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Abstract

I develop a notion of evolutionary stability of behavioural rules when individuals si-

multaneously interact in a family of strategic games. An individual’s strategy choice

is determined by his behavioural rule which may take into account the manner in

which the games have been played in the past. The payoffs obtained by individuals

following a particular behavioural rule determine that rule’s fitness. A population

is stable if, whenever some individuals from an incumbent behavioural rule mutate

and follow a mutant behavioural rule, the fitness of each incumbent behavioural

rule exceeds that of the mutant behavioural rule. The behavioural rules approach

thus conceptualises stability when individuals simultaneously interact in a variety of

strategic environments. I first show the lack of stability whenever individuals exhibit

heterogeneity in their behavioural rules. Furthermore, when all individuals follow

the same behavioural rule, I find that the behavioural rules approach to stability is a

refinement of the evolutionary stability of strategies approach in that the necessary

condition for stability of behavioural rules is stronger than the corresponding condi-

tion for evolutionary stability of strategies. Finally, I present a sufficient condition

for stability that is reasonably close to the necessary condition alluded to above.
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1 Introduction

A basic tenet of evolution is the selection of the fitter over the less fit. In the context

of decision-making in game-theoretic strategic situations, this principle has traditionally

been expressed in terms of evolutionary stable strategies (abbreviated as ESS). A game

is a representation of a strategic situation that is defined by three elements: (i) the set

of players, (ii) each player’s strategy set, which specifies the strategies that may chosen

by the player, and (iii) a payoff function that describes the payoff received by each player

corresponding to each combination of strategies chosen by the players. A particular strat-

egy (or a particular mix of strategies) is said to be evolutionarily stable if it is able to

withstand any mutant strategy in the sense of being fitter (i.e. obtaining a higher payoff)

than the mutant strategy. The interpretation is that if an ESS is adopted by a population

of players, then it is not possible for any other mutant strategy to invade the population.

In contrast to the ESS framework where each individual is associated with a particular

strategy, I forward a notion of evolutionary stability where each individual is associated

with a behavioural rule, and stability is based on the fitness of behavioural rules. These

individuals simultaneously interact in a family of strategic games, and an individual’s

behavioural rule determines his strategy choice in each game, possibly taking into consid-

eration the manner in which the games have unfolded in the past. Examples of behavioural

rules include playing a best-response to some empirical distribution of strategies played in

the past, imitation of most successful/popular strategies, or choosing strategies from the

strategy set according to some probability distribution. I define a particular behavioural

rule (or, combination of behavioural rules) to be evolutionarily stable if its (their) fitness

exceeds that of any mutant behavioural rule – the interpretation is that a stable popula-

tion cannot be invaded by any other mutant behavioural rule. Thus, the behavioural rules

approach conceptualises stability when individuals simultaneously interact in a variety of

strategic environments.

I show that if the individuals display heterogeneity in their behavioural rule, then the

population is unstable. Next, when all individuals follow the same behavioural rule, I find

that stability obtains only if the behavioural rule leads all individuals to choose exactly

one strategy in each game, and, in addition, the condition on this strategy is stronger than

the corresponding condition for it to be an evolutionary stable strategy of the game in

question. Thus, stability of behavioural rules leads to a refinement of evolutionary stable

strategies. Finally, I present a sufficient condition for stability that is ‘reasonably’ close to
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the necessary condition alluded to above.

The primary contribution of this paper is to develop a framework for evolutionary stabil-

ity in the context of two novel features: firstly, the focus on behavioural rules, and secondly,

the interaction environment wherein individuals may play multiple games. Evidently, the

behavioural rules approach in this paper generalises the ESS approach pioneered by Smith

and Price (1973) – particularly useful expositions on the properties and applicability of the

ESS framework include Weibull (1995), Samuelson (1997), and Sandholm (2010). Exist-

ing papers that examine the interaction between individuals who use different behavioural

rules include Kaniovski, Kryazhimskii and Young (2000), Juang (2002), Josephson (2009)

and Khan (2021b); however, the aim of these papers is not to study the stability properties

of the behavioural rules but rather, to examine the outcomes that obtain when individuals

display heterogeneity in their decision-making process.

On the other hand, the feature of individuals interacting in a number of games is

generally understudied relative to how natural and commonplace this appears to be in

practical settings. There is, however, an existing body of work which examines situations

where individuals, due to reasons of complexity or incomplete information, play a particular

game by extrapolating their experience in similar games. For instance, LiCalzi (1995)

studies convergence of fictitious play when individuals possibly play different games on the

basis of prior experience with similar games, Steiner and Stewart (2008) focus on learning

when beliefs are formed through extrapolation, and Mengel (2012) compares learning across

games to learning in a single game.

The most closely related paper is Khan (2021a) which uses the evolutionary stability of

behavioural rules approach in a bargaining game; in contrast, in this paper, not only do I

substantially generalise this framework to any game but also conceptualise stability when

individuals simultaneously interact in a number of different games.

The plan of the paper is as follows. I introduce the framework in Section 2, define

evolutionary stability of behavioural rules in Section 3, present the results in Section 4,

and conclude in Section 5.

2 The Framework

There is a population of unit mass, and individuals in this population interact in a family

of strategic environments. The strategic situations under consideration are symmetric two

player games with a finite strategy space. Consider such a game G with the identical finite
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strategy set for each player being denoted by SG = {s1, . . . , sP (G)}. The payoff function

πG : SG × SG → R maps from the set of pure strategy combinations that can be used

by two players in the game G to the real line. The payoff received by playing a pure

strategy si ∈ SG against a pure strategy sj ∈ SG in the game G is denoted by πG(s
i, sj).

A strategy sj ∈ SG is a pure strategy best-response to the strategy si ∈ SG if, for all

sk ∈ SG, the inequality πG(s
j, si) ≥ πG(s

k, si) holds. The set of pure strategy best-responses

to si ∈ SG in the game G is denoted by BRG(s
i), where BRG(s

i) = {sj ∈ SG : ∀sk ∈ SG,

it holds that πG(s
j, si) ≥ πG(s

k, si)}. The finiteness of the strategy set SG implies that,

for each si ∈ SG, the set BRG(s
i) is always non-empty.

