
Munich Personal RePEc Archive

Understanding the impact of travel on

wellbeing: evidence for Great Britain

during the pandemic.

MAMATZAKIS, emmanuel and MAMATZAKIS, E

Birkbeck College, University of London

6 May 2022

Online at https://mpra.ub.uni-muenchen.de/112974/

MPRA Paper No. 112974, posted 15 May 2022 07:25 UTC



Understanding the impact of travel on wellbeing: evidence for Great 

Britain during the pandemic. 

Emmanuel C. Mamatzakisa  

May 2022 

Abstract 

The paper investigates whether the wellbeing in Great Britain, measured by life satisfaction 

and happiness, is affected by the dramatic decline in travelling during the pandemic. I 

employ a Bayesian vector autoregression (VAR) that includes wellbeing, travel, and Covid-

19 as endogenous variables while it controls for exogenous variables. I include in the VAR 

various modes of travel, like flying, car, rail, and cycling and various Covid-19 related 

variables like confirmed infections, confirmed deaths and hospitalisations. The empirical 

findings of impulse response functions provide detailed responses of wellbeing and traveling 

in Great Britain to shocks in Covid-19 while testing for the direction of causality. Travel is 

negatively affected by shocks in Covid-19 and in turn, shocks in travel would reduce 

wellbeing. Interestingly, results show little to no evidence of responses of Covid-19 to 

shocks in various modes of travel. So, while the decline in travel reduces wellbeing, it does 

little to combat Covid-19. The forecast error variance decomposition analysis confirms the 

importance of travel for wellbeing and shows that while the pandemic has caused an 

unprecedented decline in traveling, this is not going to persist beyond the medium term. 

However, the decline in traveling in Great Britain would have a negative effect on life 

satisfaction and a positive effect on anxiety and such effects could persist. Lastly, the paper 

provides forecasting of the main endogenous variables.  
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1. Introduction  

The paper investigates whether the wellbeing in Great Britain, measured by life satisfaction 

and happiness, is affected by the dramatic decline in travelling during the pandemic. The 

focus is on how Covid-19 would affect travel in Great Britain and thereby wellbeing.    

Kock, et al.  (2020) and Zenker and Kock (2020) propose that it is worth studying whether 

Covid-19 could have an impact on consumer behaviour, identifying factors such as safety 

and risk as key to understanding changes in behaviour. The authors further highlighted the 

significance of future research revealing the psychological traits of travellers during the 

pandemic. So, it is worth examining whether decline in travelling during the pandemic would 

have an impact on wellbeing as measured, for example, by happiness.  

 

The link between happiness and travel is not new in the literature (see Kwon and Hoon 2020; 

Gilbert and Abdullah, 2004; Filep and Deery, 2010). Filep and Deery, (2010) provided 

evidence that the experience of travelling increases life satisfaction which is confirmed by 

Kwon and Hoon (2020) (see also Gilbert and Abdullah, 2004). However, the pandemic has 

had a major impact on travel, and it could be case that has shifted consumer behavior and 

the steady state of the industry a decline of travel due to the shock in Covid-19 could enhance 

life satisfaction. In addition, there have been exogenous governments interventions that 

impose draconian lockdowns and severe restrictions to travel. To this end, th 

   

To investigate the above, we follow Kock, et al. (2020) and focus on wellbeing implications 

of decline in travel during the pandemic. The main hypothesis is related to the literature that 
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shows a positive correlation between travel and wellbeing (Kwon and Hoon 2020; Gilbert 

and Abdullah, 2004; Filep and Deery, 2010), that is the observed sharp decline in Great 

Britain travelling during the pandemic would have a detrimental impact on wellbeing. To 

test this hypothesis, I employ a novel methodology where a Bayesian simultaneous vector 

autoregression system of equations, without imposing exogeneity assumptions, nests all 

available socio-economic information whether refers to survey data such as happiness and 

life satisfaction, or hard data such as infections, mortality, and flights. Government 

interventions to control the pandemic are treated as exogenous. 1  The model allows 

disentangling the impact of the pandemic and government interventions on travelling in 

Great Britain and in turn its impact on wellbeing.   

