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Abstract  6 

The weather index-based insurances may help farmers to cope with climate risks overcoming the 7 

most common issues of traditional insurances. However, the weather index-based insurances present 8 

the limit of the basis risk: a significant yield loss may occur although the weather index does not 9 

trigger the indemnification, or a compensation may be granted even if there has not been a yield loss. 10 

Our investigation, conducted on Apulia region (Southern Italy), aimed at deepening the knowledge 11 

on the linkages between durum wheat yields and weather events, i.e., the working principles of 12 

weather index-based insurances, occurring in susceptible phenological phases. We found several 13 

connections among weather and yields and highlight the need to collect more refined data to catch 14 

further relationships. We conclude opening a reflection on how the stakeholders may make use of 15 

publicly available data to design effective weather crop insurances. 16 
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Introduction 27 

Farming activities are exposed and vulnerable to several risks, among which the weather risks are 28 

increasingly frequent and impactful due to climate change (Conradt et al., 2015). Among the several 29 

strategies available to reduce the weather impacts on farming systems, e.g., pest control, financial 30 

saving, agricultural and structural diversification (Vroege and Finger, 2020), the crop insurance 31 

programs can play an important role (Di Falco et al., 2014). In recent years, the attention for the 32 

weather index-based insurances (WIBIs) has been growing mainly because these tools may help to 33 

overcome some of the challenges associated with traditional indemnity-based insurances, e.g., 34 

asymmetric information, high transaction costs, moral hazard, and adverse selection (Norton et al., 35 

2013; Dalhaus and Finger, 2016; Belissa et al., 2019; Ceballos et al., 2019). Differently from the 36 

traditional insurances, which provide pay-outs depending on actual yield losses, WIBIs indemnify 37 

the farmers when an index, computed on rainfall or temperature and highly correlated with farms 38 

performance (e.g., yields), is triggered (Conradt et al., 2015; Dalhaus and Finger, 2016). Therefore, 39 

farmers will be indemnified when the index exceeds a pre-determined threshold (Belissa et al., 2019). 40 

Moreover, WIBIs can be manipulated neither by the insurers or the insured because they are collected 41 

from historical and current dataset provided by recognized bodies (Belissa et al., 2020; Vroege et al., 42 

2021). However, WIBIs present a limit, namely basis risk: a significant yield loss may occur even if 43 

the weather index does not trigger the payment (Conradt et al., 2015; Dalhaus et al., 2018) or a 44 

compensation may be granted even if there has not been a yield loss (Heimfarth and Musshoff, 2011). 45 

The contribution of our study is at least twofold: first, we provide empirical evidence on how yields 46 

and weather conditions are correlated, more specifically, we deepen the knowledge on the linkages 47 

between durum wheat yields and weather events occurring in susceptible phenological stages; second, 48 

we start a reflection on how stakeholders may make use of publicly available data to design an 49 

effective crop insurance scheme. We focused on the Apulia region (Southern Italy) which is the main 50 

national producer of durum wheat: almost a thousand of tons of production, i.e., accounting for 25% 51 
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of the Italian durum wheat production, and about 344 thousand cultivated hectares, i.e., accounting 52 

for 28% of the Italian area utilized to grow durum wheat (ISMEA, 2020).  53 

 54 

The Italian crop insurance system 55 

The Italy boasts a long tradition of public subsidies for agricultural risk management. The “Fondo di 56 

Solidarietà Nazionale” (FSN) was instituted in 1974 to finance both insurance policies and ex-post 57 

payments (Enjolras et al., 2012). Moreover, the EU Common Agricultural Policy allocated funds for 58 

agricultural insurances (art. 37 of EU Reg. 1305/2013) to cope economic losses due to adverse 59 

weather conditions, plant diseases, epizooties, and parasitic infestations (Santeramo et al., 2016; 60 

