn̂(−i)qn̂
w

2(e+g)+(p+q)n̂



≈ iw
{

A′1000(0)ϕ̃ + (A2010(0) + A1101(0))w2
}
.

Thus, F1(iw, 0, iw, 0, ϕ̃) = 0 has a bifurcating solution if n̂ is even (ipn̂ and (−i)qn̂ are real). Then, a

discussion similar to that for Type I stripe pattern holds.

To sum up, we have the following propositions on the existence and the symmetry of the

upside-down patterns.
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Proposition A.24. For a critical point of multiplicity 8 associated with µ = (8; k, ℓ), Type I

upside-down pattern exists if the condition

gcd(k̂2
+ ℓ̂2, k̂2 − ℓ̂2) is not divisible by gcd(n̂, 2k̂ ℓ̂) (A.307)

is satisfied. Therein, k̂ = k/gcd(n, k, ℓ), ℓ̂ = ℓ/gcd(n, k, ℓ), and n̂ = n/gcd(n, k, ℓ). Type II

upside-down pattern exists if the condition (A.307) is satisfied and n̂ is even.

Proposition A.25. For a critical point of multiplicity 8 associated with µ = (8; k, ℓ), the two

bifurcating solutions (z, ϕ̃) and (−z, ϕ̃) are conjugate for z = (w, 0,w, 0), (iw, 0, iw, 0) (w ∈ R) if

n̂ = n/gcd(n, k, ℓ) is even and are not conjugate for z = (w, 0,w, 0) if n̂ is odd.

Stability of Bifurcating Solutions

In Section 3.5.6, we found the square patterns for a critical point of multiplicity 8 by using the

equivariant branching lemma. In the previous subsections, we showed the stripe and upside-down

patterns by solving the bifurcation equations. These bifurcating solutions are represented for the

bifurcation equation in real variables in (A.252) as follows (w ∈ R):

wsqVM = (w, 0,w, 0,w, 0,w, 0),
wsqT = (w, 0,w, 0, 0, 0, 0, 0),
wstripeI = (w, 0, 0, 0, 0, 0, 0, 0),
wstripeII = (0,w, 0, 0, 0, 0, 0, 0),
wupside−downI = (w, 0, 0, 0,w, 0, 0, 0),
wupside−downII = (0,w, 0, 0, 0,w, 0, 0)

We would like to evaluate the stability of these bifurcating solutions.

To obtain the the asymptotic form of the bifurcation equation and the Jacobian matrix, we first

investigate which (a, b, . . . , h) ∈ Z8
+

belongs to P in (A.295). In other words, we investigate which

Aab···h(ϕ̃) becomes nonzero in (A.296). We focus on the coefficients of linear terms, quadratic

terms, and cubic terms, which play a vital role as leading terms in (A.296). For this purpose, we

exhaustively find (a, b, . . . , h) ∈ Z8
+

such as

(a, b, . . . , h) ∈ P with a + b + · · · + h ≤ 3.

Let us take some (a, b, . . . , h) ∈ Z8
+

and substitute it into the matrix A in (A.293). Then, A becomes

any one of twelve possible forms as shown in Table A.6. The condition (A.294) varies with the

form of A.

For the case (i), the elements of A in (A.293) represent

a + c − e − g − 1 = 0, a − c − e + g − 1 = 0, (A.308)

−b − d + f + h = 0, b − d − f + h = 0. (A.309)

The condition in (A.294) is rewritten as

∃p, q ∈ Z s.t. pn̂ = 0, qn̂ = 0. (A.310)
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Table A.6: Possible cases for A in (A.293).

Cases Conditions in (A.294)

(i) A = O ∃p, q ∈ Z s.t. pn̂ = 0, qn̂ = 0

(ii) A =

[
α 0

0 0

]
∃p, q ∈ Z s.t. pn̂ = αk̂, qn̂ = 0

(iii) A =

[
0 β

0 0

]
∃p, q ∈ Z s.t. pn̂ = βℓ̂, qn̂ = 0

(iv) A =

[
0 0

γ 0

]
∃p, q ∈ Z s.t. pn̂ = 0, qn̂ = γ k̂

(v) A =

[
0 0

0 δ

]
∃p, q ∈ Z s.t. pn̂ = 0, qn̂ = δℓ̂

(vi) A =

[
α 0

γ 0

]
∃p, q ∈ Z s.t. pn̂ = αk̂, qn̂ = γ k̂

(vii) A =

[
0 β

0 δ

]
∃p, q ∈ Z s.t. pn̂ = βℓ̂, qn̂ = δℓ̂

(viii) A =

[
α β

0 0

]
∃p, q ∈ Z s.t. pn̂ = αk̂ + βℓ̂, qn̂ = 0

(ix) A =

[
0 0

γ δ

]
∃p, q ∈ Z s.t. pn̂ = 0, qn̂ = γ k̂ + δℓ̂

(x) A =

[
α 0

0 δ

]
∃p, q ∈ Z s.t. pn̂ = αk̂, qn̂ = δℓ̂

(xi) A =

[
0 β

γ 0

]
∃p, q ∈ Z s.t. pn̂ = βℓ̂, qn̂ = γ k̂

(xii) A =

[
α β

γ δ

]
∃p, q ∈ Z s.t. pn̂ = αk̂ + βℓ̂, qn̂ = γ k̂ + δℓ̂
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Table A.7: Possible cases for (a, b, c, d, e, f , g, h) ∈ Z8
+
.

(a, b, c, d, e, f , g, h) α β γ δ A Existence of p, q ∈ Z in (A.293)

(0, 0, 0, 0, 0, 0, 0, 0) -1 0 0 -1 (x) -

(1, 0, 0, 0, 0, 0, 0, 0) 0 0 0 0 (i) p = 0, q = 0 for any (n̂, k̂, ℓ̂)
(0, 1, 0, 0, 0, 0, 0, 0) -1 -1 1 -1 (xii) -

(0, 0, 1, 0, 0, 0, 0, 0) 0 0 0 -2 (v) -

(0, 0, 0, 1, 0, 0, 0, 0) -1 -1 -1 -1 (xii) -

(0, 0, 0, 0, 1, 0, 0, 0) -2 0 0 -2 (x) -

(0, 0, 0, 0, 0, 1, 0, 0) -1 1 -1 -1 (xii) -

(0, 0, 0, 0, 0, 0, 1, 0) -2 0 0 0 (ii) -

(0, 0, 0, 0, 0, 0, 0, 1) -1 1 1 -1 (xii) -

(2, 0, 0, 0, 0, 0, 0, 0) 1 0 0 1 (x) -

(0, 2, 0, 0, 0, 0, 0, 0) -1 -2 2 -1 (xii) -

(0, 0, 2, 0, 0, 0, 0, 0) 1 0 0 -3 (x) -

(0, 0, 0, 2, 0, 0, 0, 0) -1 -2 -2 -1 (xii) -

(0, 0, 0, 0, 2, 0, 0, 0) -3 0 0 -3 (x) -

(0, 0, 0, 0, 0, 2, 0, 0) -1 2 -2 -1 (xii) p = 0, q = −1 for (n̂, k̂, ℓ̂) = (5, 2, 1)
(0, 0, 0, 0, 0, 0, 2, 0) -3 0 0 1 (x) -

(0, 0, 0, 0, 0, 0, 0, 2) -1 2 2 -1 (xii) -

(1, 1, 0, 0, 0, 0, 0, 0) 0 -1 1 0 (xi) -

(1, 0, 1, 0, 0, 0, 0, 0) 1 0 0 -1 (x) -

(1, 0, 0, 1, 0, 0, 0, 0) 0 -1 -1 0 (xi) -

(1, 0, 0, 0, 1, 0, 0, 0) -1 0 0 -1 (x) -

(1, 0, 0, 0, 0, 1, 0, 0) 0 1 -1 0 (xi) -

(1, 0, 0, 0, 0, 0, 1, 0) -1 0 0 1 (x) -

(1, 0, 0, 0, 0, 0, 0, 1) 0 1 1 0 (xi) -

(0, 1, 1, 0, 0, 0, 0, 0) 0 -1 1 -2 (xii) -

(0, 1, 0, 1, 0, 0, 0, 0) -1 -2 0 -1 (xii) -

(0, 1, 0, 0, 1, 0, 0, 0) -2 -1 1 -2 (xii) p = −1, q = 0 for (n̂, k̂, ℓ̂) = (5, 2, 1)
(0, 1, 0, 0, 0, 1, 0, 0) -1 0 0 -1 (x) -

(0, 1, 0, 0, 0, 0, 1, 0) -2 -1 1 0 (xii) -

(0, 1, 0, 0, 0, 0, 0, 1) -1 0 2 -1 (xii) -

α = a + c − e − g − 1; β = −b − d + f + h; γ = b − d − f + h; δ = a − c − e + g − 1
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Table A.8: Possible cases for (a, b, c, d, e, f , g, h) ∈ Z8
+
.

(a, b, c, d, e, f , g, h) α β γ δ A Existence of p, q ∈ Z in (A.293)

(0, 0, 1, 1, 0, 0, 0, 0) 0 -1 -1 -2 (xii) -

(0, 0, 1, 0, 1, 0, 0, 0) -1 0 0 -3 (x) -

(0, 0, 1, 0, 0, 1, 0, 0) 0 1 -1 -2 (xii) -

(0, 0, 1, 0, 0, 0, 1, 0) -1 0 0 -1 (x) -

(0, 0, 1, 0, 0, 0, 0, 1) 0 1 1 -2 (xii) -

(0, 0, 0, 1, 1, 0, 0, 0) -2 -1 -1 -2 (xii) -

(0, 0, 0, 1, 0, 1, 0, 0) -1 0 -2 -1 (xii) -

(0, 0, 0, 1, 0, 0, 1, 0) -2 -1 -1 0 (xii) -

(0, 0, 0, 1, 0, 0, 0, 1) -1 0 0 -1 (x) -

(0, 0, 0, 0, 1, 1, 0, 0) -2 1 -1 -2 (xii) -

(0, 0, 0, 0, 1, 0, 1, 0) -3 0 0 -1 (x) -

(0, 0, 0, 0, 1, 0, 0, 1) -2 1 1 -2 (xii) -

(0, 0, 0, 0, 0, 1, 1, 0) -2 1 -1 0 (xii) -

(0, 0, 0, 0, 0, 1, 0, 1) -1 2 0 -1 (xii) -

(0, 0, 0, 0, 0, 0, 1, 1) -2 1 1 0 (xii) -

(3, 0, 0, 0, 0, 0, 0, 0) 2 0 0 2 (x) -

(0, 3, 0, 0, 0, 0, 0, 0) -1 -3 3 -1 (xii) p = −1, q = 1 for (n̂, k̂, ℓ̂) = (5, 2, 1)
(0, 0, 3, 0, 0, 0, 0, 0) 2 0 0 -4 (x) -

(0, 0, 0, 3, 0, 0, 0, 0) -1 -3 -3 -1 (xii) -

(0, 0, 0, 0, 3, 0, 0, 0) -4 0 0 -4 (x) -

(0, 0, 0, 0, 0, 3, 0, 0) -1 3 -3 -1 (xii) p = 0, q = 1 for (n̂, k̂, ℓ̂) = (10, 3, 1)
(0, 0, 0, 0, 0, 0, 3, 0) -4 0 0 2 (x) -

(0, 0, 0, 0, 0, 0, 0, 3) -1 3 3 -1 (xii) p = 0, q = −1 for (n̂, k̂, ℓ̂) = (8, 3, 1)
(2, 1, 0, 0, 0, 0, 0, 0) 1 -1 1 1 (xii) -

(2, 0, 1, 0, 0, 0, 0, 0) 2 0 0 0 (ii) -

(2, 0, 0, 1, 0, 0, 0, 0) 1 -1 -1 1 (xii) -

(2, 0, 0, 0, 1, 0, 0, 0) 0 0 0 0 (i) p = 0, q = 0 for any (n̂, k̂, ℓ̂)
(2, 0, 0, 0, 0, 1, 0, 0) 1 1 -1 1 (xii) -

(2, 0, 0, 0, 0, 0, 1, 0) 0 0 0 2 (v) -

(2, 0, 0, 0, 0, 0, 0, 1) 1 1 1 1 (xii) -

α = a + c − e − g − 1; β = −b − d + f + h; γ = b − d − f + h; δ = a − c − e + g − 1
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Table A.9: Possible cases for (a, b, c, d, e, f , g, h) ∈ Z8
+
.

(a, b, c, d, e, f , g, h) α β γ δ A Existence of p, q ∈ Z in (A.293)

(1, 2, 0, 0, 0, 0, 0, 0) 0 -2 2 0 (xi) -

(0, 2, 1, 0, 0, 0, 0, 0) 0 -2 2 -2 (xii) -

(0, 2, 0, 1, 0, 0, 0, 0) -1 -3 1 -1 (xii) -

(0, 2, 0, 0, 1, 0, 0, 0) -2 -2 2 -2 (xii) -

(0, 2, 0, 0, 0, 1, 0, 0) -1 -1 1 -1 (xii) -

(0, 2, 0, 0, 0, 0, 1, 0) -2 -2 2 0 (xii) -

(0, 2, 0, 0, 0, 0, 0, 1) -1 -1 3 -1 (xii) -

(1, 0, 2, 0, 0, 0, 0, 0) 2 0 0 -2 (x) -

(0, 1, 2, 0, 0, 0, 0, 0) 1 -1 1 -3 (xii) -

(0, 0, 2, 1, 0, 0, 0, 0) 1 -1 -1 -3 (xii) -

(0, 0, 2, 0, 1, 0, 0, 0) 0 0 0 -4 (v) p = 0, q = −1 for n̂ = 4ℓ̂

(0, 0, 2, 0, 0, 1, 0, 0) 1 1 -1 -3 (xii) -

(0, 0, 2, 0, 0, 0, 1, 0) 0 0 0 -2 (v) -

(0, 0, 2, 0, 0, 0, 0, 1) 1 1 1 -3 (xii) -

(1, 0, 0, 2, 0, 0, 0, 0) 0 -2 -2 0 (xi) -

(0, 1, 0, 2, 0, 0, 0, 0) -1 -3 -1 -1 (xii) -

(0, 0, 1, 2, 0, 0, 0, 0) 0 -2 -2 -2 (xii) -

(0, 0, 0, 2, 1, 0, 0, 0) -2 -2 -2 -2 (xii) p = −1, q = −1 for n̂ = 2k̂ + 2ℓ̂

(0, 0, 0, 2, 0, 1, 0, 0) -1 -1 -3 -1 (xii) -

(0, 0, 0, 2, 0, 0, 1, 0) -2 -2 -2 0 (xii) -

(0, 0, 0, 2, 0, 0, 0, 1) -1 -1 -1 -1 (xii) -

(1, 0, 0, 0, 2, 0, 0, 0) -2 0 0 -2 (x) -

(0, 1, 0, 0, 2, 0, 0, 0) -3 -1 1 -3 (xii) p = −1, q = 0 for (n̂, k̂, ℓ̂) = (10, 3, 1)
(0, 0, 1, 0, 2, 0, 0, 0) -2 0 0 -4 (x) -

(0, 0, 0, 1, 2, 0, 0, 0) -3 -1 -1 -3 (xii) -

(0, 0, 0, 0, 2, 1, 0, 0) -3 1 -1 -3 (xii) p = −1, q = −1 for (n̂, k̂, ℓ̂) = (5, 2, 1)
(0, 0, 0, 0, 2, 0, 1, 0) -4 0 0 -2 (x) -

(0, 0, 0, 0, 2, 0, 0, 1) -3 1 1 -3 (xii) p = −1, q = 0 for (n̂, k̂, ℓ̂) = (8, 3, 1)
α = a + c − e − g − 1; β = −b − d + f + h; γ = b − d − f + h; δ = a − c − e + g − 1
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Table A.10: Possible cases for (a, b, c, d, e, f , g, h) ∈ Z8
+
.

(a, b, c, d, e, f , g, h) α β γ δ A Existence of p, q ∈ Z in (A.293)

(1, 0, 0, 0, 0, 2, 0, 0) 0 2 -2 0 (xi) -

(0, 1, 0, 0, 0, 2, 0, 0) -1 1 -1 -1 (xii) -

(0, 0, 1, 0, 0, 2, 0, 0) 0 2 -2 -2 (xii) -

(0, 0, 0, 1, 0, 2, 0, 0) -1 1 -3 -1 (xii) -

(0, 0, 0, 0, 1, 2, 0, 0) -2 2 -2 -2 (xii) -

(0, 0, 0, 0, 0, 2, 1, 0) -2 2 -2 0 (xii) -

(0, 0, 0, 0, 0, 2, 0, 1) -1 3 -1 -1 (xii) -

(1, 0, 0, 0, 0, 0, 2, 0) -2 0 0 2 (x) -

(0, 1, 0, 0, 0, 0, 2, 0) -3 -1 1 1 (xii) -

(0, 0, 1, 0, 0, 0, 2, 0) -2 0 0 0 (ii) -

(0, 0, 0, 1, 0, 0, 2, 0) -3 -1 -1 1 (xii) -

(0, 0, 0, 0, 1, 0, 2, 0) -4 0 0 0 (ii) p = −1, q = 0 for n̂ = 4k̂

(0, 0, 0, 0, 0, 1, 2, 0) -3 1 -1 1 (xii) -

(0, 0, 0, 0, 0, 0, 2, 1) -3 1 1 1 (xii) -

(1, 0, 0, 0, 0, 0, 0, 2) 0 2 2 0 (xi) -

(0, 1, 0, 0, 0, 0, 0, 2) -1 1 3 -1 (xii) -

(0, 0, 1, 0, 0, 0, 0, 2) 0 2 2 -2 (xii) -

(0, 0, 0, 1, 0, 0, 0, 2) -1 1 1 -1 (xii) -

(0, 0, 0, 0, 1, 0, 0, 2) -2 2 2 -2 (xii) -

(0, 0, 0, 0, 0, 1, 0, 2) -1 3 1 -1 (xii) -

(0, 0, 0, 0, 0, 0, 1, 2) -2 2 2 0 (xii) -

(1, 1, 1, 0, 0, 0, 0, 0) 1 -1 1 -1 (xii) -

(1, 1, 0, 1, 0, 0, 0, 0) 0 -2 0 0 (iii) -

(1, 1, 0, 0, 1, 0, 0, 0) -1 -1 1 -1 (xii) -

(1, 1, 0, 0, 0, 1, 0, 0) 0 0 0 0 (i) p = 0, q = 0 for any (n̂, k̂, ℓ̂)
(1, 1, 0, 0, 0, 0, 1, 0) -1 -1 1 1 (xii) -

(1, 1, 0, 0, 0, 0, 0, 1) 0 0 2 0 (iv) -

α = a + c − e − g − 1; β = −b − d + f + h; γ = b − d − f + h; δ = a − c − e + g − 1
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Table A.11: Possible cases for (a, b, c, d, e, f , g, h) ∈ Z8
+
.

(a, b, c, d, e, f , g, h) α β γ δ A Existence of p, q ∈ Z in (A.293)

(1, 0, 1, 1, 0, 0, 0, 0) 1 -1 -1 -1 (xii) -

(1, 0, 1, 0, 1, 0, 0, 0) 0 0 0 -2 (v) -

(1, 0, 1, 0, 0, 1, 0, 0) 1 1 -1 -1 (xii) -

(1, 0, 1, 0, 0, 0, 1, 0) 0 0 0 0 (i) p = 0, q = 0 for any (n̂, k̂, ℓ̂)
(1, 0, 1, 0, 0, 0, 0, 1) 1 1 1 -1 (xii) -

(1, 0, 0, 1, 1, 0, 0, 0) -1 -1 -1 -1 (xii) -

(1, 0, 0, 1, 0, 1, 0, 0) 0 0 -2 0 (iv) -

(1, 0, 0, 1, 0, 0, 1, 0) -1 -1 -1 1 (xii) -

(1, 0, 0, 1, 0, 0, 0, 1) 0 0 0 0 (i) p = 0, q = 0 for any (n̂, k̂, ℓ̂)
(1, 0, 0, 0, 1, 1, 0, 0) -1 1 -1 -1 (xii) -

(1, 0, 0, 0, 1, 0, 1, 0) -2 0 0 0 (ii) -

(1, 0, 0, 0, 1, 0, 0, 1) -1 1 1 -1 (xii) -

(1, 0, 0, 0, 0, 1, 1, 0) -1 1 -1 1 (xii) -

(1, 0, 0, 0, 0, 1, 0, 1) 0 2 0 0 (iii) -

(1, 0, 0, 0, 0, 0, 1, 1) -1 1 1 1 (xii) -

(0, 1, 1, 1, 0, 0, 0, 0) 0 -2 0 -2 (vii) -

(0, 1, 1, 0, 1, 0, 0, 0) -1 -1 1 -3 (xii) -

(0, 1, 1, 0, 0, 1, 0, 0) 0 0 0 -2 (v) -

(0, 1, 1, 0, 0, 0, 1, 0) -1 -1 1 -1 (xii) -

(0, 1, 1, 0, 0, 0, 0, 1) 0 0 2 -2 (ix) -

(0, 1, 0, 1, 1, 0, 0, 0) -2 -2 0 -2 (xii) -

(0, 1, 0, 1, 0, 1, 0, 0) -1 -1 -1 -1 (xii) -

(0, 1, 0, 1, 0, 0, 1, 0) -2 -2 0 0 (viii) p = −1, q = 0 for n̂ = 2k̂ + 2ℓ̂

(0, 1, 0, 1, 0, 0, 0, 1) -1 -1 1 -1 (xii) -

(0, 1, 0, 0, 1, 1, 0, 0) -2 0 0 -2 (x) -

(0, 1, 0, 0, 1, 0, 1, 0) -3 -1 1 -1 (xii) -

(0, 1, 0, 0, 1, 0, 0, 1) -2 0 2 -2 (xii) -

(0, 1, 0, 0, 0, 1, 1, 0) -2 0 0 0 (ii) -

(0, 1, 0, 0, 0, 1, 0, 1) -1 1 1 -1 (xii) -

(0, 1, 0, 0, 0, 0, 1, 1) -2 0 2 0 (vi) -

α = a + c − e − g − 1; β = −b − d + f + h; γ = b − d − f + h; δ = a − c − e + g − 1
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Table A.12: Possible cases for (a, b, c, d, e, f , g, h) ∈ Z8
+
.

