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Abstract 

Paying landowners for conservation results rather than paying for the measures intended to 

provide such results is a promising approach for biodiversity conservation. However, a key roadblock 

for the widespread implementation of such result-based payment schemes are the frequent difficulties 

to monitor target species for whose presence a landowner is supposed to receive a remuneration. Until 

recently, the only conceivable monitoring approach would be conventional monitoring techniques, by 

which qualified experts investigate the presence of target species on-site. With the rise of remote 

sensing technologies, in particular increased capabilities and decreased costs of unmanned aerial 

vehicles (UAVs), technological monitoring opportunities enter the scene. We analyse the costs of 

monitoring an ecological target of a hypothetical result-based payments scheme and compare the 

monitoring cost between conventional monitoring and UAV-assisted monitoring. We identify the 

underlying cost structure and cost components of both monitoring approaches and use a scenario 

analysis to identify the influence of factors like UAV and analysis costs, area size, and monitoring 

frequency. We find that although conventional monitoring is the least-cost monitoring approach today, 

future cost developments are likely to render UAV-assisted monitoring more cost-effective. 

Keywords 

biodiversity conservation; flowering resources; grassland; monitoring; costs; precision farming; 

remote sensing; result-based payments 
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1 Introduction 

In order to conserve biodiversity in Europe and other parts of the world, payments which 

remunerate landowners for the implementation of specifically defined biodiversity conservation 

measures have become a key policy instrument (Engel, 2015; Gibbons et al., 2011). Remuneration is 

often designed as a spatially homogeneous compensation payment to cover the participant’s 

opportunity costs of measure implementation (Markova-Nenova et al., 2022). However, landowners 

are compensated independently of the successful realisation of a conservation goal, e.g. that a target 

species remains or becomes present in the area where the conservation measure is applied. Moreover, 

the predetermination of conservation measures leaves little space for innovation and adaptation on the 

side of the landowners (Bartkowski et al., 2021; Burton and Schwarz, 2013). The ability of payment 

schemes to ensure good ecological outcomes – and do so in a cost-effective manner – is thus limited 

by the measures’ ability to ensure those outcomes (Kaligarič et al., 2019; Matzdorf and Lorenz, 2010). 

Against this background, it is not surprising that the ecological outcome of current payment schemes is 

often poor (Batáry et al., 2015).  

A promising alternative are so-called result-based payment (RBP) schemes1 (Burton and Schwarz, 

2013; Chaplin et al., 2021; Schroeder et al., 2013). In such schemes, landowners are not paid for their 

opportunity costs of measure implementation. Instead, payments are dependent on whether a specific 

conservation target is achieved in a particular location – e.g. if one or several predefined target or 

indicator species are found in the area enrolled in an RBP scheme (Russi et al., 2016). RBP schemes 

have several advantages. They leave it to the landowner to decide which conservation measures to 

implement, thus providing the landowner with an incentive for innovation and adaptation (Bartkowsik 

et al., 2021; Zabel and Roe, 2009). As they directly link ecological outcomes to payments they ensure 

that conservation targets are actually met (Chaplin et al., 2021). Finally, as only landowners will 

                                                      
1 Different terms for what we refer to as RBP have been suggested, all referring to the same idea, some of 

which are “payment-by-results”, “results-“ or “success-oriented payment”, “performance- “, “outcome-“ or 
“output-based payments”, and “objective driven payments” (see e.g. Burton and Schwarz, 2013). 
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participate in a scheme who can provide the desired ecological outcome at low costs, they tend to be 

cost-effective (Wätzold and Drechsler, 2005). 

However, RBP schemes have not been implemented on a large scale, though some programmes 

exist. Examples of such programmes include the MEKA-4 programme in Germany (Oppermann and 

Briemle, 2002), the Flowering Meadows programme in France (de Sainte Marie, 2014) and a 

programme to protect wolverines and lynxes in Sweden (Zabel and Holm-Müller, 2008; see also 

Herzon et al., 2018 for an overview). One reason for this sluggish adaptation is that landowners have 

to bear the risk that – despite conservation efforts – a target species cannot be observed on their land 

(Drechsler, 2017). Probably the largest roadblock for the large-scale implementation of RBP, however, 

are high monitoring costs, as the presence of target species has to be verified on-site by qualified 

personnel through a monitoring process (Bartkowski et al., 2021; Burton and Schwartz, 2013; Hasund, 

2013).  

One emerging potential option to overcome this roadblock may be monitoring using unmanned 

aerial vehicles (UAVs). UAV-assisted remote sensing approaches have so advanced technologically in 

recent years that they can potentially be used in biodiversity-related monitoring activities (Librán-

Embid et al., 2022). UAVs represent a small-scale alternative to satellite imaging which is 

successfully used for large-scale mapping of land-use forms and habitats (Petrou et al., 2015; Pietsch 

et al., 2018), but not (yet) able to monitor species which makes it currently irrelevant for monitoring in 

the context of RBPs. Importantly in the context discussed here, the costs of applying UAVs for 

monitoring as well as the costs of data analysis have decreased substantially.  

The purpose of this paper is to investigate from the cost-side if UAV-assisted monitoring is about 

to become a potential alternative to on-site monitoring by qualified personnel (henceforth referred to 

as conventional monitoring). We start by presenting an overview of the state-of-the-art of UAV-

assisted remote-sensing technologies and their likely development in the foreseeable future to provide 

some technical background for the cost assessments. We then outline a hypothetical case study based 

on target plant species as a biodiversity indicator in managed grassland. As remote sensing 

technologies to identify single or multiple species across large areas are not yet available, we have to 
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find an alternative approach. We take the coverage of yellow flowers in grassland as an indicator for a 

hypothetical key plant species for a biodiversity-rich meadow, and assume that this is the target 

species to be monitored. We continue by providing cost models for UAV-assisted and conventional 

monitoring. The identification of monitoring cost components in the cost models allows us to identify 

the influence of possible changes in certain cost-components and cost parameters on the overall cost of 

both monitoring approaches. We finally assess the costs for the two monitoring approaches taking into 

account different sensitivity analyses and cost scenarios.  

2 Background information for UAV-assisted monitoring of 

biodiversity 

UAVs have evolved from backyard experiments to reliable, autonomous monitoring systems, with 

a global market size of $26.3 billion revenue in 2021, projected to steadily increase in the coming 

years (droneii.com, 2021). As a monitoring tool, UAVs are successfully utilized in civil domains such 

as mining (Shahmoradi et al., 2020), search and rescue (Alotaibi et al., 2019), and e.g. agricultural and 

environmental research applications (Whitehead et al., 2014). In the field of agriculture, UAVs are 

predicted to play a pivotal role to acquire necessary spatial crop information for precision farming 

applications, such as biomass for precision nitrogen application, crop health for precision disease 

control or classification of individual plants for precision weeding (Candiago et al., 2015; Tsouros et 

al., 2019). 

UAV-assisted remote sensing approaches have thus reached a technological maturity to potentially 

be utilized in environmental monitoring activities at spatial scales inaccessible for satellite imaging 

(Librán-Embid et al., 2022). This is indicative of the future potential to monitor selected target species 

for conservation remotely and hence provide an alternative for labour intensive, on-site conventional 

monitoring. Moreover, the costs of these technologies, including data analysis, have decreased 

substantially in the past (Aiimpacts.org, 2017; Appdevelopermagazine.com, 2018. Ultimately, on-site 

inspections by trained personnel assessing biodiversity indicators may be replaced in the future by less 

costly, technology-assisted monitoring and potentially automatic data analysis (Latif, 2018; Schwieder 
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et al., 2020). Further facilitation of monitoring processes can be expected from enhanced imaging 

technology such as improved image resolution and spectral bandwidth, semi-automated image 

recognition via improved pattern recognition by artificial intelligence, and developments in UAV 

technology such as increased flight speeds with easier operation.  

Especially in relation to satellite imagery and airborne surveys, UAVs have specific advantages. 