A strategy combination (si, sj) is a pure strategy Nash equilibrium of the game G if

si ∈ BRG(s
j) and sj ∈ BRG(s

i). That is, in a Nash equilibrium, none of the two play-

ers experience an improvement in the payoff from a unilateral deviation from the chosen

strategy. The strategy combination (si, si) is a symmetric pure strategy Nash equilibrium if

si ∈ BRG(s
i); in this case, si is said to support a symmetric pure strategy Nash equilibrium

of the game G.

A strategy si ∈ SG is an evolutionary stable strategy (ESS) of the game G if (i) si ∈

BRG(s
i), and (ii) for any sj ∈ BRG(s

i) \ {si}, the inequality πG(s
i, sj) > πG(s

j, sj) holds.

So, an evolutionary stable strategy always supports a symmetric pure Nash equilibrium.

A mixed strategy in the game G is a probability vector p = (p1, . . . , pP (G)) such that,

for any i ∈ {1, . . . , P (G)}, pi ≥ 0 denotes the probability of playing strategy si ∈ SG, and

Σ
P (G)
i=1 pi = 1. The set of all mixed strategies of the game G is represented by ∆G. The

payoff obtained by a pure strategy si ∈ SG against a mixed strategy p ∈ ∆G is given by

πG(s
i, p) = Σ

P (G)
i=1 pjπG(s

i, sj).

I now discuss one implication of evolutionary stable strategies. Consider the set of mixed

strategies ∆G|i,j ⊂ ∆G where all the pure strategies apart from si and sj are played with

zero probability. That is, ∆G|i,j = {p ∈ ∆G : pi + pj = 1}. Also, consider the sets of mixed

strategies ∆G|i<x,j ⊂ ∆G|i,j, and ∆G|i>x,j ⊂ ∆G|i,j, where the probability of playing the pure

strategy si is at most x, and at least x, respectively. So, ∆G|i<x,j = {p ∈ ∆G|i,j : p
i < x},

and ∆G|i>x,j = {p ∈ ∆G|i,j : p
i > x}. Then, one obtains the lemma below – I refer to the

appendix for a proof of the lemma.

Lemma 1. Consider any two distinct evolutionarily stable strategies si and sj in SG.

Then there exists p̄i ∈ (0, 1) such that, for every p ∈ ∆G|i<p̄i,j and every p′ ∈ ∆G|i>p̄i,j, the

inequalities πG(s
i, p) < πG(s

j, p) and πG(s
j, p′) < πG(s

i, p′) hold.

Thus, the payoff obtained by the evolutionarily stable strategy si (similarly, sj) is higher
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than that obtained by the evolutionarily stable strategy sj (similarly, si) against each

mixed strategy in ∆G|i,j where s
i is played with probability greater (less) than a threshold

p̄i ∈ (0, 1). I illustrate this in the example below.

Example 1. In the game G below, the strategy set SG = {s1, s2, s3}.

s1 s2 s3

s1 2, 2 1, 0 1, 0
s2 0, 1 3, 3 1, 0
s3 0, 1 0, 1 1, 1

Figure 1

In this game, it is easily verified that both s1 and s2 are evolutionarily stable strategies.

In the context of Lemma 1 above, let p = (p1, p2, p3) denote any mixed strategy such

that p1 + p2 = 1. Then, πG(s
1, p) = 2 p1 + p2 = 1 + p1, and πG(s

2, p) = 3p2 = 3 − 3p1.

Then, πG(s
1, p) > πG(s

2, p) if and only if p1 > 0.5, and πG(s
1, p) < πG(s

2, p) if and only

if p1 < 0.5. That is, for every p ∈ ∆G|i<0.5,j and every p′ ∈ ∆G|i>0.5,j, the inequalities

πG(s
1, p) < πG(s

2, p) and πG(s
2, p′) < πG(s

1, p′) hold. ■

I will now describe the structure of interaction in each time period, and then illustrate

the same with an example. I consider a finite set of games G whose power set is denoted

by P(G). A subset Pt(G) of P(G) gives the collection of games that are relevant for time

period t, and I remain agnostic over the manner in which the set Pt(G) is determined. In

time period t, the individuals in the population play a set of games Gt ∈ Pt(G). For any

time period t, the only restriction on Pt(G) is that each game in G belongs to at least one

element in Pt(G).

Example 2. Consider a finite set of games G = {G1, G2, G3}. The power set of G is

P(G) = {{G1}, {G2}, {G3}, {G1, G2}, {G1, G3}, {G2, G3}, {G1, G2, G3}}. I now illustrate

two selection rules that determine, in any time period t, the set Pt(G):

(a) Suppose that the structure of interactions in any period t is such that individuals must

interact in exactly two games. Then, Pt(G) = {{G1, G2}, {G1, G3}, {G2, G3}}, and the set

of games played in period t, namely Gt is an element of Pt(G).

(b) Suppose that in each time period t where t is even, individuals interact in exactly two

games, and, in addition, G2 must always be played; when t is odd, then individuals play

exactly one game. Then, in any even time period t, Pt(G) = {{G1, G2}, {G2, G3}}, while

for any odd time period t, Pt(G) = {{G1}, {G2}, {G3}}, and Gt is an element in Pt(G).

In both cases (a) and (b), the only restriction imposed on Pt(G) is satisfied – each game

in G belongs to at least one element in Pt(G). On the other hand, if for some time period t,
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Pt(G) = {{G1}, {G3}, {G1, G3}}, then the restriction is not satisfied. ■

The population of unit mass is represented by individuals being uniformly distributed

over the unit interval [0, 1]. Each individual is identified by his respective location on the

unit interval. For a game G ∈ Gt, the relative frequency of the individuals in the population

playing a pure strategy si ∈ SG in time period t is denoted by f i
G|t. In time period t, the

vector of relative frequencies with which each strategy is played in the population, and in

a subset A of individuals, is denoted by fG|t and fG|A,t, respectively. I refer to fG|t, and

fG|A,t, as the period t population strategy profile in the game G, and the period t strategy

profile of the individuals in the set A in the game G, respectively. In order to simplify

notation, I omit the time subscript whenever no confusion arises from doing so.