(a, b, c, d, e, f , g, h) α β γ δ A Existence of p, q ∈ Z in (A.293)

(0, 0, 1, 1, 1, 0, 0, 0) -1 -1 -1 -3 (xii) -

(0, 0, 1, 1, 0, 1, 0, 0) 0 0 -2 -2 (ix) -

(0, 0, 1, 1, 0, 0, 1, 0) -1 -1 -1 -1 (xii) -

(0, 0, 1, 1, 0, 0, 0, 1) 0 0 0 -2 (v) p = 0, q = −1 for n̂ = 2k̂ + 2ℓ̂

(0, 0, 1, 0, 1, 1, 0, 0) -1 1 -1 -3 (xii) -

(0, 0, 1, 0, 1, 0, 1, 0) -2 0 0 -2 (x) -

(0, 0, 1, 0, 1, 0, 0, 1) -1 1 1 -3 (xii) -

(0, 0, 1, 0, 0, 1, 1, 0) -1 1 -1 -1 (xii) -

(0, 0, 1, 0, 0, 1, 0, 1) 0 2 0 -2 (vii) -

(0, 0, 1, 0, 0, 0, 1, 1) -1 1 1 -1 (xii) -

(0, 0, 0, 1, 1, 1, 0, 0) -2 0 -2 -2 (xii) -

(0, 0, 0, 1, 1, 0, 1, 0) -3 -1 -1 -1 (xii) -

(0, 0, 0, 1, 1, 0, 0, 1) -2 0 0 -2 (x) -

(0, 0, 0, 1, 0, 1, 1, 0) -2 0 -2 0 (vi) -

(0, 0, 0, 1, 0, 1, 0, 1) -1 1 -1 -1 (xii) -

(0, 0, 0, 1, 0, 0, 1, 1) -2 0 0 0 (ii) -

(0, 0, 0, 0, 1, 1, 1, 0) -3 1 -1 -1 (xii) -

(0, 0, 0, 0, 1, 1, 0, 1) -2 2 0 -2 (xii) -

(0, 0, 0, 0, 1, 0, 1, 1) -3 1 1 -1 (xii) -

(0, 0, 0, 0, 0, 1, 1, 1) -2 2 0 0 (viii) -

α = a + c − e − g − 1; β = −b − d + f + h; γ = b − d − f + h; δ = a − c − e + g − 1
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This condition is satisfied for any values of (n̂, k̂, ℓ̂)when p = q = 0. Recall that a+ b+ . . .+ h ≤ 3.

Then, (a, b, . . . , h) which satisfy (A.308) and (A.309) are enumerated as follows:

(1, 0, 0, 0, 0, 0, 0, 0), (2, 0, 0, 0, 1, 0, 0, 0), (1, 1, 0, 0, 0, 1, 0, 0),
(1, 0, 1, 0, 0, 0, 1, 0), (1, 0, 0, 1, 0, 0, 0, 1) ∈ P for any (n̂, k̂, ℓ̂). (A.311)

For the case (ii), the elements of A in (A.293) represent

a + c − e − g − 1 = α, a − c − e + g − 1 = 0, (A.312)

−b − d + f + h = 0, b − d − f + h = 0. (A.313)

The condition in (A.294) is rewritten as

∃p, q ∈ Z s.t. pn̂ = αk̂, qn̂ = 0. (A.314)

From the conditions for ℓ, k, and n in (A.248), we have necessary conditions 1 ≤ ℓ < k < n/2.

Dividing each side of these inequalities by gcd(k, ℓ, n), we have 1/gcd(k, ℓ, n) ≤ ℓ̂ < k̂ < n̂/2.

Since ℓ̂, k̂, and n̂ are integers, we have 1 ≤ ℓ̂ < k̂ < n̂/2. Thus, for the case |α | ≤ 2, we see that

pn̂ = αk̂ is not satisfied for any p. From this, we have |α | ≥ 3. The sum of equalities in (A.312)

leads to α = 2(a − e − 1). From this, α is even. Recall that a + b + . . . + h ≤ 3. From this,

α = a + c − e − g − 1 takes a value within the range of −4 ≤ α ≤ 2. From this and |α | ≥ 3, we

have α = −4. From (A.312) and (A.313), we have (a, b, c, d, e, f , g, h) = (0, 0, 0, 0, 1, 0, 2, 0). From

(A.314), we have −4k̂ = pn̂. This condition is satisfied for p = −1. Hence, we have

(0, 0, 0, 0, 1, 0, 2, 0) ∈ P for n̂ = 4k̂ .

For the case (iii), the elements of A in (A.293) represent

a + c − e − g − 1 = 0, a − c − e + g − 1 = 0, (A.315)

−b − d + f + h = β, b − d − f + h = 0. (A.316)

The condition in (A.294) is rewritten as

∃p, q ∈ Z s.t. pn̂ = βℓ̂, qn̂ = 0. (A.317)

Recall that 1 ≤ ℓ̂ < k̂ < n̂/2. Thus, for the case |β| ≤ 2, we see that pn̂ = βℓ̂ is not satisfied for

any p. From this, we have |β | ≥ 3. The sum of equalities in (A.316) leads to β = −2(d − h). From

this, β is even. Recall that a + b+ . . . + h ≤ 3. From this, β = −b− d + f + h takes a value within

the range of −3 ≤ β ≤ 3. Hence, we have β = ±2. This contradicts |β | ≥ 3.

For the case (iv), the elements of A in (A.293) represent

a + c − e − g − 1 = 0, a − c − e + g − 1 = 0, (A.318)

−b − d + f + h = 0, b − d − f + h = γ. (A.319)

The condition in (A.294) is rewritten as

∃p, q ∈ Z s.t. pn̂ = 0, qn̂ = γ k̂ . (A.320)
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Recall that 1 ≤ ℓ̂ < k̂ < n̂/2. Thus, for the case |γ | ≤ 2, we see that qn̂ = γ k̂ is not satisfied for

any q. From this, we have |γ | ≥ 3. The sum of equalities in (A.319) leads to γ = −2(d − h). From

this, γ is even. Recall that a + b + . . . + h ≤ 3. From this, γ = b − d − f + h takes a value within

the range of −3 ≤ γ ≤ 3. Hence, we have γ = ±2. This contradicts |γ | ≥ 3.

For the case (v), the elements of A in (A.293) represent

a + c − e − g − 1 = 0, a − c − e + g − 1 = δ, (A.321)

−b − d + f + h = 0, b − d − f + h = 0. (A.322)

The condition in (A.294) is rewritten as

∃p, q ∈ Z s.t. pn̂ = 0, qn̂ = δℓ̂. (A.323)

Recall that 1 ≤ ℓ̂ < k̂ < n̂/2. Thus, for the case |δ | ≤ 2, we see that qn̂ = δℓ̂ is not satisfied for any

p. From this, we have |δ | ≥ 3. Recall that a+ b+ . . .+ h ≤ 3. From this, δ = a− c− e+g−1 takes

a value within the range of −4 ≤ δ ≤ 2. From this and |δ | ≥ 3, we have δ = −4. From (A.321)

and (A.322), we have (a, b, c, d, e, f , g, h) = (0, 0, 2, 0, 1, 0, 0, 0). From (A.323), we have −4ℓ̂ = pn̂.

This condition is satisfied for p = −1. Hence, we have

(0, 0, 2, 0, 1, 0, 0, 0) ∈ P for n̂ = 4ℓ̂.

For the case (vi), the elements of A in (A.293) represent

a + c − e − g − 1 = α, a − c − e + g − 1 = 0, (A.324)

−b − d + f + h = 0, b − d − f + h = γ. (A.325)

The condition in (A.294) is rewritten as

∃p, q ∈ Z s.t. pn̂ = αk̂, qn̂ = γ k̂ . (A.326)

Recall that 1 ≤ ℓ̂ < k̂ < n̂/2. Thus, for the case |γ | ≤ 2, we see that qn̂ = γ k̂ is not satisfied for

any q. From this, we have |γ | ≥ 3. The sum of equalities in (A.325) leads to γ = −2(d − h). From

this, γ is even. Recall that a + b + . . . + h ≤ 3. From this, γ = b − d − f + h takes a value within

the range of −3 ≤ γ ≤ 3. Hence, we have γ = ±2. This contradicts |γ | ≥ 3.

For the case (vii), the elements of A in (A.293) represent

a + c − e − g − 1 = 0, a − c − e + g − 1 = δ, (A.327)

−b − d + f + h = β, b − d − f + h = 0. (A.328)

The condition in (A.294) is rewritten as

∃p, q ∈ Z s.t. pn̂ = βℓ̂, qn̂ = δℓ̂. (A.329)

Recall that 1 ≤ ℓ̂ < k̂ < n̂/2. Thus, for the case |β| ≤ 2, we see that pn̂ = βℓ̂ is not satisfied for

any p. From this, we have |β | ≥ 3. The sum of equalities in (A.328) leads to β = −2(d − h). From
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this, β is even. Recall that a + b+ . . . + h ≤ 3. From this, β = −b− d + f + h takes a value within

the range of −3 ≤ β ≤ 3. Hence, we have β = ±2. This contradicts |β | ≥ 3.

For the case (viii), the elements of A in (A.293) represent

a + c − e − g − 1 = α, a − c − e + g − 1 = 0, (A.330)

−b − d + f + h = β, b − d − f + h = 0. (A.331)

The condition in (A.294) is rewritten as

∃p, q ∈ Z s.t. pn̂ = αk̂ + βℓ̂, qn̂ = 0. (A.332)

Recall that a + b + . . . + h ≤ 3. From this, α = a + c − e − g − 1 takes a value within the range

of −4 ≤ α ≤ 2. The sum of equalities in (A.330) leads to α = 2(a − e − 1). Thus, α is even.

Hence, we have α = ±2,−4. In a similar manner, β = −b − d + f + h takes a value within

the range of −3 ≤ β ≤ 3. The sum of equalities in (A.331) leads to β = −2(d − h). Thus, β

is even. Hence, we have β = ±2. When we consider α = −4, we have (a, b, c, d, e, f , g, h) =
(0, 0, 0, 0, 1, 0, 2, 0). Hence, we have β = 0. This contradicts β , 0. When we consider α = 2,

we have (a, b, c, d, e, f , g, h) = (2, 0, 1, 0, 0, 0, 0, 0). Hence, we have β = 0. This contradicts β , 0.

When we consider α = −2 with β = 2, we have (a, b, c, d, e, f , g, h) = (0, 0, 0, 0, 0, 1, 1, 1). From

(A.332), we have−2(k̂−ℓ̂) = pn̂. Recall that 1 ≤ ℓ̂ < k̂ < n̂/2. From this, we have 1 ≤ k̂−ℓ̂ < n̂/2.

Thus, the condition −2(k̂ − ℓ̂) = pn̂ is not satisfied for any p. When we consider α = −2 with

β = −2, we have (a, b, c, d, e, f , g, h) = (0, 1, 0, 1, 0, 0, 1, 0). From (A.332), we have −2(k̂ + ℓ̂) = pn̂.

This condition is satisfied for p = −1. Hence, we have

(0, 1, 0, 1, 0, 0, 1, 0) ∈ P for n̂ = 2k̂ + 2ℓ̂.

For the case (ix), the elements of A in (A.293) represent

a + c − e − g − 1 = 0, a − c − e + g − 1 = δ, (A.333)

−b − d + f + h = 0, b − d − f + h = γ. (A.334)

The condition in (A.294) is rewritten as

∃p, q ∈ Z s.t. pn̂ = 0, qn̂ = γ k̂ + δℓ̂. (A.335)

Recall that a + b + . . . + h ≤ 3. From this, α = a − c − e + g − 1 takes a value within the

range of −4 ≤ α ≤ 2. The sum of equalities in (A.333) leads to α = 2(a − e − 1). Thus, α is

even. Hence, we have α = ±2,−4. In a similar manner, β = b − d − f + h takes a value within

the range of −3 ≤ β ≤ 3. The sum of equalities in (A.334) leads to β = −2(d − h). Thus, β

is even. Hence, we have β = ±2. When we consider α = −4, we have (a, b, c, d, e, f , g, h) =
(0, 0, 2, 0, 1, 0, 0, 0). Hence, we have β = 0. This contradicts β , 0. When we consider α = 2,

we have (a, b, c, d, e, f , g, h) = (2, 0, 0, 0, 0, 0, 1, 0). Hence, we have β = 0. This contradicts β , 0.

When we consider α = −2 with β = 2, we have (a, b, c, d, e, f , g, h) = (0, 1, 1, 0, 0, 0, 0, 1). From

(A.335), we have−2(k̂−ℓ̂) = qn̂. Recall that 1 ≤ ℓ̂ < k̂ < n̂/2. From this, we have 1 ≤ k̂−ℓ̂ < n̂/2.

Thus, the condition −2(k̂ − ℓ̂) = qn̂ is not satisfied for any q. When we consider α = −2 with
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β = −2, we have (a, b, c, d, e, f , g, h) = (0, 0, 1, 1, 0, 1, 0, 0). From (A.335), we have −2(k̂ + ℓ̂) = qn̂.

This condition is satisfied for q = −1. Hence, we have

(0, 0, 1, 1, 0, 1, 0, 0) ∈ P for n̂ = 2k̂ + 2ℓ̂.

For the case (x), the elements of A in (A.293) represent

a + c − e − g − 1 = α, a − c − e + g − 1 = δ, (A.336)

−b − d + f + h = 0, b − d − f + h = 0. (A.337)

The condition in (A.294) is equivalent to

∃p, q ∈ Z s.t. pn̂ = αk̂, qn̂ = δℓ̂. (A.338)

Recall that 1 ≤ ℓ̂ < k̂ < n̂/2. Thus, for the case |α | ≤ 2, we see that pn̂ = αk̂ is not satisfied

for any p. From this, we have |α | ≥ 3. Similarly, for the case |δ | ≤ 2, we see that qn̂ = δℓ̂ is

not satisfied for any q. From this, we have |δ | ≥ 3. According to the results in Table A.12–A.12,

only (a, b, c, d, e, f , g, h) = (0, 0, 0, 0, 2, 0, 0, 0) corresponds to this case. From (A.338), we have

pn̂ = −3k̂ and qn̂ = −3ℓ̂. From 1 ≤ ℓ̂ < k̂ < n̂/2, we have p = −1 and q = −1. Thus, we have

n̂ = 3k̂ and n̂ = 3ℓ̂. This contradicts k̂ , ℓ̂.

For the case (xi), the elements of A in (A.293) represent

a + c − e − g − 1 = 0, a − c − e + g − 1 = 0, (A.339)

−b − d + f + h = β, b − d − f + h = γ. (A.340)

The condition in (A.294) is equivalent to

∃p, q ∈ Z s.t. pn̂ = βℓ̂, qn̂ = γ k̂ . (A.341)

Recall that 1 ≤ ℓ̂ < k̂ < n̂/2. Thus, for the case |β| ≤ 2, we see that pn̂ = βℓ̂ is not satisfied for

any p. From this, we have |β | ≥ 3. Similarly, for the case |γ | ≤ 2, we see that qn̂ = γ k̂ is not

satisfied for any q. From this, we have |γ | ≥ 3. According to the results in Table A.7–A.12, no

(a, b, c, d, e, f , g, h) corresponds to this case.

For the case (xii), the elements of A in (A.293) represent

a + c − e − g − 1 = α, a − c − e + g − 1 = δ, (A.342)

−b − d + f + h = β, b − d − f + h = γ. (A.343)

The condition in (A.294) is rewritten as

∃p, q ∈ Z s.t. pn̂ = αk̂ + βℓ̂, qn̂ = γ k̂ + δℓ̂. (A.344)

All (a, b, c, d, e, f , g, h) that correspond to this case are shown in Table A.7–A.12.

Based on the above discussion, Fi (i = 1, . . . , 4) is restricted to the form of

Fi = a1ϕ̃zi + FC
i + (other terms), i = 1, . . . , 4, (A.345)
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Table A.13: Nonzero coefficients of leading terms which belong to "other terms" in (A.345).

(n̂, k̂, ℓ̂) Nonzero coefficients

General (n̂, k̂, ℓ̂) None

(5, 2, 1) A01001000(0), A00000200(0), A03000000(0), A00002100(0)
(8, 3, 1) A01010010(0), A00110100(0), A00021000(0), A00002001(0), A00000003(0)
(10, 3, 1) A01002000(0), A00000300(0)
(4k̂, k̂, ℓ̂) A00001020(0)
(4ℓ̂, k̂, ℓ̂) A00201000(0)
(2k̂ + 2ℓ̂, k̂, ℓ̂) A01010010(0), A00110100(0), A00021000(0)
with (k̂, ℓ̂) , (3, 1)

where

FC
1 = z1(a2 |z1 |2 + a3 |z2 |2 + a4 |z3 |2 + a5 |z4 |2), (A.346)

FC
2 = z2(a2 |z2 |2 + a3 |z1 |2 + a4 |z4 |2 + a5 |z3 |2), (A.347)

FC
3 = z3(a2 |z3 |2 + a3 |z4 |2 + a4 |z1 |2 + a5 |z2 |2), (A.348)

FC
4 = z4(a2 |z4 |2 + a3 |z3 |2 + a4 |z2 |2 + a5 |z1 |2) (A.349)

with the following notations:24

a1 = A′10000000(0), a2 = A20001000(0), a3 = A11000100(0),
a4 = A10100010(0), a5 = A10010001(0). (A.350)

F2, F3, and F4 are obtained by (A.276), (A.277), and (A.279), respectively.

In (A.345), FC
i

corresponds to cubic terms, and the form of “(other terms)” varies with the

values of (n̂, k̂, ℓ̂). For the case (n̂, k̂, ℓ̂) = (5, 2, 1), we have quadratic terms as leading terms. For

any other cases, we have cubic terms as leading terms that vary with the values of (n̂, k̂, ℓ̂). From

this point of view, we classify the form of the bifurcation equation as shown in Table A.13 by the

values of (n̂, k̂, ℓ̂).
The form of “(other terms)” in (A.345) depends on the values of (n̂, k̂, ℓ̂) in (A.249). All

the possible cases and stability conditions for the bifurcating solutions are summarized in Tables

A.14–A.16. The main finding of this section is as follows:

Proposition A.26. For a critical point of multiplicity 8 associated with µ = (8; k, ℓ), we have the

following statements:

• For the case (n̂, k̂, ℓ̂) = (5, 2, 1), the bifurcating solution wsqT is always unstable in the

neighborhood of the critical point, and the bifurcating curve takes the form ϕ̃ ≈ cw for some

constant c.

24 These notations are local and should not be confused with (A.201) used in Appendix A.6.4.
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Table A.14: Stability conditions of bifurcating solutions for group-theoretic critical points with multiplicity 8.

(n̂, k̂, ℓ̂) Solutions Stability conditions (necessary conditions)

General (n̂, k̂, ℓ̂) wstripeI, wstripeII max(a3, a4, a5) < a2 < 0

wupside−downI, wupside−downII a3 − a4 + a5 < a2 < −|a4 |
wsqT −a3 + a4 + a5 < a2 < −|a3 |
wsqVM a2 + a3 < −|a4 + a5 |, a2 − a3 < −|a4 − a5 |

Table A.15: Stability conditions of bifurcating solutions for group-theoretic critical points with multiplicity 8.

(n̂, k̂, ℓ̂) Solutions Stability conditions

(5, 2, 1) wstripeI, wstripeII Does not exist

wupside−downI, wupside−downII Does not exist

wsqT Always unstable

wsqVM a6 + a7 < 0, 3a6 + a7 > 0, 2a6 + a7 > 0 if w > 0

a6 + a7 > 0, 3a6 + a7 > 0, 2a6 + a7 > 0 if w < 0

(8, 3, 1) wstripeI, wstripeII Does not exist

wupside−downI, wupside−downII Does not exist

wsqT Does not exist

wsqVM a2 + a3 + a4 + a5 + a10 + a11 + a12 + a13 + a14 < 0

a2 + a3 − a4 − a5 − a10 − a11 − a12 − 2a14 < 0

a2 − a3 + a4 − a5 − a10 − a11 − a12 − 2a14 < 0

a2 − a3 − a4 + a5 − a10 − a11 + a12 + a13 + a14 < 0

a10 + a11 + 2a12 + a13 − a14 > 0

a13 + a14 > 0

(10, 3, 1) wstripeI, wstripeII Does not exist

wupside−downI, wupside−downII Does not exist

wsqT a2 + a3 + a15 + a16 < 0

a2 − a3 − 2a16 < 0

3a15 + a16 > 0

a2 + a3 − a4 − a5 + a15 + a16 < 0

wsqVM a2 + a3 + a4 + a5 + a15 + a16 < 0

a2 + a3 − a4 − a5 − a15 − a16 < 0

a2 − a3 + a4 − a5 − 2a16 < 0

a2 − a3 − a4 + a5 − 2a16 < 0

3a15 + a16 > 0
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Table A.16: Stability conditions of bifurcating solutions for group-theoretic critical points with multiplicity 8.

(n̂, k̂, ℓ̂) Solutions Stability conditions (necessary conditions)

(4k̂, k̂, ℓ̂) wstripeI, wstripeII max(a3, a4 + |a17 |, a5) < a2 < 0

wupside−downI, wupside−downII a3 − a4 + a5 − a17 < a2 < −|a4 + a17 |
a4 > 0

wSqT Does not exist

wsqVM a2 + a3 + a4 + a5 + a17 < 0

a2 + a3 − a4 − a5 − a17 < 0

a2 − a3 + a4 − a5 + a17 < 0

a2 − a3 − a4 + a5 − a17 < 0

a17 > 0

(4ℓ̂, k̂, ℓ̂) wstripeI, wstripeII max(a3, a4 + |a18 |, a5) < a2 < 0

wupside−downI, wupside−downII a3 − a4 + a5 + a17 < a2 < −|a4 + a18 |
a18 > 0

wSqT Does not exist

wSqVM a2 + a3 + a4 + a5 + a18 < 0

a2 + a3 − a4 − a5 − a18 < 0

a2 − a3 + a4 − a5 + a18 < 0

a2 − a3 − a4 + a5 − a18 < 0

a18 > 0

(2k̂ + 2ℓ̂, k̂, ℓ̂) wstripeI, wstripeII max(a3, a4, a5 − |a12 |) < a2 < 0

with (k̂, ℓ̂) , (3, 1) wupside−downI, wupside−downII a2 < −|a4 |
a2 + a3 − a4 − a5 − a12 > −|a10 + a11 |
a2 + a3 − a4 − a5 + a12 > −|a10 − a11 |

wsqT Does not exist

wsqVM a2 + a3 + a4 + a5 + a10 + a11 + a12 < 0

a2 + a3 − a4 − a5 − a10 − a11 − a12 < 0

a2 − a3 + a4 − a5 − a10 − a11 − a12 < 0

a2 − a3 − a4 + a5 − a10 − a11 + a12 < 0

a10 + a11 + 2a12 > 0
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• For any other cases, the stability of the bifurcating solutions wstripeI, wstripeII, wupside−downI,

wupside−downII, wsqT, and wsqVM depends on the values of the coefficients of the power series

expansion of the bifurcation equation in (A.296), and the bifurcating curve takes the form

ϕ̃ ≈ cw2 for some constant c.

To show these results, we focus on each case and study stability conditions for the bifurcating

solutions in the remainder of this section.