Compared to crewed airborne surveys, which usually cover a much wider area, UAVs can be deployed 

much more flexibly, exactly when the information is needed and to a much lower price per flight 

(Whitehead et al., 2014). Compared to satellite images, UAV images can have a much higher spatial 

resolution, depending on camera properties and flight height. Typical spatial resolutions are in the 

range of a few mm to some cm, which is not possible from a satellite, making UAV imagery much 

more suitable for methods requiring high spatial resolution, such as identification of individual plant 

species (Carrio et al., 2017). Furthermore, UAV's can operate below clouds, significantly increasing 

the reliability compared to optical satellite images, which are often cloud-covered (Whitcraft et al., 

2015).  

Analysis of UAV images is often based on Structure from Motion analysis, which is used to create 

digital orthomosaics with precise geolocation based on overlapping georeferenced images (Jiang et al., 

2020). The orthomosaics are then typically analysed using classification methods or more up-to-date 

and sophisticated methods such as object-based image analysis, machine learning, and deep learning 

(Whitehead et al., 2014). High-resolution images and deep learning approaches have for example been 

applied to estimate crop yields from flower phenology information in apple, strawberry and cotton 

production (Dias et al., 2018; Xu et al., 2018, Chen et al., 2018). Furthermore, deep learning of UAV 

images can already yield context-based information such as individual plants in more complex 

grassland environments (Zhang et al., 2020). Accordingly, UAV-assisted biodiversity monitoring at 

local scales is an emergent research area (see e.g. Reddy, 2021). However, most of the required 

analysis pipelines are computational intense, prohibiting many real-time applications and adding the 

costs of high-performance computers. An evaluation of this cost development compared to 

conventional monitoring is necessary to estimate the potential of UAV-based monitoring of individual 
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species in heterogeneous systems as a future key technology to develop biodiversity-friendly 

management in agriculture (Librán-Embid et al., 2020).  

3 Hypothetical Case Study 

3.1 General setting 

In order to estimate the costs of conventional monitoring versus UAV-assisted monitoring we 

consider a hypothetical RBP scheme, which offers participating farmers a remuneration if a certain 

percentage (of one ha) of their grassland is covered by yellow flowers.  

3.1.1 Case study area 

Our hypothetical case study is located in the Solling Uplands of Lower Saxony, a marginal to hilly 

upland area in Central Germany. Regional mean air temperature is 8.2°C, annual precipitation sum is 

879 mm (1961–1990). Several study sites are part of the experimental farm of the University of 

Göttingen (blue-shaded area in Fig. 1), ensuring reasonable estimations with respect to UAV-assisted 

monitoring operations and ecological expertise in on-site field research in the area (Hütt et al., 2021). 

Because a main function of expected monitoring costs is the area to be monitored, study sites were 

aggregated according to three scenarios: a medium-sized base case, and respective smaller and larger 

areas (Fig. 1).  
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Figure 1: Study region in the Solling, Lower Saxony, Germany. We calculate monitoring costs for 

three clusters of areas of different sizes (small area: blue; base case area: combined blue and green; 

large area: combined blue, green and red). 

 

3.1.2 Yellow flowering plants as indicator species 

As remote sensing techniques to identify single or multiple species across large areas are still in 

development, we use coverage of yellow flowers (regardless of plant species identity) as proxy for a 

hypothetical key plant species. Yellow flower colour is identifiable by the current UAV and data 

processing procedures used in this study (see chapter 3.2.2). Yellow flowers are representative for the 

study area and can be digitally analysed by current, state-of-the art GIS (Fig. 2; highlighted in magenta 

colour for easier recognisability). 

Although we use yellow flower colour as a proxy for a hypothetical target plant species in this 

study, flower cover per study area is a meaningful biodiversity indicator in itself. Flowering plant 

resources are naturally linked to their consumers and these interactions play a crucial role in the 

functioning of terrestrial ecosystems (Tylianakis et al., 2010; Valiente-Banuet et al., 2015). 

Accordingly, effects of landscape context and land management on pollinator community structures 

are mediated by the availability of flower resources (Roulston and Goodell, 2011). In grassland 

systems such as studied here, cover of selected yellow flower key plant species (ranging between 0 % 
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and 1.55 % of grassland area) relates significantly to pollinator community structure and functioning 

(Davidson et al., 2020).  

 

 

Figure 2: Example of a Deep Learning Based Flower Detection of a UAV orthophoto in the case 

study area (small area scenario (blue) in Fig. 1). Yellow flowers are indicated as magenta-coloured 

dots. The lower right section of the image shows the level of spatial resolution with which flowers are 

identified. (Adapted from Müller, 2021)  

 

3.2 Monitoring approaches and scenario development  

3.2.1 Conventional monitoring  

We assume that for the conventional monitoring approach, qualified personnel has to travel to the 

monitoring location and has to survey the land in order to determine the presence of the target species 

(i.e. yellow flowers). Methods for recording floral resources vary substantially (Szigeti et al., 2016). 

For estimates of flowering plant communities, simple count variables like number or cover of flowers 

are time-consuming and recording durations vary around one order of magnitude (e.g. 0.12 h per m2 

for sampling quadrats (Kearns and Inouye, 1993) to 0.018 h per m2 for transects (Hegland et al., 

2010)). It is important to note that nearly always subplots are used to estimate floral resources for 
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entire study areas, the median proportion of the study area covered by these subplots being 0.69 % 

(Szigeti et al., 2016). For identifying single, well recognizable flowering plant species we thus assume 

a conservative recording time of 0.2 ℎℎ𝑎 which is in the middle of the recording time spectrum. Based 

on our own experience with on-site monitoring, we assume on-site preparation to take 0.1 hours per 

ground point (i.e. local land parcel to be monitored), and post-processing 0.25 hours per ground point. 

Campaign planning is considered to take 0.5 hours for the whole study area per year. This survey is 

repeated with a certain frequency each year, as predefined by the RBP scheme. Collected data is then 

post-processed so that it can be used as a decision basis for the RBP. 

3.2.2 UAV-assisted monitoring  

In the UAV-assisted monitoring approach, qualified personnel brings the UAV to the monitoring 

location and surveys the area. The flight paths for UAVs in the monitoring region are planned each 

year in advance of the first monitoring campaign by the UAV operator. Depending on the area to be 

monitored, connecting flight paths between individually monitored fields including multiple travel 

stops and starting positions have to be set up (Fig. 2). UAV monitoring is repeated multiple times per 

year as defined by the RBP scheme. Next, the gathered information (e.g. digital photo footage of the 

area) is prepared for computer-assisted, automated image post-processing, which results in digital 

orthophoto mosaics by the UAV-operating technician. 

In a GIS environment, automated image analysis can be used to classify individual flowers and 

then generate results based on flower coverage per area. The coverage is then – analogue to the 

conventional monitoring approach – used to decide whether an RBP is triggered or not. The precise 

parameter values used to estimate the monitoring costs for UAV-assisted monitoring are presented in 

Table 2.  