 

The harmful impact of Covid-19 on all aspects of both society and economy has been 

unprecedented in modern history and surpasses any previous health emergencies whether 

they refer to an epidemic or pandemic (see for a review Sun, et al., 2020). Previous research 

(Sun, et al., 2020) argues that the aviation industry has contributed to the spread of the 

pandemic in the early stages of the pandemic as it spread rapidly to more than 200 countries. 

It is no surprise that most countries around the world, some more strictly than others, 

imposed travel restrictions. These restrictions have resulted in an unparalleled decline in 

world total passengers. In 2020 the number of passengers worldwide was 60 percent below 

pre-pandemic in 2019 according to ICAO (2022). There is a slow recovery in 2021, though 

 
1
 Unnecessary travel was first discouraged on 16 March 2020 within the UK, before a nationwide lockdown 

was announced on 23 March. The Foreign and Commonwealth Office advised against all non-essential 

overseas travel on 17 March. Since then, the UK economy experience a wave of relaxing restrictions and 

imposing further lockdowns. In summer 2020, some restrictions were gradually relaxed with the opening of 

non-essential retail, followed by the implementation of quarantine-free travel corridors. Travel was again 

impacted by the second and third lockdowns in November 2020 and January 2021 and travel corridors were 

suspended in January 2021.  
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the number of passengers worldwide was 2.3 billion, or 49 percent below pre-pandemic. In 

terms of travel data for the UK, the seven-day average of flights in the first week of March 

2022 was 69% of the level in the equivalent week of 2020. Overseas residents made 1.3 

million visits by air to the UK in the third quarter of 2021, which was 86% less than quarter 

3 of 2019. UK residents made 774,000 visits abroad by air in the first quarter of 2021, which 

was 94% fewer than the corresponding period in the previous year, while holidays were the 

least likely reason for UK residents’ visits abroad. Similar negative trends in other modes of 

travel, like car and rail, have been observed during the pandemic as strict draconian 

restrictions were imposed.2 

Following the above, it is worth studying the implications of decline in various modes of 

travel on the wellbeing in UK. The modelling is challenging due to endogeneity concerns 

and the interconnections across variables. The paper opts for a unique Bayesian Vector 

Autoregressive (Bayesian VAR) model that treats for endogeneity while accommodating all 

variables. This model provides responses in wellbeing and travelling to shocks due to Covid-

19 such as infections, hospitalisations, deaths as well as social and economic restrictions. To 

estimate the model’s parameters, we employ Bayesian estimations. It is well known that 

Bayesian estimation of VAR is superior to other VAR estimations due to the 

overparameterisation. This paper contributes in many ways: first, I collect recent data of 

 
2 It is worth noting that the importance of tourism and travel industries for the UK economy is unequivocal 

and the recorded dramatic fall in those industries have had a negative impact upon the whole economy. The 

travel and tourism industries contributed 6.7% of all gross value added in the UK in 2018 and are substantial 
contributors to jobs and growth in the UK, indirectly employing 4 million people and making a direct economic 

contribution of £75 billion a year pre-pandemic. According to Oxford Economics the fall in contribution of 

tourism on gross value added was 64% between 2019 and 2020, from £75 billion to £27.2 billion. This fall in 

tourism’s economic output over 2020 is estimated to have led to a 1.5% fall in UK GDP. To add a perspective, 

the loss caused by COVID-19 in 2020 was eight times more than that of the Global Financial Crisis of 2008/09 

(UNTWO, 2020).  
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weekly frequency that allows the estimation of a VAR model; second, I perform simulations 

to choose the best model; third, given the variety of COVID-19 related data as well as various 

government interventions I estimate impulse response functions for each variable in the 

model, including the wellbeing variables. I also provide simulations for future paths of travel 

in UK and wellbeing based on different scenarios that would also control for new health 

developments such as test and trace applications, drag, and vaccine discovery. The results 

are useful for policymakers as they provide evidence of how government intervention 

household behaviour which is key to overcome the crisis.      