Case 1: General (n̂, k̂, ℓ̂)
For general cases, other than special cases to be treated in the sequel, the asymptotic form of

Fi (i = 1, . . . , 4) in (A.345) becomes

Fi ≈ a1ϕ̃zi + FC
i , (A.351)

where FC
i
(i = 1, . . . , 4) are given in (A.346)–(A.349). Then, the asymptotic form of F̃i (i =

1, . . . , 8) in (A.255)–(A.258) becomes

F̃i ≈ a1ϕ̃wi + F̃C
i (A.352)

with

F̃C
1 = w1{a2(w1

2
+ w2

2) + a3(w3
2
+ w4

2) + a4(w5
2
+ w6

2) + a5(w7
2
+ w8

2)}, (A.353)

F̃C
2 = w2{a2(w1

2
+ w2

2) + a3(w3
2
+ w4

2) + a4(w5
2
+ w6

2) + a5(w7
2
+ w8

2)}, (A.354)

F̃C
3 = w3{a2(w3

2
+ w4

2) + a3(w1
2
+ w2

2) + a4(w7
2
+ w8

2) + a5(w5
2
+ w6

2)}, (A.355)

F̃C
4 = w4{a2(w3

2
+ w4

2) + a3(w1
2
+ w2

2) + a4(w7
2
+ w8

2) + a5(w5
2
+ w6

2)}, (A.356)

F̃C
5 = w5{a2(w5

2
+ w6

2) + a3(w7
2
+ w8

2) + a4(w1
2
+ w2

2) + a5(w3
2
+ w4

2)}, (A.357)

F̃C
6 = w6{a2(w5

2
+ w6

2) + a3(w7
2
+ w8

2) + a4(w1
2
+ w2

2) + a5(w3
2
+ w4

2)}, (A.358)

F̃C
7 = w7{a2(w7

2
+ w8

2) + a3(w5
2
+ w6

2) + a4(w3
2
+ w4

2) + a5(w1
2
+ w2

2)}, (A.359)

F̃C
8 = w8{a2(w7

2
+ w8

2) + a3(w5
2
+ w6

2) + a4(w3
2
+ w4

2) + a5(w1
2
+ w2

2)}, (A.360)

Hence, the asymptotic form of the Jacobian matrix in (A.253) becomes

J̃(w, ϕ̃) ≈ a1ϕ̃I8 + BC (A.361)

with the following notations:25

BC = a2B2 + a3B3 + a4B4 + a5B5, (A.362)

B2 =

[
B2

1
O

O B2
2

]
, B3 =

[
B3

1
O

O B3
2

]
, B4 =

[
B4

1
B4

3

(B4
3
)⊤ B4

2

]
, B5 =

[
B5

1
B5

3

(B5
3
)⊤ B5

2

]
,

25 The notations here are local and should not be confused with (A.214) used in Appendix A.6.4.
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B2
1 =



3w1
2
+ w2

2 2w1w2 0 0

2w1w2 w1
2
+ 3w2

2 0 0

0 0 3w3
2
+ w4

2 2w3w4

0 0 2w3w4 w3
2
+ 3w4

2


,

B2
2 =



3w5
2
+ w6

2 2w5w6 0 0

2w5w6 w5
2
+ 3w6

2 0 0

0 0 3w7
2
+ w8

2 2w7w8

0 0 2w7w8 w7
2
+ 3w8

2


,

B3
1 =



w3
2
+ w4

2 0 2w1w3 2w1w4

0 w3
2
+ w4

2 2w2w3 2w2w4

2w1w3 2w2w3 w1
2
+ w2

2 0

2w1w4 2w2w4 0 w1
2
+ w2

2


,

B3
2 =



w7
2
+ w8

2 0 2w5w7 2w5w8

0 w7
2
+ w8

2 2w6w7 2w6w8

2w5w7 2w6w7 w5
2
+ w6

2 0

2w5w8 2w6w8 0 w5
2
+ w6

2


,

B4
1 =

[
(w5

2
+ w6

2)I2 O

O (w7
2
+ w8

2)I2

]
, B4

2 =

[
(w1

2
+ w2

2)I2 O

O (w3
2
+ w4

2)I2

]
,

B4
3 = 2



w1w5 w1w6 0 0

w2w5 w2w6 0 0

0 0 w3w7 w3w8

0 0 w4w7 w4w8


, B5

1 =

[
(w7

2
+ w8

2)I2 O

O (w5
2
+ w6

2)I2

]
,

B5
2 =

[
(w3

2
+ w4

2)I2 O

O (w1
2
+ w2

2)I2

]
, B5

3 = 2



0 0 w1w7 w1w8

0 0 w2w7 w2w8

w3w5 w3w6 0 0

w4w5 w4w6 0 0


.

Substituting wstripeI = (w, 0, 0, 0, 0, 0, 0, 0) into (A.352) and solving F1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃stripeI ≈ −
a2

a1

w
2.

Evaluating the Jacobian matrix (A.361) at (wstripeI, ϕ̃stripeI), we have

J̃(wstripeI, ϕ̃stripeI) = J̃C
stripeI ≈ w

2

[
C1 O

O C2

]
(A.363)
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with

C1 =



2a2 0 0 0

0 0 0 0

0 0 −a2 + a3 0

0 0 0 −a2 + a3


, C2 =

[
(−a2 + a4)I2 O

O (−a2 + a5)I2

]
. (A.364)

The eigenvalues of the matrix J̃(wstripeI, ϕ̃stripeI) are given by

λ1 ≈ 2a2w
2,

λ2 ≈ O(w3),
λ3 ≈ −(a2 − a3)w2 (repeated twice),

λ4 ≈ −(a2 − a4)w2 (repeated twice),

λ5 ≈ −(a2 − a5)w2 (repeated twice).

Assuming that all eigenvalues are negative, we have the following stability conditions (necessary

conditions):

a2 < 0, a2 − a3 > 0, a2 − a4 > 0, a2 − a5 > 0.

These conditions are equivalent to

max(a3, a4, a5) < a2 < 0. (A.365)

Thus, the stability of wstripeI is conditional and depends on the values of a2, . . . , a5.

Substituting wstripeII = (0,w, 0, 0, 0, 0, 0, 0) into (A.352) and solving F2 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃stripeII ≈ −
a2

a1

w
2.

Evaluating the Jacobian matrix (A.361) at (wstripeII, ϕ̃stripeII), we have

J̃(wstripeII, ϕ̃stripeII) = J̃C
stripeII ≈ w

2

[
C3 O

O C2

]
(A.366)

with

C3 =



0 0 0 0

0 2a2 0 0

0 0 −a2 + a3 0

0 0 0 −a2 + a3


, (A.367)

where C2 is given in (A.364). The eigenvalues of the matrix J̃(wstripeII, ϕ̃stripeII) are equivalent to

that for wstripeI. Hence, stability conditions for wstripeII are equivalent to that for wstripeI.

Substituting wupside−downI = (w, 0, 0, 0,w, 0, 0, 0) into (A.352) and solving F1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃upside−downI ≈ −
a2 + a4

a1

w
2.
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Evaluating the Jacobian matrix (A.361) at (wupside−downI, ϕ̃upside−downI), we have

J̃(wupside−downI, ϕ̃upside−downI) = J̃C
upside−downI ≈ w

2

[
C4 C5

C5 C4

]
(A.368)

with

C4 =



2a2 0 0 0

0 0 0 0

0 0 −a2 + a3 − a4 + a5 0

0 0 0 −a2 + a3 − a4 + a5


, C5 =



2a4 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


. (A.369)

The eigenvalues of the matrix J̃(wupside−downI, ϕ̃upside−downI) are given by

λ1, λ2 ≈ 2(a2 ± a4)w2,

λ3 ≈ O(w3) (repeated twice),

λ4 ≈ −(a2 − a3 + a4 − a5)w2 (repeated 4 times).

Assuming that all eigenvalues are negative, we have the following stability conditions (necessary

conditions):

a2 < −|a4 |, a2 − a3 + a4 − a5 > 0.

These conditions are equivalent to

a3 − a4 + a5 < a2 < −|a4 |. (A.370)

Thus, the stability of wupside−downI is conditional and depends on the values of a2, . . . , a5.

Substituting wupside−downII = (0,w, 0, 0, 0,w, 0, 0) into (A.352) and solving F2 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃upside−downII ≈ −
a2 + a4

a1

w
2.

Evaluating the Jacobian matrix (A.361) at (wupside−downI, ϕ̃upside−downI), we have

J̃(wupside−downII, ϕ̃upside−downII) = J̃C
upside−downII ≈ w

2

[
C6 C7

C7 C6

]
(A.371)

with

C6 =



0 0 0 0

0 2a2 0 0

0 0 −a2 + a3 − a4 + a5 0

0 0 0 −a2 + a3 − a4 + a5


, C7 =



0 0 0 0

0 2a4 0 0

0 0 0 0

0 0 0 0


. (A.372)

The eigenvalues of the matrix J̃(wupside−downII, ϕ̃upside−downII) are equivalent to that for wupside−downI.

Hence, stability conditions for wupside−downII are equivalent to that for wupside−downI.
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Substituting wsqT = (w, 0,w, 0, 0, 0, 0, 0) into (A.352) and solving F1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃sqT ≈ −
a2 + a3

a1

w
2.

Evaluating the Jacobian matrix (A.361) at (wsqT, ϕ̃sqT), we have

J̃(wsqT, ϕ̃sqT) = J̃C
sqT ≈ w

2

[
C8 O

O C9

]
(A.373)

C8 = 2



a2 0 a3 0

0 0 0 0

a3 0 a2 0

0 0 0 0


, C9 = −(a2 + a3 − a4 − a5)I4. (A.374)

The eigenvalues of the matrix J̃(wsqT, ϕ̃sqT) are given by

λ1, λ2 ≈ 2(a2 ± a3)w2,

λ3 ≈ O(w3) (repeated twice),

λ4 ≈ −(a2 + a3 − a4 − a5)w2 (repeated 4 times).

Assuming that all eigenvalues are negative, we have the following stability conditions (necessary

conditions):

a2 < −|a3 |, a2 + a3 − a4 − a5 > 0.

These conditions are equivalent to

− a3 + a4 + a5 < a2 < −|a3 |. (A.375)

Thus, the stability of wsqT is conditional and depends on the values of a2, . . . , a5.

Substituting wsqVM = (w, 0,w, 0,w, 0,w, 0) into (A.352) and solving F1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃sqVM ≈ −
a2 + a3 + a4 + a5

a1

w
2.

Evaluating the Jacobian matrix (A.361) at (wsqVM, ϕ̃sqVM), we have

J̃(wsqVM, ϕ̃sqVM) = J̃C
sqVM ≈ w

2

[
C8 C10

C10 C8

]
(A.376)

with

C10 = 2



a4 0 a5 0

0 0 0 0

a5 0 a4 0

0 0 0 0


, (A.377)

251



where C8 is given in (A.374). The eigenvalues of the matrix J̃(wsqVM, ϕ̃sqVM) are given by

λ1, λ2 ≈ 2{a2 + a3 ± (a4 + a5)}w2,

λ3, λ4 ≈ 2{a2 − a3 ± (a4 − a5)}w2,

λ5 ≈ O(w3) (repeated 4 times).

Assuming that all eigenvalues are negative, we have the following stability conditions (necessary

conditions):

a2 + a3 < −|a4 + a5 |, (A.378)

a2 − a3 < −|a4 − a5 |. (A.379)

Thus, the stability of wsqVM is conditional and depends on the values of a2, . . . , a5.

Case 2: (n̂, k̂, ℓ̂) = (5, 2, 1)
For the case (n̂, k̂, ℓ̂) = (5, 2, 1), we have

(0, 1, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 2, 0, 0), (0, 3, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 2, 1, 0, 0) ∈ P

as well as

(1, 0, 0, 0, 0, 0, 0, 0), (2, 0, 0, 0, 1, 0, 0, 0), (1, 1, 0, 0, 0, 1, 0, 0),
(1, 0, 1, 0, 0, 0, 1, 0), (1, 0, 0, 1, 0, 0, 0, 1) ∈ P

in (A.311). Then, the asymptotic form of Fi (i = 1, . . . , 4) in (A.345) becomes

F1 ≈ a1ϕ̃z1 + a6z2z1 + a7z2
2
+ a8z2

3
+ a9z1

2z2 + FC
1 , (A.380)

F2 ≈ a1ϕ̃z2 + a6z1z2 + a7z1
2
+ a8z1

3
+ a9z2

2z1 + FC
2 , (A.381)

F3 ≈ a1ϕ̃z3 + a6z4z3 + a7z4
2
+ a8z4

3
+ a9z3

2z4 + FC
3 , (A.382)

F4 ≈ a1ϕ̃z4 + a6z3z4 + a7z3
2
+ a8z3

3
+ a9z4

2z3 + FC
4 (A.383)

with

a6 = A01001000(0), a7 = A00000200(0), a8 = A03000000(0), a9 = A00002100(0),

where FC
i
(i = 1, . . . , 4) is given in (A.346)–(A.349). Then, the asymptotic form of F̃i (i = 1, . . . , 8)

in (A.255)–(A.258) becomes

F̃1 ≈ a1ϕ̃w1 + a6(w1w3 + w2w4) + a7(w3
2 − w4

2)
+ a8w3(w3

2 − 3w4
2) + a9{w3(w1

2 − w2
2) − 2w1w2w4} + F̃C

1 , (A.384)

F̃2 ≈ a1ϕ̃w2 + a6(w1w4 − w2w3) − 2a7w3w4

+ a8w4(3w3
2 − w4

2) + a9{−w4(w1
2 − w2

2) − 2w1w2w3} + F̃C
2 , (A.385)
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F̃3 ≈ a1ϕ̃w3 + a6(w1w3 − w2w4) + a7(w1
2 − w2

2)
+ a8w1(w1

2 − 3w2
2) + a9{w1(w3

2 − w4
2) + 2w3w4w2} + F̃C

3 , (A.386)

F̃4 ≈ a1ϕ̃w4 + a6(−w1w4 − w2w3) + 2a7w1w2

+ a8w2(−3w1
2
+ w2

2) + a9{w2(w3
2 − w4

2) − 2w3w4w1} + F̃C
4 , (A.387)

F̃5 ≈ a1ϕ̃w5 + a6(w5w7 + w6w8) + a7(w7
2 − w8

2)
+ a8w7(w7

2 − 3w8
2) + a9{w7(w5

2 − w6
2) − 2w5w6w8} + F̃C

5 , (A.388)

F̃6 ≈ a1ϕ̃w6 + a6(w5w8 − w6w7) − 2a7w7w8

+ a8w8(3w7
2 − w8

2) + a9{−w8(w5
2 − w6

2) − 2w5w6w7} + F̃C
6 , (A.389)

F̃7 ≈ a1ϕ̃w7 + a6(w5w7 − w6w8) + a7(w5
2 − w6

2)
+ a8w5(w5

2 − 3w6
2) + a9{w5(w7

2 − w8
2) + 2w7w8w6} + F̃C

7 , (A.390)

F̃8 ≈ a1ϕ̃w8 + a6(−w5w8 − w6w7) + 2a7w5w6

+ a8w6(−3w5
2
+ w6

2) + a9{w6(w7
2 − w8

2) − 2w7w8w5} + F̃C
8 , (A.391)

where F̃C
i
(i = 1, . . . , 8) is given in (A.353)–(A.360). Hence, the asymptotic form of the Jacobian

matrix in (A.253) becomes

J̃(w, ϕ̃) ≈ a1ϕ̃I8 + a6B6 + a7B7 + a8B8 + a9B9 + BC, (A.392)

where BC is given in (A.362) and

B6 =

[
B6

1
O

O B6
2

]
, B7 =

[
B7

1
O

O B7
2

]
, B8 =

[
B8

1
O

O B8
2

]
, B9 =

[
B9

1
O

O B9
2

]
,

B6
1 =



w3 w4 w1 w2

w4 −w3 −w2 w1

w3 −w4 w1 −w2

−w4 −w3 −w2 −w1


, B6

2 =



w7 w8 w5 w6

w8 −w7 −w6 w5

w7 −w8 w5 −w6

−w8 −w7 −w6 −w5


,

B7
1 = 2



0 0 w3 −w4

0 0 −w4 −w3

w1 −w2 0 0

w2 w1 0 0


, B7

2 = 2



0 0 w7 −w8

0 0 −w8 −w7

w5 −w6 0 0

w6 w5 0 0


,

B8
1 = 3



0 0 w3
2 − w4

2 −2w3w4

0 0 2w3w4 w3
2 − w4

2

w1
2 − w2

2 −2w1w2 0 0

−2w1w2 −w1
2
+ w2

2 0 0


,
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B8
2 = 3



0 0 w7
2 − w8

2 −2w7w8

0 0 2w7w8 w7
2 − w8

2

w5
2 − w6

2 −2w5w6 0 0

−2w5w6 −w5
2
+ w6

2 0 0


,

B9
1 =



2(w1w3 − w2w4) 2(−w1w4 − w2w3) w1
2 − w2

2 −2w1w2

2(−w1w4 − w2w3) 2(−w1w3 + w2w4) −2w1w2 −w1
2
+ w2

2

w3
2 − w4

2 2w3w4 2(w1w3 + w2w4) 2(−w1w4 + w2w3)
−2w3w4 w3

2 − w4
2 2(−w1w4 + w2w3) 2(−w1w3 − w2w4)


,

B9
2 =



2(w5w7 − w6w8) 2(−w5w8 − w6w7) w5
2 − w6

2 −2w5w6

2(−w5w8 − w6w7) 2(−w5w7 + w6w8) −2w5w6 −w5
2
+ w6

2

w7
2 − w8

2 2w7w8 2(w5w7 + w6w8) 2(−w5w8 + w6w7)
−2w7w8 w7

2 − w8
2 2(−w5w8 + w6w7) 2(−w5w7 − w6w8)


.

Substituting wsqT = (w, 0,w, 0, 0, 0, 0, 0) into (A.384) and solving F1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃sqT ≈ −
a6 + a7

a1

w.

Evaluating the Jacobian matrix (A.392) at (wsqT, ϕ̃sqT), we have

J̃(wsqT, ϕ̃sqT) ≈ w

[
C11 O

O C12

]
(A.393)

with

C11 =



−a7 0 a6 + 2a7 0

0 −2a6 − a7 0 a6 − 2a7

a6 + 2a7 0 −a7 0

0 −a6 + 2a7 0 −2a6 − a7


, C12 = −(a6 + a7)I4. (A.394)

The eigenvalues of the matrix J̃(wsqT, ϕ̃sqT) are given by

λ1 ≈ (a6 + a7)w, (A.395)

λ2 ≈ −(a6 + 3a7)w, (A.396)

λ3, λ4 ≈ −(2a6 + a7)w ± i(a6 − 2a7)w, (A.397)

λ5 ≈ −(a6 + a7)w (repeated 4 times). (A.398)

Since the eigenvalues λ1 and λ5 have opposite signs, there is at least one positive eigenvalue. Thus,

the bifurcating solution wsqT is always unstable.

Substituting wsqVM = (w, 0,w, 0,w, 0,w, 0) into (A.384) with (A.353) and solving F1 = 0 for ϕ̃,

we have

ϕ̃ = ϕ̃sqVM ≈ −
a6 + a7

a1

w.
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Evaluating the Jacobian matrix (A.392) at (wsqVM, ϕ̃sqVM), we have

J̃(wsqVM, ϕ̃sqVM) ≈ w

[
C11 O

O C11

]
, (A.399)

where C11 is given in (A.394). The eigenvalues of the matrix J̃(wsqVM, ϕ̃sqVM) are given by

λ1 ≈ (a6 + a7)w,
λ2 ≈ −(3a6 + a7)w,
λ3, λ4 ≈ −{2a6 + a7 ± i(a6 − 2a7)}w

and are all repeated twice. Assume that all eigenvalues have negative real parts. If w < 0, we have

the following stability conditions:

a6 + a7 < 0, (A.400)

3a6 + a7 > 0, (A.401)

2a6 + a7 > 0. (A.402)

If w < 0, we have the following stability conditions:

a6 + a7 > 0, (A.403)

3a6 + a7 < 0, (A.404)

2a6 + a7 < 0. (A.405)

Thus, the stability of wsqVM depends on the direction w of the bifurcating solution and the values

of a6 and a7.

Remark A.5. For the case (n̂, k̂, ℓ̂) = (5, 2, 1), we have the following statements:

• The solutions wstripeI and wstripeII do not exist. See Proposition A.22. In fact, k̂2
+ ℓ̂ = 5.

This is divisible by n̂ = 5. Hence, the condition (A.303) is not satisfied.

• The solutions wupside−downI and wupside−downII do not exist. See Proposition A.24. In fact,

gcd(k̂2
+ ℓ̂, k̂2 − ℓ̂) = gcd(5, 3) = 1. This is divisible by gcd(n̂, 2k̂ ℓ̂) = gcd(5, 4) = 1. Hence,

the condition (A.307) is not satisfied.

□

Case 3: (n̂, k̂, ℓ̂) = (8, 3, 1)
For the case of (n̂, k̂, ℓ̂) = (8, 3, 1), we have

(0, 1, 0, 1, 0, 0, 1, 0), (0, 0, 1, 1, 0, 1, 0, 0), (0, 0, 0, 2, 1, 0, 0, 0),
(0, 0, 0, 0, 2, 0, 0, 1), (0, 0, 0, 0, 0, 0, 0, 3) ∈ P
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as well as

(1, 0, 0, 0, 0, 0, 0, 0), (2, 0, 0, 0, 1, 0, 0, 0), (1, 1, 0, 0, 0, 1, 0, 0),
(1, 0, 1, 0, 0, 0, 1, 0), (1, 0, 0, 1, 0, 0, 0, 1) ∈ P

in (A.311). Then, the asymptotic form of Fi (i = 1, . . . , 4) in (A.345) becomes

F1 ≈ a1ϕ̃z1 + a10z2z4z3 + a11z3z4z2 + a12z4
2z1 + a13z1

2z4 + a14z4
3
+ FC

1 , (A.406)

F2 ≈ a1ϕ̃z2 + a10z1z3z4 + a11z4z3z1 + a12z3
2z2 + a13z2

2z3 + a14z3
3
+ FC

2 , (A.407)

F3 ≈ a1ϕ̃z3 + a10z4z2z1 + a11z1z2z4 + a12z2
2z3 + a13z3

2z2 + a14z2
3
+ FC

3 , (A.408)

F4 ≈ a1ϕ̃z4 + a10z3z1z2 + a11z2z1z3 + a12z1
2z4 + a13z4

2z1 + a14z1
3
+ FC

4 (A.409)

with

a10 = A01010010(0), a11 = A00110100(0), a12 = A00021000(0),
a13 = A00002001(0), a14 = A00000003(0), (A.410)

where FC
i
(i = 1, . . . , 4) is given in (A.346)–(A.349). Then, the asymptotic form of F̃i (i = 1, . . . , 8)

in (A.255)–(A.258) becomes

F̃1 ≈ a1ϕ̃w1 + a10{w5(w3w7 − w4w8) + w6(w3w8 + w4w7)}
+ a11{w3(w5w7 − w6w8) + w4(w5w8 + w6w7)}
+ a12{w1(w7

2 − w8
2) + 2w2w7w8} + a13{w7(w1

2 − w2
2) − 2w8w1w2}

+ a14w7(w7
2 − 3w8

2) + F̃C
1 , (A.411)

F̃2 ≈ a1ϕ̃w2 + a10{w5(w3w8 + w4w7) − w6(w3w7 − w4w8)}
+ a11{w3(w5w8 + w6w7) − w4(w5w7 − w6w8)}
+ a12{−w2(w7

2 − w8
2) + 2w1w7w8} + a13{−w8(w1

2 − w2
2) − 2w7w1w2}

+ a14w8(−3w7
2
+ w8

2) + F̃C
2 , (A.412)

F̃3 ≈ a1ϕ̃w3 + a10{w1(w5w7 − w6w8) + w2(w5w8 + w6w7)}
+ a11{w7(w1w5 − w2w6) + w8(w1w6 + w2w5)}
+ a12{w3(w5

2 − w6
2) + 2w4w5w6} + a13{w5(w3

2 − w4
2) − 2w6w3w4}

+ a14w5(w5
2 − 3w6

2) + F̃C
3 , (A.413)

F̃4 ≈ a1ϕ̃w4 + a10{w1(w5w8 + w6w7) − w2(w5w7 − w6w8)}
+ a11{w7(w1w6 + w2w5) − w8(w1w5 − w2w6)}
+ a12{−w4(w5