3.2.3 Scenario Development 

For our analysis, we define a base case that characterises the monitoring setup and conditions in 

both monitoring approaches with a medium value parametrisation. The base case consists of a semi-

clustered, 3-field conservation area of 20 ha size (green and blue areas in Fig. 1) which can be 
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accessed with two travel stops by conventional monitoring personnel with 4.5 km travel distance and 

0.12 hours travel time, and can be approached from one base location for UAV monitoring with no 

additional on-site travel. A medium monitoring precision for conventional monitoring is assumed of 

0.2 hours/ha, and the monitoring campaign is taking place 3 times a year. We assume a travel distance 

of 10 km to the study region, with a respective travel time of 15 minutes. Based on these 

considerations, we calculate the costs of the individual cost components annually, and aggregate the 

discounted annual costs for each monitoring approach over a period of five years. This is necessary to 

allow a comparison of both costs, as conventional monitoring costs can entirely be calculated on an 

annual basis, while for UAV-assisted monitoring parts of the costs (i.e. UAV and auxiliary equipment 

maintenance) arise regularly every five years, while other costs arise annually. We use real values 

(without inflation) for our cost calculations. We assume an increase of real labour costs by 1.1% per 

year, based on the average increases of real wages for employees of public administrations in 

Germany since 2015 (Destatis, 2021b). We consider a constant real discount rate of 3% 

(Umweltbundesamt, 2012; van der Pol et al., 2021) to allow net present value calculation of all cost 

components.2  

To reflect possible variations and uncertainties in monitoring characteristics and RBP related 

aspects, we developed different scenarios. Each scenario is based on variations of specific, interrelated 

parameters relative to the base case. The scenarios consider four different factors, which influence 

costs directly related to monitoring activities each with a low and high value variant, resulting in eight 

individual scenarios and two combined scenarios. Parameters related to each scenario (Tab. 1) are 

varied simultaneously to their respective low and high values in each scenario, while all other 

parameters remain unchanged. The following four factors are considered: 

                                                      
2 Economists apply discounting in order to make costs that occur in different years as well as benefits 

comparable. To discount a certain cost value from any year X to the base-year 0, the nominal costs from year X 
are multiplied by the discount factor 1/(1+r)^X, where r is the discount rate. For details on discounting, see 
Boardman (2017). In our cost assessment, discounting allows the present value of UAV-assisted monitoring, for 
which some expenses (e.g. new UAVs) occur only every once (we assume every five years), while expenses for 
all other cost components arise on an annual basis. 
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UAV costs reduction. Of particular interest in the context of UAV-assisted monitoring is the 

expectable decrease of costs for equipment for UAV technology. In addition, the deployment of 

LiDAR based UAV technology – in particular RGB in combination with LiDAR – can heavily reduce 

the amount of computation time required for post-processing and analysis. At the same time an 

increase in quality and resolution of generated outputs is reached. Hence, more precise monitoring 

results are possible at lower computation costs per monitored hectare of conservation area. We thus 

analyse the costs of UAV-assisted monitoring with UAV and equipment costs to be assumed lower 

than in the base case. A high UAV costs reduction scenario assumes UAV and equipment costs to be 

0.33 times the base case values, while the moderate UAV costs reduction scenario assumes costs to be 

0.66 times the base case values. 

Analysis costs reduction. Future improvements in technology may also occur in post-processing 

and analysis of UAV-assisted monitoring. Software-side innovations, combined with automation of 

workflows, may reduce the human workload and computation times for post-processing and analysis 

and hence reduce costs for UAV-assisted monitoring. We thus assume, similar to the scenarios for 

UAV equipment costs, a high analysis costs reduction scenario with 0.33 times the base case analysis 

costs, as well as moderate analysis costs reduction scenario with 0.66 times the base case costs. 

Area. With respect to conservation area, we consider a small area scenario with only one 

grassland parcel (blue in Fig. 1). In the small area scenario, only one travel stop for conventional 

monitoring and one travel stop for UAV-assisted monitoring is necessary. For the large area scenario, 

eight areas (blue, green and red in Fig. 1) participate, which necessitates four travel stops for 

conventional monitoring, as the grassland parcels are spatially more distributed. It also requires two 

starting positions for UAV-assisted monitoring (compare Fig. 3). Consequentially, associated aspects 

like travel costs and time, and monitoring duration vary. 

Frequency. Regarding the monitoring frequency, in the low frequency scenario we assume one 

monitoring campaign per year. The high frequency scenario assumes five monitoring campaigns per 

year. 
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Travel distance. For travel distance, we consider two different distance scenarios (short, long) 

and the resulting travel times to the case study area. The short travel distance scenario assumes a travel 

distance of 5 km for the monitoring personnel to the study area, with a resulting travel time of 10 

minutes. The long travel distance scenario assumes a travel distance of 20 km and 25 minutes. We 

assume 5 minutes of travel preparation plus 1 minute per kilometre.  

Precision. The low monitoring precision scenario assumes a low precision for the estimation of 

flower coverage in the conventional monitoring alternative, resulting in monitoring durations of 0.1 

hour per ha, while the high monitoring precision scenario assumes a monitoring duration of 0.4 hours 

per ha. 

Labour costs. We assume labour costs to increase over time. Hence, we calculate a low labour 

cost scenario with a 0.6% increase of labour costs per year and a high labour cost scenario with a 1.6% 

annual increase. 

Discount rate. We assume a low discount rate scenario with 1% discount rate, and a high discount 

rate scenario with 5% discount rate. Discount rates remain unchanged for over the complete study 

period of 20 years. 
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Table 1: Overview about parameters in the different scenarios. For each scenario, the respective 

parameters are changed accordingly, while all other parameters remain unchanged. 

Scenarios  low base case high 

 
    

Travel distance  Parameter       
   travel distance to case study areas (km) 𝑒𝑜𝑓𝑓−𝑠𝑖𝑡𝑒 5 10 20 
   travel time (minutes) 𝑡𝑜𝑓𝑓−𝑠𝑖𝑡𝑒 10 15 25 

     
Area         
   size of grassland area to be monitored (ha) 𝑎 10 20 40 
   resulting in x ground points for UAV monitoring 𝑛𝐺𝑃𝑈𝐴𝑉 1 1 2 
   resulting in x hours for UAV monitoring 𝑡𝑚𝑜𝑛𝑈𝐴𝑉  1 2.5 3.5 
   travel time on-site UAV (hours) 𝑡𝑜𝑛−𝑠𝑖𝑡𝑒𝑈𝐴𝑉  0 0 0.13 
   travel distance on-site UAV (km) 𝑒𝑜𝑛−𝑠𝑖𝑡𝑒𝑈𝐴𝑉  0 0 6.1 
   resulting in x ground points for GT 𝑛𝐺𝑃𝐶𝑀 1 4 8 
   travel time on-site GT (hours) 𝑡𝑜𝑛−𝑠𝑖𝑡𝑒𝐶𝑀  0 0.12 0.58 
   travel distance on-site GT (km) 𝑒𝑜𝑛−𝑠𝑖𝑡𝑒𝐶𝑀  0 4.5 18 

     
Precision (conventional monitoring only)        
   monitoring hours (per ha) 𝑡𝑚𝑜𝑛𝐶𝑀  0.1 0.2 0.4 

     
Frequency         
   monitoring frequency per year 𝑓𝑟𝑒𝑞 1 3 5 

     
UAV costs reduction        
   UAV cost multiplier 𝑚𝑈𝐴𝑉 0.33 1  
     
Analysis costs reduction        
   analysis cost multiplier 𝑚𝐴 0.33 1  
     
Labour costs        
   labour cost (cost progression per year) 𝑟𝐿 0.6% 1.1% 1.6% 
     
Discount rate        

   discount rate 𝑟 1% 3% 5% 
     
Strong technological progress        
   UAV cost multiplier 𝑚𝑈𝐴𝑉 0.33 1  
   analysis cost multiplier 𝑚𝐴 0.33 1  
     
High monitoring demand (a)        
   size of grassland area to be monitored (ha) 𝑎  20 40 
   monitoring frequency per year 𝑓𝑟𝑒𝑞  3 5 
     

     
(a) Besides the size of grassland area to be monitored, also other area-related parameters from the large 

area scenario change in the high monitoring demand scenario accordingly. 
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Finally, we investigate the costs of two combined scenarios with each combined scenarios consisting 

of two related individual scenarios. This is motivated by our interest in future opportunities in addition 

to present costs. We consider these scenarios as under future technological conditions or with a 

substantial implementation of UAV-assisted monitoring in the future the corresponding costs may be 

affected in a combined and thus stronger way than captured with the scenarios described above. 

Strong technological progress. Substantial technological progress may occur on a more general basis 

and thus lead to a strong decrease in costs for both UAVs and analysis. This scenario thus combines 

the high UAV costs reduction and high analysis costs reduction scenarios in the sense that we assume 

both the UAV cost multiplier and the analysis cost multiplier to be 0.33.  

High monitoring demand. In addition to our case study, RBP schemes may be implemented broadly 

resulting in a high demand for related monitoring activities and the possibility to use the monitoring 

equipment widely. In order to capture such a situation, we combine the high area and high frequency 

scenarios by assuming the monitoring of 40 ha five times per year.  