The pure strategy used by player i ∈ [0, 1] in time period t in a game G ∈ Gt is

represented by sG|i,t. I clarify that in contrast to sG|i,t, I use si to denote a particular

strategy in the strategy set without any reference to which players choose that strategy. The

payoff received by player i from playing this game with another player j is πG(sG|i,t, sG|j,t).

The total payoff of player i in gameG in time period t on choosing sG|i,t when the population

strategy profile is fG|t is given by πG|i,t = Σ
P (G)
j=1 f

j

G|t πG(sG|i,t, s
j). Since the strategy set SG

is finite, the set of feasible payoffs is finite, and I represent the vector of relative frequencies

of payoffs received by the players in the population in time period t by πG|t. The entire

history of strategy profiles and payoff profiles of each and every period till period t is

denoted by fG|1→t and πG|1→t.

In order to focus on the process of strategy choice, I assume G1 = G, i.e. in the very

first period, each game in G is played by the individuals in the population, and I describe

the manner in which they choose their respective strategies in period t+1 (for any integer

t > 1). Player i is associated with a behavioural rule Ri that, for each G ∈ G, maps from

the history of strategy and payoff profiles into a subset of the finite set of pure strategies

SG. This latter subset, denoted by Ri(fG|1→t, πG|1→t) ⊂ SG, is the period t + 1 response

set of player i in game G. The strategy chosen by player i in period t + 1 in the game

G belongs to Ri(fG|1→t, πG|1→t), and each strategy in this set can be chosen. Hence, each

strategy in Ri(fG|1→t, πG|1→t) is called a feasible period t + 1 strategy for player i in the

game G. A strategy profile (i.e. the vector of relative frequency of strategies in SG) that

can be generated by taking one such feasible period t + 1 strategy for each individual in

the population is defined as a feasible period t + 1 population strategy profile of the game

G. In the game G, a typical feasible period t + 1 population strategy profile, and the set

of all feasible period t+ 1 population strategy profiles, is denoted by f t→t+1
G and ∆t→t+1

G .
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The behavioural rule of a player does not change across different games in a time period.

The finite set of behavioural rules in use in the population at the end of time period t is

denoted by Rt. RI (with an upper case subscript) denotes a typical behavioural rule in

the population without any reference to the players using that rule while Ri (with a lower

case subscript) refers to the behavioural rule of the player located at point i in [0, 1].

The population is uniform at time period t + 1 if, for all i, j ∈ [0, 1], Ri(fG|1→t, πG|1→t)

= Rj(fG|1→t, πG|1→t) holds for all G ∈ G. That is, the set of feasible period t+ 1 strategies

is the same for all individuals in each game that may be played in period t + 1. The

population is said to be diverse at time period t otherwise. Hence, a sufficient (necessary)

condition for a uniform (diverse) population at is that all individuals (not all individuals)

in the population use the same rule. Some examples of behavioural rules are as follows:

(i) Best-response: An individual plays a best response to some strategy profile – this may

be the strategy profile till date, or the strategy profile of the previous period, or the strategy

profile of some selected time periods.

(ii) Imitation: An individual plays the strategy of the individual who received the highest

payoff in some past period, or the highest average payoff in some selected time periods.

(iii) Stochastic play: An individual chooses a strategy from the strategy set according to

some probability distribution.

For a behavioural rule RI , SoRI
t and | SoRI

t | are the set of players in the population,

and the relative frequency of the players in the population, who play as per the behavioural

rule RI at the end of time period t. In the context of a game G ∈ Gt, the period t strategy

profile of the individuals in the set SoRI
t , and their payoff profile, is given by f I

G|t, and

πI
G|t, respectively. Hence f I

G|t is equivalent to fG|SoRI
t ,t
. A strategy profile (i.e. the vector

of relative frequency of strategies in SG) that can be generated by taking one feasible

period t + 1 strategy for each individual in SoRI
t is referred to as a feasible period t + 1

strategy profile for RI in the game G. A typical feasible period t + 1 strategy profile for

RI in the game G is denoted by f
I,t→t+1
G . The set of all feasible period t + 1 strategy

profiles for the behavioural rule RI is denoted by ∆I,t→t+1
G . The example below illustrates

the notion of feasible period t+ 1 strategy profiles.

Example 3. Consider the game below. The strategy set comprises of three strategies

s1, s2, and s3, and the payoff function is depicted via the payoff matrix below.
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s1 s2 s3

s1 1, 1 5, 0 4, 0
s2 0, 5 2, 2 4, 0
s3 0, 4 0, 4 3, 3

Figure 2

Suppose that all individuals play strategy s3 in the very first time period so that the

population level strategy profile is (0, 0, 1). Also suppose that the population has the

following composition in terms of behavioural rules: each individual in the interval [0, 0.5)

plays a best-response to previous period’s population level strategy profile, while each

individual in the interval [0.5, 1] imitates the strategy that has yielded the highest payoff

in the previous time period. Then, in time period 2, the response set of each individual in

the interval [0, 0.5) is {s1, s2}, and the response set of each individual in the interval [0.5, 1]

is {s3}. As a result, the feasible period 2 strategy profiles for the sub-population [0, 0.5) is

given by (x, 1− x, 0) where x takes any value in [0, 1], while the feasible period 2 strategy

profiles for the sub-population [0.5, 1] is given by [0, 0, 1]. Finally, the feasible period 2

strategy profile for the entire population [0, 1] is [y, 0.5 − y, 0.5] where y takes any value

between [0, 0.5). ■

The game specific fitness of a behavioural rule RI ∈ Rt in time period t in a game

G ∈ Gt is determined by a real valued fitness function F I
G|t that maps from the period t

payoff profile πG|t to the set of real numbers. So, F I
G|t(πG|t) is the game specific fitness of

the rule RI in time period t in the game G ∈ Gt. For ease of notation, I drop the argument

of the game specific fitness and refer to it by F I
G|t. For the rule RI ∈ Rt, the vector of

game specific fitness in all games in Gt is denoted by (F I
G|t)G∈Gt

. The collection of game

specific fitness of all behavioural rules in Rt in all games in Gt is denoted by (F I
G|t)

RI∈Rt

G∈Gt
.