 

In what follows section 2 presents the Bayesian panel VAR model and the identification 

strategy while section 3 and 4 presents the data section and results respectively. The last 

section presents some concluding remarks.  

 

2. The Bayesian VAR identification of Covid-19, travel, and wellbeing. 

The starting point of the Bayesian vector autoregression (VAR) specification is to select the 

endogenous variables. For the purposes of this study, I select three endogenous variables: 

COVID-19 related variables, i.e., infections, hospitalisations, deaths; modes of travel in 

Great Britain that include flights, car journeys, rail journeys, cycling; as well as wellbeing 

variables like life satisfaction and happiness. All the endogenous variables are in a vector 

𝑦! = [𝑦!,#, … , 𝑦!,$]%  (𝑡 = 1,… , 𝑇).  In addition, I include 𝑧! = [𝑧!,#, … , 𝑧!,$]%  exogenous 

variables such as government interventions to control the pandemic, like closing the schools, 
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restrictions in travelling etc.3 The above variables feed into a Bayesian vector autoregression 

(VAR):  

 

𝐲!
($×#)

= µ +
($×#)

B 𝒚!)#
($×$)

+ Γ*,($×+!) 𝑧!
($×#)

+ 𝐮!
($×#)

,	 

 

𝐮! ∼ 𝒩$(𝟎, 𝚺), 𝑡 = 1,… , 𝑇,                   (1) 

 

where µ is a vector of constant terms, matrix B contains unknown coefficients, 𝚺 is an 

unknown covariance matrix, y!  contains information on 𝑚 endogenous variables that is 

modes of travelling, Covid-19, and wellbeing. 𝐳! is a vector that contains all exogenous 

control variables, such as government interventions of containment and closure of the 

economy, for a given 𝑡  whose dimensionality is 𝑠! × 1 . Moreover, Γ*,($×+!)  contains 

unknown parameters relating the endogenous variables to the exogenous one.4  

 

The Bayesian estimation of the VAR in the system of equations (1) is simply based on a 

likelihood function given the probability density function of the data that is conditional on 

 
3 In the next section that is discussing data I provide details of all variables and the exogenous ones that include: 

close of public transport; international travel controls; restrictions on internal movement; close public transport; 

school closing; workplace closing and restrictions on gatherings and economic support index. 
4
 The Bayesian VAR models have been steadily gaining popularity since the seminal paper of Doan et al 

(1984). Its popularity is justified given that treats for the overparameterization of standard VAR models that 

results to big losses of degrees of freedom in maximum likelihood estimation. In terms of the present model 
given that the period under examination is the Covid-19 pandemic period and observations are therefore limited 

the Bayesian VAR model does not suffer from overparameterization because it considers all VAR parameters 

as random with prior distributions. In detail, the Minnesota prior (see Litterman, 1980) assists to reduce the 

necessary lags in the VAR. In addition, the Bayesian VAR models produce superior forecasts compared to 

frequentist VARs (see Banbura, et al. 2008; Dieppe et al. 2016). 
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the VAR’ parameters. To demonstrate the simplicity of Bayesian VAR vis a vis the 

overfitting of classical frequentist VAR, I simplify the system of equations (1) to: 

 

𝐲!
($×#)

=B($×+!) 𝑋!
($×#)

+ 𝐮!
($×#)

,	                          (2) 

 

where 𝑋! = (𝐼,Ä𝑊!)#)  is a n ´ nk, 𝑊!)#-"
	= 		 (𝑦!)#% , . . . . , 𝑦!).% , 𝑧!%)′ is k´ 1 and 𝐵 =

𝑣𝑒𝑐(B#, B#, . . . , B#, 𝐷) is nk´ 1.  

 

The following likelihood function provides the probability density function of the data 

conditional on the unknown parameters estimates.  