4 Cost models 

In this section, we describe our assumptions regarding the cost structure of the two monitoring 

alternatives and explain how we calculate the costs. We divide the costs of both monitoring 

approaches into four cost components; labour costs, data post-processing and analysis costs, travel 

costs and equipment costs. Each cost component depends on monitoring specific characteristics. Based 

on these cost components, we first estimate the costs for each of the two monitoring approaches for 

each monitoring campaign, and then the annual costs of monitoring. Based on the annual costs we 

calculate the discounted sum of all cost components over a period of five years, to capture different 

temporal characteristics of the cost structure for both monitoring approaches. In the following, we 

provide a detailed description of the individual cost components. For an overview of the individual 

cost parameters, see Table 2. 
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4.1 Conventional monitoring 

We start calculating the annual costs of conventional monitoring by assuming the total costs 𝐶𝐺𝑇(𝑡) to be the sum of labour costs (𝐶𝐿𝐶𝑀(𝑡)), analysis costs (𝐶𝐴𝐶𝑀(𝑡)), travel costs (𝐶𝑇𝐶𝑀(𝑡)), and 

campaign planning costs (𝐶𝑝𝑙𝑎𝑛𝐶𝑀 (𝑡)); hence 

𝐶𝐶𝑀(𝑡) = (𝐶𝐿𝐶𝑀(𝑡) + 𝐶𝐴𝐶𝑀(𝑡) + 𝐶𝑇𝐶𝑀(𝑡)) ∗ 𝑓𝑟𝑒𝑞 + 𝐶𝑝𝑙𝑎𝑛𝐶𝑀 (𝑡).     (1) 

The labour costs of monitoring activities are calculated as 

𝐶𝐿𝐶𝑀(𝑡) = 𝑤𝐶𝑀(𝑡) ∗ (𝑡𝑝𝑟𝑒𝑝𝐶𝑀 ∗ 𝑛𝐺𝑃𝐶𝑀 + 𝑡𝑚𝑜𝑛𝐶𝑀 ∗ 𝑎)       (2) 

with 𝑤𝐶𝑀(𝑡) being the hourly wage for conventional monitoring personnel in year 𝑡, 𝑡𝑝𝑟𝑒𝑝𝑇𝑀  the 

time necessary for preparation for each ground point (i.e. separate field) to be monitored, 𝑛𝐺𝑃𝐶𝑀 the 

number of ground points, 𝑡𝑚𝑜𝑛𝐶𝑀  the time necessary to monitor one hectare and 𝑎 the area in hectares. 

We assume an hourly wage 𝑤𝐶𝑀(0) =  42.87€ for trained monitoring personnel (with a Master 

degree) to perform conventional monitoring operations. Hourly wages were calculated by dividing the 

annual gross labour costs (70,933 €; Niedersächsisches Ministerialblatt, 2019) by the number of 

effective work days per year (210)3 and by the daily work hours in the German federal state of Lower-

Saxony (7.8h; TV-L, 2019; i.e. 70933€ / (210 * 7.96h) = 43.30 €/h). For the case study area, we 

assume a single person to be able to conduct conventional monitoring on the three different possible 

area sizes. Preparation per ground point 𝑡𝑝𝑟𝑒𝑝𝐶𝑀  is assumed to take 0.1 hours (based on own experience 

in field work), while 𝑛𝐺𝑃𝐶𝑀, 𝑡𝑚𝑜𝑛𝐶𝑀  and 𝑎 are defined by the selected scenario (Table 1). 

The time necessary to monitor a hectare of grassland by conventional monitoring (𝑡ℎ𝑎𝐶𝑀) is 

calculated as 

𝑡ℎ𝑎𝐶𝑀 = 𝑠𝑚𝑜𝑛𝐶𝑀 ∗ 10,000 𝑚2ℎ𝑎 ∗ 𝜌𝑠𝑝.        (3) 

                                                      
3 We estimated 250 workdays per year, reduced by 30 vacation days and 10 sick days (Niedersächsisches 

Ministerium für Inneres und Sport (2021), Statista (2021)). 
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To calculate the base case parameter value of 𝑡ℎ𝑎𝐶𝑀 = 0.2 hoursha , we assume 𝑠𝑚𝑜𝑛𝐶𝑀 = 0.01 ℎ𝑚2 

according to the lower end estimation of Kearns and Inouye (1993) and Hegland et al. (2010), and the 

proportion of area covered by sampling subplots 𝜌𝑠𝑝 = 0.002 (Szigeti et al., 2016). 

Analysis costs are calculated as 

𝐶𝐴𝐶𝑀(𝑡) = 𝑤𝐶𝑀(𝑡) ∗ 𝑡𝑎𝑛𝑎𝐶𝑀 ∗ 𝑛𝐺𝑃𝐶𝑀        (4) 

with 𝑡𝑎𝑛𝑎𝐶𝑀 = 0.25 ℎ the time it takes to post-process and analyse collected data per ground point 

and 𝑛𝐺𝑃𝐶𝑀 the number of ground points.  

Travel costs are calculated as  

𝐶𝑇𝐶𝑀(𝑡) =  𝑓 ∗ (𝑒𝑜𝑓𝑓−𝑠𝑖𝑡𝑒 + 𝑒𝑜𝑛−𝑠𝑖𝑡𝑒𝐶𝑀 ) + 𝑤𝐶𝑀(𝑡) ∗ (𝑡𝑜𝑓𝑓−𝑠𝑖𝑡𝑒 + 𝑡𝑜𝑛−𝑠𝑖𝑡𝑒𝐶𝑀 )   (5) 

with 𝑓 the travel costs per km (assumed to be travelled by car), 𝑒𝑜𝑓𝑓−𝑠𝑖𝑡𝑒 and 𝑒𝑜𝑛−𝑠𝑖𝑡𝑒𝐶𝑀  the distance 

to be travelled to the monitoring location and at the monitoring location. Travel at the monitoring site 

can be necessary due to the scattered location of individual areas to be monitored (see Figure 1). 𝑡𝑜𝑓𝑓−𝑠𝑖𝑡𝑒 and 𝑡𝑜𝑛−𝑠𝑖𝑡𝑒𝐶𝑀  are the corresponding travel time to and within the monitoring location. We 

assume 𝑓 = 0.3 €𝑘𝑚 (Niedersächsische Reisekostenverordnung, 2017). On-site travel distance 𝑒𝑜𝑛−𝑠𝑖𝑡𝑒𝐶𝑀  and time 𝑡𝑜𝑛−𝑠𝑖𝑡𝑒𝐶𝑀  are monitoring type and scenario-specific, while off-site travel 𝑒𝑜𝑓𝑓−𝑠𝑖𝑡𝑒 

and time 𝑡𝑜𝑓𝑓−𝑠𝑖𝑡𝑒 is equal for both monitoring modes but also scenario-specific. 

The aforementioned cost components (Eqs. (1) to (5)) arise for every monitoring campaign which 

are repeated multiple times per year (𝑓𝑟𝑒𝑞), depending on the selected scenario. Every year, one-off 

costs for campaign planning (𝐶𝑝𝑙𝑎𝑛𝐶𝑀 (𝑡) = 𝑡𝑝𝑙𝑎𝑛𝐶𝑀 ∗ 𝑤𝐶𝑀(𝑡)) arise (𝑡𝑝𝑙𝑎𝑛𝐶𝑀 = 1ℎ based on own planning 

experience). For conventional monitoring, we assume no specific costs for equipment, as inexpensive, 

standard, low-tech equipment is utilised (i.e. regular office supplies for sub-plot establishment and 

documentation in the field). For an overview of fixed cost components and scenario-specific 

parameters, see Tables 1 and 2. 
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Table 2: Overview about the monitoring cost parameters for conventional monitoring and UAV-

assisted monitoring. 