2 − w6
2) + 2w3w5w6} + a13{−w6(w3

2 − w4
2) − 2w5w3w4}

+ a14w6(−3w5
2
+ w6

2) + F̃C
4 , (A.414)

F̃5 ≈ a1ϕ̃w5 + a10{w1(w3w7 − w4w8) + w2(w3w8 + w4w7)}
+ a11{w7(w1w3 − w2w4) + w8(w1w4 + w2w3)}
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+ a12{w5(w3
2 − w4

2) + 2w3w4w6} + a13{w3(w5
2 − w6

2) − 2w4w5w6}
+ a14w3(w3

2 − 3w4
2) + F̃C

5 , (A.415)

F̃6 ≈ a1ϕ̃w6 + a10{w1(w3w8 + w4w7) − w2(w3w7 − w4w8)}
+ a11{w7(w1w4 + w2w3) − w8(w1w3 − w2w4)}
+ a12{−w6(w3

2 − w4
2) + 2w3w4w5} + a13{−w4(w5

2 − w6
2) − 2w3w5w6}

+ a14w4(−3w3
2
+ w4

2) + F̃C
6 , (A.416)

F̃7 ≈ a1ϕ̃w7 + a10{w5(w1w3 − w2w4) + w6(w1w4 + w2w3)}
+ a11{w3(w1w5 − w2w6) + w4(w1w6 + w2w5)}
+ a12{w7(w1

2 − w2
2) + 2w8w1w2} + a13{w1(w7

2 − w8
2) − 2w2w7w8}

+ a14w1(w1
2 − 3w2

2) + F̃C
7 , (A.417)

F̃8 ≈ a1ϕ̃w8 + a10{w5(w1w4 + w2w3) − w6(w1w3 − w2w4)}
+ a11{w3(w1w6 + w2w5) − w4(w1w5 − w2w6)}
+ a12{−w8(w1

2 − w2
2) + 2w7w1w2} + a13{−w2(w7

2 − w8
2) − 2w1w7w8}

+ a14w2(−3w1
2
+ w2

2) + F̃C
8 , (A.418)

where F̃C
i
(i = 1, . . . , 8) is given in (A.353)–(A.360). Hence, the asymptotic form of the Jacobian

matrix in (A.253) becomes

J̃(w, ϕ̃) ≈ a1ϕ̃I8 + a10B10 + a11B11 + a12B12 + a13B13 + a14B14 + BC, (A.419)

where BC is given in (A.362) and

B10 =

[
B10

1
B10

3

B10
4

B10
2

]
, B11 =

[
B11

1
B11

3

B11
4

B11
2

]
, B12 =

[
B12

1
B12

3

(B12
3
)⊤ B12

2

]
, (A.420)

B13 =

[
B13

1
B13

3

B13
4

B13
2

]
, B14 =

[
O B14

1

B14
2

O

]
, (A.421)

B10
1 =



0 0 w5w7 + w6w8 −w5w8 + w6w7

0 0 w5w8 − w6w7 w5w7 + w6w8

w5w7 − w6w8 w5w8 + w6w7 0 0

w5w8 + w6w7 −w5w7 + w6w8 0 0


,

B10
2 =



0 0 w1w3 + w2w4 −w1w4 + w2w3

0 0 w1w4 − w2w3 w1w3 + w2w4

w1w3 − w2w4 w1w4 + w2w3 0 0

w1w4 + w2w3 −w1w3 + w2w4 0 0


,
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B10
3 =



w3w7 − w4w8 w3w8 + w4w7 w3w5 + w4w6 w3w6 − w4w5

w3w8 + w4w7 −w3w7 + w4w8 −w3w6 + w4w5 w3w5 + w4w6

w1w7 + w2w8 −w1w8 + w2w7 w1w5 + w2w6 −w1w6 + w2w5

w1w8 − w2w7 w1w7 + w2w8 w1w6 − w2w5 w1w5 + w2w6


,

B10
4 =



w3w7 − w4w8 w3w8 + w4w7 w1w7 + w2w8 −w1w8 + w2w7

w3w8 + w4w7 −w3w7 + w4w8 w1w8 − w2w7 w1w7 + w2w8

w3w5 + w4w6 w3w6 − w4w5 w1w5 + w2w6 w1w6 − w2w5

−w3w6 + w4w5 w3w5 + w4w6 −w1w6 + w2w5 w1w5 + w2w6


,

B11
1 =



0 0 w5w7 − w6w8 w5w8 + w6w7

0 0 w5w8 + w6w7 −w5w7 + w6w8

w5w7 + w6w8 w5w8 − w6w7 0 0

−w5w8 + w6w7 w5w7 + w6w8 0 0


,

B11
2 =



0 0 w1w3 − w2w4 w1w4 + w2w3

0 0 w1w4 + w2w3 −w1w3 + w2w4

w1w3 + w2w4 w1w4 − w2w3 0 0

−w1w4 + w2w3 w1w3 + w2w4 0 0


,

B11
3 =



w3w7 + w4w8 −w3w8 + w4w7 w3w5 + w4w6 −w3w6 + w4w5

w3w8 − w4w7 w3w7 + w4w8 w3w6 − w4w5 w3w5 + w4w6

w1w7 + w2w8 w1w8 − w2w7 w1w5 − w2w6 w1w6 + w2w5

−w1w8 + w2w7 w1w7 + w2w8 w1w6 + w2w5 −w1w5 + w2w6


,

B11
4 =



w3w7 + w4w8 w3w8 − w4w7 w1w7 + w2w8 w1w8 − w2w7

−w3w8 + w4w7 w3w7 + w4w8 −w1w8 + w2w7 w1w7 + w2w8

w3w5 + w4w6 −w3w6 + w4w5 w1w5 − w2w6 w1w6 + w2w5

w3w6 − w4w5 w3w5 + w4w6 w1w6 + w2w5 −w1w5 + w2w6


,

B12
1 =



w7
2 − w8

2 2w7w8 0 0

2w7w8 −w7
2
+ w8

2 0 0

0 0 w5
2 − w6

2 2w5w6

0 0 2w5w6 −w5
2
+ w6

2


,

B12
2 =



w3
2 − w4

2 2w3w4 0 0

2w3w4 −w3
2
+ w4

2 0 0

0 0 w1
2 − w2

2 2w1w2

0 0 2w1w2 −w1
2
+ w2

2


,
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B12
3 = 2



0 0 w1w7 + w2w8 −w1w8 + w2w7

0 0 w1w8 − w2w7 w1w7 + w2w8

w3w5 + w4w6 −w3w6 + w4w5 0 0

w3w6 − w4w5 w3w5 + w4w6 0 0


,

B13
1 = 2



w1w7 − w2w8 −w1w8 − w2w7 0 0

−w1w8 − w2w7 −w1w7 + w2w8 0 0

0 0 w3w5 − w4w6 −w3w6 − w4w5

0 0 −w3w6 − w4w5 −w3w5 + w4w6


,

B13
2 = 2



w3w5 − w4w6 −w3w6 − w4w5 0 0

−w3w6 − w4w5 −w3w5 + w4w6 0 0

0 0 w1w7 − w2w8 −w1w8 − w2w7

0 0 −w1w8 − w2w7 −w1w7 + w2w8


,

B13
3 =



0 0 w1
2 − w2

2 −2w1w2

0 0 −2w1w2 −w1
2
+ w2

2

w3
2 − w4

2 −2w3w4 0 0

−2w3w4 −w3
2
+ w4

2 0 0


,

B13
4 =



0 0 w5
2 − w6

2 −2w5w6

0 0 −2w5w6 −w5
2
+ w6

2

w7
2 − w8

2 −2w7w8 0 0

−2w7w8 −w7
2
+ w8

2 0 0


,

B14
1 = 3



0 0 w7
2 − w8

2 −2w7w8

0 0 −2w7w8 −w7
2
+ w8

2

w5
2 − w6

2 −2w5w6 0 0

−2w5w6 −w5
2
+ w6

2 0 0


,

B14
2 = 3



0 0 w3
2 − w4

2 −2w3w4

0 0 −2w3w4 −w3
2
+ w4

2

w1
2 − w2

2 −2w1w2 0 0

−2w1w2 −w1
2
+ w2

2 0 0


.

Substituting wsqVM = (w, 0,w, 0,w, 0,w, 0) into (A.411) and solving F1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃sqVM ≈ −
a2 + a3 + a4 + a5 + a10 + a11 + a12 + a13 + a14

a1

w
2.
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Evaluating the Jacobian matrix (A.419) at (wsqVM, ϕ̃sqVM), we have

J̃(wsqVM, ϕ̃sqVM) ≈ w
2

[
C12 C13

C13 C12

]
+ J̃C

sqVM
, (A.422)

where J̃C
sqVM

is given in (A.376) and

C12 =



c1 0 c3 0

0 c2 0 c4

c3 0 c1 0

0 −c4 0 c2


, C13 =



c3 0 c5 0

0 −c4 0 c6

c5 0 c3 0

0 c6 0 c4


,

c1 = −a10 − a11 + a13 − a14, c2 = −a10 − a11 − 2a12 − 3a13 − a14, c3 = a10 + a11,

c4 = a10 − a11, c5 = a10 + a11 + 2a12 + a13 + 3a14, c6 = a10 + a11 + 2a12 − a13 − 3a14.

The eigenvalues of the matrix J̃(wsqVM, ϕ̃sqVM) are given by

λ1, λ2 ≈ {(c1 + c3) ± (c5 + c6)}w2,

λ3, λ4 ≈ {(c1 − c3) ± (c5 − c6)}w2,

λ5, λ6 ≈ (c2 ± c7)w2 (repeated twice),

which are rewritten as

λ1 ≈ 2(a2 + a3 + a4 + a5 + a10 + a11 + a12 + a13 + a14)w2,

λ2 ≈ 2(a2 + a3 − a4 − a5 − a10 − a11 − a12 − 2a14)w2,

λ3 ≈ 2(a2 − a3 + a4 − a5 − a10 − a11 − a12 − 2a14)w2,

λ4 ≈ 2(a2 − a3 − a4 + a5 − a10 − a11 + a12 + a13 + a14)w2,

λ5 ≈ −2(a10 + a11 + 2a12 + a13 − a14)w2 (repeated twice),

λ6 ≈ −4(a13 + a14)w2 (repeated twice).

Assuming that all eigenvalues are negative, we have the following stability conditions:

a2 + a3 + a4 + a5 + a10 + a11 + a12 + a13 + a14 < 0, (A.423)

a2 + a3 − a4 − a5 − a10 − a11 − a12 − 2a14 < 0, (A.424)

a2 − a3 + a4 − a5 − a10 − a11 − a12 − 2a14 < 0, (A.425)

a2 − a3 − a4 + a5 − a10 − a11 + a12 + a13 + a14 < 0, (A.426)

a10 + a11 + 2a12 + a13 − a14 > 0, (A.427)

a13 + a14 > 0. (A.428)

Thus, the stability of wsqVM depends on the values of a2, . . . , a5 and a10, . . . , a14.
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Remark A.6. For the case (n̂, k̂, ℓ̂) = (8, 3, 1), we have the following statements:

• The solutions wstripeI and wstripeII do not exist. See Proposition A.22. In fact, k̂2 − ℓ̂ = 8.

This is divisible by n̂ = 8. Hence, the condition (A.303) is not satisfied.

• The solutions wupside−downI and wupside−downII do not exist. See Proposition A.24. In fact,

gcd(k̂2
+ ℓ̂, k̂2 − ℓ̂) = 2 gcd(10, 8) = 2. This is divisible by gcd(n̂, 2k̂ ℓ̂) = gcd(8, 6) = 2.

Hence, the condition (A.307) is not satisfied.

• The solution wsqT does not exist. See Proposition 3.32. This case corresponds to the

case (n̂, k̂, ℓ̂) = (2k̂ + 2ℓ̂, k̂, ℓ̂). In fact, 2 gcd(k̂, ℓ̂) = 2 gcd(3, 1) = 2. This is divisible by

gcd(k̂2
+ ℓ̂2, n̂) = gcd(10, 8) = 2. Hence, GCD-div in (3.190) is not satisfied.

□

Case 4: (n̂, k̂, ℓ̂) = (10, 3, 1)
For the case of (n̂, k̂, ℓ̂) = (10, 3, 1), we have

(0, 1, 0, 0, 2, 0, 0, 0), (0, 0, 0, 0, 0, 3, 0, 0) ∈ P

as well as

(1, 0, 0, 0, 0, 0, 0, 0), (2, 0, 0, 0, 1, 0, 0, 0), (1, 1, 0, 0, 0, 1, 0, 0),
(1, 0, 1, 0, 0, 0, 1, 0), (1, 0, 0, 1, 0, 0, 0, 1) ∈ P

in (A.311). Then, the asymptotic form of Fi (i = 1, . . . , 4) in (A.345) becomes

F1 ≈ a1ϕ̃z1 + a15z2z1
2
+ a16z2

3
+ FC

1 , (A.429)

F2 ≈ a1ϕ̃z2 + a15z1z2
2
+ a16z1

3
+ FC

2 , (A.430)

F3 ≈ a1ϕ̃z3 + a15z4z3
2
+ a16z4

3
+ FC

3 , (A.431)

F4 ≈ a1ϕ̃z4 + a15z3z4
2
+ a16z3

3
+ FC

4 (A.432)

with

a15 = A01002000(0), a16 = A00000300(0),
where FC

i
(i = 1, . . . , 4) is given in (A.346)–(A.349). Then, the asymptotic form of F̃i (i = 1, . . . , 8)

in (A.255)–(A.258) becomes

F̃1 ≈ a1ϕ̃w1 + a15{w3(w1
2 − w2

2) + 2w4w1w2} + a16w3(w3
2 − 3w4

2) + F̃C
1 , (A.433)

F̃2 ≈ a1ϕ̃w2 + a15{w4(w1
2 − w2

2) − 2w3w1w2} + a16w4(−3w3
2
+ w4

2) + F̃C
2 , (A.434)

F̃3 ≈ a1ϕ̃w3 + a15{w1(w3
2 − w4

2) − 2w2w3w4} + a16w1(w1
2 − 3w2

2) + F̃C
3 , (A.435)

F̃4 ≈ a1ϕ̃w4 + a15{−w2(w3
2 − w4

2) − 2w1w3w4} + a16w2(3w1
2 − w2

2) + F̃C
4 , (A.436)

F̃5 ≈ a1ϕ̃w5 + a15{w7(w5
2 − w6

2) + 2w8w5w6} + a16w7(w7
2 − 3w8

2) + F̃C
5 , (A.437)

261



F̃6 ≈ a1ϕ̃w6 + a15{w8(w5
2 − w6

2) − 2w7w5w6} + a16w8(−3w7
2
+ w8

2) + F̃C
6 , (A.438)

F̃7 ≈ a1ϕ̃w7 + a15{w5(w7
2 − w8

2) − 2w6w7w8} + a16w5(w5
2 − 3w6

2) + F̃C
7 , (A.439)

F̃8 ≈ a1ϕ̃w8 + a15{−w6(w7
2 − w8

2) − 2w5w7w8} + a16w6(3w5
2 − w6

2) + F̃C
8 , (A.440)

where F̃C
i
(i = 1, . . . , 8) is given in (A.353)–(A.360). Hence, the asymptotic form of the Jacobian

matrix in (A.253) becomes

J̃(w, ϕ̃) ≈ a1ϕ̃I8 + a15B15 + a16B16 + BC, (A.441)

where BC is given in (A.362) and

B15 =

[
B15

1
O

O B15
2

]
, B16 =

[
B16

1
O

O B16
2

]
,

B15
1 =



2(w1w3 + w2w4) 2(w1w4 − w2w3) w1
2 − w2

2 2w1w2

2(w1w4 − w2w3) 2(−w1w3 − w2w4) −2w1w2 w1
2 − w2

2

w3
2 − w4

2 −2w3w4 2(w1w3 − w2w4) 2(−w1w4 − w2w3)
−2w3w4 −w3

2
+ w4

2 2(−w1w4 − w2w3) 2(−w1w3 + w2w4)


,

B15
2 =



2(w5w7 + w6w8) 2(w5w8 − w6w7) w5
2 − w6

2 2w5w6

2(w5w8 − w6w7) 2(−w5w7 − w6w8) −2w5w6 w5
2 − w6

2

w7
2 − w8

2 −2w7w8 2(w5w7 − w6w8) 2(−w5w8 − w6w7)
−2w7w8 −w7

2
+ w8

2 2(−w5w8 − w6w7) 2(−w5w7 + w6w8)


,

B16
1 = 3



0 0 w3
2 − w4

2 −2w3w4

0 0 −2w3w4 −w3
2
+ w4

2

w1
2 − w2

2 −2w1w2 0 0

2w1w2 w1
2 − w2

2 0 0


,

B16
2 = 3



0 0 w7
2 − w8

2 −2w7w8

0 0 −2w7w8 −w7
2
+ w8

2

w5
2 − w6

2 −2w5w6 0 0

2w5w6 w5
2 − w6

2 0 0


.

Substituting wsqT = (w, 0,w, 0, 0, 0, 0, 0) into (A.433) and solving F1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃sqT ≈ −
a2 + a3 + a15 + a16

a1

w
2.

Evaluating the Jacobian matrix (A.441) at (wsqT, ϕ̃sqT), we have

J̃(wsqT, ϕ̃sqT) ≈ w
2

[
C14 O

O C15

]
+ J̃C

sqT
, (A.442)
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where J̃C
sqT

is given in (A.363) and

C14 =



a15 − a16 0 a15 + 3a16 0

0 −3a15 − a16 0 a15 − 3a16

a15 + 3a16 0 a15 − a16 0

0 −a15 + 3a16 0 −3a15 − a16


, (A.443)

C15 = −(a15 + a16)I4. (A.444)

The eigenvalues of the matrix J̃(wsqT, ϕ̃sqT) are given by

λ1 ≈ 2(a2 + a3 + a15 + a16)w2,

λ2 ≈ 2(a2 − a3 − 2a16)w2,

λ3, λ4 ≈ −{3a15 + a16 ± i(a15 − 3a16)}w2,

λ5 ≈ −(a2 + a3 − a4 − a5 + a15 + a16)w2 (repeated 4 times).

Assuming that all eigenvalues have negative real parts, we have the following stability conditions:

a2 + a3 + a15 + a16 < 0, (A.445)

a2 − a3 − 2a16 < 0, (A.446)

3a15 + a16 > 0, (A.447)

a2 + a3 − a4 − a5 + a15 + a16 < 0. (A.448)

Thus, the stability of wsqT depends on the values of a2, . . . , a5, a15 and a16.

Substituting wsqVM = (w, 0,w, 0,w, 0,w, 0) into (A.433) and solving F1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃sqVM ≈ −
a2 + a3 + a4 + a5 + a15 + a16

a1

w
2.

Evaluating the Jacobian matrix (A.441) at (wsqVM, ϕ̃sqVM), we have

J̃(wsqVM, ϕ̃sqVM) ≈ w
2

[
C14 O

O C14

]
+ J̃C

sqVM
, (A.449)

where C14 is given in (A.443), and J̃C
sqVM

is given in (A.376). The eigenvalues of the matrix

J̃(wsqVM, ϕ̃sqVM) are given by

λ1 ≈ 2(a2 + a3 + a4 + a5 + a15 + a16)w2,

λ2 ≈ 2(a2 + a3 − a4 − a5 − a15 − a16)w2,

λ3 ≈ 2(a2 − a3 + a4 − a5 − 2a16)w2,

λ4 ≈ 2(a2 − a3 − a4 + a5 − 2a16)w2,

λ5, λ6 ≈ −{3a15 + a16 ± i(a15 − 3a16)}w2 (repeated twice).
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Assuming that all eigenvalues have negative real parts, we have the following stability conditions:

a2 + a3 + a4 + a5 + a15 + a16 < 0, (A.450)

a2 + a3 − a4 − a5 − a15 − a16 < 0, (A.451)

a2 − a3 + a4 − a5 − 2a16 < 0, (A.452)

a2 − a3 − a4 + a5 − 2a16 < 0, (A.453)

3a15 + a16 > 0. (A.454)

Thus, the stability of wsqVM depends on the values of a2, . . . , a5, a15 and a16.

Remark A.7. For the case (n̂, k̂, ℓ̂) = (10, 3, 1), we have the following statements:

• The solutions wstripeI and wstripeII do not exist. See Proposition A.22. In fact, k̂2
+ ℓ̂ = 10.

This is divisible by n̂ = 10. Hence, the condition (A.303) is not satisfied.

• The solutions wupside−downI and wupside−downII do not exist. See Proposition A.24. In fact,

gcd(k̂2
+ ℓ̂, k̂2 − ℓ̂) = 2 gcd(10, 8) = 2. This is divisible by gcd(n̂, 2k̂ ℓ̂) = gcd(10, 6) = 2.

Hence, the condition (A.307) is not satisfied.

□

Case 5: (n̂, k̂, ℓ̂) = (4k̂, k̂, ℓ̂)
For the case of (n̂, k̂, ℓ̂) with n̂ = 4k̂, we have

(0, 0, 0, 0, 1, 0, 2, 0) ∈ P

as well as

(1, 0, 0, 0, 0, 0, 0, 0), (2, 0, 0, 0, 1, 0, 0, 0), (1, 1, 0, 0, 0, 1, 0, 0),
(1, 0, 1, 0, 0, 0, 1, 0), (1, 0, 0, 1, 0, 0, 0, 1) ∈ P

in (A.311). Then, the asymptotic form of Fi (i = 1, . . . , 4) in (A.345) becomes

F1 ≈ a1ϕ̃z1 + a17z1z3
2
+ FC

1 , (A.455)

F2 ≈ a1ϕ̃z2 + a17z2z4
2
+ FC

2 , (A.456)

F3 ≈ a1ϕ̃z3 + a17z3z1
2
+ FC

3 , (A.457)

F4 ≈ a1ϕ̃z4 + a17z4z2
2
+ FC

4 (A.458)

with

a17 = A00001020(0),
where FC

i
(i = 1, . . . , 4) is given in (A.346)–(A.349). Then, the asymptotic form of F̃i (i = 1, . . . , 8)

in (A.255)–(A.258) becomes

F̃1 ≈ a1ϕ̃w1 + a17{ w1(w5
2 − w6

2) − 2w2w5w6)} + F̃C
1 , (A.459)
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F̃2 ≈ a1ϕ̃w2 + a17{−w2(w5
2 − w6

2) − 2w1w5w6} + F̃C
2 , (A.460)

F̃3 ≈ a1ϕ̃w3 + a17{ w3(w7
2 − w8

2) + 2w4w7w8} + F̃C
3 , (A.461)

F̃4 ≈ a1ϕ̃w4 + a17{−w4(w7
2 − w8

2) + 2w3w7w8} + F̃C
4 , (A.462)

F̃5 ≈ a1ϕ̃w5 + a17{ w5(w1
2 − w2

2) − 2w6w1w2} + F̃C
5 , (A.463)

F̃6 ≈ a1ϕ̃w6 + a17{−w6(w1
2 − w2

2) − 2w5w1w2} + F̃C
6 , (A.464)

F̃7 ≈ a1ϕ̃w7 + a17{ w7(w3
2 − w4

2) + 2w8w3w4} + F̃C
7 , (A.465)

F̃8 ≈ a1ϕ̃w8 + a17{−w8(w3
2 − w4

2) + 2w7w3w4} + F̃C
8 , (A.466)

where F̃C
i
(i = 1, . . . , 8) is given in (A.353)–(A.360). Hence, the asymptotic form of the Jacobian

matrix in (A.253) becomes

J̃(w, ϕ̃) ≈ a1ϕ̃I8 + a17B17 + BC, (A.467)

where BC is given in (A.362) and

B17 =

[
B17

1
B17

3

(B17
3
)⊤ B17

2

]
,

B17
1 =



w5
2 − w6

2 −2w5w6 0 0

−2w5w6 −w5
2
+ w6

2 0 0

0 0 w7
2 − w8

2 2w7w8

0 0 2w7w8 −w7
2
+ w8

2


,

B17
2 =



w1
2 − w2

2 −2w1w2 0 0

−2w1w2 −w1
2
+ w2

2 0 0

0 0 w3
2 − w4

2 2w3w4

0 0 2w3w4 −w3
2
+ w4

2


,

B17
3 = 2



w1w5 − w2w6 −w1w6 − w2w5 0 0

−w1w6 − w2w5 −w1w5 + w2w6 0 0

0 0 w3w7 + w4w8 −w3w8 + w4w7

0 0 w3w8 − w4w7 w3w7 + w4w8


.