Finally, the fitness of a behavioural rule RI ∈ Rt in time period t is given by a real

valued aggregate fitness function F I
t ((F

I
G|t)

RI∈Rt

G∈Gt
). This is the fitness of RI across all games

in this time period – I drop the argument to simplify notation and simply write F I
t to

refer to this fitness level. The criterion for evolutionary stability of behavioural rules that

I define in the next section is based on this fitness level.

I underline that both the game specific fitness function and the aggregate fitness func-

tion defined above may differ across time periods, across games, and across behavioural

rules as well. In context of the game specific fitness functions, the only assumption I make

is as follows. I denote the relative frequency distribution of the payoffs obtained in game

G ∈ Gt by individuals following the behavioural rule RI in time period t by F I
G|t(·). If, in
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time period t, the relative frequency distribution of payoffs of one particular behavioural

rule first order stochastically dominates (strictly first order stochastically dominates) that

of another behavioural rule, then the time period t game specific fitness of the former rule

is at least as much as (higher than) the latter. That is, if F I
G|t(x) ≤ F J

G|t(x) holds for each

real number x, then F I
G|t ≥ F J

G|t, and if, in addition, F I
G|t(x) < F J

G|t(x) holds for some real

number x, then F I
G|t > F J

G|t.

I also make a similar assumption in case of the aggregate fitness function. The relative

frequency distribution of the game specific fitness of the behavioural rule RI in time period t

is denoted by F I
t (·). Then, if F

I
t (x) ≤ F J

t (x) holds for each real number x, then F I
t ≥ F J

t ,

and if, in addition, F I
t (x) < F J

t (x) holds for some real number x, then F I
t > F J

t .

I highlight that no other assumption is made on either the game specific fitness function

or the aggregate fitness function. I will now introduce the notion of evolutionary stability

of behavioural rules.

3 Evolutionary Stability of Behavioural Rules

The stability criterion compares the fitness of each incumbent behavioural rule in the pop-

ulation to the fitness of a mutant behavioural rule in the face of an “effective mutation” in

an incumbent behavioural rule. In order to introduce the concept of an effective mutation,

consider a game G ∈ Gt+1, and a feasible period t + 1 strategy profile f t→t+1
G of the game

G. By definition, f t→t+1
G is a strategy profile that can be realised if each individual in the

population chooses a strategy from his response set that is determined by his behavioural

rule. I will now define an effective mutation in this feasible strategy profile f t→t+1
G .

Consider Rt, namely the set of behavioural rules at the end of time period t. Suppose

that a strict subset of individuals who follow one particular behavioural rule, say RI ∈ Rt,

mutate at the very beginning of period t + 1, and adopt a different (mutant) behavioural

rule, say RI′ . The mutating behavioural rule is called the source behavioural rule, the

mass of mutating individuals is denoted by ε, where ε <| SoRI
t |, and the set of mutating

individuals is denoted by Mε. The strategy profile post-mutation is denoted by fG|t+1, and

the strategy profile played by the set of the mutating individuals Mε due to the mutation

is fG|Mε,t+1. A mutation is said to be effective at the profile f t→t+1
G if and only if fG|Mε,t+1 is

different the strategy profile that would be played by the individuals in Mε in the feasible

strategy profile f t→t+1
G in the absence of a mutation. Recall that the strategy profile of the

individuals in the subset Mε ⊊ SoRI
t at the profile f

I,t→t+1
G is denoted by f

I,t→t+1
G|Mε

.
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Then, the mutation by individuals in Mε in their behavioural rule RI is effective at the

feasible strategy profile f
I,t→t+1
G if the following conditions hold:

(i) fG|Mε,t+1 ̸= f
I,t→t+1
G|Mε

(ii) fG|SoRI
t \Mε,t+1 = f

I,t→t+1

G|SoRI
t \Mε

(iii) for all other incumbent behavioural rules RJ ∈ Rt \ {R
I}, fJ

G|t+1 = f
J,t→t+1
G .

When these conditions hold, then I refer to fG|t+1 as an effectively mutated strategy profile.

Condition (i) above states that in the case of an effective mutation in the strategy profile

f t→t+1
G , the strategy profile played by the mutating individuals is not the same as what is

played by them at f I,t→t+1
G if they did not mutate. Condition (ii) states that the individuals

who continue to follow the source behavioural rule choose the strategy profile that they

would play at f I,t→t+1
G . Condition (iii) states the same for individuals following all other

behavioural rules (if any). Thus, in order for the mutation to be effective at particular

feasible strategy profile, it must be that the post-mutation strategy profile differs from it.

For any ε > 0, there is an effective ε mutation in the population in period t + 1 if the

there exists a game G ∈ Gt+1, a source behavioural rule RI ∈ Rt with some subset of

mutating individuals Mε ⊊ SoRI
t of mass ε, and a feasible period t + 1 strategy profile

f t→t+1
G ∈ ∆t→t+1

G such that the mutation effective at f t→t+1
G .

The notion of stability of behavioural rules that I present next is based on a comparison

of fitness of behavioural rules when there is an effective mutation in the population.

A population with set of incumbent behavioural rules Rt satisfies evolutionary stability

of behavioural rules at period t+ 1 if, for every collection of games Gt+1 ⊂ Pt+1(G) and all

ε > 0 small enough, any effective ε mutation in the population by any mutant behavioural

rule RI′ results in F I′

t+1 < F J
t+1 holding for all incumbent behavioural rules RJ ∈ Rt.

Thus, stability requires that for all effective mutations in the population, each in-

cumbent behavioural rule should have a higher fitness than any mutant behavioural rule,

irrespective of the source behavioural rule, and the collection of games that may be played

in period t+ 1. The results relating to stability are presented next.

4 Results

I begin by stating in Proposition 1 that a necessary condition for the stability of any

population in time period t + 1 is that each incumbent behavioural rule should have a

higher game specific fitness than any mutant behavioural rule in each and every game

G ∈ G – this is in spite of the behavioural rule based stability notion comparing the
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aggregate fitness (across of all games) of the incumbent behavioural rules with that of a

mutant behavioural rule.

Proposition 1. A necessary and sufficient condition for any population to satisfy evolu-

tionary stability of behavioural rules is that in each game G ∈ G, each incumbent behavioural

rule should have a higher game specific fitness than any mutant behavioural rule.