General parameters  

   𝑓 travel costs per km 0.3 €𝑘𝑚 

   

Conventional monitoring parameters  

   𝑡ℎ𝑎𝐶𝑀 time necessary to monitor a hectare of grassland by conventional 
monitoring  0.2 hha 𝑠𝑚𝑜𝑛𝐶𝑀  time to monitor a 𝑚2 (our cost calculations use the per ha 
monitoring time 𝑡ℎ𝑎𝐺𝑇, which assumes that sampling quadrats on a 
fraction each ha (𝜌𝑠𝑝 = 0.002) is monitored with this precision) 

0.01 ℎ𝑚2 

𝜌𝑠𝑝 proportion of area covered by sampling subplots 0.002 𝑤𝐶𝑀(𝑡) hourly wage for conventional monitoring personnel in year 𝑡 43.30 €/h 𝑡𝑝𝑟𝑒𝑝𝐶𝑀  preparation time per ground point 0.1 ℎ 𝑡𝑎𝑛𝑎𝐶𝑀  Post-processing and analysis time per ground point 0.25 ℎ 𝑡𝑝𝑙𝑎𝑛𝐶𝑀  time for annual campaign planning 0.5 ℎ 

   

UAV-assisted monitoring parameters  

   𝑤𝑈𝐴𝑉(𝑡) 
hourly wage of a trained technician able to operate the UAV in year 𝑡 

40.24€ 

𝑡𝑝𝑟𝑒𝑝𝑈𝐴𝑉  preparation time per UAV ground point 0.5 hground point  𝑡𝐴𝑈𝐴𝑉 
time necessary for a technician to prepare data for post-processing 
and analysis measured per hectare 0.1 ℎℎ𝑎 𝑡𝑐𝑜𝑚𝑝𝑈𝐴𝑉  
time it takes for computer assisted data post-processing and image 
analysis measured per hectare 

1.1 ℎℎ𝑎 𝑤𝑐𝑜𝑚𝑝 computation costs per hour 1.93 € 𝑏 battery costs per UAV operating hour 1.92 €ℎ 𝑈(𝑡) purchasing costs for UAV equipment (every 5 years) 6,328 € 𝐴(𝑡) purchasing costs for auxiliary equipment (every 5 years) 2,000 € 𝑀𝑎𝑖𝑛𝑡(𝑡) maintaining costs for UAVs (annually) 129 € 𝐵𝑎𝑡(𝑡) replacement batteries (twice every year) 189 € 𝑝𝑒𝑟 𝑏𝑎𝑡𝑡𝑒𝑟𝑦 𝑡𝑝𝑙𝑎𝑛𝑈𝐴𝑉  annual time for campaign planning 1ℎ 

 

4.2 UAV-assisted monitoring 

Necessary time and resources for UAV-assisted monitoring are estimated based on our own 

experience of similar monitoring campaigns. We assume the following underlying annual cost 

relations which – similar to our assumption for the costs of conventional monitoring in Eq. (1) – 

consist of four different cost components: 
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𝐶𝑈𝐴𝑉(𝑡) = (𝐶𝐿𝑈𝐴𝑉(𝑡) + 𝐶𝐴𝑈𝐴𝑉(𝑡) + 𝐶𝑇𝑈𝐴𝑉(𝑡) +  𝐶𝐵𝑈𝐴𝑉) ∗ 𝑓𝑟𝑒𝑞 + 𝐶𝐼𝑛𝑣𝑒𝑠𝑡𝑈𝐴𝑉 (𝑡) + 𝐶𝑝𝑙𝑎𝑛𝑈𝐴𝑉 (𝑡) (6) 

with 𝐶𝐿𝑈𝐴𝑉(𝑡) the labour costs of UAV monitoring, 𝐶𝐴𝑈𝐴𝑉(𝑡) the post-processing and analysis 

costs, 𝐶𝑇𝑈𝐴𝑉(𝑡) the travel costs, and 𝐶𝐵𝑈𝐴𝑉 battery charging costs. Each cost component however is 

defined differently compared to the corresponding components in conventional monitoring. 

Monitoring operations are repeated multiple times annually (𝑓𝑟𝑒𝑞). Expenses for UAVs and auxiliary 

equipment (𝐶𝐼𝑛𝑣𝑒𝑠𝑡𝑈𝐴𝑉 (𝑡)) only arise every five years (representing the life time of that type of 

equipment), hence this category is dependent on time 𝑡, rendering the total 𝐶𝑈𝐴𝑉(𝑡) also time 

dependent. 

Labour costs of UAV-assisted monitoring (𝐶𝐿𝑈𝐴𝑉(𝑡)) are defined as follows: 

𝐶𝐿𝑈𝐴𝑉(𝑡𝑇 = 𝑤𝑈𝐴𝑉(𝑡) ∗ (𝑡𝑝𝑟𝑒𝑝𝑈𝐴𝑉 ∗ 𝑛𝐺𝑃𝑈𝐴𝑉 + 𝑡𝑚𝑜𝑛𝑈𝐴𝑉 )      (7) 

with 𝑤𝑈𝐴𝑉(𝑡) being the hourly wage of a trained technician able to operate the UAV in the field in 

year 𝑡, 𝑡𝑝𝑟𝑒𝑝𝑈𝐴𝑉  the preparation time per UAV ground point, 𝑛𝐺𝑃𝑈𝐴𝑉 the number of UAV ground points, 

and 𝑡𝑚𝑜𝑛𝑈𝐴𝑉  the monitoring time. We assume 𝑤𝑈𝐴𝑉(0) to be 
65918 €210 ∗ 7.8 ℎ = 40.24 € (Niedersächsisches 

Ministerialblatt, 2019; TV-L, 2019), and 𝑡𝑝𝑟𝑒𝑝𝑈𝐴𝑉 = 0.5 hours per ground point (based on own 

experience), while 𝑛𝐺𝑃𝑈𝐴𝑉 and 𝑡𝑚𝑜𝑛𝑈𝐴𝑉  are scenario-specific (Table 1). 

Post-processing and analysis costs are assumed to be as follows: 

𝐶𝐴𝑈𝐴𝑉(𝑡) = (𝑤𝑈𝐴𝑉(𝑡) ∗ 𝑡𝐴𝑈𝐴𝑉 + 𝑤𝑐𝑜𝑚𝑝 ∗ 𝑡𝑐𝑜𝑚𝑝𝑈𝐴𝑉 ∗ 𝑚𝐴) ∗ 𝑎     (8) 

with 𝑡𝐴𝑈𝐴𝑉 the time necessary for a technician to prepare data for post-processing and analysis 

measured per hectare, 𝑡𝑐𝑜𝑚𝑝𝑈𝐴𝑉  the time it takes for computer assisted data post-processing and image 

analysis measured per hectare, 𝑤𝑐𝑜𝑚𝑝 the hourly costs of computation, 𝑚𝐴 the analysis cost multiplier 

we apply in the scenario analysis, and 𝑎 the area size in hectares. We assume 𝑡𝐴𝑈𝐴𝑉 = 0.1 ℎℎ𝑎, 𝑡𝑐𝑜𝑚𝑝𝑈𝐴𝑉 =
1.1 ℎℎ𝑎 with 0.1 ℎℎ𝑎 for post-processing and data preparation and 1 ℎℎ𝑎 for analysis (based on own data 

processing experience). Computation costs per hour 𝑤𝑐𝑜𝑚𝑝 are assumed to be 1.93 € (hourly rate for 
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an AWS on-demand, g3.4xlarge MS Windows server, located in Germany; AWS, 2019). The analysis 

costs multiplier 𝑚𝐴 and area size 𝑎 are scenario-specific. 