 

𝐿(𝑦/𝛽, 𝛴)µï𝛴ï)//1𝑒𝑥𝑝 N− #

1
∑ (𝑦! − 𝑋!𝛽)′𝛴)#! (𝑦! − 𝑋!𝛽)Q     (3) 

 

whereas the joint prior distribution on the unknown parameters is  𝑝(𝛽, 𝛴) and the joint 

posterior distribution conditional on the data using the Bayes theorem is: 

 

𝑝(𝛽, 𝛴/𝑦) = 𝑝(𝛽, 𝛴)𝐿(𝑦/𝛽, 𝛴)
𝑝(𝑦)  

 

    µ	𝑝(𝛽, 𝛴)𝐿(𝑦/𝛽, 𝛴),               (4) 

 

and thus, the joint probability density is: 

 



 8 

𝑝(𝛽, 𝛴, 𝑦) = 𝐿(𝑦/𝛽, 𝛴)𝑝(𝛽, 𝛴) 

=𝑝(𝛽, 𝛴/𝑦)𝑝(𝑦),                 (5) 

 

Given the above, the marginal posterior distributions conditional on the data 𝑝(	𝛴/𝑦) and 

𝑝(𝛽/𝑦) can be estimated by integrating out 𝛽	𝑎𝑛𝑑		𝛴 from 𝑝(𝛽, 𝛴/𝑦). Then, location and 

dispersion of 𝑝(	𝛴/𝑦)  and 𝑝(𝛽/𝑦)  can be further processed to estimate the unknown 

parameter estimates of 𝛽	𝑎𝑛𝑑	𝛴.  

 

In the empirical implementation the integration of 𝑝(𝛽, 𝛴/𝑦)  could be challenging to 

implement. Numerical integrations based on Monte Carlo simulations methods has been 

used to ease the integration process in practice. Herein, I opt for the Metropolis–Hastings 

algorithm that is flexible while the Markov Chain Monte Carlo (MCMC) produces values 

from a transition kernel so its draws then converge to a distribution that is stationary. 

 

In terms of the variables in yt, the focus is on wellbeing and travelling, though Covid-19 is 

also endogenous. Both wellbeing and travelling rely on resilience and recovery in the 

aftermath of an extreme shock like the Covid-19 one. As the VAR treats wellbeing, travel, 

and Covid-19 as endogenous, I relate various modes of travel to address how Covid-19 

shocks are reshaping them and in turn how wellbeing is affected. 

 

One of the advantages of opting for Bayesian VAR is that I could compare across VARs of 

different lags based on based on their posterior probabilities rather than imposing a specific 
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lag structure.5 In the empirical section, I estimate various Bayesian VAR models and opt for 

Bayes 2000 iterations for reducing the Markov chain Monte Carlo (MCMC) sample size 

with random-number seed equals to 21 for reproducibility.6  

 

3. The data set.  

3.1 Covid 19 related data (daily).  

The Covid-19 related data come from three data sources: the Oxford COVID-19 

Government Response Tracker (OxCGRT); the Johns Hopkins University’s Center for Civic 

Impact and the Office of National Statistics in the UK and Great Britain. 

 

In terms of the data, I measure exposure to the pandemic using three main variables: 

confirmed infections, hospitalisations of patients with Covid-19 and confirmed deaths noted 

as mortality thereafter (see Table 1). In the Bayesian VAR models, those three variables are 

modelled as endogenous.  As a control variable of exogenous government interventions, I 

include the stringency index that provides a composite measure based on nine response 

indicators of government interventions to control the pandemic. This stringency index 

 
5  It is worth noting that the Bayesian analysis is based on a posterior model with a defined probability 

distribution of parameters. This probability distribution is posterior, and it is conditional on the observed data 

and on the priors. The posterior distribution consists of a likelihood, that has information about all parameters 

based on the data, and a prior, that includes prior information about parameters. The Base rule simply combines 

the likelihood with priors so as estimate the posterior distribution. This posterior distribution is given by 

posterior ∝ Likelihood × Prior 

In practice is difficult to derive the posterior distribution in a closed form. Hence, I estimate the posterior 
distribution using MCMC sampling.  
6 The MCMC generates values from a transition kernel so that draws from that kernel would converge to a 

stationary distribution. I select the Metropolis–Hastings algorithm because it is flexible and allows any 

distribution to be applied as a proposal distribution. The Metropolis–Hastings algorithm generates many states, 

while each single state comes from the previous state, and it is simply based on a Gaussian distribution centred 

at the corresponding state level. 
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includes information such as school closures, workplace closures, and travel bans. And it is 

scaled from 0 to 100 with 100 being the strictest regime of imposed restrictions as defined 

by Hale et al. (2020). In addition, as part of the empirical identification, the Bayesian VAR 

includes the following exogenous variables: close of public transport; international travel 

controls; restrictions on internal movement; close public transport; school closing; 

workplace closing and restrictions on gatherings (see Table 1). I also consider the economic 

support index that provides information about governmental support in the form of income 

and debt relief. 