Substituting wstripeI = (w, 0, 0, 0, 0, 0, 0, 0) into (A.459) and solving F1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃stripeI ≈ −
a2

a1

w
2.

Evaluating the Jacobian matrix (A.467) at (wstripeI, ϕ̃stripeI), we have

J̃(wstripeI, ϕ̃stripeI) ≈ w
2

[
O O

O C16

]
+ J̃C

stripeI
, (A.468)

265



where J̃C
stripeI

is given in (A.363) and

C16 =



a17 0 0 0

0 −a17 0 0

0 0 0 0

0 0 0 0


.

The eigenvalues of the matrix J̃(wstripeI, ϕ̃stripeI) are given by

λ1 ≈ 2a2w
2,

λ2 ≈ O(w3),
λ3, λ4 ≈ −(a2 − a4 ± a17)w2,

λ5 ≈ −(a2 − a3)w2 (repeated twice),

λ6 ≈ −(a2 − a5)w2 (repeated twice).

Assuming that all eigenvalues are negative, we have the following stability conditions (necessary

conditions):

a2 < 0, a2 − a4 ± a17 > 0, a2 − a3 > 0, a2 − a5 > 0.

These conditions are equivalent to

max(a3, a4 + |a17 |, a5) < a2 < 0. (A.469)

Thus, the stability of wstripeI depends on the values of a2, . . . , a5 and a17.

Substituting wstripeII = (0,w, 0, 0, 0, 0, 0, 0) into (A.459) and solving F2 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃stripeII ≈ −
a2

a1

w
2.

Evaluating the Jacobian matrix (A.467) at (wstripeII, ϕ̃stripeII), we have

J̃(wstripeII, ϕ̃stripeII) ≈ w
2

[
O O

O −C16

]
+ J̃C

stripeII
, (A.470)

where C16 is given in (A.6.5), and J̃C
stripeII

is given in (A.366). The eigenvalues of the matrix

J̃(wstripeII, ϕ̃stripeII) are equivalent to that for wstripeI. Hence, stability conditions for wstripeII are

equivalent to that for wstripeI.

Substituting wupside−downI = (w, 0, 0, 0,w, 0, 0, 0) into (A.352) and solving F1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃upside−downI ≈ −
a2 + a4 + a17

a1

w
2.

Evaluating the Jacobian matrix (A.361) at (wupside−downI, ϕ̃upside−downI), we have

J̃(wupside−downI, ϕ̃upside−downI) ≈ w
2

[
C17 C18

C18 C17

]
+ J̃C

upside−downI
(A.471)
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with

C17 =



0 0 0 0

0 −2a17 0 0

0 0 −a17 0

0 0 0 −a17


, C18 =



2a17 0 0 0

0 −2a17 0 0

0 0 0 0

0 0 0 0


. (A.472)

The eigenvalues of the matrix J̃(wupside−downI, ϕ̃upside−downI) are given by

λ1, λ2 ≈ 2a2 ± (a4 + a17)w2,

λ3 ≈ −4a17w
2,

λ4 ≈ O(w3),
λ5 ≈ −(a2 − a3 + a4 − a5 + a17)w2 (repeated 4 times).

Assuming that all eigenvalues are negative, we have the following stability conditions (necessary

conditions):

a2 < −|a4 + a17 |, a17 > 0, a2 − a3 + a4 − a5 + a17 > 0.

These conditions are equivalent to

a3 − a4 + a5 − a17 < a2 < −|a4 + a17 | (A.473)

a4 > 0. (A.474)

Thus, the stability of wupside−downI is conditional and depends on the values of a2, . . . , a5 and a17.

Substituting wupside−downII = (0,w, 0, 0, 0,w, 0, 0) into (A.352) and solving F2 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃upside−downII ≈ −
a2 + a4 + a17

a1

w
2.

Evaluating the Jacobian matrix (A.361) at (wupside−downII, ϕ̃upside−downII), we have

J̃(wupside−downII, ϕ̃upside−downII) = J̃C
upside−downII ≈ w

2

[
C19 −C18

−C18 C19

]
(A.475)

with

C19 =



−2a17 0 0 0

0 0 0 0

0 0 −a17 0

0 0 0 −a17


, (A.476)

where C18 is given in (A.472). The eigenvalues of the matrix J̃(wupside−downII, ϕ̃upside−downII) are

equivalent to that for wupside−downI. Hence, stability conditions for wupside−downII are equivalent to

that for wupside−downI.

Substituting wsqVM = (w, 0,w, 0,w, 0,w, 0) into (A.459) and solving F1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃sqVM ≈ −
a2 + a3 + a4 + a5 + a17

a1

w
2.

267



Evaluating the Jacobian matrix (A.467) at (wsqVM, ϕ̃sqVM), we have

J̃(wsqVM, ϕ̃sqVM) ≈ w
2

[
C20 C21

C21 C20

]
+ J̃C

sqVM
, (A.477)

where J̃C
sqVM

is given in (A.376) and

C20 = 2



0 0 0 0

0 −a17 0 0

0 0 0 0

0 0 0 −a17


, C21 = 2



a17 0 0 0

0 −a17 0 0

0 0 a17 0

0 0 0 a17


.

The eigenvalues of the matrix J̃(wsqVM, ϕ̃sqVM) are given by

λ1 ≈ 2(a2 + a3 + a4 + a5 + a17)w2,

λ2 ≈ 2(a2 + a3 − a4 − a5 − a17)w2,

λ3 ≈ 2(a2 − a3 + a4 − a5 + a17)w2,

λ4 ≈ 2(a2 − a3 − a4 + a5 − a17)w2,

λ5 ≈ −4a17w
2, (repeated twice)

λ6 ≈ O(w3) (repeated twice).

Assuming that all eigenvalues are negative, we have the following stability conditions (necessary

conditions):

a2 + a3 + a4 + a5 + a17 < 0, (A.478)

a2 + a3 − a4 − a5 − a17 < 0, (A.479)

a2 − a3 + a4 − a5 + a17 < 0, (A.480)

a2 − a3 − a4 + a5 − a17 < 0, (A.481)

a17 > 0. (A.482)

Thus, the stability of wsqVM depends on the values of a2, . . . , a5 and a17.

Remark A.8. For the case (n̂, k̂, ℓ̂) = (4k̂, k̂, ℓ̂), wsqT does not exist. See Proposition 3.32.

□

Case 6: (n̂, k̂, ℓ̂) = (4ℓ̂, k̂, ℓ̂)
For the case of (n̂, k̂, ℓ̂) with n̂ = 4ℓ̂, we have

(0, 0, 2, 0, 1, 0, 0, 0) ∈ P

as well as

(1, 0, 0, 0, 0, 0, 0, 0), (2, 0, 0, 0, 1, 0, 0, 0), (1, 1, 0, 0, 0, 1, 0, 0),
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(1, 0, 1, 0, 0, 0, 1, 0), (1, 0, 0, 1, 0, 0, 0, 1) ∈ P

in (A.311). Then, the asymptotic form of Fi (i = 1, . . . , 4) in (A.345) becomes

F1 ≈ a1ϕ̃z1 + a18z3
2z1 + FC

1 , (A.483)

F2 ≈ a1ϕ̃z2 + a18z4
2z2 + FC

2 , (A.484)

F3 ≈ a1ϕ̃z3 + a18z1
2z3 + FC

3 , (A.485)

F4 ≈ a1ϕ̃z4 + a18z2
2z4 + FC

4 (A.486)

with

a18 = A00201000(0).

where FC
i
(i = 1, . . . , 4) is given in (A.346)–(A.349). Then, the asymptotic form of F̃i (i = 1, . . . , 8)

in (A.255)–(A.258) becomes

F̃1 ≈ a1ϕ̃w1 + a18{ w1(w5
2 − w6

2) + 2w2w5w6)} + F̃C
1 , (A.487)

F̃2 ≈ a1ϕ̃w2 + a18{−w2(w5
2 − w6

2) + 2w1w5w6)} + F̃C
2 , (A.488)

F̃3 ≈ a1ϕ̃w3 + a18{ w3(w7
2 − w8

2) − 2w4w7w8)} + F̃C
3 , (A.489)

F̃4 ≈ a1ϕ̃w4 + a18{−w4(w7
2 − w8

2) − 2w3w7w8)} + F̃C
4 , (A.490)

F̃5 ≈ a1ϕ̃w5 + a18{ w5(w1
2 − w2

2) + 2w6w1w2)} + F̃C
5 , (A.491)

F̃6 ≈ a1ϕ̃w6 + a18{−w6(w1
2 − w2

2) + 2w5w1w2)} + F̃C
6 , (A.492)

F̃7 ≈ a1ϕ̃w7 + a18{ w7(w3
2 − w4

2) − 2w8w3w4)} + F̃C
7 , (A.493)

F̃8 ≈ a1ϕ̃w8 + a18{−w8(w3
2 − w4

2) − 2w7w3w4)} + F̃C
8 , (A.494)

where F̃C
i
(i = 1, . . . , 8) is given in (A.353)–(A.360). Hence, the asymptotic form of the Jacobian

matrix in (A.253) becomes

J̃(w, ϕ̃) ≈ a1ϕ̃I8 + a18B18 + BC, (A.495)

where BC is given in (A.362) and

B18 =

[
B18

1
B18

3

(B18
3
)⊤ B18

2

]
,

B18
1 =



w5
2 − w6

2 2w5w6 0 0

2w5w6 −w5
2
+ w6

2 0 0

0 0 w7
2 − w8

2 −2w7w8

0 0 −2w7w8 −w7
2
+ w8

2


,
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B18
2 =



w1
2 − w2

2 2w1w2 0 0

2w1w2 −w1
2
+ w2

2 0 0

0 0 w3
2 − w4

2 −2w3w4

0 0 −2w3w4 −w3
2
+ w4

2


,

B18
3 = 2



w1w5 + w2w6 −w1w6 + w2w5 0 0

w1w6 − w2w5 w1w5 + w2w6 0 0

0 0 w3w7 − w4w8 −w3w8 − w4w7

0 0 −w3w8 − w4w7 −w3w7 + w4w8


.

Substituting wstripeI into (A.487) and solving F1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃stripeI ≈ −
a2

a1

w
2.

Evaluating the Jacobian matrix (A.495) at (wstripeI, ϕ̃stripeI), we have

J̃(wstripeI, ϕ̃stripeI) ≈ w
2

[
O O

O C22

]
+ J̃C

stripeI
, (A.496)

where J̃C
stripeI

is given in (A.363) and

C22 =



a18 0 0 0

0 −a18 0 0

0 0 0 0

0 0 0 0


.

The eigenvalues of the matrix J̃(wstripeI, ϕ̃stripeI) are given by

λ1 ≈ 2a2w
2,

λ2 ≈ O(w3),
λ3, λ4 ≈ −(a2 − a4 ± a18)w2,

λ5 ≈ −(a2 − a3)w2 (repeated twice),

λ6 ≈ −(a2 − a5)w2 (repeated twice).

Assuming that all eigenvalues are negative, we have the following stability conditions (necessary

conditions):

a2 < 0, a2 − a4 ± a18 > 0, a2 − a3 > 0, a2 − a5 > 0.

These conditions are equivalent to

max(a3, a4 + |a18 |, a5) < a2 < 0. (A.497)
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Thus, the stability of wstripeI depends on the values of a2, . . . , a5 and a18.

Substituting wstripeII = (0,w, 0, 0, 0, 0, 0, 0) into (A.459) and solving F2 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃stripeII ≈ −
a2

a1

w
2.

Evaluating the Jacobian matrix (A.495) at (wstripeII, ϕ̃stripeII), we have

J̃(wstripeII, ϕ̃stripeII) ≈ w
2

[
O O

O −C22

]
+ J̃C

stripeII
, (A.498)

where C22 is given in (A.6.5), and J̃C
stripeII

is given in (A.366). The eigenvalues of the matrix

J̃(wstripeII, ϕ̃stripeII) are equivalent to that for wstripeI. Hence, stability conditions for wstripeII are

equivalent to that for wstripeI.

Substituting wupside−downI = (w, 0, 0, 0,w, 0, 0, 0) into (A.352) and solving F1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃upside−downI ≈ −
a2 + a4 + a18

a1

w
2.

Evaluating the Jacobian matrix (A.361) at (wupside−downI, ϕ̃upside−downI), we have

J̃(wupside−downI, ϕ̃upside−downI) ≈ w
2

[
C23 C24

C24 C23

]
+ J̃C

upside−downI
(A.499)

with

C23 =



0 0 0 0

0 −2a18 0 0

0 0 −a18 0

0 0 0 −a18


, C24 =



2a18 0 0 0

0 2a18 0 0

0 0 0 0

0 0 0 0


. (A.500)

The eigenvalues of the matrix J̃(wupside−downI, ϕ̃upside−downI) are given by

λ1, λ2 ≈ 2a2 ± (a4 + a18)w2,

λ3 ≈ −a18w
2,

λ4 ≈ O(w3),
λ5 ≈ −(a2 − a3 + a4 − a5 + a18)w2 (repeated 4 times).

Assuming that all eigenvalues are negative, we have the following stability conditions (necessary

conditions):

a2 < −|a4 + a18 |, a18 > 0, a2 − a3 + a4 − a5 + a18 > 0.

These conditions are equivalent to

a3 − a4 + a5 + a17 < a2 < −|a4 + a18 | (A.501)
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a18 > 0. (A.502)

Thus, the stability of wupside−downI is conditional and depends on the values of a2, . . . , a5 and a18.

Substituting wupside−downII = (0,w, 0, 0, 0,w, 0, 0) into (A.352) and solving F2 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃upside−downII ≈ −
a2 + a4 + a18

a1

w
2.

Evaluating the Jacobian matrix (A.361) at (wupside−downII, ϕ̃upside−downII), we have

J̃(wupside−downII, ϕ̃upside−downII) = J̃C
upside−downII ≈ w

2

[
C25 C24

C24 C25

]
(A.503)

with

C25 =



−2a18 0 0 0

0 0 0 0

0 0 −a18 0

0 0 0 −a18


, (A.504)

where C18 is given in (A.472). The eigenvalues of the matrix J̃(wupside−downII, ϕ̃upside−downII) are

equivalent to that for wupside−downI. Hence, stability conditions for wupside−downII are equivalent to

that for wupside−downI.

Substituting wsqVM = (w, 0,w, 0,w, 0,w, 0) into (A.487) and solving F1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃sqVM ≈ −
a2 + a3 + a4 + a5 + a18

a1

w
2.

Evaluating the Jacobian matrix (A.495) at (wsqVM, ϕ̃sqVM), we have

J̃(wsqVM, ϕ̃sqVM) ≈ w
2

[
C21 C22

C22 C21

]
+ J̃C

sqVM
, (A.505)

where J̃C
sqVM

is given in (A.376) and

C21 = 2



0 0 0 0

0 −a18 0 0

0 0 0 0

0 0 0 −a18


, C22 = 2



a18 0 0 0

0 a18 0 0

0 0 a18 0

0 0 0 −a18


.

The eigenvalues of the matrix J̃(wsqVM, ϕ̃sqVM) are given by

λ1 ≈ 2(a2 + a3 + a4 + a5 + a18)w2,

λ2 ≈ 2(a2 + a3 − a4 − a5 − a18)w2,

λ3 ≈ 2(a2 − a3 + a4 − a5 + a18)w2,

λ4 ≈ 2(a2 − a3 − a4 + a5 − a18)w2,
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λ5 ≈ −4a18w
2 (repeated twice),

λ6 ≈ O(w3) (repeated twice).

Assuming that all eigenvalues are negative, we have the following stability conditions (necessary

conditions):

a2 + a3 + a4 + a5 + a18 < 0, (A.506)

a2 + a3 − a4 − a5 − a18 < 0, (A.507)

a2 − a3 + a4 − a5 + a18 < 0, (A.508)

a2 − a3 − a4 + a5 − a18 < 0, (A.509)

a18 > 0. (A.510)

Thus, the stability of wsqVM depends on the values of a2, . . . , a5 and a18.

Remark A.9. For the case (n̂, k̂, ℓ̂) = (4ℓ̂, k̂, ℓ̂), wsqT does not exist. See Proposition 3.32.

□

Case 7: (n̂, k̂, ℓ̂) = (2k̂ + 2ℓ̂, k̂, ℓ̂), (k̂, ℓ̂) , (3, 1)
For the case of (n̂, k̂, ℓ̂) with n̂ = 2(k̂ + ℓ̂) and (k̂, ℓ̂) , (3, 1), we have

(0, 1, 0, 1, 0, 0, 1, 0), (0, 0, 1, 1, 0, 1, 0, 0), (0, 0, 0, 2, 1, 0, 0, 0) ∈ P.

as well as

(1, 0, 0, 0, 0, 0, 0, 0), (2, 0, 0, 0, 1, 0, 0, 0), (1, 1, 0, 0, 0, 1, 0, 0),
(1, 0, 1, 0, 0, 0, 1, 0), (1, 0, 0, 1, 0, 0, 0, 1) ∈ P

in (A.311). Then, the asymptotic form of Fi (i = 1, . . . , 4) in (A.345) becomes

F1 ≈ a1ϕ̃z1 + a10z2z4z3 + a11z3z4z2 + a12z4
2z1 + FC

1 , (A.511)

F2 ≈ a1ϕ̃z2 + a10z1z3z4 + a11z4z3z1 + a12z3
2z2 + FC

2 , (A.512)

F3 ≈ a1ϕ̃z3 + a10z4z2z1 + a11z1z2z4 + a12z2
2z3 + FC

3 , (A.513)

F4 ≈ a1ϕ̃z4 + a10z3z1z2 + a11z2z1z3 + a12z1
2z4 + FC

4 (A.514)

with a10, a11, a12 given in (A.410), and FC
i
(i = 1, . . . , 4) given in (A.346)–(A.349). Then, the

asymptotic form of F̃i (i = 1, . . . , 8) in (A.255)–(A.258) becomes

F̃1 ≈ a1ϕ̃w1 + a10{w5(w3w7 − w4w8) + w6(w3w8 + w4w7)}
+ a11{w3(w5w7 − w6w8) + w4(w5w8 + w6w7)}
+ a12{w1(w7

2 − w8
2) + 2w2w7w8} + F̃C

1 , (A.515)

F̃2 ≈ a1ϕ̃w2 + a10{w5(w3w8 + w4w7) − w6(w3w7 − w4w8)}
+ a11{w3(w5w8 + w6w7) − w4(w5w7 − w6w8)}
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+ a12{−w2(w7
2 − w8

2) + 2w1w7w8} + F̃C
2 , (A.516)

F̃3 ≈ a1ϕ̃w3 + a10{w1(w5w7 − w6w8) + w2(w5w8 + w6w7)}
+ a11{w7(w1w5 − w2w6) + w8(w1w6 + w2w5)}
+ a12{w3(w5

2 − w6
2) + 2w4w5w6} + F̃C

3 , (A.517)

F̃4 ≈ a1ϕ̃w4 + a10{w1(w5w8 + w6w7) − w2(w5w7 − w6w8)}
+ a11{w7(w1w6 + w2w5) − w8(w1w5 − w2w6)}
+ a12{−w4(w5

2 − w6
2) + 2w3w5w6} + F̃C

4 , (A.518)

F̃5 ≈ a1ϕ̃w5 + a10{w1(w3w7 − w4w8) + w2(w3w8 + w4w7)}
+ a11{w7(w1w3 − w2w4) + w8(w1w4 + w2w3)}
+ a12{w5(w3

2 − w4
2) + 2w3w4w6} + F̃C

5 , (A.519)

F̃6 ≈ a1ϕ̃w6 + a10{w1(w3w8 + w4w7) − w2(w3w7 − w4w8)}
+ a11{w7(w1w4 + w2w3) − w8(w1w3 − w2w4)}
+ a12{−w6(w3

2 − w4
2) + 2w3w4w5} + F̃C

6 , (A.520)

F̃7 ≈ a1ϕ̃w7 + a10{w5(w1w3 − w2w4) + w6(w1w4 + w2w3)}
+ a11{w3(w1w5 − w2w6) + w4(w1w6 + w2w5)}
+ a12{w7(w1

2 − w2
2) + 2w8w1w2} + F̃C

7 , (A.521)

F̃8 ≈ a1ϕ̃w8 + a10{w5(w1w4 + w2w3) − w6(w1w3 − w2w4)}
+ a11{w3(w1w6 + w2w5) − w4(w1w5 − w2w6)}
+ a12{−w8(w1

2 − w2
2) + 2w7w1w2} + F̃C

8 , (A.522)

where F̃C
i
(i = 1, . . . , 8) is given in (A.353)–(A.360). Hence, the asymptotic form of the Jacobian

matrix in (A.253) becomes

J̃(w, ϕ̃) ≈ a1ϕ̃I8 + a10B10 + a11B11 + a12B12 + BC, (A.523)

with BC given in (A.362), B10, B11 and B12 given in (A.420).

Substituting wstripeI = (w, 0, 0, 0, 0, 0, 0, 0) into (A.515) and solving F1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃stripeI ≈ −
a2

a1

w
2.

Evaluating the Jacobian matrix (A.523) at (wstripeI, ϕ̃stripeI), we have

J̃(wstripeI, ϕ̃stripeI) ≈ w
2

[
O O

O C23

]
+ J̃C

stripeI
, (A.524)
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where J̃C
stripeI

is given in (A.363) and

C23 =



0 0 0 0

0 0 0 0

0 0 a12 0

0 0 0 −a12


.

The eigenvalues of the matrix J̃(wstripeI, ϕ̃stripeI) are given by

λ1 ≈ 2a2w
2,

λ2, λ3 ≈ −(a2 − a5 ± a12)w2,

λ4 ≈ O(w3),
λ5 ≈ −(a2 − a3)w2, (repeated twice)

λ6 ≈ −(a2 − a4)w2, (repeated twice).

Assuming that all eigenvalues are negative, we have the following stability conditions (necessary

conditions):

a2 < 0, a2 − a5 > −|a12 |, a2 − a3 > 0, a2 − a4 > 0.

These conditions are equivalent to

max(a3, a4, a5 − |a12 |) < a2 < 0. (A.525)

Thus, the stability of wstripeI depends on the values of a2, . . . , a5 and a12.