The sufficiency part of the theorem is obvious and follows simply from the strict first

order stochastic dominance property of the relative frequency distribution of the game

specific fitness. In the proof for the necessity part of the proposition (presented in the

appendix), I develop the argument that there exists an effective mutation in the population

such that: (i) all individuals who follow the same behavioural rule choose the same strategy

in a game in Gt+1, and this holds for all games in Gt+1, and (ii) in all but one specific

game G ∈ Gt+1, the mutant individuals play the same strategy as the individuals who

continue to follow the source behavioural rule. It then follows that all individuals who

follow the same behavioural rule obtain the same payoffs; furthermore, in all but one

game, the mutant individuals obtain the same payoff as the individuals who continue to

follow the source behavioural rule. This implies that in all but the one specific game G,

the mutant behavioural rule has the same game specific fitness as the source behavioural

rule. So, in order for the population to be stable, the game specific fitness of the source

behavioural rule must be higher than that of the mutant behavioural rule in the game G.

The proposition then follows from the fact that any incumbent behavioural rule may be

the source behavioural rule, and that any game in G can be the specific game in which the

strategy chosen by the mutant individuals differ from that chosen by those who continue

to follow the source behavioural rule game.

Next, in Proposition 2 below, I state that there does not exist any diverse stable pop-

ulation. In the proof of this proposition (presented in the appendix), I show that in

any game G ∈ G, there exists a feasible strategy profile and an effective ε mutation in

the population at that feasible strategy profile, such that the game specific fitness of the

source behavioural rule does not exceed that of the mutant behavioural rule whenever the

population is diverse. This, along with Proposition 1, gives the result of Proposition 2.

Proposition 2. There does not exist any diverse population of behavioural rules that sat-

isfies evolutionary stability of behavioural rules.

The instability of diverse populations leads me to analyse the stability of a uniform

population. Proposition 3, and Proposition 4, below present a necessary condition, and a
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sufficient condition, respectively, for stability of a uniform population. A strengthening of

the necessary condition is sufficient for stability, and after presenting the propositions, I

discuss the reason for this gap between the necessary and sufficient condition.

Proposition 3. Suppose that a population satisfies evolutionary stability of behavioural

rules at time period t+1. Then, in each game G ∈ G, all individuals have the same unique

feasible period t+ 1 strategy si ∈ SG, and, in addition, si is an ESS such that for any two

distinct strategies sj, sk ∈ BRG(s
i)\{si}, πG(s

i, sk) ≥ πG(s
j, sk) or πG(s

i, sj) ≥ πG(s
k, sj).

Corollary 1. A population satisfies evolutionary stability of behavioural rules only if each

game has an evolutionarily stable strategy, and hence a symmetric pure strategy Nash

equilibrium.

Proposition 4. A population satisfies evolutionary stability of behavioural rules at time

period t + 1 if, in each game G ∈ G, all individuals in the population have the same

evolutionary stable strategy si ∈ SG as the unique feasible period t + 1 strategy, and, in

addition, si is such that, for any sj ∈ BRG(s
i)\{si} and sk ∈ SG, the inequality πG(s

i, sk) ≥

πG(s
j, sk) holds.

Proposition 3 reveals that even the necessary condition for stability is stronger than

the criterion for ESS. This is due to the fact that ESS requires an incumbent strategy to

be fitter than any mutant strategy but not against multiple mutant strategies. On the

other hand, in the evolutionary stability of behavioural rules approach, the response set

of the mutant behavioural rule may be non-singleton as a result of which all the mutant

individuals need not play the same strategy. Hence, each incumbent behavioural rule must

now be fitter than any mutant behavioural rule, even when the mutation expresses itself

in multiple strategies. As a result, the stability criterion now is more stringent than in the

ESS approach.

A comparison of Proposition 3 and Proposition 4 shows that while both propositions

require the same evolutionary stable strategy to be the only feasible strategy in the response

set of all individuals, the additional condition is stronger in case of sufficiency. Necessity

implies that an inequality involving two other evolutionary strategies must hold while

sufficiency requires that a similar inequality must hold for two other strategies of which

only one must be an ESS. The reason for this difference, as I discuss below, can be traced

back to the considerable degree of freedom of the fitness functions.

In order to convey the intuition behind the necessary condition, I consider a game G ∈ G

where the unique feasible strategy for all individuals in the population is an evolutionarily

12



stable strategy si, and there exist two different strategies sj, sk ∈ BRG(s
i) \ {si}. Now,

suppose that a mass ε of the incumbent individuals mutate, and both sj and sk are feasible

period t + 1 strategies for the mutant behavioural rule so that a mass ν and ε − ν of the

mutant individuals choose sj and sk, respectively. So, the payoff received from playing

si, sj, and sk in this effectively mutated strategy profile equals (1−ε)π(si, si)+νπ(si, sj)+

(ε−ν)π(si, sk), (1−ε)π(sj, si)+νπ(sj, sj)+(ε−ν)π(sj, sk), and (1−ε)π(sk, si)+νπ(sk, sj)+

(ε−ν)π(sk, sk), respectively. Since sj, sk ∈ BR(si)\{si}, one obtains (1−ε)π(si, si) = (1−

ε)π(sj, si) = (1− ε)π(sj, si). Then, if neither π(si, sj) ≥ π(sk, sj) nor π(si, sk) ≥ π(sj, sk)

do not hold, i.e. π(si, sj) < π(sk, sj) and π(si, sk) < π(sj, sk) hold instead, then payoff

obtained from playing si does not exceed the payoff obtained from playing either of sj

or sk whenever ν
ε
<min{ π(sj ,sk)−π(si,sk)

π(sj ,sk)−π(si,sk)+π(si,sj)−π(sj ,sj)
,

π(sk,sk)−π(si,sk)
π(sk,sk)−π(si,sk)+π(si,sj)−π(sk,sj)

}. In this

event, each mutant individual’s payoff is at least as high as that of any individual who

follows the source behavioural rule. So, the relative frequency distribution of payoffs of

the mutant behavioural rule first order dominates that of the incumbent behavioural rule,

and the mutant behavioural rule’s game specific fitness is at least as much as that of the

incumbent behavioural rule, thereby implying (due to Proposition 1) instability of the

population. This explains the necessary condition in Proposition 3.