Rogna et al., 2021). Despite the public interventions, the participation level to insurance programs 61 

remains low (i.e., around 15 percent) mainly due to high costs of bureaucracy (i.e., complexity of 62 

procedures), delays in payments, lack of experience with crop insurance contracts or lack of high-63 

quality information on existing insurance tools (Santeramo, 2019). The role of Defense Consortia, 64 

introduced both to facilitate the match of insurers and farmers in the subsidized crop insurance market 65 

and to reduce the asymmetric information, is not negligible. It emerges a North-South territorial 66 

dualism that affects farmers participation: Defence Consortia are more effective in Northern Italy 67 

than in the Southern Italy and, also, the strong presence of producer organizations and cooperatives 68 

aggregates the crop insurance’s demand in the Northern Italy (Santeramo et al., 2016). Moreover, 69 

farmers who trust more in the intermediaries assisting them are inclined to adopt insurance tools to 70 

cope the risk of production loss, while risk averse farmers tend to implement other risk management 71 

strategies as crop or financial diversification (Trestini et al., 2018). In Italy, only the 9.9 percent of 72 

Utilised Agricultural Area is covered by insurance contracts and 20.9 percent of production value is 73 

insured (ISMEA, 2021). According to a survey conducted by ISMEA in 2018 on low participation to 74 

the subsidized agricultural insurance systems, most Italian farmers renounce to subscribe insurance 75 

contracts due to economic reasons, highlighting the high costs of policies. The share of farmers who 76 

believe that their farms are not exposed to specific risks or who have had negative experiences when 77 
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receiving compensation, losing trust on insurance market systems, is also not negligible. Indeed, 78 

Giampietri et al., 2020 found that the trust affects the decision-making process: under uncertainty, 79 

the trust may substitute the knowledge also overcoming the lack of experience, therefore, strong 80 

communication campaigns to improve farmers’ participation are recommended. Moreover, focusing 81 

on the WIBIs, also subsidized by the Measure 17 of National Rural Development Program 2014-82 

2020, a lack of knowledge emerged among big insured farmers, i.e., WIBIs were unknown to 93 83 

percent of them (ISMEA, 2020). Furthermore, some farmers believe that index-based insurances are 84 

inadequate to manage the weather risks due to the distrust of the objectivity of the indexes and 85 

parameters used, also showing an aversion to any future subscriptions. Clearly, it is necessary to 86 

improve the appeal and communication of these innovative risk management tools, also considering 87 

that any intervention aimed at promoting farmer participation should improve the competition among 88 

insurance providers, also reducing at the same time the asymmetric information and opportunistic 89 

behaviour (Menapace et al., 2016; Rogna et al., 2021; Santeramo and Russo, 2021). In this complex 90 

scenario, we estimate the yield response equation to investigate the responsiveness of yield to climate, 91 

deepening the working principles of weather index-based insurance, through a case study on durum 92 

wheat crop in the Apulia region, also animating the debate on the use of publicly available data to the 93 

development of an effective and attractive tool to manage climatic risk in agriculture.  94 

 95 

Data and research methodology 96 

An agronomic review on durum wheat allowed us to identify sensitive phenological stages of durum 97 

wheat in Apulia region and those critical weather events occurring in certain phenological stages that 98 

may cause significant production losses (Table 1).  99 

 100 

 101 

 102 

 103 
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Table 1. Phenological stages, weather events and critical limits of durum wheat in Apulia region 104 

Phenological 

stage 

Weather 

event 

Time interval Critical limit Reference 

Sowing Cold 

From the first decade 

of November to the 

first decade of 

December 

Temperature  

< 0 °C 

Baldoni and Giardini, 2000; Angelini, 

2007; Disciplinare di produzione 

integrata della Regione Puglia, 2021 

Germination Cold 

From the second 

decade of November 

to the second decade 

of December 

Temperature  

< 0 °C 

Stem 

elongation 

Cold 

From the second 

decade of March to 

the third decade of 

April 

Temperature  

< 0 °C 

Baldoni and Giardini, 2000; Angelini, 

2007 

Flowering 

Cold From the second 

decade of May to the 

first decade of June 

Temperature  

< 0 °C 

Angelini, 2007; Disciplinare di 

produzione integrata della Regione 

Puglia, 2021 

Heat, 

drought 

Temperature 

> 30-31 °C 

Angelini, 2007; Rezaei et al., 2015 

Grain filling 

Heat, 

drought 

From the second 

decade of June to the 

first decade of July 

Temperature 

> 34 °C 

Angelini, 2007; Asseng et al., 2011; 

Rezaei et al., 2015; Zampieri et al., 2017; 