Substituting wstripeII = (0,w, 0, 0, 0, 0, 0, 0) into (A.515) and solving F2 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃stripeII ≈ −
a2

a1

w
2.

Evaluating the Jacobian matrix (A.523) at (wstripeII, ϕ̃stripeII), we have

J̃(wstripeII, ϕ̃stripeII) ≈ w
2

[
O O

O −C23

]
+ J̃C

stripeII
, (A.526)

where C23 is given in (A.6.5), and J̃C
stripeII

is given in (A.366). The eigenvalues of the matrix

J̃(wstripeII, ϕ̃stripeII) are equivalent to that for wstripeI. Hence, stability conditions for wstripeII are

equivalent to that for wstripeI.

Substituting wupside−downI = (w, 0, 0, 0,w, 0, 0, 0) into (A.515) and solving F1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃upside−downI ≈ −
a2 + a4

a1

w
2.

Evaluating the Jacobian matrix (A.523) at (wupside−downI, ϕ̃upside−downI), we have

J̃(wupside−downI, ϕ̃upside−downI) ≈ w
2

[
C24 C25

C25 C24

]
+ J̃C

upside−downI
(A.527)
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with

C24 =



0 0 0 0

0 0 0 0

0 0 a12 0

0 0 0 −a12


, C25 =



0 0 0 0

0 0 0 0

0 0 a10 + a11 0

0 0 0 a10 − a11


. (A.528)

The eigenvalues of the matrix J̃(wupside−downI, ϕ̃upside−downI) are given by

λ1, λ2 ≈ 2(a2 ± a4)w2,

λ3, λ4 ≈ {−(a2 + a3 − a4 − a5 − a12) ± (a10 + a11)}w2,

λ5, λ6 ≈ {−(a2 + a3 − a4 − a5 + a12) ± (a10 − a11)}w2,

λ7 ≈ O(w3) (repeated twice).

Assuming that all eigenvalues are negative, we have the following stability conditions (necessary

conditions):

a2 < −|a4 |, (A.529)

a2 + a3 − a4 − a5 − a12 > −|a10 + a11 |, (A.530)

a2 + a3 − a4 − a5 + a12 > −|a10 − a11 |. (A.531)

Thus, the stability of wupside−downI depends on the values of a2, . . . , a5 and a10, . . . , a12.

Substituting wupside−downII = (0,w, 0, 0, 0,w, 0, 0) into (A.352) and solving F2 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃upside−downII ≈ −
a2 + a4

a1

w
2.

Evaluating the Jacobian matrix (A.361) at (wupside−downII, ϕ̃upside−downII), we have

J̃(wupside−downII, ϕ̃upside−downII) ≈ w
2

[
−C24 C26

C26 −C24

]
+ J̃C

upside−downII
(A.532)

with

C26 =



0 0 0 0

0 0 0 0

0 0 a10 − a11 0

0 0 0 a10 + a11


, (A.533)

where C24 is given in (A.528). The eigenvalues of the matrix J̃(wupside−downII, ϕ̃upside−downII) are

equivalent to that for wupside−downI. Hence, stability conditions for wupside−downII are equivalent to

that for wupside−downI.

Substituting wsqVM = (w, 0,w, 0,w, 0,w, 0) into (A.515) and solving F1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃sqVM ≈ −
a2 + a3 + a4 + a5 + a10 + a11 + a12

a1

w
2.
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Evaluating the Jacobian matrix (A.523) at (wsqVM, ϕ̃sqVM), we have

J̃(wsqVM, ϕ̃sqVM) ≈ w
2

[
C27 C28

C28 C27

]
+ J̃C

sqVM
, (A.534)

where J̃C
sqVM

is given in (A.376) and

C27 =



−a10 − a11 0 a10 + a11 0

0 −a10 − a11 − 2a12 0 a10 − a11

a10 + a11 0 −a10 − a11 0

0 −a10 + a11 0 −a10 − a11 − 2a12


,

C28 =



a10 + a11 0 a10 + a11 + 2a12 0

0 −a10 + a11 0 a10 + a11 + 2a12

a10 + a11 + 2a12 0 a10 + a11 0

0 a10 + a11 + 2a12 0 a10 − a11


.

The eigenvalues of the matrix J̃(wsqVM, ϕ̃sqVM) are given by

λ1 ≈ 2(a2 + a3 + a4 + a5 + a10 + a11 + a12)w2,

λ2 ≈ 2(a2 + a3 − a4 − a5 − a10 − a11 − a12)w2,

λ3 ≈ 2(a2 − a3 + a4 − a5 − a10 − a11 − a12)w2,

λ4 ≈ 2(a2 − a3 − a4 + a5 − a10 − a11 + a12)w2,

λ5 ≈ −2(a10 + a11 + 2a12)w2 (repeated twice),

λ6 ≈ O(w3) (repeated twice).

Assuming that all eigenvalues are negative, we have the following stability conditions (necessary

conditions):

a2 + a3 + a4 + a5 + a10 + a11 + a12 < 0, (A.535)

a2 + a3 − a4 − a5 − a10 − a11 − a12 < 0, (A.536)

a2 − a3 + a4 − a5 − a10 − a11 − a12 < 0, (A.537)

a2 − a3 − a4 + a5 − a10 − a11 + a12 < 0, (A.538)

a10 + a11 + 2a12 > 0. (A.539)

Thus, the stability of wsqVM depends on the values of a2, . . . , a5 and a10, . . . , a12.

Remark A.10. For the case (n̂, k̂, ℓ̂) = (2k̂ + 2ℓ̂, k̂, ℓ̂), wsqT does not exist. See Proposition 3.32.

□
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Figure A.2: Equilibrium curves for µ = (1;+,+,−). Solid curves represent stable stationary points, and dashed curves

represent unstable ones.

A.7. Bifurcation Behaviour of the Forslid and Ottaviano (2003) Model

We identified bifurcating solutions from the uniform state on the 6 × 6 square lattice and

demonstrated the emergence of some typical solutions for three types of economic geography

models in Section 3.7. In this section, we compute equilibrium curves of all the bifurcating

solutions for the FO model (Forslid and Ottaviano, 2003).

Figures A.2–A.10 show bifurcating solution curves for each µ. We see that all the bifurcating

solutions are unstable just after bifurcation although stable ones are theoretically possible. For

almost all the bifurcating solution curves, population tend to be agglomerated completely to places

with the largest positive or negative components of the bifurcating solution after the bifurcation.

Note that wsq with µ = (4; 3, 2,+) in Fig. A.9 and wsqVM with µ = (8; 2, 1) in Fig. A.10 are

exceptions to this tendency. These solutions have a common property that some places have a

zero component. For solutions with such a property, computing the bifurcating solution curves

is troublesome since we cannot predict increase and decrease in population in places with a zero

component.
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Figure A.3: Equilibrium curves for µ = (2;+,+). Solid curves represent stable stationary points, and dashed curves

represent unstable ones.
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Figure A.4: Equilibrium curves for µ = (4; 1, 0,+). Solid curves represent stable stationary points, and dashed curves

represent unstable ones.
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Figure A.5: Equilibrium curves for µ = (4; 2, 0,+). Solid curves represent stable stationary points, and dashed curves

represent unstable ones.
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Figure A.6: Equilibrium curves for µ = (4; 1, 1,+). Solid curves represent stable stationary points, and dashed curves

represent unstable ones.
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Figure A.7: Equilibrium curves for µ = (4; 2, 2,+). Solid curves represent stable stationary points, and dashed curves

represent unstable ones.
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Figure A.8: Equilibrium curves for µ = (4; 3, 1,+). Solid curves represent stable stationary points, and dashed curves

represent unstable ones.
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Figure A.9: Equilibrium curves for µ = (4; 3, 2,+). Solid curves represent stable stationary points, and dashed curves

represent unstable ones.
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Figure A.10: Equilibrium curves for µ = (8; 2, 1). Solid curves represent stable stationary points, and dashed curves

represent unstable ones.
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B. Appendices for Chapter 5

We describe details of theoretical analysis in Chapter 5. Using the governing equation

Fi(λ, ϕ) = λi(vi(λ, ϕ) − v̄(λ, ϕ)) = 0, i ∈ P (B.1)

in (5.5), we derive bifurcation equations. Solving the bifurcation equations, we show the existence

of bifurcating solutions from the the mono-centric distribution λFA
= (1, 0, . . . , 0).

B.1. Bifurcation Point with Type αi Orbit

We investigate critical points associated with Type αi orbit.

B.1.1. Derivation of Bifurcation Equations

We focus on a critical point associated with Type α1 orbit. We can investigate critical points

associated with Type αi (i = 2, . . . , n1) orbits in a similar manner. Note that n1 is dependent on the

number of places K (cf., Fig. 5.3 for K = 25).

Let (λFA, ϕ
α1
c ) be a critical point associated with Type α1 orbit:

α1 = {2, 3, 4, 5}. (B.2)

By the definition of ϕ
α1
c , we assume that vα1

− v1 = 0. Hence, the Jacobian matrix Jc ≡ J(λFA, ϕ
α1
c )

takes the following form:

Jc =

©­­­­­­­­­­­­­«

−v1 −v114 −vα2
14 · · · −vαn1

14 −vβ1
18 · · · −vβn2

18

0 × I4

(vα2
− v1)I4

. . .

(vαn1
− v1)I4

(vβ1
− v1)I8

. . .

(vβn2
− v1)I8

ª®®®®®®®®®®®®®¬

, (B.3)

where I j is the j × j identity matrix, and 1 j is the j-dimensional all-one row vector.

We decompose the increment λ − λFA into two components as

λ = λFA
+ w + w̄, (B.4)

where w ∈ ker(Jc) and w̄ ∈ ker(Jc)⊥. Note that ker(Jc) represents the kernel space of Jc, which is

generated by a basis satisfying Jcη = 0:

ker(Jc) = {η ∈ RK | η1 + η2 + η3 + η4 + η5 = 0, η j = 0, j = 6, . . . ,K}, (B.5)

where η j denotes the jth component of η. We take a basis {η j | j = 1, . . . , 4} of ker(Jc) as

η1 = (−1, 1, 0, 0, 0, 0, . . . , 0), (B.6)
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η2 = (−1, 0, 1, 0, 0, 0, . . . , 0), (B.7)

η3 = (−1, 0, 0, 1, 0, 0, . . . , 0), (B.8)

η4 = (−1, 0, 0, 0, 1, 0, . . . , 0). (B.9)

Then, we can represent w as

w = x1η1 + x2η2 + x3η3 + x4η4. (B.10)

We take a basis {η̄ j | j = 1, . . . ,K − 4} of ker(Jc)⊥ as

η̄1 = (1, 1, 1, 1, 1, . . . , 1), (B.11)

η̄ j = (0, 0, 0, 0, 0, 0, . . . , 0︸  ︷︷  ︸
j−2 times

, 1, 0, . . . , 0︸  ︷︷  ︸
K−( j+4) times

), j = 2, . . . ,K − 4. (B.12)

Then, we can represent w̄ as

w̄ = x̄1η̄1 +

K−4∑
k=2

x̄k η̄k . (B.13)

Combining (B.4), (B.10), and (B.13), we can represent λ as

λ = (1 + x̄1 − x1 − x2 − x3 − x4, x̄1 + x1, . . . , x̄1 + x4, x̄1 + x̄2, . . . , x̄1 + x̄K−4). (B.14)

Substituting (B.14) into the governing equation (5.5) with (5.4), we have

(x̄1 + x̄ j)(v j+4 − v̄) = 0, j = 2, . . . ,K − 4. (B.15)

Note that by the definition of the critical point (λFA, ϕ
α1
c ), we have v j − v̄ , 0 ( j < α1) at (λFA, ϕ

α1
c ),

which means v j+4 − v̄ , 0 ( j = 2, . . . ,K − 4). Then, the continuity of the payoff function ensures

v j+4 − v̄ , 0 in a neighborhood of (λFA, ϕ
α1
c ). Hence, we have

x̄1 + x̄ j = 0, j = 2, . . . ,K − 4. (B.16)

Substituting (B.14) and (B.16) into the condition (5.2), we have

1 + 5x̄1 = 1. (B.17)

Hence, we have

x̄1 = 0. (B.18)

By the conditions (B.16) and (B.18), we can represent v j as a function of x1, x2, x3, x4, and ψ:

v j = v j(1 − x1 − x2 − x3 − x4, x1, x2, x3, x4, 0K−5, ψ). (B.19)

We take a set of vectors {ξ j | j = 1, . . . , 4} that satisfies ξ⊤
j

Jc = 0⊤:

ξ1 = (0, 1, 0, 0, 0, 0, . . . , 0)⊤, (B.20)
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ξ2 = (0, 0, 1, 0, 0, 0, . . . , 0)⊤, (B.21)

ξ3 = (0, 0, 0, 1, 0, 0, . . . , 0)⊤, (B.22)

ξ4 = (0, 0, 0, 0, 1, 0, . . . , 0)⊤. (B.23)

We can obtain the bifurcation equation for Type α1 orbit as the inner product between F and ξ j :

F̃1(x1, x2, x3, x4, ψ) = x1(v2 − v̄) = x1(v2 − v1), (B.24)

F̃2(x1, x2, x3, x4, ψ) = x2(v3 − v̄) = x2(v3 − v1), (B.25)

F̃3(x1, x2, x3, x4, ψ) = x3(v4 − v̄) = x3(v4 − v1), (B.26)

F̃4(x1, x2, x3, x4, ψ) = x4(v5 − v̄) = x4(v5 − v1), (B.27)

where ψ = ϕ − ϕα1
c represents the increment of ϕ. Therein, we used v̄ = v1 since

F1 = (1 − x1 − x2 − x3 − x4)(v1 − v̄) = 0. (B.28)

The bifurcation equation inherits the equivariance in (5.8) as

T̃(g)F̃(x, ψ) = F̃(T̃(g)x, ψ), g ∈ G, (B.29)

where T̃ is a subrepresentation of T on ker(Jc). The equivariance condition for T̃(r) imposes

F̃2(x1, x2, x3, x4) = F̃1(x2, x3, x4, x1), (B.30)

F̃3(x1, x2, x3, x4) = F̃2(x2, x3, x4, x1), (B.31)

F̃4(x1, x2, x3, x4) = F̃3(x2, x3, x4, x1), (B.32)

F̃1(x1, x2, x3, x4) = F̃4(x2, x3, x4, x1). (B.33)

Combining (B.30) and (B.31), we have

F̃3(x1, x2, x3, x4) = F̃1(x3, x4, x1, x2). (B.34)

Combining (B.34) and (B.32), we have

F̃4(x1, x2, x3, x4) = F̃1(x4, x1, x2, x3). (B.35)

The remaining condition (B.33) is equivalent to (B.35). To sum up, we have the condition (5.23)

in Lemma 4.

Let R be a function as

R(x, ψ) ≡ v2 − v1. (B.36)

We expand R into a power series as

R(x, ψ) =
∞∑

a=0

∞∑
b=0

∞∑
c=0

∞∑
d=0

Aabcd(ψ)x1
a x2

bx3
c x4

d (B.37)
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with coefficients Aabcd(ψ) ∈ R. Then, we can represent F̃1 as

F̃1(x, ψ) = x1R(x, ψ) = x1

∞∑
a=0

∞∑
b=0

∞∑
c=0

∞∑
d=0

Aabcd(ψ)x1
a x2

bx3
c x4

d . (B.38)

We conclude

F̃2(x, ψ) = x2

∞∑
a=0

∞∑
b=0

∞∑
c=0

∞∑
d=0

Aabcd(ψ)x2
a x3

bx4
c x1

d, (B.39)

F̃3(x, ψ) = x3

∞∑
a=0

∞∑
b=0

∞∑
c=0

∞∑
d=0

Aabcd(ψ)x3
a x4

bx1
c x2

d, (B.40)

F̃4(x, ψ) = x4

∞∑
a=0

∞∑
b=0

∞∑
c=0

∞∑
d=0

Aabcd(ψ)x4
a x1

bx2
c x3

d . (B.41)

On the other hand, the equivariance condition for T̃(s) imposes

F̃1(x1, x2, x3, x4) = F̃1(x1, x4, x3, x2), (B.42)

F̃4(x1, x2, x3, x4) = F̃2(x1, x4, x3, x2), (B.43)

F̃3(x1, x2, x3, x4) = F̃3(x1, x4, x3, x2), (B.44)

F̃2(x1, x2, x3, x4) = F̃4(x1, x4, x3, x2). (B.45)

Combining (B.38) and (B.42), we have

∞∑
a=0

∞∑
b=0

∞∑
c=0

∞∑
d=0

Aabcd(ψ)x1
a x2

bx3
c x4

d
=

∞∑
a=0

∞∑
b=0

∞∑
c=0

∞∑
d=0

Aabcd(ψ)x1
a x4

bx2
c x3

d, (B.46)

which means Aabcd = Aadcb. The remaining conditions (B.43)–(B.45) lead to the same result as

(B.46). To sum up, we have the condition (5.24) in Lemma 4.

Since (x, ψ) = (0, 0, 0, 0, 0) corresponds to the critical point, we have

A0000(0) =
∂F̃1

∂x1

����
(x,ψ)=(0,0,0,0,0)

= 0. (B.47)

Since A′
0000
(0) is generically nonzero, we have A0000(ψ) ≈ a0ψ with

a0 = A′0000(0) =
∂R

∂ψ

����
(x,ψ)=(0,0,0,0,0)

. (B.48)

Then, the asymptotic form of the bifurcation equation becomes

F̃1(x, ψ) ≈ x1{a0ψ + a1x1 + a2x2 + a3x3 + a4x4}, (B.49)

F̃2(x, ψ) ≈ x2{a0ψ + a1x2 + a2x3 + a3x4 + a4x1}, (B.50)
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F̃3(x, ψ) ≈ x3{a0ψ + a1x3 + a2x4 + a3x1 + a4x2}, (B.51)

F̃4(x, ψ) ≈ x4{a0ψ + a1x4 + a2x1 + a3x2 + a4x3}, (B.52)

where

a1 = A1000(0) =
∂R

∂x1

����
(x,ψ)=(0,0,0,0,0)

, (B.53)

a2 = A0100(0) =
∂R

∂x2

����
(x,ψ)=(0,0,0,0,0)

, (B.54)

a3 = A0010(0) =
∂R

∂x3

����
(x,ψ)=(0,0,0,0,0)

, (B.55)

a4 = A0001(0) =
∂R

∂x4

����
(x,ψ)=(0,0,0,0,0)

. (B.56)

B.1.2. Existence of Bifurcating Solutions

We can predict the following bifurcating solutions (cf., Fig. 5.5):




xSquare-I = w(1, 1, 1, 1),
xDuo-I = w(1, 1, 0, 0),
xDuo-II = w(1, 0, 1, 0),
xMono-I = w(1, 0, 0, 0)

(B.57)

for some w > 0.

We first show the existence of Square-I solution. Substituting xSquare-I = w(1, 1, 1, 1) into F̃1,

we have

F̃1(xSquare-I, ψ) = w

∞∑
a=0

∞∑
b=0

∞∑
c=0

∞∑
d=0

Aabcd(ψ)wa+b+c+d ≈ w{a0ψ + (a1 + a2 + a3 + a4)w}.

We see that F̃1(xSquare-I, ψ) = 0 has the trivial solution (w = 0) and a bifurcating solution:

ψ = ψSquare-I ≈ −
a1 + a2 + a3 + a4

a0

w. (B.58)

Substituting xSquare-I into F̃2, F̃3, and F̃4 in (B.39), (B.40), and (B.41), we see that F̃2 = F̃3 = F̃4 =

F̃1 = 0. Hence, the bifurcation equation is satisfied for xSquare-I. The other solutions can be treated

similarly as explained below.

Substituting xDuo-I = w(1, 1, 0, 0) into F̃1, we have

F̃1(xDuo-I, ψ) = w

∞∑
a=0

∞∑
b=0

Aab00(ψ)wa+b ≈ w{a0ψ + (a1 + a2)w}.

We see that F̃1(xDuo-I, ψ) = 0 has the trivial solution (w = 0) and a bifurcating solution:

ψ = ψDuo-I ≈ −
a1 + a2

a0

w. (B.59)
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Substituting xDuo-I into F̃2 in (B.39), we see that F̃2 = F̃1 = 0. Hence, the bifurcation equation is

satisfied for xDuo-I.

Substituting xDuo-II = w(1, 0, 1, 0) into F̃1, we have

F̃1(xDuo-II, ψ) = w

∞∑
a=0

∞∑
c=0

Aa0c0(ψ)wa+c ≈ w{a0ψ + (a1 + a3)w}.

We see that F̃1(xDuo-II, ψ) = 0 has the trivial solution (w = 0) and a bifurcating solution:

ψ = ψDuo-II ≈ −
a1 + a3

a0

w. (B.60)

Substituting xDuo-II into F̃3 in (B.40), we see that F̃3 = F̃1 = 0. Hence, the bifurcation equation is

satisfied for xDuo-II.

Substituting xMono-I = w(1, 0, 0, 0) into F̃1, we have

F̃1(xMono-I, ψ) = w

∞∑
a=0

Aa000(ψ)wa ≈ w(a0ψ + a1w).

We see that F̃1(xMono-I, ψ) = 0 has the trivial solution (w = 0) and a bifurcating solution:

ψ = ψMono-I ≈ −
a1

a0

w. (B.61)

Hence, the bifurcation equation is satisfied for xMono-I.

B.1.3. Stability of Bifurcating Solutions

The asymptotic form of the Jacobian matrix J̃ = ∂F̃/∂x becomes

J̃(x, ψ) ≈ ψa0I4 + x1 J̃1 + x2 J̃2 + x3 J̃3 + x4 J̃4, (B.62)

where

J̃1 =



2a1 a2 a3 a4

0 a4 0 0

0 0 a3 0

0 0 0 a2


, J̃2 =



a2 0 0 0

a4 2a1 a2 a3

0 0 a4 0

0 0 0 a3


,

J̃3 =



a3 0 0 0

0 a2 0 0

a3 a4 2a1 a2

0 0 0 a4


, J̃4 =



a4 0 0 0

0 a3 0 0

0 0 a2 0

a2 a3 a4 2a1


.

To begin with, we investigate the stability of Square-I solution. Evaluating the Jacobian matrix

at the point

(xSquare-I, ψSquare-I) = (w,w,w,w,−
a1 + a2 + a3 + a4

a0

w),
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Table B.1: Stability conditions of bifurcating solutions for critical points associated with Type αi orbit.

Solution Case Stability conditions

xSquare-I w > 0 a1 + a3 < −|a2 + a4 |
a1 − a3 < 0

w < 0 a1 + a3 > |a2 + a4 |
a1 − a3 > 0

xDuo-I w > 0 a1 − a2 < 0

a1 + a4 < 0

max(−a2 + a4, 0) < a1 − a3

w < 0 a1 − a2 > 0

a1 + a4 > 0

min(−a2 + a4, 0) > a1 − a3

xDuo-II w > 0 a1 − a3 < 0

a2 + a4 < a1 + a3 < 0

w < 0 a1 − a3 > 0

a2 + a4 > a1 + a3 > 0

xMono-I w > 0 max(a2, a3, a4) < a1 < 0

w < 0 min(a2, a3, a4) > a1 > 0

we have

J̃(xSquare-I, ψSquare-I) ≈ w



a1 a2 a3 a4

a4 a1 a2 a3

a3 a4 a1 a2

a2 a3 a4 a1


. (B.63)

The eigenvalues of this matrix are given as follows:

λ1, λ2 ≈ w(a1 + a3) ± w(a2 + a4),
λ3, λ4 ≈ w(a1 − a3) ± iw(a2 − a4).