On the other hand, suppose that sk ̸∈ BRG(s
i), and all else remains the same as in the

preceding paragraph. Now, sk ̸∈ BRG(s
i), along with si being an ESS, implies π(sk, si) <

π(si, si). Also, suppose that the sufficient condition π(si, sk) ≥ π(sj, sk) does not hold,

i.e. π(si, sk) < π(sj, sk) holds instead. Since sk ̸∈ BRG(s
i), necessity does not impose any

condition on the payoff of any strategy against strategy sk. At the same time, sk ̸∈ BRG(s
i)

implies that, for any ε small enough, the payoff from playing si in the effectively mutated

strategy profile described in the paragraph above exceeds that of playing sk. However,

irrespective of how small ε is, sj ∈ BRG(s
i) along with π(si, sk) < π(sj, sk) implies that the

payoff from playing sj is higher than that of si whenever ν
ε
<

π(sj ,sk)−π(si,sk)
π(sj ,sk)−π(si,sk)+π(si,sj)−π(sj ,sj)

.

In this case, the relative frequency distribution of one behavioural rule does not first order

stochastically dominate that of the other; hence, there is no restriction on the form that

the fitness functions may take, and so, suppose that game specific fitness function of any

behavioural rule equals the maximum payoff obtained by an individual following that

rule. Then, the game specific fitness of the mutant behavioural rule exceeds that of the

incumbent behavioural rule; by Proposition 1, the population is not stable. Hence, the

particular condition in Proposition 4 is sufficient to impose stability.

Finally, in the example below, I show that evolutionary stability of behavioural rules
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approach can represent a refinement of the evolutionary stable strategies approach, thus

implying that the converse of Proposition 3 (and Corollary 1) is not true in general.

Example 4. Suppose that the individuals in the population interact only in the game below

in each and every time period. It is easily verified that both s1 and s4 are evolutionarily

stable strategies of this game G.

s1 s2 s3 s4

s1 3, 3 2, 3 3, 3 0, 1
s2 3, 2 1, 1 5, 5 0, 1
s3 3, 3 5, 5 1, 1 0, 1
s4 1, 0 1, 0 1, 0 4, 4

Figure 3

I will argue that the population satisfies evolutionary stability of behavioural rules if and

only if s4 is the only strategy in each individual’s response set, thus implying that the

evolutionary stable strategy s1 can never be in the response set of any individual.

Now, by Proposition 3, a population is stable at time period t+1 only if the population

is uniform, and the only feasible period t + 1 strategy profiles is either (p1, p2, p3, p4) =

(1, 0, 0, 0) or (p1, p2, p3, p4) = (0, 0, 0, 1).

So, first suppose that (p1, p2, p3, p4) = (1, 0, 0, 0) is the only feasible strategy profile, and

a mass ε of the individuals mutate to another behavioural rule of which a mass ε
2
of the

mutant individuals choose s2 while the remaining mass ε
2
of the mutant individuals choose

s3. Then, in period t+ 1, the payoff obtained by each incumbent individual, each mutant

individual who chooses s2, and each mutant individual who plays s3 is 3(1−ε)+2 ε
2
+3 ε

2
=

3− ε
2
, 3(1−ε)+ ε

2
+5 ε

2
= 3, and 3(1−ε)+5 ε

2
+ ε

2
= 3, respectively. Hence, for any positive

ε, no matter how small, the payoff received by each mutant individual exceeds the payoff

received by each incumbent individual. As a result, the relative frequency distribution

of period t + 1 payoffs of the mutant behavioural rule strictly first order stochastically

dominates that of the incumbent behavioural rule. Consequently, the mutant behavioural

rule is fitter than the incumbent behavioural rule in period t + 1, and so, the population

is not stable in period t+ 1.

Secondly, suppose that (p1, p2, p3, p4) = (0, 0, 0, 1) is the only feasible strategy profile.

Now, for all sk ∈ SG \ {s4}, the inequality π(s4, s4) > π(sk, s4) holds. This satisfies the

sufficient condition in Proposition 4, and so the population is stable if and only the unique

feasible strategy profile in every period is (p1, p2, p3, p4) = (0, 0, 0, 1) ■
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5 Conclusion

I develop a novel notion of evolutionary stability when individuals in a population interact

simultaneously in a family of strategic environments. The manner in which an individual

chooses his action in a strategic situation is captured by a behavioural rule. Therefore,

the population can be thought of as being comprised of a set of behavioural rules, and

this set of behavioural rules is stable if it is able to withstand the invasion by any other

mutant behavioural rule in the sense of being fitter than the mutant rule. This repre-

sents a substantial generalisation over the traditional concept of evolutionary stability of

strategies by, firstly, describing each individual in terms of his decision-making process and

secondly, by conceptualising stability when individuals interact in a number of strategic

games simultaneously.

I show that any population which comprises of more than one incumbent behavioural

rule is unstable. Next, I present fairly close necessary and sufficient conditions for stability

of a population comprising of a single behaviorial rule, and show that evolutionary stability

of the behavioural rule approach is a refinement of the evolutionary stability of strategies

approach in that it leads individuals to necessarily choose in each game an action that

must satisfy a condition that is stricter than the requirement for an evolutionary stable

strategy.

Appendix

Proof of Lemma 1. Consider any game G, and any two distinct evolutionarily stable

strategies si and sj of G. Since si is an ESS of G, one of the following two conditions

hold: either πG(s
i, si) > πG(s

j, si), or πG(s
i, si) = πG(s

j, si) and πG(s
i, sj) > πG(s

j, sj).

Similarly, since sj is an ESS of G, either πG(s
i, sj) < πG(s

j, sj), or πG(s
i, sj) = πG(s

j, sj)

and πG(s
i, si) < πG(s

j, si). Now, because both si and sj are ESS, combining the conditions

above, it must be that πG(s
i, si) > πG(s

j, si) and πG(s
i, sj) < πG(s

j, sj).