Makinen et al., 2018 

All phases 

Excessive 

rainfall  

From first decade of 

November to the 

first decade of July 

Rainfall 

> 40 mm/day 

Makinen et al., 2018 

 105 

Cold sensitivity is higher during the germination phase that occurs 10-15 days after sowing in which 106 

temperatures of few degrees centigrade below zero may cause considerable damages (Baldoni and 107 
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Giardini, 2000, Angelini, 2007; Disciplinare di Produzione Integrata della Regione Puglia, 2021). 108 

Likewise, temperatures of few degrees centigrade below zero during the stem elongation phase may 109 

cause stems death and serious damages to the tissue of the internodes (Baldoni and Giardini, 2000; 110 

Angelini, 2007; Disciplinare di Produzione Integrata della Regione Puglia, 2021). Flowering stage 111 

occurs in late May and lasts about 10 days in which wheat crop is highly sensitive to cold stress that 112 

may cause death of flowers (Angelini, 2007; Baldoni and Giardini, 2000; Disciplinare di Produzione 113 

Integrata della Regione Puglia, 2021). Heat and drought stress during susceptible flowering and grain 114 

filling stages (i.e., after flowering, until the first decade of July) may cause considerable reductions 115 

in wheat yield and quality, leading the acceleration of leaf senescence process, reducing 116 

photosynthesis, causing oxidative damage, pollen sterility, also reducing physiological and metabolic 117 

imbalances, photosynthesis, grain numbers and weight (Angelini, 2007; Asseng et al., 2011; Li et al., 118 

2013; Farooq et al., 2014; Rezaei et al., 2015; Zampieri et al., 2017; Makinen et al., 2018). Heavy 119 

rainfall during the entire crop cycle may cause significant production losses due to the proliferation 120 

of pathogens, nutrient leaching, soil erosion, inhibition of oxygen uptake by roots (i.e., hypoxia or 121 

anoxia), waterlogging and lodging (Zampieri et al., 2017; Makinen et al., 2018).  122 

Furthermore, we collected yearly total production (tons) and area harvested (hectares) data for durum 123 

wheat crop from the National Institute of Statistics (ISTAT), from 2006 to 2019, for each province 124 

of Apulia region, also calculating the respective yields (tons/hectare). Then, for the same time-period, 125 

we collected 10-days frequency weather data from six synoptic weather stations of the Institute for 126 

Environmental Protection and Research (ISPRA), one for each province of Apulia region: Bari (BA), 127 

Barletta-Andria-Trani (BT), Brindisi (BR), Foggia (FG), Lecce (LE), Taranto (TA). Weather data 128 

include 10-days average minimum temperature (°C), i.e., the average of daily minimum temperatures, 129 

10 days average maximum temperature (°C), i.e., the average of daily maximum temperatures, and 130 

10-days cumulative precipitation (mm), i.e., the average of daily precipitation.  131 

Details on collected variables are shown in Table 2 below:  132 

 133 
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Table 2. Details on collected variables 134 

Variable (unit) Frequency Time-period Province 

Weather station - province 

 (no. of obs, SR in km2) 

Source 

durum wheat yield 

(tons/hectares) 

Yearly  

2006-2019 

Bari (BA) 

Barletta-Andria-

Trani (BAT) 

Brindisi (BR) 

Foggia (FG) 

Lecce (LE) 

Taranto (TA)  

- ISTAT 

average minimum 

temperature (°C) 

 

average maximum 

temperature (°C) 

 

cumulative 

precipitation (mm) 

10-days 

Bari - BA 

(501, 5.138)  

Trani - BT  

(144, 1.543)  

Brindisi - BR 

(471, 1.839)  

Monte Sant’Angelo - FG 

(504, 7.008) 

Lecce - LE 

(471, 2.799) 

Marina di Ginosa – TA 

(471, 2.437) 

ISPRA, 

UCEA,

ARPA 

Notes: missing data have been integrated including Research Unit for Climatology and Meteorology (UCEA) and 135 

Regional Agency for the Protection of the Environment (ARPA) datasets. Table includes no. of observations and spatial 136 

resolution (SR) of weather stations. 137 

 138 

Our empirical approach is based on a panel data model that includes fixed effect (i.e., it is a major 139 

advantage of the panel rather than cross-sectional regression) both to control for unobservable 140 

variables such as seed varieties or soil quality that may vary across the space, i.e., provinces, and to 141 

catch the variation across the time within the Apulian provinces (Tack et al., 2015; Blanc and 142 