Travel costs are defined as 

𝐶𝑇𝑈𝐴𝑉(𝑡) =  𝑓 ∗ (𝑒𝑜𝑓𝑓−𝑠𝑖𝑡𝑒 + 𝑒𝑜𝑛−𝑠𝑖𝑡𝑒𝑈𝐴𝑉 ) + 𝑤𝑈𝐴𝑉(𝑡) ∗ (𝑡𝑜𝑓𝑓−𝑠𝑖𝑡𝑒 + 𝑡𝑜𝑛−𝑠𝑖𝑡𝑒𝑈𝐴𝑉 )   (9) 

with – similar to the corresponding conventional monitoring cost component – 𝑒𝑜𝑛−𝑠𝑖𝑡𝑒𝑈𝐴𝑉  being the 

distance travelled between ground points on-site, and 𝑡𝑜𝑛−𝑠𝑖𝑡𝑒𝑈𝐴𝑉  time for traveling 𝑒𝑜𝑛−𝑠𝑖𝑡𝑒𝑈𝐴𝑉 . Both values 

are scenario-specific. 

We assume battery-charging costs to be as follows: 

𝐶𝐵𝑈𝐴𝑉 = 𝑏 ∗ 𝑡𝑚𝑜𝑛𝑈𝐴𝑉           (10) 

with 𝑏 the costs of charging the UAV batteries per operating hour. Each battery with the capacity 

of 0.1 𝑘𝑊ℎ has to be charged at 0.15 €𝑘𝑊ℎ (corresponds roughly to electricity costs for firms; Destatis, 

2021a), and needs two charging cycles per hour of flight (DJI.com, 2021). Hence, battery costs per 

hour of UAV operation equal 𝑏 = 0.1𝑘𝑊ℎ ∗ 0.15 €𝑘𝑊ℎ ∗ 2 = 0.03 €ℎ. 

To calculate the costs of UAV and auxiliary equipment purchases, we assume that the average 

lifetime of a UAV (DJI Phantom 4 RTK) and its auxiliary equipment is 1,000 operating hours, and 

that every year, a UAV is used for an average of 200 operating hours for monitoring operations in 

various monitoring projects. Hence, the lifetime of a UAV is expected to be five years, after which a 

new UAV and auxiliary equipment has to be purchased. Additionally, regular replacement batteries 

have to be purchased. Expecting 100 operating hours per battery, one replacement battery has to be 

purchased every year. Hence, we calculate investment costs for equipment as 

𝐶𝐼𝑛𝑣𝑒𝑠𝑡𝑈𝐴𝑉 (𝑡) = (𝑈(𝑡) + 𝐴(𝑡) + 𝑀𝑎𝑖𝑛𝑡(𝑡) +  𝐵𝑎𝑡(𝑡)) ∗ 𝑚𝑈𝐴𝑉     (11) 

with 𝑈(𝑡) being the UAV purchasing costs of 6,328 € for a DJI Phantom 4 RTK (DJI.com, 2021), 

and 𝐴(𝑡) the auxiliary equipment costs of 2,000€. Every 200 operating hours, the UAV needs 
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professional maintenance, 𝑀𝑎𝑖𝑛𝑡(𝑡), with annual maintenance costs of 129 € (Der-schweighofer.de, 

2021). The costs for replacement batteries 𝐵𝑎𝑡(𝑡) are 189 € for each replacement battery, necessary 

twice a year. The UAV cost multiplier 𝑚𝑈𝐴𝑉 is a scenario specific parameter to be assumed 1 in the 

base case. 

Similar to conventional monitoring, the aforementioned cost components (Eqs. (6) to (11)) arise 

for every monitoring campaign (𝐶𝐿𝑈𝐴𝑉(𝑡), 𝐶𝐴𝑈𝐴𝑉(𝑡), 𝐶𝑇𝑈𝐴𝑉(𝑡), and 𝐶𝐵𝑈𝐴𝑉) which are repeated multiple 

times a year (𝑓𝑟𝑒𝑞), or arise periodically once every five years (𝐶𝐼𝑛𝑣𝑒𝑠𝑡𝑈𝐴𝑉 ), depending on the selected 

scenario. Additional to these repeated costs components, one-off costs for campaign planning of one 

hour for a technician is assumed per year (𝐶𝑝𝑙𝑎𝑛𝑈𝐴𝑉 (𝑡) = 𝑡𝑝𝑙𝑎𝑛𝑈𝐴𝑉 ∗ 𝑤𝑈𝐴𝑉(𝑡); with 𝑡𝑝𝑙𝑎𝑛𝑈𝐴𝑉 = 1ℎ based on own 

campaign planning experience).  

4.3 Cost comparison 

For the cost comparison, we have to consider that we have identical annual costs for conventional 

monitoring but high initial investment costs for UAV-assisted monitoring and lower costs in the 

following years. For UAV-assisted monitoring, equipment (i.e. UAVs and auxiliary equipment) is 

replaced once every 5 years, while all other expenses can be easily calculated on an annual basis (Eq. 

10). In order to compare these different cost streams, we discount all individual annual expenses (i.e. 

components in Eqs. (1) and (6)) to calculate their net present values (cp. Schöttker and Wätzold, 

2018), and sum up all net present values over a 5-year period for each approach.  

This aggregation allows us to generate a common basis for a cost comparison – regardless of 

actual time of occurrence – and include the full life cycle of all different cost components which 

average out potential spikes of expenses in individual years (e.g. due to necessary and expensive 

equipment purchase) over time. Hence, the summed-up costs for UAV-assisted monitoring are 

calculated as 

𝐶5−𝑦𝑒𝑎𝑟𝑈𝐴𝑉 = ∑ 𝐶𝑈𝐴𝑉𝑡𝑠𝑡𝑎𝑟𝑡+5𝑡=𝑡𝑠𝑡𝑎𝑟𝑡 (𝑡) ∗ (1 + 𝑟)−𝑡       (12) 



   
 

22 
 

with 𝑡 being the respective year, 𝑡𝑠𝑡𝑎𝑟𝑡 the first year of the 5-year period, and 𝐶𝑈𝐴𝑉(𝑡) the total 

annual expenses of UAV-assisted monitoring in year 𝑡 (Eq. 6), and 𝑟 the real discount rate. Similarly, 

the cumulated expenses for conventional monitoring for the 5-year period are calculated as 

𝐶5−𝑦𝑒𝑎𝑟𝐶𝑀 = ∑ 𝐶𝐶𝑀(𝑡)𝑡𝑠𝑡𝑎𝑟𝑡+5𝑡=𝑡𝑠𝑡𝑎𝑟𝑡 ∗ (1 + 𝑟)−𝑡       (13) 

with 𝐶𝐶𝑀(𝑡) the total annual expenses of conventional monitoring (Eq. 1). 

5 Results 

5.1 Base Case 

Under base case parametrisation and hence under current technological conditions we found that 

UAV-assisted monitoring causes discounted costs of 4,477.99 € over a period of 5 years, and thus is 

501.28 € more expensive across this period than conventional monitoring, which causes costs of 

3,976.72 € (see Tab. 3). The two monitoring approaches differ substantially in the distribution of costs 

between the underlying cost components. With conventional monitoring 69.3% of the costs arise for 

the monitoring activities themselves and are caused mainly by labour costs during that time. In 

contrast, with UAV-assisted monitoring, the monitoring activities themselves are less expensive and 

only cause 39.0% of the total costs over the five-year period. However, for UAV-assisted monitoring 

additional costs arise for computationally intensive and thus costly data post-processing and analysis 

(39.4%), while data post-processing and analysis is less labour and computationally intensive for 

conventional monitoring and thus only causes 15.7% of costs. Surprisingly, within UAV-assisted 

monitoring the costs for UAV’s and necessary equipment, which only needs to be purchased once in 

the first year of the five-year period (i.e. the ‘investment’ category) were found to be rather small in 

size (8.9% of UAV-monitoring costs). Other cost categories (travel costs, campaign planning, and 

equipment) were found to be comparable in size and overall less important in terms of costs 

contributions. 
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Table 3: Overview of aggregated and discounted real costs and their relative proportions in 

conventional and UAV-assisted monitoring. Difference refers to costs of UAV-assisted monitoring 

minus costs for conventional monitoring. 