 

<< Insert Table 1: Covid-19 related data here>> 

 

All the above data are available on a daily base. However, given that the remaining data of 

this paper are available on a weekly base, the reported data in Table 1 are weekly.  

Therefore, in the subsequent empirical estimations of Bayesian VAR the time unit will be 

the week. 

3.2 Travel in Great Britain.  

Great Britain experiences a dramatic decline in travel in 2020 and 2021, while only in early 

2022 a reversal of the negative trend was observed. In detail, Great Britain residents made 

774,000 visits abroad by air in the first quarter of 2021, which was 94% fewer than the 

corresponding period the previous year. Expenditure by Great Britain residents as results 

also falls to £817 in the first quarter of 2021. This represents 90% less expenditure than in 
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Quarter 1 2020.7 The largest number of visits was made to Europe (396,000), but they still 

saw a fall of 95%, while holidays were the least likely reason for Great Britain residents’ 

visits abroad. In Quarter 1 of 2021, there were just 49,000 holidays. Visits to friends or 

relatives were the most common reason for travelling accounting for 76% of all visits 

(587,000). In Figure 1 we show the dramatic decline in Great Britain flights residents due to 

the draconian measures to combat Covid-19, such as lock downs, restrictions to travel.  

 

Figure 1: Great Britain flights during the pandemic. 

 

I also use data from Transport Great Britain, Department for Transport (DfT), that publishes 

travel data for Great Britain during the coronavirus (COVID-19) pandemic. To monitor the 

use of the transport system during the coronavirus (COVID-19) pandemic, the DfT provides 

statistics on various transport use by mode. These statistics on transport use are published 

weekly. In detail, the DfT produces statistics for road traffic in Great Britain; rail passenger 

journeys in Great Britain; transport for London (TfL) tube and bus routes; bus travel in 

Great Britain (excluding London); and last cycling in England. The full time series for these 

statistics have started on 1st March 2020. Figure 2 reports data for car travel, rail travel and 

London tube travel as percentages of an equivalent day or week. Clearly, once the draconian 

restrictions in economic and social activity were imposed, that is the first lock down 

measures, in March 2020, travel in Great Britain dramatically dropped. Rail and London 

tube travel collapsed to the all-time low of 5% of full capacity while car travel fell below 

30%. Such drops in travel have been unprecedented.   

 
7 Due to Covid-19 restrictions there are insufficient data for sea and tunnel data. 
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Figure 2: Use of transport modes: Great Britain, since 1 March 2020. 

 

Table 2 reports descriptive statistics for travelling in Great Britain by the different available 

modes such as: flights, car, rail, London tube, London bus and cycling.  

 

<< Insert Table 2 here>> 

3.3 Life satisfaction (weekly data) 

Figure 3 presents the survey questions of the Office of National Statistics of wellbeing 

variables in Great Britain and their diagrams (see Table 3 for descriptive statistics). The 

survey questions refer to life satisfaction, happiness, and anxiety. There is a survey question 

that focuses on whether what Great Britain residents do is worthwhile.  

 

Clearly, Figure 3 shows that wellbeing whether measured by life satisfaction or happiness 

dropped during the first lock down in spring 2020. Anxiety, on the other hand, increased 

during the first lock down. Ever since there is variability over time, and while there is some 

recovery in recent weeks, the happiness and life satisfaction in Great Britain remains below 

the pre-lockdown levels.  