Schlenker, 2017; Kolstad and Moore, 2020). 143 

The relationship between durum wheat yields and weather events is synthesized as follows: 144 𝑦𝑖𝑡 = 𝑓(𝑤𝑖𝑡) + 𝜇𝑖 +  𝜃𝑡 + 𝜖𝑖𝑡  145 

where 𝑦𝑖𝑡 is the yield over the space (i) and time (t) as function (f) of weather (𝑤𝑖𝑡), also including 146 

fixed effects over space (𝜇𝑖 ) and time (𝜃𝑡 ), error term and “controls” refers to other relevant 147 
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exogenous variables (𝜖𝑖𝑡) (Kolstad and Moore, 2020). More specifically, we conducted temporal and 148 

spatial autocorrelation identifying those contiguous provinces having a larger shared borders for a 149 

twofold check: (i) verify if the weather events occurring in a province may affect durum wheat yields 150 

in the contiguous province; (ii) control if the yields may be affected by weather events occurring at 151 

time t-1. Undoubtedly, both environmental and agronomic factors may justify the extreme variability 152 

of the durum wheat yield across the Apulian provinces: Foggia shows the highest average durum 153 

wheat yields while Lecce shows the lowest average yields, although it is characterized by lower yield 154 

variability than other provinces as Brindisi that, on the contrary, is more affected by environmental 155 

and agronomic factors, reason why it may benefit of crop insurance programs more than other 156 

provinces to cope yields fluctuations (Table 3). 157 

 158 

Table 3. Durum wheat yields (tons/hectare) among Apulian provinces 159 

 
Average Minimum Maximum Standard 

deviation 

Bari 0.234 0.170 0.306 0.045 

BAT 0.224 0.200 0.260 0.020 

Brindisi 0.285 0.180 0.420 0.071 

Foggia 0.314 0.200 0.420 0.047 

Lecce 0.189 0.160 0.220 0.018 

Taranto 0.244 0.100 0.350 0.057 

Notes: data include yearly durum wheat yield from 2006 to 2020. 160 

Source: ISTAT, 2020 161 

 162 

Results 163 

Our results clearly show that a relationship links weather conditions and production yields in the 164 

Apulia region. More specifically, precipitation seem to have a negative effect on durum wheat yields 165 

(Table 4).  166 

 167 

 168 

 169 
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Table 4. Effects of weather variables on durum wheat yield 170 

VARIABLES 

Panel  

prov FE  

time trend 

Panel  

temporal correlation  

prov FE  

time trend 

Panel  

spatial correlation 

prov FE  

time trend 

Panel  

temporal correlation 

spatial correlation 

prov FE  

time trend 

     

Temperature (min) -0.00764 -0.00124 -0.46909*** -0.45553** 

 (0.10641) (0.11715) (0.17058) (0.18731) 

Temperature (min) sq. 0.00049 -0.00023 0.00892* 0.01384** 

 (0.00296) (0.00320) (0.00490) (0.00544) 

Temperature (max) 0.22572 0.28286* 0.61165** 0.66801** 

 (0.14125) (0.15378) (0.25587) (0.27703) 

Temperature (max) sq. -0.00523* -0.00612** -0.01530*** -0.02022*** 

 (0.00278) (0.00299) (0.00515) (0.00568) 

Precipitation -0.01646** -0.01625* -0.03939** -0.04670** 

 (0.00799) (0.00844) (0.01819) (0.01954) 

Precipitation sq. 0.00008 0.00007 0.00019 0.00024 

 (0.00006) (0.00006) (0.00017) (0.00018) 

Yield (lag) - 0.10464*** - -0.09290*** 

  (0.02153)  (0.03579) 

Temperature (min) 

contig. 
- - 0.23065*** 0.18642*** 

   (0.06565) (0.07019) 

Temperature (max) 

contig. 
- - 0.00822 0.04557 

   (0.10765) (0.11545) 

Precipitation contig. - - 0.00537 0.00771 

   (0.00704) (0.00837) 