Now, consider any mixed strategy p ∈ ∆G|i,j. Then, one obtains πG(s
i, p) = piπG(s

i, si)+

(1− pi)πG(s
i, sj) and πG(s

j, p) = piπG(s
j, si) + (1− pi)πG(s

j, sj). So, πG(s
i, p) > πG(s

j, p)

if and only if piπG(s
i, si)+ (1− pi)πG(s

i, sj) > piπG(s
j, si)+ (1− pi)πG(s

j, sj). Then, there

exists a real number p̄i ≡ πG(sj ,sj)−πG(si,sj)
πG(si,si)−πG(sj ,si)+πG(sj ,sj)−πG(si,sj)

such that πG(s
i, p) > πG(s

j, p)

if and only if pi > p̄i, and πG(s
i, p) < πG(s

j, p) if and only if pi < p̄i. Further, πG(s
j, sj) >

πG(s
i, sj) and πG(s

i, si) > πG(s
j, si) imply p̄i ∈ (0, 1). Thus, πG(s

i, p′) > πG(s
j, p′) and
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πG(s
i, p) < πG(s

j, p) hold for all p′ ∈ ∆G|i>p̄i,j and all p ∈ ∆G|i<p̄i,j. ■

Proof of Proposition 1. I will only prove the necessity part of the proposition because

the sufficiency part is obvious. Suppose that the population is stable in time period t+ 1.

Consider, for any ε small enough, a mutation in an incumbent behavioural rule RI ∈ Rt

with the set of mutating individuals of mass ε being denoted by Mε ⊊ SoRI
t , and the

mutant behavioural rule being denoted by RI′ . Thus, SoRI
t+1 = SoRI

t \Mε. Also consider

the following effective ε mutation in the population:

(a) All individuals following the same incumbent behavioural rule choose the same

strategy in each game that is played in period t+ 1, and this holds for all behavioural

rules. That is, for any incumbent behavioural rule RJ ∈ Rt, and for all i, j ∈ SoRJ
t+1,

one has sG|i,t+1 = sG|j,t+1, and this holds for all games in Gt+1.

(b) Only in one particular game in Gt+1 do the mutant individuals choose a strategy

that is different from that chosen by those who continue to follow the source behavioural

rule; in all other games, the mutant individuals choose the same strategy as the latter

individuals. That is, for all i, j ∈ Mε and all k ∈ SoRI
t+1, there exists only one partic-

ular game G ∈ Gt+1 such that sG|i,t+1 = sG|j,t+1 but sG|i,t+1 ̸= sG|k,t+1; for all other

games G′ ∈ Gt+1 \ {G}, it holds that sG′|i,t+1 = sG′|j,t+1 = sG′|k,t+1.

Then, all individuals who follow the same behavioural rule obtain the same payoff in each

game in this period. Furthermore, since the payoff obtained in each game in Gt+1 \ {G}

by each individual in SoRI
t+1 is equal to that obtained by each individual in Mε, the game

specific fitness of RI equals the game specific fitness of RI′ in all these games. Now, a

necessary condition for stability is that, in the game G, the game specific fitness of RI

should exceed that of RI′ ; for, if not, then the game specific fitness of RI and RI′ would be

the same in each and every game, leading to both rules having the same aggregate fitness,

thereby implying that the population is not stable.

Finally, the proposition follows from the fact that this must be true for each incumbent

behavioural rule RI ∈ Rt, each collection of games Gt+1 ∈ Pt+1(G), and each G ∈ Gt+1. ■

Proof of Proposition 2. If the population in period t + 1 is diverse, then there exists

a game G, and two different incumbent behavioural rules RI , RJ ∈ Rt, such that the

period t+1 response set of these two behavioural rules in the game G is not identical. So,

without loss of generality, suppose that the strategy si ∈ SG belongs to the period t + 1

response set of the behavioural rule RI , and that the strategy sj ∈ SG belongs to the

period t + 1 response set of the behavioural rule RJ but not to the response set of RI .

Then, in the absence of a mutation, there exists a feasible period t+1 strategy profile where
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individuals who follow the behavioural rule RI and RJ choose si and sj, respectively. I

do not specify the period t+ 1 strategy choice of individuals who follow other behavioural

rules (if any).

Now, consider ε small enough, and suppose that in period t + 1, a mass ε of the

individuals who follow the behavioural rule RI mutate. Also suppose that the mutant

behavioural rule is such that sj is in its period t+1 response set, and each mutant individual

chooses sj. It follows that this represents an effective ε mutated strategy profile. Then, in

the game G, each mutant individual obtains a payoff that is identical to the payoff obtained

by each individual who follows the incumbent behavioural rule RJ . So, in period t+1, the

relative frequency distribution of the payoffs of these two behavioural rules in the game G

is identical, due to which their game specific fitness in the game G is also the same. Then,

Proposition 1 implies that the population is not stable. Thus, a stable diverse population

does not exist. ■

Proof of Proposition 3. In Step 1, I will show that if the uniform population is stable

at time period t+ 1, then each strategy in the response set must be an ESS that satisfies

the inequalities stated in the proposition. Next, in Step 2, I will demonstrate that all

individuals must have the same unique feasible period t+ 1 strategy.

Step 1. Consider a game G ∈ G. Since the population is uniform, all individuals have

the same response set. So, suppose that there exists a strategy si in the response set

that is not an ESS of the game. Then, consider the specific feasible period t + 1 strategy

profile where all individuals choose si. Now, for any ε small enough, there exists sj ∈ SG

such that if ε mass of the individuals mutate and choose sj, then an effectively mutated

strategy profile is obtained, and the mutant individuals obtain a higher payoff than the

incumbent individuals in this effectively mutated strategy profile. So, the relative frequency

distribution of payoffs of the mutant behavioural rule strictly first order stochastically

dominates that of the incumbent behavioural rule. Hence, in the game G, the mutant

behavioural has a higher game specific fitness than the incumbent behavioural rule, and,

by Proposition 1, the population is unstable. Consequently, a necessary condition for

stability is that each strategy in the individuals’ response set must be an ESS of the game.