Thus, the stability of xSquare-I depends on the values of a1, a2, a3, and a4. The other solutions can

be treated similarly. Table B.1 summarizes the stability conditions of bifurcating solutions.

Evaluating the Jacobian matrix at the point

(xDuo-I, ψDuo-I) = (w,w, 0, 0,−
a1 + a2

a0

w),

we have

J̃(xDuo-I, ψDuo-I) ≈ w



a1 a2 a3 a4

a4 a1 − a2 + a4 a2 a3

0 0 −a1 − a2 + a3 + a4 0

0 0 0 −a1 + a3


. (B.64)

The eigenvalues of this matrix are given as follows:

λ1 ≈ w(a1 − a2),
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λ2 ≈ w(a1 + a4),
λ3 ≈ w(−a1 + a3),
λ4 ≈ w(−a1 + a3 − a2 + a4).

Thus, the stability of xDuo-I depends on the values of a1, a2, a3, and a4.

Evaluating the Jacobian matrix at the point

(xDuo-II, ψDuo-II) = (w, 0,w, 0,−
a1 + a3

a0

w),

we have

J̃(xDuo-II, ψDuo-II) ≈ w



a1 a2 a3 a4

0 −a1 + a2 − a3 + a4 0 0

a3 a4 a1 a2

0 0 0 −a1 + a2 − a3 + a4


. (B.65)

The eigenvalues of this matrix are given as follows:

λ1, λ2 ≈ w(a1 ± a3),
λ3 ≈ w(−a1 − a3 + a2 + a4) (repeated twice).

Thus, the stability of xDuo-II depends on the values of a1, a2, a3, and a4.

Evaluating the Jacobian matrix at the point

(xMono-I, ψMono-I) = (w, 0, 0, 0,−
a1

a0

w),

we have

J̃(xMono-I, ψMono-I) ≈ w



a1 a2 a3 a4

0 −a1 + a4 0 0

0 0 −a1 + a3 0

0 0 0 −a1 + a2


. (B.66)

The eigenvalues of this matrix are given as follows:

λ1 ≈ wa1,

λ2 ≈ w(−a1 + a2),
λ3 ≈ w(−a1 + a3),
λ4 ≈ w(−a1 + a4).

Thus, the stability of xMono-I depends on the values of a1, a2, a3, and a4.

B.2. Bifurcation Point with Type βi Orbit

We investigate critical points associated with Type βi orbit.
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B.2.1. Derivation of Bifurcation Equations

We focus on a critical point associated with Type β1 orbit. We can investigate critical points

associated with Type βi (i = 2, . . . , n2) orbits in a similar manner. Note that n1 and n2 are dependent

on the number of places K (cf., Fig. 5.3 for K = 25).

Let (λFA, ϕ
β1
c ) be a critical point associated with Type β1 orbit:

β1 = {(4n1 + 1) + 1, . . . , (4n1 + 1) + 8}. (B.67)

Note that we can investigate critical points associated with Type βi (i = 2, . . . , n2) orbits in a

similar manner. By the definition of ϕ
β1
c , we assume that vβ1

− v1 = 0. Hence, the Jacobian matrix

Jc ≡ J(λFA, ϕ
β1
c ) takes the following form:

Jc =

©­­­­­­­­­­­­­«

−v1 −vα1
14 · · · −vαn1

14 −v118 −vβ2
18 · · · −vβn2

18

(vα1
− v1)I4

. . .

(vαn1
− v1)I4

0 × I8

(vβ2
− v1)I8

. . .

(vβn2
− v1)I8

ª®®®®®®®®®®®®®¬

, (B.68)

where I j is the j × j identity matrix, and 1 j is the j-dimensional all-one row vector.

We decompose the increment λ − λFA into two components as

λ = λFA
+ w + w̄, (B.69)

where w ∈ ker(Jc) and w̄ ∈ ker(Jc)⊥. Note that ker(Jc) represents the kernel space of Jc, which is

generated by a basis satisfying Jcη = 0:

ker(Jc) = {η ∈ RK | η1 +

∑
k∈β1

ηk = 0, η j = 0, j < {1} ∪ β1}, (B.70)

where η j denotes the jth component of η. We take a basis {η j | j = 1, . . . , 8} of ker(Jc) as

η j = (−1, 0, . . . , 0︸  ︷︷  ︸
j+4n1−1 times

, 1, 0, . . . , 0︸  ︷︷  ︸
K−( j+4n1+1) times

). (B.71)

Note that η j is a vector whose component corresponding to jth place of the orbit β1 is 1. Then, we

can represent w as

w =

8∑
k=1

xkηk . (B.72)
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We take a basis {η̄ j | j = 1, . . . ,K − 8} of ker(Jc)⊥ as

η̄1 = (1, 1, . . . , 1), (B.73)

η̄ j = (0, 0, . . . , 0︸  ︷︷  ︸
j−2 times

, 1, 0, . . . , 0︸  ︷︷  ︸
K− j times

), j = 2, . . . , 4n1 + 1, (B.74)

η̄ j = (0, 0, . . . , 0︸  ︷︷  ︸
j+6 times

, 1, 0, . . . , 0︸  ︷︷  ︸
K−( j+8) times

), j = 4n1 + 2, . . . ,K − 8. (B.75)

Then, we can represent w̄ as

w̄ = x̄1η̄1 +

K−8∑
k=2

x̄k η̄k . (B.76)

Combining (B.69), (B.72), and (B.76), we can represent λ as

λ = (1+ x̄1−
8∑

k=1

xk, x̄1+ x̄2, . . . , x̄1+ x̄4n1+1, x̄1+ x1, . . . , x̄1+ x8, x̄1+ x̄4n1+2, . . . , x̄1+ x̄K−8). (B.77)

Substituting (B.77) into the governing equation (5.5), we have

(x̄1 + x̄ j)(v j − v̄) = 0, j = 2, . . . , 4n1 + 1. (B.78)

(x̄1 + x̄ j)(v j+8 − v̄) = 0, j = 4n1 + 2, . . . ,K − 8. (B.79)

Note that by the definition of the critical point (λFA, ϕ
β1
c ), we have v j − v̄ , 0 ( j < β1) at (λFA, ϕ

β1
c ).

Then, the continuity of the payoff function ensures v j − v̄ , 0 ( j < β1) in a neighborhood of

(λFA, ϕ
β1
c ), which means v j − v̄ , 0 ( j = 2, . . . , 4n1 + 1) and v j+8 − v̄ , 0 ( j = 4n1 + 2, . . . ,K − 8).

Hence, we have

x̄1 + x̄ j = 0, j = 2, . . . ,K − 8. (B.80)

Substituting (B.77) and (B.80) into the condition (5.2), we have

1 + 9x̄1 = 1. (B.81)

Hence, we have

x̄1 = 0. (B.82)

By the conditions (B.80) and (B.82), we can represent v j as a function of x1, x2, x3, x4, and ψ:

v j = v j(1 −
8∑

k=1

xk, x1, x2, x3, x4, x5, x6, x7, x8, 0K−9, ψ). (B.83)

We take a set of vectors {ξ j | j = 1, . . . , 8} that satisfies ξ⊤
j

Jc = 0⊤:

ξ j = (0, 0, . . . , 0︸  ︷︷  ︸
j+4n1−1 times

, 1, 0, . . . , 0︸  ︷︷  ︸
K−( j+4n1+1) times

). (B.84)
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We can obtain the bifurcation equation for Type β1 orbit as the inner product between F and ξ j :

F̃j(x1, x2, x3, x4, x5, x6, x7, x8, ψ) = x j(v j+4n1+1 − v̄) = x j(v j+4n1+1 − v1), (B.85)

where ψ = ϕ − ϕβ1
c represents the increment of ϕ. Therein, we used v̄ = v1 since

F1 = (1 −
8∑

k=1

xk)(v1 − v̄) = 0. (B.86)

The bifurcation equation inherits the equivariance in (5.8) as

T̃(g)F̃(x, ψ) = F̃(T̃(g)x, ψ), g ∈ G, (B.87)

where T̃ is a subrepresentation of T on ker(Jc). The equivariance condition for T̃(r) imposes

F̃3(x1, x2, x3, x4, x5, x6, x7, x8) = F̃1(x3, x4, x5, x6, x7, x8, x1, x2), (B.88)

F̃4(x1, x2, x3, x4, x5, x6, x7, x8) = F̃2(x3, x4, x5, x6, x7, x8, x1, x2), (B.89)

F̃5(x1, x2, x3, x4, x5, x6, x7, x8) = F̃3(x3, x4, x5, x6, x7, x8, x1, x2), (B.90)

F̃6(x1, x2, x3, x4, x5, x6, x7, x8) = F̃4(x3, x4, x5, x6, x7, x8, x1, x2), (B.91)

F̃7(x1, x2, x3, x4, x5, x6, x7, x8) = F̃5(x3, x4, x5, x6, x7, x8, x1, x2), (B.92)

F̃8(x1, x2, x3, x4, x5, x6, x7, x8) = F̃6(x3, x4, x5, x6, x7, x8, x1, x2), (B.93)

F̃1(x1, x2, x3, x4, x5, x6, x7, x8) = F̃7(x3, x4, x5, x6, x7, x8, x1, x2), (B.94)

F̃2(x1, x2, x3, x4, x5, x6, x7, x8) = F̃8(x3, x4, x5, x6, x7, x8, x1, x2). (B.95)

Using (B.88), we obtain F̃3 from F̃1. Combining (B.88) and (B.90), we have

F̃5(x1, x2, x3, x4, x5, x6, x7, x8) = F̃1(x5, x6, x7, x8, x1, x2, x3, x4). (B.96)

Combining (B.92) and (B.96), we have

F̃7(x1, x2, x3, x4, x5, x6, x7, x8) = F̃1(x7, x8, x1, x2, x3, x4, x5, x6). (B.97)

Using (B.89), we obtain F̃4 from F̃2. Combining (B.89) and (B.91), we have

F̃6(x1, x2, x3, x4, x5, x6, x7, x8) = F̃2(x5, x6, x7, x8, x1, x2, x3, x4). (B.98)

Combining (B.93) and (B.98), we have

F̃8(x1, x2, x3, x4, x5, x6, x7, x8) = F̃2(x7, x8, x1, x2, x3, x4, x5, x6). (B.99)

The conditions (B.94) and (B.95) are equivalent to (B.97) and (B.99). On the other hand, the

equivariance condition for T̃(s) imposes

F̃8(x1, x2, x3, x4, x5, x6, x7, x8) = F̃1(x8, x7, x6, x5, x4, x3, x2, x1), (B.100)
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F̃7(x1, x2, x3, x4, x5, x6, x7, x8) = F̃2(x8, x7, x6, x5, x4, x3, x2, x1), (B.101)

F̃6(x1, x2, x3, x4, x5, x6, x7, x8) = F̃3(x8, x7, x6, x5, x4, x3, x2, x1), (B.102)

F̃5(x1, x2, x3, x4, x5, x6, x7, x8) = F̃4(x8, x7, x6, x5, x4, x3, x2, x1), (B.103)

F̃4(x1, x2, x3, x4, x5, x6, x7, x8) = F̃5(x8, x7, x6, x5, x4, x3, x2, x1), (B.104)

F̃3(x1, x2, x3, x4, x5, x6, x7, x8) = F̃6(x8, x7, x6, x5, x4, x3, x2, x1), (B.105)

F̃2(x1, x2, x3, x4, x5, x6, x7, x8) = F̃7(x8, x7, x6, x5, x4, x3, x2, x1), (B.106)

F̃1(x1, x2, x3, x4, x5, x6, x7, x8) = F̃8(x8, x7, x6, x5, x4, x3, x2, x1). (B.107)

Using (B.100), we obtain F̃8 from F̃1. Combining (B.102) and (B.88), we have

F̃6(x1, x2, x3, x4, x5, x6, x7, x8) = F̃1(x6, x5, x4, x3, x2, x1, x8, x7). (B.108)

Combining (B.104) and (B.96), we have

F̃4(x1, x2, x3, x4, x5, x6, x7, x8) = F̃1(x4, x3, x2, x1, x8, x7, x6, x5). (B.109)

Combining (B.106) and (B.97), we have

F̃2(x1, x2, x3, x4, x5, x6, x7, x8) = F̃1(x2, x1, x8, x7, x6, x5, x4, x3). (B.110)

The conditions (B.101), (B.103), (B.105), and (B.107) are equivalent to (B.106), (B.104), (B.102),

and (B.100). The remaining conditions (B.89), (B.98), and (B.99) for T̃(r) are equivalent to

(B.109), (B.108), and (B.100) for T̃(s). To sum up, we have the condition (5.26) in Lemma 5.

Let R be a function as

R(x, ψ) ≡ v4n1+2 − v1. (B.111)

We expand R into a power series as

R(x, ψ) =
∞∑

a=0

∞∑
b=0

∞∑
c=0

∞∑
d=0

∞∑
e=0

∞∑
f=0

∞∑
g=0

∞∑
h=0

Aabcde f gh(ψ)x1
a x2

bx3
c x4

d x5
ex6

f x7
gx8

h (B.112)

with coefficients Aabcde f gh(ψ) ∈ R. Then, we can represent F̃1 as

F̃1(x, ψ) = x1R(x, ψ) = x1

∞∑
a=0

∞∑
b=0

∞∑
c=0

∞∑
d=0

∞∑
e=0

∞∑
f=0

∞∑
g=0

∞∑
h=0

Aabcde f gh(ψ)x1
a x2

bx3
c x4

d x5
ex6

f x7
gx8

h.

(B.113)

We conclude

F̃2(x, ψ) = x2

∞∑
a=0

∞∑
b=0

∞∑
c=0

∞∑
d=0

∞∑
e=0

∞∑
f=0

∞∑
g=0

∞∑
h=0

Aabcde f gh(ψ)x2
a x1

bx8
c x7

d x6
ex5

f x4
gx3

h, (B.114)

F̃3(x, ψ) = x3

∞∑
a=0

∞∑
b=0

∞∑
c=0

∞∑
d=0

∞∑
e=0

∞∑
f=0

∞∑
g=0

∞∑
h=0

Aabcde f gh(ψ)x3
a x4

bx5
c x6

d x7
ex8

f x1
gx2

h, (B.115)
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F̃4(x, ψ) = x4

∞∑
a=0

∞∑
b=0

∞∑
c=0

∞∑
d=0

∞∑
e=0

∞∑
f=0

∞∑
g=0

∞∑
h=0

Aabcde f gh(ψ)x4
a x3

bx2
c x1

d x8
ex7

f x6
gx5

h, (B.116)

F̃5(x, ψ) = x5

∞∑
a=0

∞∑
b=0

∞∑
c=0

∞∑
d=0

∞∑
e=0

∞∑
f=0

∞∑
g=0

∞∑
h=0

Aabcde f gh(ψ)x5
a x6

bx7
c x8

d x1
ex2

f x3
gx4

h, (B.117)

F̃6(x, ψ) = x6

∞∑
a=0

∞∑
b=0

∞∑
c=0

∞∑
d=0

∞∑
e=0

∞∑
f=0

∞∑
g=0

∞∑
h=0

Aabcde f gh(ψ)x6
a x5

bx4
c x3

d x2
ex1

f x8
gx7

h, (B.118)

F̃7(x, ψ) = x7

∞∑
a=0

∞∑
b=0

∞∑
c=0

∞∑
d=0

∞∑
e=0

∞∑
f=0

∞∑
g=0

∞∑
h=0

Aabcde f gh(ψ)x7
a x8

bx1
c x2

d x3
ex4

f x5
gx6

h, (B.119)

F̃8(x, ψ) = x8

∞∑
a=0

∞∑
b=0

∞∑
c=0

∞∑
d=0

∞∑
e=0

∞∑
f=0

∞∑
g=0

∞∑
h=0

Aabcde f gh(ψ)x8
a x7

bx6
c x5

d x4
ex3

f x2
gx1

h. (B.120)

Since (x, ψ) = (0, 0, 0, 0, 0, 0, 0, 0, 0) corresponds to the critical point, we have

A00000000(0) =
∂F̃1

∂x1

����
(x,ψ)=(0,0,0,0,0,0,0,0,0)

= 0. (B.121)

Since A′
00000000

(0) is generically nonzero, we have A00000000(ψ) ≈ a0ψ with

a0 = A′00000000(0) =
∂R

∂ψ

����
(x,ψ)=(0,0,0,0,0,0,0,0,0)

. (B.122)

Then, the asymptotic form of the bifurcation equation becomes

F̃1(x, ψ) ≈ x1{a0ψ + a1x1 + a2x2 + a3x3 + a4x4 + a5x5 + a6x6 + a7x7 + a8x8}, (B.123)

F̃2(x, ψ) ≈ x2{a0ψ + a1x2 + a2x1 + a3x8 + a4x7 + a5x6 + a6x5 + a7x4 + a8x3}, (B.124)

F̃3(x, ψ) ≈ x3{a0ψ + a1x3 + a2x4 + a3x5 + a4x6 + a5x7 + a6x8 + a7x1 + a8x2}, (B.125)

F̃4(x, ψ) ≈ x4{a0ψ + a1x4 + a2x3 + a3x2 + a4x1 + a5x8 + a6x7 + a7x6 + a8x5}, (B.126)

F̃5(x, ψ) ≈ x5{a0ψ + a1x5 + a2x6 + a3x7 + a4x8 + a5x1 + a6x2 + a7x3 + a8x4}, (B.127)

F̃6(x, ψ) ≈ x6{a0ψ + a1x6 + a2x5 + a3x4 + a4x3 + a5x2 + a6x1 + a7x8 + a8x7}, (B.128)

F̃7(x, ψ) ≈ x7{a0ψ + a1x7 + a2x8 + a3x1 + a4x2 + a5x3 + a6x4 + a7x5 + a8x6}, (B.129)

F̃8(x, ψ) ≈ x8{a0ψ + a1x8 + a2x7 + a3x6 + a4x5 + a5x4 + a6x3 + a7x2 + a8x1}, (B.130)

where

a1 = A10000000(0) =
∂R

∂x1

����
(x,ψ)=(0,0,0,0,0,0,0,0,0)

, (B.131)

a2 = A01000000(0) =
∂R

∂x2

����
(x,ψ)=(0,0,0,0,0,0,0,0,0)

, (B.132)
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a3 = A00100000(0) =
∂R

∂x3

����
(x,ψ)=(0,0,0,0,0,0,0,0,0)

, (B.133)

a4 = A00010000(0) =
∂R

∂x4

����
(x,ψ)=(0,0,0,0,0,0,0,0,0)

, (B.134)

a5 = A00001000(0) =
∂R

∂x5

����
(x,ψ)=(0,0,0,0,0,0,0,0,0)

, (B.135)

a6 = A00000100(0) =
∂R

∂x6

����
(x,ψ)=(0,0,0,0,0,0,0,0,0)

, (B.136)

a7 = A00000010(0) =
∂R

∂x7

����
(x,ψ)=(0,0,0,0,0,0,0,0,0)

, (B.137)

a8 = A00000001(0) =
∂R

∂x8

����
(x,ψ)=(0,0,0,0,0,0,0,0,0)

. (B.138)

B.2.2. Existence of Bifurcating Solutions

We can predict the following bifurcating solutions (cf., Fig. 5.6):




xSquare-II = w(1, 1, 1, 1, 1, 1, 1, 1),
xSquare-III = w(1, 0, 1, 0, 1, 0, 1, 0),
xQuad-I = w(1, 1, 0, 0, 1, 1, 0, 0),
xQuad-II = w(1, 0, 0, 1, 1, 0, 0, 1),
xDuo-III = w(1, 1, 0, 0, 0, 0, 0, 0),
xDuo-IV = w(1, 0, 0, 1, 0, 0, 0, 0),
xDuo-V = w(1, 0, 0, 0, 1, 0, 0, 0),
xDuo-VI = w(1, 0, 0, 0, 0, 1, 0, 0),
xDuo-VII = w(1, 0, 0, 0, 0, 0, 0, 1),
xMono-II = w(1, 0, 0, 0, 0, 0, 0, 0),

(B.139)

for some w > 0.

We first show the existence of Square-II solution. Substituting xSquare-II = w(1, 1, 1, 1, 1, 1, 1, 1)
into F̃1, we have

F̃1(xSquare-I, ψ) = w

∞∑
a=0

∞∑
b=0

∞∑
c=0

∞∑
d=0

∞∑
e=0

∞∑
f=0

∞∑
g=0

∞∑
h=0

Aabcde f gh(ψ)wa+b+c+d+e+ f+g+h

≈ w{a0ψ + (a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8)w}.

We see that F̃1(xSquare-II, ψ) = 0 has the trivial solution (w = 0) and a bifurcating solution:

ψ = ψSquare-II ≈ −
a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8

a0

w. (B.140)

Substituting xSquare-II into (B.114)–(B.120), we see that F̃2 = F̃3 = F̃4 = F̃5 = F̃6 = F̃7 = F̃8 =

F̃1 = 0. Hence, the bifurcation equation is satisfied for xSquare-II.
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Substituting xSquare-III = w(1, 0, 1, 0, 1, 0, 1, 0) into F̃1, we have

F̃1(xSquare-III, ψ) = w

∞∑
a=0

∞∑
c=0

∞∑
e=0

∞∑
g=0

Aa0c0e0g0(ψ)wa+c+e+g ≈ w{a0ψ + (a1 + a3 + a5 + a7)w}.

We see that F̃1(xSquare-III, ψ) = 0 has the trivial solution (w = 0) and a bifurcating solution:

ψ = ψSquare-III ≈ −
a1 + a3 + a5 + a7

a0

w. (B.141)

Substituting xSquare-III into F̃3, F̃5, and F̃7 in (B.115), (B.117), and (B.119), we see that F̃3 = F̃5 =

F̃7 = F̃1 = 0. Hence, the bifurcation equation is satisfied for xSquare-III.

Substituting xQuad-I = w(1, 1, 0, 0, 1, 1, 0, 0) into F̃1, we have

F̃1(xQuad-I, ψ) = w

∞∑
a=0

∞∑
b=0

∞∑
e=0

∞∑
f=0

Aab00e f 00(ψ)wa+b+e+ f ≈ w{a0ψ + (a1 + a2 + a5 + a6)w}.

We see that F̃1(xQuad-I, ψ) = 0 has the trivial solution (w = 0) and a bifurcating solution:

ψ = ψQuad-I ≈ −
a1 + a2 + a5 + a6

a0

w. (B.142)

Substituting xQuad-I into F̃2, F̃5, and F̃6 in (B.114), (B.117), and (B.118), we see that F̃2 = F̃5 =

F̃6 = F̃1 = 0. Hence, the bifurcation equation is satisfied for xQuad-I.

Substituting xQuad-II = w(1, 0, 0, 1, 1, 0, 0, 1) into F̃1, we have

F̃1(xQuad-II, ψ) = w

∞∑
a=0

∞∑
d=0

∞∑
e=0

∞∑
h=0

Aa00de00h(ψ)wa+d+e+h ≈ w{a0ψ + (a1 + a4 + a5 + a8)w}.