Observations 1,837 1,638 914 833 

Number of id 6 6 4 4 

Notes: panel regression model was processed in STATA software. It includes provincial fixed effect, time trend, 171 

temporal (i.e., yield lag), and spatial (contiguous weather variables) autocorrelation. 172 

Standard errors in parentheses. 173 

*** Significant at the 1 percent level. 174 

** Significant at the 5 percent level. 175 

* Significant at the 10 percent level. 176 

 177 

However, controlling by spatial and temporal autocorrelation, the effects of temperatures have been 178 

caught. Minimum temperatures negatively affect durum wheat yields, while maximum temperatures 179 

positively affect the yields, both in a non-linear way. Indeed, we included the squares of weather 180 

variables to catch the nonlinearity, in other terms, the trade-off between weather and yields (Blanc 181 

and Schlenker, 2017). Our results clearly highlight that the weather affects the yields in a nonlinear 182 

way, therefore, variables have a statistically significant inverted-U shape relationship (Schlenker and 183 

Roberts, 2009; Lobell et al., 2011). Last but not least, minimum temperatures may affect the 184 

contiguous provinces. According to the scientific literature, any excess (or deficit) of temperature and 185 

precipitation (or their combinations) may cause severe yield losses on durum wheat (Baldoni and 186 
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Giardini, 2000; Angelini, 2007; Asseng et al., 2011; Li et al., 2013; Farooq et al., 2014; Rezaei et al., 187 

2015; Zampieri et al., 2017; Makinen et al., 2018). Furthermore, we estimated the model for each 188 

phenological phase of durum wheat to capture the potential heterogeneity in the effect of weather 189 

variables, also controlling by spatial and temporal autocorrelation. Our results show that the 190 

relationship between weather variables and yields is valid only for some weather variables in certain 191 

phenological phases. More specifically, the maximum temperatures and precipitation positively affect 192 

durum wheat yield in a nonlinear way when occur in the germination and grain filling stages, 193 

respectively (Table 5).  194 

 195 

Table 5. Effects of weather variables on yield by phase. 196 

VARIABLES sowing germination stem elongation flowering grain filling 

      

Yield (lag) -0.11883 0.05952 0.17798* -0.04474 0.09403 

 (0.20660) (0.20523) (0.09219) (0.18593) (0.14041) 

Temperature (min) 0.95845 -0.00051 0.50020 -1.32087 -0.65587 

 (2.53724) (1.74362) (1.26379) (4.06620) (3.83238) 

Temperature (min) sq. -0.01783 0.01530 -0.01201 0.03550 0.02171 

 (0.11363) (0.08655) (0.05223) (0.10882) (0.08353) 

Temperature (max) 3.15220 23.00804** -2.73726 7.62398 -1.65011 

 (12.35641) (10.88917) (2.21349) (8.51643) (6.74553) 

Temperature (max) sq. -0.15964 -0.76330** 0.06023 -0.15868 0.01396 

 (0.35336) (0.33477) (0.05582) (0.15987) (0.11320) 

Precipitation 0.04601 -0.07450 -0.03735 -0.43463 0.42332* 

 (0.12015) (0.11228) (0.07473) (0.42173) (0.24351) 

Precipitation sq. -0.00034 0.00054 0.00049 0.01188 -0.00826* 

 (0.00088) (0.00084) (0.00101) (0.01680) (0.00463) 

Temperature (min) contig. 1.05294** 0.86957** 0.62187*** 0.52210 0.55304** 

 (0.41397) (0.35021) (0.17188) (0.35845) (0.23765) 

Temperature (max) 

contig. 
0.38942 0.17524 -0.06474 0.22627 0.00512 

 (1.25128) (1.33537) (0.34861) (0.52741) (0.37530) 

Precipitation contig. -0.05370 0.01278 -0.01394 -0.10017 -0.05635 

 (0.05168) (0.04199) (0.03275) (0.11446) (0.04998) 

Observations 42 44 125 43 67 

Number of id 4 4 4 4 4 

Notes: panel regression model was processed in STATA software. It includes provincial fixed effect, time trend, 197 

temporal (i.e., yield lag), and spatial (contiguous weather variables) autocorrelation.  198 