Next, consider the specific feasible period t + 1 strategy profile where all individuals

choose si, where, following from the above, si must be an ESS of the game. Also, consider

the effectively mutated strategy profile fG|t+1 where a mass ε of the individuals mutate,

and mass ν of the mutant individuals choose sj ∈ BRG(s
i) \ {si} while the mass ε− ν of

the mutant individuals choose sk ∈ BRG(s
i) \ {si, sj}. Then, in the strategy profile fG|t+1,
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the payoff obtained by each incumbent individual is πG(s
i, fG|t+1) = (1 − ε)πG(s

i, si) +

νπG(s
i, sj) + (ε − ν)πG(s

i, sk), the payoff obtained by a mutant individual choosing sj is

πG(s
j, fG|t+1) = (1−ε)πG(s

j, si)+νπG(s
j, sj)+(ε−ν)πG(s

j, sk), and the payoff obtained by

a mutant individual choosing sk is equal to πG(s
k, fG|t+1) = (1−ε)πG(s

k, si)+νπG(s
k, sj)+

(ε− ν)πG(s
k, sk).

Now, if none of the conditions of the proposition hold, then πG(s
i, sk) < πG(s

j, sk),

and πG(s
i, sj) < πG(s

k, sj) hold. One also obtains from si being an ESS and from

sj, sk ∈ BRG(s
i) that πG(s

i, si) = πG(s
j, si) = πG(s

k, si), and πG(s
i, sj) > πG(s

j, sj) and

πG(s
i, sk) > πG(s

k, sk). So, the relative magnitudes of the payoffs πG(s
i, fG|t+1), πG(s

j, fG|t+1)

and πG(s
k, fG|t+1) is determined by comparing νπG(s

i, sj)+ (ε− ν)πG(s
i, sk), νπG(s

j, sj)+

(ε − ν)πG(s
j, sk), and νπG(s

k, sj) + (ε − ν)πG(s
k, sk). It is then easily verified that if

ν
ε
≤min{ πG(sj ,sk)−πG(si,sk)

πG(si,sj)−πG(sj ,sj)+πG(sj ,sk)−πG(si,sk)
,

πG(sk,sk)−πG(si,sk)
πG(si,sj)−πG(si,sk)+πG(sk,sk)−πG(sk,sj)

}, then the in-

equality πG(s
i, fG|t+1) ≤min{πG(s

i, fG|t+1), πG(s
i, fG|t+1)} holds. In this case, there does

not exist any incumbent individual who obtains a higher payoff than any mutant individ-

ual. So, the relative frequency distribution of payoffs of the mutant individuals strictly

first order stochastically dominates that of the incumbent behavioural rule, due to which

the former has a higher game specific fitness. Then, by Proposition 1, the population is

unstable. Thus, a necessary condition for stability is for the inequality in the proposition

to hold.

Step 2. I will show that if there is more than one feasible period t + 1 strategy profile

in any game, then there exists an effective ε mutation whereby the game specific fitness

of a mutant behavioural rule exceeds that of the incumbent behavioural rule. This, by

Proposition 1, implies that the population in not stable. Consequently, each game must

have exactly one feasible period t+ 1 strategy profile.

Consider any game G ∈ G, and suppose that there exists more than one feasible pe-

riod t+1 strategy profile of this game. By Step 1, each of these strategies – say si and sj –

must be an ESS of the game. Then, for all q ∈ [0, 1], there is a feasible period t+ 1 popu-

lation strategy profile in the game G given by f t→t+1
G such that a mass q of the individuals

choose si while the other individuals choose sj.

Now, by Lemma 1, there exists p̄i ∈ (0, 1) such that for every p ∈ ∆G|i<p̄i,j and every

p′ ∈ ∆G|i>p̄i,j, the inequalities πG(s
i, p) < πG(s

j, p) and πG(s
j, p′) < πG(s

i, p′) are satisfied.

So, let q < p̄i, and consider the effective ε mutation whereby the mutation occurs in the set

of individuals who, in the absence of a mutation, would have played si, and these mutant

individuals play sj instead. Then, the strategy profile in period t + 1 is given by fG|t+1,
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where f i
G|t+1 = q − ε, and f

j

G|t+1 = 1 − q + ε, with q − ε < p̄i. Clearly, this represents an

effective ε mutated strategy profile in which all the mutant individuals obtain the payoff

π(sj, fG|t+1); on the other hand, some of the incumbent individuals receive π(si, fG|t+1)

while the other incumbent individuals receive π(sj, fG|t+1). Since f
i
G|t+1 < p̄i, the inequality

πG(s
j, fG|t+1) > πG(s

i, fG|t+1) holds. As a result, the relative frequency distribution of

payoffs of the mutant behavioural rule strictly first order stochastically dominates that of

the incumbent behavioural rule, and the former has a higher game specific fitness than the

latter. By Proposition 1, the population in not stable. Thus, a necessary condition for

stability is that each game must have exactly one feasible period t+ 1 strategy profile. ■

Proof of Proposition 4. Consider any game G ∈ G. Suppose that the conditions of the

propositions hold, and in time period t+1, a mass ε > 0 of the individuals mutate to another

behavioural rule. Each incumbent individual chooses si ∈ SG in period t + 1. Hence, in

any ε effectively mutated strategy profile, a positive mass of the mutant individuals must

choose a strategy other than si. So, let ν ∈ [0, ε) denote the mass of the mutant sub-

population who choose si, and let fG|t+1 denote any effectively ε mutated period t + 1

strategy profile of the game G.

Then, the payoff received by each incumbent individual, and a mutant individual

choosing sj (where sj ̸= si), in the strategy profile fG|t+1 equals (1 − ε + ν)πG(s
i, si) +

Σk ̸=if
k
G|t+1πG(s

i, sk) and (1 − ε + ν)πG(s
j, si) + Σk ̸=if

k
G|t+1πG(s

j, sk), where Σk ̸=if
k
G|t+1 =

ε − ν. Whenever ε is small enough, the inequality (1 − ε + ν)(πG(s
i, si) − πG(s

j, si)) +

Σk ̸=if
k
G(πG(s

i, sk) − πG(s
j, sk)) > 0 holds under the conditions of the proposition. So, in

every effectively ε mutated strategy profile, the payoff received by playing each strategy sj

(where sj ̸= si) is lower than the payoff received by playing the strategy si. Hence, in the

game G, the relative frequency distribution of payoffs of the incumbent behavioural rule

strictly first order dominates that of the mutant behavioural rule, and the former has a

higher game specific fitness than the latter. Since this holds for each G ∈ G and for any

mutant behavioural rule, the aggregate fitness of the incumbent behavioural rule is also

higher, and population is stable. ■
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