<< Insert Figure 3 here>> 

<< Insert Table 3 here>> 

4. Empirical results.  

4.1 Bayesian VAR: model selection 
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In this section, I proceed with the estimation of Bayesian VAR model which is a system of 

equations of the endogenous variables travelling in Great Britain, Covid-19, and wellbeing. 

Given the complexities of dealing with the pandemic, government interventions are treated 

as exogenous variables within the VAR that would be allowed to asset effects on endogenous 

variables.  

 

As a first step in selecting the appropriate VAR model, I test for the lag order. One of the 

advantages of Bayesian VAR is that allows the comparison across models of different lags 

based on their posterior probabilities. One of the main advantages of Bayesian VAR is that 

it is does not suffer from overparameterization and relies on fewer lags than frequentist 

VARs. To select the lag order, I opt to estimate Bayes factors to be able to select the best 

model. To this end, I estimate four Bayesian VAR models for lags from one to four. All 

model specifications include Bayes 2000 iterations for reducing the Markov chain Monte 

Carlo (MCMC) sample size with random-number seed equals to 21 for reproducibility.8 

draw 

 
8 As discussed in Section 2, I opt for the Metropolis–Hastings (MH) algorithm for sampling from a posterior 

distribution. MH algorithm includes several stages. During the first stage, the posterior probability distribution 

q(·) and the starting state θ0 within the posterior, p(θ0|y) > 0, are defined.  

The MH algorithm produces a Markov chain {θt}T −1
 t=0 so that at each step t a proposal state θ∗ is generated 

that is conditional on the current state. 

Also, the proposal state, θ∗, would be either rejected or accepted based on a defined acceptance probability. 

Thus, the stages over time, t = 1, . . . , T−1, are: 

• define the proposal state: θ∗ ∼ q(·|θt−1). 

• estimate the probability α(θ∗|θt−1) = min{r(θ∗|θt−1), 1},  

where r(θ∗|θt−1) = [p(θ∗|y)q(θt−1|θ)]/[p(θt−1|y)q(θ∗|θt−1)] 

• u ∼ Uniform(0, 1). 

• θt = θ∗ if u < α(θ∗|θt−1), while θt = θt−1 otherwise. 

The above stages are steps of MH algorithm.  

In addition, I opt for Markov chain simulated because it safeguards that p(θ|y) is stationary distribution. What 

is left is to define the acceptance rate of the Markov chain and the degree of autocorrelation. An acceptance 

rate near zero means that proposals should be rejected. An acceptance rate near one it means that the Markov 

chain is confined within a small region and is not exploring the whole posterior domain. This the acceptance 

rate should not approach neither one nor zero for efficiency and low autocorrelation to be valid. 
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The first column in the output table reports the log-marginal likelihoods. The second reports 

the prior model probabilities, which are all equal to 0.25 by default, and the third column 

reports the posterior model probabilities. The simplest model with two lags has a probability 

of 0.88, and it is overwhelmingly the best one. To this end, in my empirical application a 

select a Bayesian VAR with two lags. 

<< Insert Table 4 here>> 

Note that for all Bayesian VAR models in Table 4 I include priors for all parameters. The 

regression coefficients of the VAR are grouped for all endogenous variables and the same 

applies for the variance–covariance matrix of the error terms. For each of the Bayes VAR 

models I select a Minnesota prior as the default prior.9 From economic interpretation point 

of view the parameters of VAR models are not interpretable. Instead, I proceed with the 

estimations of impulse–response functions (IRFs). Prior to IRFs, as with any MCMC 

method, I check that MCMC converged before moving on to impulse response functions. To 

test for stability, I opt for graphical analysis, see Figure 4, which shows that there is stability.  

 

In detail Figure 4 reports the trace, the auto correlation, and the density. The trace in Figure 

4 indicates that convergence has been achieved, while the correlation shows some variability 

though it is negligible and zero in less than ten lags.  