Notes: standard errors in parentheses 199 

*** Significant at the 1 percent level. 200 

** Significant at the 5 percent level. 201 

* Significant at the 10 percent level. 202 

 203 

Moreover, minimum temperatures may affect the contiguous provinces. Clearly, ten-days data we 204 

have collected does not highlight the dynamics between weather events occurring in certain 205 
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phenological stages and durum wheat yields mainly because the impacts of daily weather are not 206 

captured. Moreover, most variables are not statistically significant: this limit opens a reflection on 207 

data disaggregation level and on the need to collect more spatially and temporally refined data, also 208 

laying the foundations for the development of an effective index that reflects the responsiveness of 209 

the yields to climatic conditions to be implemented in the WIBIs. The evidence resulting from our 210 

econometric model on phenological stages is also in contrast with the literature: germination stage is 211 

highly sensitive to cold stress (Baldoni and Giardini, 2000, Angelini, 2007; Disciplinare di 212 

Produzione Integrata della Regione Puglia, 2021), while there are not evidences on heat stress during 213 

this stage. However, our study may help the debate suggesting precise directions for the future 214 

research. 215 

 216 

Conclusions 217 

Participating in index-based crop insurance schemes is a key challenge to improve the resilience of 218 

farming systems and adopting effective subsidies to enhance participation in the schemes is a pressing 219 

goal for policymakers. In this complex scenario, we investigated how temperatures and precipitation 220 

are correlated with yields data to reflect on potential designs for the index-based insurance schemes. 221 

While not novel (e.g., Chen et al., 2014), we found that weather changes affect durum wheat yields 222 

in a nonlinear way and some weather events occurring in certain phenological phases may have an 223 

impact on the yields. Our results are important to show that even with aggregated data the evidence 224 

is striking. However, focusing on phenological stages, our findings are in contrast with the literature 225 

highlighting the complexity of the phenomenon and the need to rely on more temporally and spatially 226 

disaggregated data. Although we provided clear evidence on the weather-yield relationship, it is 227 

impossible to design a WIBI using 10-days weather data. Therefore, our contribution may help the 228 

debate suggesting precise directions for the future research: first, a major effort should be devoted to 229 

the collection of weekly or daily weather observations, also identifying empirical damage thresholds 230 

that can be verified at farm-level, as well as the collection of production area or municipal data; a 231 
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promising approach could be the Growing Degree Days tool so as to calibrate the more precisely the 232 

growing stages in a view to a better explanation of weather risks on crop performances (Conradt et 233 

al., 2015; Dalhaus et al., 2018; Lollato et al., 2020); last but not least, the design of the index-based 234 

insurance schemes needs of further investigation because establishing a triggering index is a major 235 

challenge for the stakeholders involved in the implementation of the insurance schemes. The debate 236 

on crop insurance schemes is still vivid, and it will be so also in the next decade due to the central 237 

role that the risk management (old and novel) tools will have in the new CAP (Meuwissen et al., 238 

2018; Severini et al., 2019; Cordier and Santeramo, 2020).  239 

 240 

References 241 

Angelini, R. (2007). Coltura & cultura. Il grano. ART SpA - Bologna. 242 

Asseng, S., Foster, I.A.N., and Turner, N.C. (2011). The impact of temperature variability on wheat 243 

yields. Global Change Biology, 17(2), 997-1012. 244 

Auffhammer, M., Hsiang, S. M., Schlenker, W., & Sobel, A. (2013). Using weather data and climate 245 

model output in economic analyses of climate change. Review of Environmental Economics and 246 

Policy, 7(2), 181-198. 247 

Baldoni, R. and Giardini, L. (2000). Coltivazioni erbacee. Cereali e proteaginose. In Toderi, G., and 248 

D’Antuono L.F., Frumento (Triticum sp.pl.). Patron Editore. 249 

Belissa, T., Bulte, E., Cecchi, F., Gangopadhyay, S., and Lensink, R. (2019). Liquidity constraints, 250 

informal institutions, and the adoption of weather insurance: A randomized controlled Trial in 251 

Ethiopia. Journal of Development Economics, 140, 269-278. 252 

Belissa, T., Lensink, R., and Winkel, A. (2020). Effects of Index Insurance on Demand and Supply 253 

of Credit: Evidence from Ethiopia. American Journal of Agricultural Economics, 102(5), 1511-1531. 254 