Cost 

category 

Conventional 

monitoring 

UAV-assisted 

monitoring 

Difference 

 

real % real %  

Travel 492.12 € 12.4% 375.78 € 8.4% -116.34 € 

Monitoring 2,754.29 € 69.3% 1,745.21 € 39.0% -1,009.08 € 

Analysis 625.98 € 15.7% 1,764.34 € 39.4% 1,138.36 € 

Planning 104.33 € 2.6% 193.91 € 4.3% 89.58 € 

Equipment -   € 0.0% 1.06 € 0.0% 1.06 € 

Investment -   € 0.0% 397.69 € 8.9% 397.69 € 

Total 3,976.72 € 100.0% 4,477.99 € 100.0% 501.28 € 

 

5.2 Scenario Analysis 

To analyse the influence of changes in certain parameters on the costs of the two monitoring 

approaches and the different cost components, we calculated eight different scenarios. We find that 

variations in the corresponding parameters show only minor changes in the results, compared to the 

base case parametrisation and do not change the ranking order of the two monitoring approaches in 

terms of costs, leaving conventional monitoring the least cost alternative overall. For an overview of 

the individual scenario results, we refer the reader to Section A in the Appendix.  

This is, however, different for the two combined scenarios where the ranking order of the two 

monitoring approaches in terms of costs is changed. For the strong technological progress scenario, 

we find that a combined reduction of technology related costs to 33% caused costs for UAV-assisted 

monitoring to decrease below the costs of conventional monitoring (Fig. 3). In this scenario, UAV-

assisted monitoring did cause costs of 3,808.96 € compared to 3,976.72 € for conventional monitoring 

which equals a cost advantage for UAV-assisted monitoring for 167.75€. For an overview about the 

monetary values, see Tab. B1 in Appendix B. 
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Figure 3: Overview of the different cost components in base case parametrisation for 

conventional monitoring (a), UAV-assisted monitoring (b) and the strong technological progress 

scenario (c). 

 

We also find that in the high monitoring demand scenario the ranking of the monitoring approaches 

changes compared to the base case parametrisation, rendering UAV-assisted monitoring with 

12,163.99 € less costly by 603.53 € compared to conventional monitoring with 12,767.53 € (Fig. 4). 

Under base case conditions, conventional monitoring was found to be 501.28 € less costly than UAV-

assisted monitoring. For an overview about the monetary values, see Tab. B2 Appendix B. 
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Figure 4: Overview of the different cost components in (a) the base case parametrisation for (b) 

the high monitoring demand scenario, each for both monitoring approaches. 

 

6 Discussion and Conclusion 

The objective of this work was to investigate from the cost perspective if UAV-assisted 

monitoring is about to become a potential alternative to conventional monitoring in the context of 

result-based payment schemes. We compared the cost structure and possible cost development (taking 

into account future technological development for UAV and analysis equipment as well as increases in 

monitoring demand) of the two monitoring approaches in the context of a hypothetical result-based 

payment scheme that used flowering resources as an indicator for on-site biodiversity. 

We found that under current technological and economic conditions, conventional monitoring is 

the least-cost approach for monitoring activities. Eight scenarios, in which we separately varied 

individual factors (UAV equipment costs, analysis-equipment costs, area, frequency, travel distance, 

monitoring precision, labour costs, and discount rate) that influenced the considered cost components, 

showed no impact on the ranking order of the two monitoring approaches with respect to costs. 

However, our results indicate that in a setting of strong technological progress in terms of UAV costs 

and analysis costs at the same time, and a generally high monitoring demand the ranking order of the 
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two monitoring approaches changes, rendering UAV-assisted monitoring the least-costly monitoring 

approach. 

Generally, we identified labour costs as the overall main driver for monitoring costs in either 

approach. Costs for data collection and analysis for UAV-assisted monitoring slightly exceed 

respective costs for conventional monitoring, while the opposite is true for travel costs. Surprisingly, 

UAV monitoring equipment costs alone did not prove to be a main cost driver. However, as UAV-

assisted monitoring necessitates complex data post-processing, overall costs for equipment, post-

processing and analysis turned out to be higher for UAV-assisted monitoring than for conventional 

monitoring, and consequentially rendered it less cost-effective under current conditions.  

Adopting a general perspective, our results indicate that from a cost perspective UAV-assisted 

monitoring is not yet an alternative to conventional monitoring for result-based payment schemes. 

However we can show that likely cost reductions for UAVs, auxiliary equipment and analysis 

technology are able to change that and render UAV-assisted monitoring the least costly approach in 

the future. In our analysis, we neglected several factors that increase the likelihood of such a scenario. 

For example, we ignored that due to technological progress –additionally to decreasing operating and 

equipment costs – the operating range of UAVs, monitoring speed and precision might increase 

(Maddikunta et al., 2021). In the same sense, we neglected the potential use of multiple or autonomous 

UAVs at the same time (Ju and Son, 2018) – a potential technique to monitor larger areas or larger 

clusters of smaller sites. Such an approach would also reduce labour costs on a per hectare basis, while 

keeping the equipment costs (per hectare) unchanged and thus reduce costs for UAV-assisted 

monitoring.  

Moreover, future autonomous UAVs might be able to not only collect data for regulatory 

monitoring purposes as sketched in our analysis, but might beyond that collect business related data 

for famers and landowners such as grazing area conditions (Borra‐Serrano et al., 2019) or crop growth 

(Bendig et al., 2013). The corresponding likely increase in UAV technology dissemination among 

landowners (for business purposes) would then enable administrations to utilise existing technology of 

the landowner, as monitoring activities might already be covered by the usual business use of UAVs 
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on the landowners site and no additional monitoring campaigns for result-based payments need to be 

issued. 

Considering the application range of UAV-assisted monitoring, future technological development 

for monitoring and analysis (higher image resolution, multi-spectral imaging, deep learning) might as 

well enable the remote detection of indicators other than flowering resources (Banerjee et al., 2020; 

Basavegowda et al., 2022). The progression in and utilisation of advanced pattern recognition 

algorithms and deep learning for the analysis of image data might enable monitoring that goes far 

beyond the detection of flowery resources as analysed in this study (Christin et al., 2019). One can 

conceive the identification of more complex patterns in the monitored flora and the consequential 

identification of corresponding habitats or ecological conditions, or the recognition of e.g. bird’s nests 

through specific patterns within collected image data. Extending data collection towards the collection 

of thermal imagery could e.g. allow for monitoring of certain animal species, including detection, 

localisation and behavioural analysis within monitored habitats (Gonzales et al., 2016). Utilising other 

sensory information such as audio data could extend the range of detectable animal species further e.g. 

by allowing to differentiate between and to localise endangered bird species (Wilson et al., 2017). In 

such situations, the application of UAV-assisted monitoring would remain a relatively low-cost 

approach, while monitoring different indicators via conventional monitoring likely remains more time 

and labour intensive and thus more costly. This increased pool of data sources might allow a broader 

application of such novel monitoring approaches and enable the transfer from the specific conservation 

project perspective supposed in this work to a landscape scale perspective. 

Our research has focused on one opportunity to use technological progress – here in the field of 

UAVs and data processing – to improve a policy instrument to conserve biodiversity. We see many 

areas where technological progress in different fields has potentially a large impact to enhance 

biodiversity conservation in different ways. Examples include further opportunities of UAV-based 

remote sensing to identify conservation opportunities and monitor biodiversity change (Librán-Embid 

et al., 2022; Petrou et al., 2015), the potentially positive impact of precision farming on biodiversity 

due to less pesticide use (Finger et al., 2019), and the use of software-based decision support for the 
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design of biodiversity conservation instruments (Sturm et al., 2018). In order to halt the decline of 

biodiversity in an effective and cost-effective way, we think that much more research is needed to 

explore these opportunities.  
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Appendix 

A. Original scenarios 

 UAV and equipment costs 

In this scenario, we assumed lower costs for the purchase and maintenance of UAV and auxiliary 

equipment that is the UAV and auxiliary components, batteries, and professional annual maintenance 

service, reflected in the ‘investment’ cost component. In the high UAV cost reduction scenario we 

assumed that only 33% of the base case costs arise in this category, while in the moderate UAV-cost 

reduction scenario we assume 66% of base costs (see Tab. 1 in the main text).  