<< Insert Figure 4 here>> 

 
9 In the empirical Bayesian estimation, which uses the Gibb’s sampling for simulation, converges. I select 

RSEED to be equal to 21 and the MCMC sample size equal to 2,000. I have had a very high sampling efficiency 

of 0.99. The MCMC sample of size 2,000 is equivalent to about 1990 independent draws from the posterior, 

which generates sufficient estimation precision. Because the output of Bayesian VAR includes all parameters 

it takes a lot of space and I opt not to include (results are available under request). 
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Postestimation VAR analysis such as impulse–response functions are only meaningful for 

stable VAR models. To check the stability of a Bayesian VAR model, I estimate the 

eigenvalue stability condition for a MCMC sample size of 2000. To facilitate the 

presentation, I opt not to include the Bayesian VAR parameter estimates (results are 

available under request). It is also worth noting that I test for ordering of the variables in the 

VAR and reverse ordering do not alter the main findings.  

 

Table 5 reports the moduli of the eigenvalues of the companion matrix of the VAR model, 

which refers to unit circle tests but accounting for the fact that, in a Bayesian context, these 

moduli are random numbers. 

<< Insert Table 5 here>> 

Note that the posterior mean estimated for the eigenvalue of equal tailed modulus are 

reported in Table 5 in decreasing order from 0.95, 0.89, to 0.82. These eigenvalues are close 

to one, though just comparing them with one might not suffice for stability. Instead, I also 

estimate the posterior probability of unit circle inclusion which is 0.88. Thus, the posterior 

probability is close to one, assuring the stability of the model. If the inclusion probability is 

significantly lower than one, then there could be instability.  

 

4.2 IRFs of the impact of Covid shocks. 

Having selected the appropriate Bayesian VAR model, I present next responses to shocks in 

the endogenous variables. Impulse response functions (IRFs) provide the main toolbox for 

exploring a VAR model. They consider a shock to one variable (the impulse) for example in 
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Covid-19 infections and how this shock affects an endogenous variable (the response) for 

example flights in Great Britain.  

 

Below, I compute IRFs with a length of 8 steps ahead (that is for eight weeks), equivalent to 

approximately a two-month period. As a first step of the IRFs analysis I focus on the effects 

of shocks to Covid-19 related data such as confirmed infections, hospitalisations, mortality, 

which measures the confirmed deaths, on modes of travel in Great Britain in terms of regular 

IRFs.  I estimate orthogonal IRFs because they have an advantage over the regular IRFs in 

that the impulses are guaranteed to be independent.10 A shock to confirmed infections has a 

negative response on all modes of travelling that is flights, car, rail, tube, and cycling. The 

results conform with the expectation that Covid-19 would assert a negative effect on 

travelling in Great Britain. Similarly, shocks in hospitalisations and confirmed deaths have 

negative responses to travelling, but in the case of cycling that appears not to show any 

response.   

<< Insert Figure 5 here>> 

Next, Figure 6 reports the response of wellbeing, measured by life satisfaction, happiness, 

and anxiety to shocks in Covid-19. A shock to confirmed cases has a negative response 

on life satisfaction and happiness. Clearly, the response of life satisfaction and happiness to 

shocks in hospitalisations, confirmed deaths, and confirmed infections are all negative and 

significant for the first two weeks before converging to zero. On the other hand, shocks in 

hospitalisations and confirmed deaths (that is mortality in the diagram) would increase 

 
10 IRFs that are not orthogonal are available under request. Results remains broadly unchanged. 
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anxiety. Similarly, the shock in confirmed infections would increase anxiety but statistical 

significance is low.   

<< Insert Figure 6 here>> 

As the Bayesian VAR has three main endogenous sets of variables: travel, Covid-19 data, 

and well-being, I report next the impact of shocks in travel on wellbeing as measured by life 

satisfaction, happiness, and anxiety. Interestingly, the response of life satisfaction and 

happiness to rail and cycling are all positive and significant for the first two weeks before 

converging to zero. The response of life satisfaction to car travelling is negative but it is 

increasing and crossing the zero line within a week. Similarly, the response of happiness to 

shocks in car is negative but increase over time and reaches positive values in week two and 

onwards. Shocks in rail and cycling assert a negative impact on anxiety. Shocks in flights 

also reduce anxiety, though the latter has a lower magnitude and significance than the effect 

of cycling and rail. Interestingly, shocks in car and tube would increase anxiety, though these 

effects last short time and are diminishing. 