Blanc, E., & Schlenker, W. (2017). The use of panel models in assessments of climate impacts on 255 

agriculture. Review of Environmental Economics and Policy, 11(2), 258-279. 256 



12 

 

Ceballos, F., Kramer, B., and Robles, M. (2019). The feasibility of picture-based insurance (PBI): 257 

Smartphone pictures for affordable crop insurance. Development Engineering, 4, 100042. 258 

Chen, C.C., McCarl, B.A., and Schimmelpfennig, D.E. (2004). Yield variability as influenced by 259 

climate: A statistical investigation. Climatic Change, 66(1), 239-261. 260 

Conradt, S., Finger, R., and Spörri, M. (2015). Flexible weather index-based insurance design. 261 

Climate Risk Management, 10, 106-117. 262 

Conradt, S., Finger, R., and Bokusheva, R. (2015). Tailored to the extremes: Quantile regression for 263 

index‐based insurance contract design. Agricultural economics, 46(4), 537-547. 264 

Cordier, J. and Santeramo, F. (2020). Mutual funds and the Income Stabilisation Tool in the EU: 265 

Retrospect and Prospects. EuroChoices, 19(1), 53-58. 266 

Dalhaus, T. and Finger, R. (2016). Can gridded precipitation data and phenological observations 267 

reduce basis risk of weather index–based insurance? Weather, Climate, and Society, 8(4), 409-419. 268 

Dalhaus, T., Musshoff, O., and Finger, R. (2018). Phenology information contributes to reduce 269 

temporal basis risk in agricultural weather index insurance. Scientific reports, 8(1), 1-10. 270 

Disciplinare di Produzione Integrata della Regione Puglia (2021). 271 

http://burp.regione.puglia.it/documents/10192/56088259/DET_67_2_3_2021.pdf/bb22795d-6335-272 

4498-bc3a-7a13bf8d140d. Accessed 31 August 2021 273 

Di Falco, S.D., Adinolfi, F., Bozzola, M., and Capitanio, F. (2014). Crop insurance as a strategy for 274 

adapting to climate change. Journal of Agricultural Economics, 65(2), 485-504. 275 

Enjolras, G., Capitanio, F., and Adinolfi, F. (2012). The demand for crop insurance: Combined 276 

approaches for France and Italy. Agricultural economics review, 13(389-2016-23488), 5-22. 277 

Farooq, M., Hussain, M., and Siddique, K. H. (2014). Drought stress in wheat during flowering and 278 

grain-filling periods. Critical reviews in plant sciences, 33(4), 331-349. 279 

Giampietri, E., Yu, X., & Trestini, S. (2020). The role of trust and perceived barriers on farmer’s 280 

intention to adopt risk management tools. Bio-based and Applied Economics Journal, 9(1050-2021-281 

213), 1-24. 282 

http://burp.regione.puglia.it/documents/10192/56088259/DET_67_2_3_2021.pdf/bb22795d-6335-4498-bc3a-7a13bf8d140d
http://burp.regione.puglia.it/documents/10192/56088259/DET_67_2_3_2021.pdf/bb22795d-6335-4498-bc3a-7a13bf8d140d


13 

 

Kolstad, C. D., & Moore, F. C. (2020). Estimating the economic impacts of climate change using 283 

weather observations. Review of Environmental Economics and Policy, 14(1), 1-24. 284 

Li, Y.F., Wu, Y., Hernandez-Espinosa, N., and Peña, R. J. (2013). Heat and drought stress on durum 285 

wheat: Responses of genotypes, yield, and quality parameters. Journal of Cereal Science, 57(3), 398-286 

404. 287 

Lobell, D. B., Bänziger, M., Magorokosho, C., & Vivek, B. (2011). Nonlinear heat effects on African 288 

maize as evidenced by historical yield trials. Nature climate change, 1(1), 42-45. 289 

Lollato, R.P., Bavia, G.P., Perin, V., Knapp, M., Santos, E.A., Patrignani, A., and DeWolf, E.D. 290 

(2020). Climate‐risk assessment for winter wheat using long‐term weather data. Agronomy Journal, 291 

112(3), 2132-2151. 292 

Mäkinen, H., Kaseva, J., Trnka, M., Balek, J., Kersebaum, K. C., Nendel, C., Gobin, A., Olesen, J.E., 293 