We see that F̃1(xQuad-II, ψ) = 0 has the trivial solution (w = 0) and a bifurcating solution:

ψ = ψQuad-II ≈ −
a1 + a4 + a5 + a8

a0

w. (B.143)

Substituting xQuad-II into F̃4, F̃5, and F̃8 in (B.116), (B.117), and (B.120), we see that F̃4 = F̃5 =

F̃8 = F̃1 = 0. Hence, the bifurcation equation is satisfied for xQuad-II.

Substituting xDuo-III = w(1, 1, 0, 0, 0, 0, 0, 0) into F̃1, we have

F̃1(xDuo-III, ψ) = w

∞∑
a=0

∞∑
b=0

Aab000000(ψ)wa+b ≈ w{a0ψ + (a1 + a2)w}.

We see that F̃1(xDuo-III, ψ) = 0 has the trivial solution (w = 0) and a bifurcating solution:

ψ = ψDuo-III ≈ −
a1 + a2

a0

w. (B.144)

300



Substituting xDuo-III into F̃2 in (B.114), we see that F̃2 = F̃1 = 0. Hence, the bifurcation equation

is satisfied for xDuo-III.

Substituting xDuo-IV = w(1, 0, 0, 1, 0, 0, 0, 0) into F̃1, we have

F̃1(xDuo-IV, ψ) = w

∞∑
a=0

∞∑
d=0

Aa00d0000(ψ)wa+d ≈ w{a0ψ + (a1 + a4)w}.

We see that F̃1(xDuo-IV, ψ) = 0 has the trivial solution (w = 0) and a bifurcating solution:

ψ = ψDuo-IV ≈ −
a1 + a4

a0

w. (B.145)

Substituting xDuo-IV into F̃4 in (B.116), we see that F̃4 = F̃1 = 0. Hence, the bifurcation equation

is satisfied for xDuo-IV.

Substituting xDuo-V = w(1, 0, 0, 0, 1, 0, 0, 0) into F̃1, we have

F̃1(xDuo-V, ψ) = w

∞∑
a=0

∞∑
e=0

Aa000e000(ψ)wa+e ≈ w{a0ψ + (a1 + a5)w}.

We see that F̃1(xDuo-V, ψ) = 0 has the trivial solution (w = 0) and a bifurcating solution:

ψ = ψDuo-V ≈ −
a1 + a5

a0

w. (B.146)

Substituting xDuo-V into F̃5 in (B.117), we see that F̃5 = F̃1 = 0. Hence, the bifurcation equation is

satisfied for xDuo-V.

Substituting xDuo-VI = w(1, 0, 0, 0, 0, 1, 0, 0) into F̃1, we have

F̃1(xDuo-VI, ψ) = w

∞∑
a=0

∞∑
f=0

Aa0000 f 00(ψ)wa+ f ≈ w{a0ψ + (a1 + a6)w}.

We see that F̃1(xDuo-VI, ψ) = 0 has the trivial solution (w = 0) and a bifurcating solution:

ψ = ψDuo-VI ≈ −
a1 + a6

a0

w. (B.147)

Substituting xDuo-VI into F̃6 in (B.118), we see that F̃6 = F̃1 = 0. Hence, the bifurcation equation

is satisfied for xDuo-VI.

Substituting xDuo-VII = w(1, 0, 0, 0, 0, 0, 0, 1) into F̃1, we have

F̃1(xDuo-VII, ψ) = w

∞∑
a=0

∞∑
h=0

Aa000000h(ψ)wa+h ≈ w{a0ψ + (a1 + a8)w}.

We see that F̃1(xDuo-VII, ψ) = 0 has the trivial solution (w = 0) and a bifurcating solution:

ψ = ψDuo-VII ≈ −
a1 + a8

a0

w. (B.148)
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Substituting xDuo-VII into F̃8 in (B.120), we see that F̃8 = F̃1 = 0. Hence, the bifurcation equation

is satisfied for xDuo-VII.

Substituting xMono-II = w(1, 0, 0, 0, 0, 0, 0, 0) into F̃1, we have

F̃1(xMono-II, ψ) = w

∞∑
a=0

Aa0000000(ψ)wa ≈ w{a0ψ + a1w}.

We see that F̃1(xMono-II, ψ) = 0 has the trivial solution (w = 0) and a bifurcating solution:

ψ = ψMono-II ≈ −
a1

a0

w. (B.149)

Hence, the bifurcation equation is satisfied for xMono-II.

B.2.3. Stability of Bifurcating Solutions

The asymptotic form of the Jacobian matrix J̃ = ∂F̃/∂x becomes

J̃(x, ψ) ≈ ψa0I8 + x1 J̃1 + x2 J̃2 + x3 J̃3 + x4 J̃4 + x5 J̃5 + x6 J̃6 + x7 J̃7 + x8 J̃8, (B.150)

where

J̃1 =



2a1 a2 a3 a4 a5 a6 a7 a8

0 a2 0 0 0 0 0 0

0 0 a7 0 0 0 0 0

0 0 0 a4 0 0 0 0

0 0 0 0 a5 0 0 0

0 0 0 0 0 a6 0 0

0 0 0 0 0 0 a3 0

0 0 0 0 0 0 0 a8



, J̃2 =



a2 0 0 0 0 0 0 0

a2 2a1 a8 a7 a6 a5 a4 a3

0 0 a8 0 0 0 0 0

0 0 0 a3 0 0 0 0

0 0 0 0 a6 0 0 0

0 0 0 0 0 a5 0 0

0 0 0 0 0 0 a4 0

0 0 0 0 0 0 0 a7



,

J̃3 =



a3 0 0 0 0 0 0 0

0 a8 0 0 0 0 0 0

a7 a8 2a1 a2 a3 a4 a5 a6

0 0 0 a2 0 0 0 0

0 0 0 0 a7 0 0 0

0 0 0 0 0 a4 0 0

0 0 0 0 0 0 a5 0

0 0 0 0 0 0 0 a6



, J̃4 =



a4 0 0 0 0 0 0 0

0 a7 0 0 0 0 0 0

0 0 a2 0 0 0 0 0

a4 a3 a2 2a1 a8 a7 a6 a5

0 0 0 0 a8 0 0 0

0 0 0 0 0 a3 0 0

0 0 0 0 0 0 a6 0

0 0 0 0 0 0 0 a5



,

J̃5 =



a5 0 0 0 0 0 0 0

0 a6 0 0 0 0 0 0

0 0 a3 0 0 0 0 0

0 0 0 a8 0 0 0 0

a5 a6 a7 a8 2a1 a2 a3 a4

0 0 0 0 0 a2 0 0

0 0 0 0 0 0 a7 0

0 0 0 0 0 0 0 a4



, J̃6 =



a6 0 0 0 0 0 0 0

0 a5 0 0 0 0 0 0

0 0 a4 0 0 0 0 0

0 0 0 a7 0 0 0 0

0 0 0 0 a2 0 0 0

a6 a5 a4 a3 a2 2a1 a8 a7

0 0 0 0 0 0 a8 0

0 0 0 0 0 0 0 a3



,
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J̃7 =



a7 0 0 0 0 0 0 0

0 a4 0 0 0 0 0 0

0 0 a5 0 0 0 0 0

0 0 0 a6 0 0 0 0

0 0 0 0 a3 0 0 0

0 0 0 0 0 a8 0 0

a3 a4 a5 a6 a7 a8 2a1 a2

0 0 0 0 0 0 0 a2



, J̃8 =



a8 0 0 0 0 0 0 0

0 a3 0 0 0 0 0 0

0 0 a6 0 0 0 0 0

0 0 0 a5 0 0 0 0

0 0 0 0 a4 0 0 0

0 0 0 0 0 a7 0 0

0 0 0 0 0 0 a2 0

a8 a7 a6 a5 a4 a3 a2 2a1



.

To begin with, we investigate the stability of Square-II solution. Evaluating the Jacobian matrix

at the point

(xSquare-II, ψSquare-II) = (w,w,w,w,w,w,w,w,−
a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8

a0

w),

we have

J̃(xSquare-II, ψSquare-II) ≈ w



a1 a2 a3 a4 a5 a6 a7 a8

a2 a1 a8 a7 a6 a5 a4 a3

a7 a8 a1 a2 a3 a4 a5 a6

a4 a3 a2 a1 a8 a7 a6 a5

a5 a6 a7 a8 a1 a2 a3 a4

a6 a5 a4 a3 a2 a1 a8 a7

a3 a4 a5 a6 a7 a8 a1 a2

a8 a7 a6 a5 a4 a3 a2 a1



. (B.151)

The eigenvalues of this matrix are given as follows:

λ1, λ2 ≈ w(a1 + a2 + a5 + a6) ± w(a3 + a4 + a7 + a8),
λ3, λ4 ≈ w(a1 − a2 + a5 − a6) ± w(a3 − a4 + a7 − a8),
λ5, λ6 ≈ w(a1 − a5) ± w

√
(a2 − a6)2 − (a3 − a7)2 + (a4 − a8)2 (repeated twice).

Thus, the stability of xSquare-II depends on the values of a1, . . . , a8. The other solutions can be

treated similarly. Tables B.2 and B.3 summarize the stability conditions of bifurcating solutions.

Evaluating the Jacobian matrix at the point

(xSquare-III, ψSquare-III) = (w, 0,w, 0,w, 0,w, 0,−
a1 + a3 + a5 + a7

a0

w),

we have

J̃(xSquare-III, ψSquare-III) ≈ w



a1 a2 a3 a4 a5 a6 a7 a8

0 α 0 0 0 0 0 0

a7 a8 a1 a2 a3 a4 a5 a6

0 0 0 α 0 0 0 0

a5 a6 a7 a8 a1 a2 a3 a4

0 0 0 0 0 α 0 0

a3 a4 a5 a6 a7 a8 a1 a2

0 0 0 0 0 0 0 α



, (B.152)
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Table B.2: Stability conditions of bifurcating solutions for critical points associated with Type βi orbit.

Solution Case Stability conditions

xSquare-II w > 0, a1 + a2 + a5 + a6 < −|a3 + a4 + a7 + a8 |
(a2 − a6)2 − (a3 − a7)2 + (a4 − a8)2 ≥ 0 a1 − a2 + a5 − a6 < −|a3 − a4 + a7 − a8 |

a1 − a5 < −
√
(a2 − a6)2 − (a3 − a7)2 + (a4 − a8)2

w > 0, a1 + a2 + a5 + a6 < −|a3 + a4 + a7 + a8 |
(a2 − a6)2 − (a3 − a7)2 + (a4 − a8)2 < 0 a1 − a2 + a5 − a6 < −|a3 − a4 + a7 − a8 |

a1 − a5 < 0

w < 0, a1 + a2 + a5 + a6 > |a3 + a4 + a7 + a8 |
(a2 − a6)2 − (a3 − a7)2 + (a4 − a8)2 ≥ 0 a1 − a2 + a5 − a6 > |a3 − a4 + a7 − a8 |

a1 − a5 >
√
(a2 − a6)2 − (a3 − a7)2 + (a4 − a8)2

w < 0, a1 + a2 + a5 + a6 > |a3 + a4 + a7 + a8 |
(a2 − a6)2 − (a3 − a7)2 + (a4 − a8)2 < 0 a1 − a2 + a5 − a6 > |a3 − a4 + a7 − a8 |

a1 − a5 > 0

xSquare-III w > 0 −a1 + a2 − a3 + a4 − a5 + a6 − a7 + a8 < 0

a1 + a5 < −|a1 − a3 |
a1 − a5 < 0

w < 0 −a1 + a2 − a3 + a4 − a5 + a6 − a7 + a8 > 0

a1 + a5 > |a1 − a3 |
a1 − a5 > 0

xQuad-I w > 0 −a1 − a2 + a3 + a4 − a5 − a6 + a7 + a8 < 0

a1 + a6 < −|a2 + a5 |
a1 − a6 < −|a2 − a5 |

w < 0 −a1 − a2 + a3 + a4 − a5 − a6 + a7 + a8 > 0

a1 + a6 > |a2 + a5 |
a1 − a6 > |a2 − a5 |

xQuad-II w > 0 −a1 + a2 + a3 − a4 − a5 + a6 + a7 − a8 < 0

a1 + a5 < −|a4 + a8 |
a1 − a5 < −|a4 − a8 |

w < 0 −a1 + a2 + a3 − a4 − a5 + a6 + a7 − a8 > 0

a1 + a5 > |a4 + a8 |
a1 − a5 > |a4 − a8 |
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Table B.3: Stability conditions of bifurcating solutions for critical points associated with Type βi orbit.

Solution Case Stability conditions

xDuo-III w > 0 max(a3 + a4, a5 + a6, a7 + a8) < a1 + a2

a1 < −|a2 |
w < 0 min(a3 + a4, a5 + a6, a7 + a8) > a1 + a2

a1 > |a2 |
xDuo-IV w > 0 max(a2 + a7, a3 + a6, a5 + a8) < a1 + a4

a1 < −|a4 |
w < 0 min(a2 + a7, a3 + a6, a5 + a8) > a1 + a4

a1 > |a4 |
xDuo-V w > 0 max(a2 + a6, a3 + a7, a4 + a8) < a1 + a5

a1 < −|a5 |
w < 0 min(a2 + a6, a3 + a7, a4 + a8) > a1 + a5

a1 > |a5 |
xDuo-VI w > 0 max(a2 + a5, a3 + a8, a4 + a7) < a1 + a6

a1 < −|a6 |
w < 0 min(a2 + a5, a3 + a8, a4 + a7) > a1 + a6

a1 > |a6 |
xDuo-VII w > 0 max(a2 + a3, a4 + a5, a6 + a7) < a1 + a8

a1 < −|a8 |
w < 0 min(a2 + a3, a4 + a5, a6 + a7) > a1 + a8

a1 > |a8 |
xMono-II w > 0 max(a2, a3, a4, a5, a6, a7, a8) < a1 < 0

w < 0 min(a2, a3, a4, a5, a6, a7, a8) > a1 > 0
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where α = −a1 + a2 − a3 + a4 − a5 + a6 − a7 + a8. The eigenvalues of this matrix are given as

follows:

λ1, λ2 ≈ w(a1 + a5) ± w(a3 + a7),
λ3, λ4 ≈ w(a1 − a5) ± iw(a3 − a7),
λ5 ≈ w(−a1 + a2 − a3 + a4 − a5 + a6 − a7 + a8) (repeated 4 times).

Thus, the stability of xSquare-III depends on the values of a1, . . . , a8.

Evaluating the Jacobian matrix at the point

(xQuad-I, ψQuad-I) = (w,w, 0, 0,w,w, 0, 0,−
a1 + a2 + a5 + a6

a0

w),

we have

J̃(xQuad-I, ψQuad-I) ≈ w



a1 a2 a3 a4 a5 a6 a7 a8

a2 a1 a8 a7 a6 a5 a4 a3

0 0 α 0 0 0 0 0

0 0 0 α 0 0 0 0

a5 a6 a7 a8 a1 a2 a3 a4

a6 a5 a4 a3 a2 a1 a8 a7

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 α



, (B.153)

where α = −a1 − a2 + a3 + a4 − a5 − a6 + a7 + a8. The eigenvalues of this matrix are given as

follows:

λ1, λ2 ≈ w(a1 + a6) ± w(a2 + a5),
λ3, λ4 ≈ w(a1 − a6) ± w(a2 − a5),
λ5 ≈ w(−a1 − a2 + a3 + a4 − a5 − a6 + a7 + a8) (repeated 4 times).

Thus, the stability of xQuad-I depends on the values of a1, . . . , a8.

Evaluating the Jacobian matrix at the point

(xQuad-II, ψQuad-II) = (w, 0, 0,w,w, 0, 0,w,−
a1 + a4 + a5 + a8

a0

w),

we have

J̃(xQuad-II, ψQuad-II) ≈ w



a1 a2 a3 a4 a5 a6 a7 a8

0 α 0 0 0 0 0 0

0 0 α 0 0 0 0 0

a4 a3 a2 a1 a8 a7 a6 a5

a5 a6 a7 a8 a1 a2 a3 a4

0 0 0 0 0 α 0 0

0 0 0 0 0 0 α 0

a8 a7 a6 a5 a4 a3 a2 a1



, (B.154)
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where α = −a1 + a2 + a3 − a4 − a5 + a6 + a7 − a8. The eigenvalues of this matrix are given as

follows:

λ1, λ2 ≈ w(a1 + a5) ± w(a4 + a8),
λ3, λ4 ≈ w(a1 − a5) ± w(a4 − a8),
λ5 ≈ w(−a1 + a2 + a3 − a4 − a5 + a6 + a7 − a8) (repeated 4 times).

Thus, the stability of xQuad-II depends on the values of a1, . . . , a8.

Evaluating the Jacobian matrix at the point

(xDuo-III, ψDuo-III) = (w,w, 0, 0, 0, 0, 0, 0,−
a1 + a2

a0

w),

we have

J̃(xDuo-III, ψDuo-III) ≈ w



a1 a2 a3 a4 a5 a6 a7 a8

a2 a1 a8 a7 a6 a5 a4 a3

0 0 α 0 0 0 0 0

0 0 0 β 0 0 0 0

0 0 0 0 γ 0 0 0

0 0 0 0 0 α 0 0

0 0 0 0 0 0 β 0

0 0 0 0 0 0 0 γ



, (B.155)

where α = −a1− a2+ a7+ a8, β = −a1− a2+ a3+ a4, and γ = −a1− a2+ a5+ a6. The eigenvalues

of this matrix are given as follows:

λ1, λ2 ≈ w(a1 ± a2) (repeated twice),

λ3 ≈ w(−a1 − a2 + a3 + a4),
λ4 ≈ w(−a1 − a2 + a5 + a6),
λ5 ≈ w(−a1 − a2 + a7 + a8).

Thus, the stability of xDuo-III depends on the values of a1, . . . , a8.

Evaluating the Jacobian matrix at the point

(xDuo-IV, ψDuo-IV) = (w, 0, 0,w, 0, 0, 0, 0,−
a1 + a4

a0

w),

we have

J̃(xDuo-IV, ψDuo-IV) ≈ w



a1 a2 a3 a4 a5 a6 a7 a8

0 α 0 0 0 0 0 0

0 0 α 0 0 0 0 0

a4 a3 a2 a1 a8 a7 a6 a5

0 0 0 0 β 0 0 0

0 0 0 0 0 γ 0 0

0 0 0 0 0 0 γ 0

0 0 0 0 0 0 0 β



, (B.156)
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where α = −a1− a4+ a2+ a7, β = −a1− a4+ a5+ a8, and γ = −a1− a4+ a3+ a6. The eigenvalues

of this matrix are given as follows:

λ1, λ2 ≈ w(a1 ± a4) (repeated twice),

λ3 ≈ w(−a1 − a4 + a2 + a7),
λ4 ≈ w(−a1 − a4 + a3 + a6),
λ5 ≈ w(−a1 − a4 + a5 + a8).

Thus, the stability of xDuo-IV depends on the values of a1, . . . , a8.

Evaluating the Jacobian matrix at the point

(xDuo-V, ψDuo-V) = (w, 0, 0, 0,w, 0, 0, 0,−
a1 + a5

a0

w),

we have

J̃(xDuo-V, ψDuo-V) ≈ w



a1 a2 a3 a4 a5 a6 a7 a8

0 α 0 0 0 0 0 0

0 0 β 0 0 0 0 0

0 0 0 γ 0 0 0 0

a5 a6 a7 a8 a1 a2 a3 a4

0 0 0 0 0 α 0 0

0 0 0 0 0 0 β 0

0 0 0 0 0 0 0 γ



, (B.157)

where α = −a1− a5+ a2+ a6, β = −a1− a5+ a3+ a7, and γ = −a1− a5+ a4+ a8. The eigenvalues

of this matrix are given as follows:

λ1, λ2 ≈ w(a1 ± a5) (repeated twice),

λ3 ≈ w(−a1 − a5 + a2 + a6),
λ4 ≈ w(−a1 − a5 + a3 + a7),
λ5 ≈ w(−a1 − a5 + a4 + a8).

Thus, the stability of xDuo-V depends on the values of a1, . . . , a8.

Evaluating the Jacobian matrix at the point

(xDuo-V, ψDuo-VI) = (w, 0, 0, 0, 0,w, 0, 0,−
a1 + a6

a0

w),

we have

J̃(xDuo-VI, ψDuo-VI) ≈ w



a1 a2 a3 a4 a5 a6 a7 a8

0 α 0 0 0 0 0 0

0 0 β 0 0 0 0 0

0 0 0 β 0 0 0 0

0 0 0 0 α 0 0 0

a6 a5 a4 a3 a2 a1 a8 a7

0 0 0 0 0 0 γ 0

0 0 0 0 0 0 0 γ



, (B.158)
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where α = −a1− a6+ a2+ a5, β = −a1− a6+ a4+ a7, and γ = −a1− a6+ a3+ a8. The eigenvalues

of this matrix are given as follows:

λ1, λ2 ≈ w(a1 ± a6) (repeated twice),

λ3 ≈ w(−a1 − a6 + a2 + a5),
λ4 ≈ w(−a1 − a6 + a3 + a8),
λ5 ≈ w(−a1 − a6 + a4 + a7).

Thus, the stability of xDuo-VI depends on the values of a1, . . . , a8.

Evaluating the Jacobian matrix at the point

(xDuo-V, ψDuo-VII) = (w, 0, 0, 0, 0, 0, 0,w,−
a1 + a8

a0

w),

we have

J̃(xDuo-VII, ψDuo-VII) ≈ w



a1 a2 a3 a4 a5 a6 a7 a8

0 α 0 0 0 0 0 0

0 0 β 0 0 0 0 0

0 0 0 γ 0 0 0 0

0 0 0 0 γ 0 0 0

0 0 0 0 0 α 0 0

0 0 0 0 0 0 β 0

a8 a7 a6 a5 a4 a3 a2 a1



, (B.159)

where α = −a1− a8+ a2+ a3, β = −a1− a8+ a6+ a7, and γ = −a1− a6+ a4+ a5. The eigenvalues

of this matrix are given as follows:

λ1, λ2 ≈ w(a1 ± a8) (repeated twice),

λ3 ≈ w(−a1 − a8 + a2 + a3),
λ4 ≈ w(−a1 − a8 + a4 + a5),
λ5 ≈ w(−a1 − a8 + a6 + a7).

Thus, the stability of xDuo-VII depends on the values of a1, . . . , a8.

Evaluating the Jacobian matrix at the point

(xMono-II, ψMono-II) = (w, 0, 0, 0, 0, 0, 0, 0,−
a1

a0

w),

we have

J̃(xMono-II, ψMono-II) ≈ w



a1 a2 a3 a4 a5 a6 a7 a8

0 α 0 0 0 0 0 0

0 0 β 0 0 0 0 0

0 0 0 γ 0 0 0 0

0 0 0 0 γ 0 0 0

0 0 0 0 0 α 0 0

0 0 0 0 0 0 β 0

a8 a7 a6 a5 a4 a3 a2 a1



. (B.160)
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The eigenvalues of this matrix are given as follows:

λ1 ≈ wa1,

λ2 ≈ w(−a1 + a2),
λ3 ≈ w(−a1 + a3),
λ4 ≈ w(−a1 + a4),
λ5 ≈ w(−a1 + a5),
λ6 ≈ w(−a1 + a6),
λ7 ≈ w(−a1 + a7),
λ8 ≈ w(−a1 + a8).

Thus, the stability of xMono-II depends on the values of a1, . . . , a8.
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