We found, that in the high UAV cost reduction scenario the costs for UAV-assisted monitoring 

were reduced by 266.45 € compared to the base case but still surpassed the costs for conventional 

monitoring by 234.83 € (Fig. A1). In the moderate UAV cost reduction scenario the reductions in 

costs were even lower at 135.21 € compared to the base case. Hence, under current technological 

conditions and even with high reductions in costs for UAV-assisted monitoring equipment, 

conventional monitoring is still the superior monitoring approach. 

 

Figure A1: Overview of the different cost components in base case parametrisation for 

conventional monitoring (left), and UAV-assisted monitoring (second from left), and the two cost 

scenarios with high and moderate UAV and equipment cost reduction (third and fourth from left).  
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 Analysis costs 

Next, we assumed reduced costs for computer-assisted data post-processing and analysis – an 

analysis type necessary for UAV-assisted monitoring, reflected in the ‘Analysis’ cost component. In 

the high analysis costs reduction scenario we assumed – similar to the two UAV cost scenarios in 

section A.1 – a reduction of analysis costs to 33% of the base case costs, and in the moderate analysis 

costs reduction scenario we assumed a reduction to 66% of the base case costs. 

We found that – again similar to the findings in A.1 – that a substantial reduction in costs for 

analysis in either scenario still does not render UAV-assisted monitoring the superior alternative in 

terms of cost, compared to conventional monitoring (Fig. A2). While cost reductions of 402.58 € (high 

analysis costs reduction scenario) and 204.29€ (moderate analysis costs reduction scenario) can be 

observed, conventional monitoring remains (marginally) less costly by 98.70 €. 

 

Figure A2: Overview of the different cost components in base case parametrisation for 

conventional monitoring (left), and UAV-assisted monitoring (second from left), and the two high and 

moderate analysis costs reduction scenarios with reduced costs for computer-assisted post-processing 

and analysis (third and fourth from left). 
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 Area 

Next to different scenarios for cost components, we analysed a low and high value scenario for the 

monitored area. In the small area scenario, we assumed a 10 ha area to be monitored in the 

hypothetical scheme, either conventionally or UAV-assisted, while the large area scenario assumed 

40 ha. As the monitoring area determined several other parameters of the cost model – such as number 

UAV ground points, on-site travel times and distances, and monitoring duration (compare Tab. 1 in 

the main text) – changes in this parameter cause changes in various cost components for both 

monitoring approaches.  

We found that in the small area scenario the cost advantage of conventional over UAV-assisted 

monitoring marginally increases (510.70 €), compared to the base case (501.28 €). In contrast, in the 

large area scenario, UAV-assisted monitoring becomes the least-cost monitoring alternative, with a 

cost advantage of 326.29 € over conventional monitoring. We find it a reasonable result that with 

increases in monitored area, UAV-assisted monitoring faces an increasing cost-advantage over 

conventional monitoring. The main underlying reason is that increases in monitored area cause the 

largest cost component for conventional (i.e. ‘Monitoring’) to increase substantially due to large 

increases in labour costs. In contrast, with UAV-assisted monitoring, costs increase almost equally in 

the ‘Monitoring’ and ‘Analysis’ cost component, though not as strong. 

 

Figure A3: Overview of the different cost components for small and large area scenarios for 

UAV-assisted and conventional monitoring. 
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 Monitoring frequency 

Next, we analysed scenarios with differing monitoring frequencies and their effect on costs of both 

monitoring approaches. In the low frequency scenario we assumed only one monitoring campaign per 

year, while in the high frequency scenario we assumed five campaigns (compared to three campaigns 

in the base case). 

We found, that with more frequent monitoring campaigns (and hence more cumulative area 

monitored) over the course of a year, conventional monitoring increases its cost advantage over UAV-

assisted monitoring to 775.74 €, compared to 501.28 € in the base case and 226.81 € in the low 

frequency scenario. 

 

Figure A4: Overview of the different cost components for low and high monitoring frequency 

scenarios for UAV-assisted and conventional monitoring. 
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 Travel distance 

In the travel distance scenario, variations of the underlying parameters resulted almost identical 

changes in both monitoring approaches. Although total travel distance is lower in the UAV-assisted 

monitoring approach as monitoring operations are undertaken from one central position and thus no 

“on-site” travelling is necessary, the generally small size of travel related costs renders the changes in 

outcome unsubstantial. 

 

Figure A5: Overview of the different cost components for the low and high travel distance 

scenarios for UAV-assisted and conventional monitoring. 
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 Monitoring precision 

Changes in monitoring precision only affect the conventional monitoring approach. We assumed 

that the actual monitoring activities can be performed either with a small level of precision in which 

the reviewer takes 0.1 hours per hectare of monitoring activity, or with high precision, in which 0.4 

hour per hectare of monitoring activity are assumed for conventional monitoring. While in the low 

precision scenario the cost advantage of conventional monitoring increases to 2002.63 € for UAV-

assisted monitoring, compared to the base case parametrisation with a cost advantage of 501.28 €. In 

the high monitoring precision scenario, UAV-assisted monitoring becomes advantageous compared to 

conventional monitoring by 1753.23 €. 

 

Figure A6: Overview of the different cost components for low and high monitoring precision 

scenarios for UAV-assisted and conventional monitoring. 
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 Labour costs 

Variations in labour cost, i.e. hourly wages, have almost identical and beyond that, small effects 

on the costs of both monitoring approaches. Hence, the ranking order of the monitoring approaches 

does not change with changing labour costs. 

 

Figure A7: Overview of the different cost components for low and high labour costs scenarios for 

UAV-assisted and conventional monitoring. 
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 Discount rate 

Similar to the aforementioned scenario, also changes in the discount do not change the ranking 

order of two monitoring approaches. Although the structure of cash flows in both approaches differs. 

UAV-assisted monitoring is front-end loaded with almost all equipment costs arising in the first year 

of the considered 5-year reference period, while with conventional monitoring costs are spread evenly 

over the 5-year period. However, the size of equipment costs in the UAV-assisted monitoring 

approach is not large enough to cause major differences in the discounted sum of costs over the 5-year 

period due changes in discount rates. 

 

Figure A8: Overview of the different cost components for low and high monitoring precision 

scenarios for UAV-assisted and conventional monitoring. 
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B. Data for combined scenarios 

Table B1: Overview of costs in conventional monitoring and UAV-assisted monitoring for base 

case parametrisation and in the strong technological progress scenario for UAV-assisted monitoring. 

Costs 

Conventional 

monitoring 

base case 

UAV  

base case 

 

UAV 

Strong technological 

progress 

Travel 492.12 €  375.78 €  375.78 €  
Monitoring 2,754.29 €  1,745.21 €  1,745.21 €  
Analysis 625.98 €  1,764.34 €  1,361.76 €  
Planning 104.33 €  193.91 €  193.91 €  
Equipment -   €  1.06 €  1.06 €  
Investment -   €  397.69 €  131.24 €  

Total 3,976.72 €  4,477.99 €  3,808.96 €  

  501.28 €  -167.75 €  
Difference to conventional 

monitoring base case 

492.12 €  375.78 €  375.78 €  

 

 

Table B2: Overview of costs in conventional monitoring and UAV-assisted monitoring for base 

case parametrisation and in the high monitoring demand scenario. 

Costs 

Conventional 

monitoring 

base case 

UAV 

base case 

 

Conventional 

monitoring 

high monitoring 

demand 

UAV 

high monitoring 

demand 

Travel 492.12 €  375.78 €  1,395.63 €  795.50 €  
Monitoring 2,754.29 €  1,745.21 €  9,180.98 €  4,363.04 €  
Analysis 625.98 €  1,764.34 €  2,086.59 €  5,881.14 €  
Planning 104.33 €  193.91 €  104.33 €  193.91 €  
Equipment -   €  1.06 €  -   €  2.48 €  
Investment -   €  397.69 €  -   €  927.93 €  

Total 3,976.72 €  4,477.99 €  12,767.53 €  12,163.99 €  

Difference 501.28 € -603.53 € 
 