Bindi, M., Ferrise, R., Moriondo, M., Rodrìguez, A., Ruiz-Ramos, M., Takàc, J., Bezàk, P., Ventrella, 294 

D., Ruget, F., Capellades, G., and Kahiluoto, H. (2018). Sensitivity of European wheat to extreme 295 

weather. Field Crops Research, 222, 209-217. 296 

Menapace, L., Colson, G., and Raffaelli, R. (2016). A comparison of hypothetical risk attitude 297 

elicitation instruments for explaining farmer crop insurance purchases. European Review of 298 

Agricultural Economics, 43(1), 113-135. 299 

Meuwissen, M. P., de Mey, Y., and van Asseldonk, M. (2018). Prospects for agricultural insurance 300 

in Europe. Agricultural Finance Review. 301 

Norton, M.T., Turvey, C., and Osgood, D. (2013). Quantifying spatial basis risk for weather index 302 

insurance. The Journal of Risk Finance. 303 

Rezaei, E.E., Webber, H., Gaiser, T., Naab, J., and Ewert, F. (2015). Heat stress in cereals: 304 

mechanisms and modelling. European Journal of Agronomy, 64, 98-113. 305 

Rogna, M., Schamel, G., and Weissensteiner, A. (2021). The apple producers' choice between hail 306 

insurance and anti-hail nets. Agricultural Finance Review. 307 



14 

 

Santeramo, F. G., Goodwin, B. K., Adinolfi, F., and Capitanio, F. (2016). Farmer participation, entry 308 

and exit decisions in the Italian crop insurance programme. Journal of Agricultural Economics, 67(3), 309 

639-657. 310 

Santeramo, F.G. and Ford Ramsey, A. (2017). Crop Insurance in the EU: Lessons and Caution from 311 

the US. EuroChoices, 16(3), 34-39. 312 

Santeramo, F.G. (2018). Imperfect information and participation in insurance markets: evidence from 313 

Italy. Agricultural Finance Review, 78(2), 183-194. 314 

Santeramo, F. G. (2019). I learn, you learn, we gain experience in crop insurance markets. Applied 315 

Economic Perspectives and Policy, 41(2), 284-304. 316 

Santeramo, F.G. and Russo, I. (2021). Aspetti comportamentali della partecipazione ai programmi di 317 

assicurazione agricola agevolata nell’Italia meridionale. Italian Review of Agricultural 318 

Economics, 76(2), 73-90. 319 

Schlenker, W., & Roberts, M. J. (2009). Nonlinear temperature effects indicate severe damages to 320 

US crop yields under climate change. Proceedings of the National Academy of sciences, 106(37), 321 

15594-15598. 322 

Severini, S., Biagini, L., and Finger, R. (2019). Modeling agricultural risk management policies–The 323 

implementation of the Income Stabilization Tool in Italy. Journal of Policy Modeling, 41(1), 140-324 

155. 325 

Tack, J., Barkley, A., & Nalley, L. L. (2015). Effect of warming temperatures on US wheat yields. 326 

Proceedings of the National Academy of Sciences, 112(22), 6931-6936. 327 

Trestini, S., Giampietri, E., & Smiglak-Krajewska, M. (2018). Farmer behaviour towards the 328 

agricultural risk management tools provided by the CAP: a comparison between Italy and Poland 329 

(No. 2038-2018-2993). 330 

Vroege, W. and Finger, R. (2020). Insuring Weather Risks in European Agriculture. EuroChoices, 331 

19(2), 54-62. 332 



15 

 

Vroege, W., Bucheli, J., Dalhaus, T., Hirschi, M., and Finger, R. (2021). Insuring crops from space: 333 

the potential of satellite-retrieved soil moisture to reduce farmers’ drought risk exposure. European 334 

Review of Agricultural Economics, 48(2), 266-314. 335 

Woodard, J. D. and Garcia, P. (2008). Weather derivatives, spatial aggregation, and systemic risk: 336 

implications for reinsurance hedging. Journal of Agricultural and Resource Economics, 34-51. 337 

Zampieri, M., Ceglar, A., Dentener, F., and Toreti, A. (2017). Wheat yield loss attributable to heat 338 

waves, drought and water excess at the global, national and subnational scales. Environmental 339 

Research Letters, 12(6), 064008. 340 