 

<< Insert Figure 7 here>> 

Lastly, I report the IRFs of hospitalisations, confirmed infections and confirmed deaths to 

shocks in travel. The statistical significance of those IRFs is very low and therefore inference 

is not meaningful. However, the responses of hospitalisations, confirmed deaths to shocks 

in car travelling are all negative and statistically significant in the first two weeks. The 

response of confirmed infections to shocks in car is also negative and significant but it carries 

a low magnitude. 

<< Insert Figure 8 here>> 
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For completeness of the analysis the Appendix I reports the IRFs of responses of Covid-19 

data, like confirmed infections, to shocks in wellbeing life satisfaction. Statistical 

significance is very low, insinuating that there is little causality from wellbeing to Covid-19. 

 

The main results in terms of statistical significance refer to the impact of Covid-19 to travel 

as expected, but more interestingly the impact of travel on wellbeing. In summary, IRFs 

show that causality runs from Covid-19 to travelling and from travelling to wellbeing, while 

and responses of Covid-19 to travelling has little to no statistical significance.  

 

4.3 Forecast Error Variance Decomposition 

In this section, I report forecast error variance decompositions (FEVDs). FEVDs provide 

information on the underlying causal relationships of the response variables. In detail FEVDs 

estimate the exact variability of the impulse variable that explains the forecast error variance 

in response variables. To this end, the FEVDs would assist further the identification of the 

underlying causality among the main three endogenous variables: Covid-19, travel, and 

wellbeing. Given the plethora of variables as I also include control variables in the Bayesian 

VAR, I opt to report graphs of FEVDs for simplicity and facilitating the presentation (tables 

of FEVDs are available under request).  

 

Figure 9 reports the FEVDs of responses in the various modes of travelling in Great Britain 

such as flights, car, rail, tube, and cycling. In all cases, the FEVDs show that main shocks in 

travelling explain most of the forecast error variance in travelling. But it is worth noting that 
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hospitalisations due to Covid-19 also explain between 2% and 20% in the forecast error 

variance of flights and car respectively.  

 

 

<< Insert Figure 9 here>> 

Figure 10 reports the FEVDs of responses in the wellbeing such as life satisfaction, 

happiness, and anxiety. Again, as expected, the FEVDs show that shocks in wellbeing 

explain a major proportion of the forecast error variance in wellbeing. In addition, all modes 

of traveling that are flights, car, rail, London tube, all motor vehicles and cycling help explain 

the forecast error variance of life satisfaction and happiness whereas Covid-19 related 

variables, such as hospitalisations, confirmed deaths and confirmed infections, also cause 

wellbeing. When I measure wellbeing with anxiety the FEVDs confirm the importance of 

modes of travel for anxiety. The FEVDs show that causal relationship between travel and 

wellbeing is clearly from the former to the latter. The decline in travel affects wellbeing over 

the period of eight weeks and shows persistence. 

 

<< Insert Figure 10 here>> 

 

For completeness, Figure 11 reports the FEVDs of responses in Covid-19 related variables. 

The FEVDs show that shocks in Covid-19 explain most of the proportion of forecast error 

variance in Covid-19. It is worth noting confirmed infections would explain 70% of 

confirmed infections, though confirmed infections would also explain a high percentage of 

20% of hospitalisations and 5% of confirmed deaths (mortality). Travelling, like flights, 



 20 

explain a very low (less than 0.5%) of forecasts error variance of Covid-19, providing 

evidence that restrictions in travelling do little to control the pandemic. 

 

<< Insert Figure 11 here>> 

The forecast error variance decompositions shows that while the pandemic has caused an 

unprecedented decline in traveling, this is not going to persist beyond the short term. 

However, the decline in traveling in Great Britain would reduce life satisfaction and increase 

anxiety and such effects could persist.   

5. Bayesian forecasting 

Finally, I use the Bayesian VAR to provide dynamic forecasting for selected endogenous 

variables such as flight, confirmed cased and life satisfaction. The Bayesian forecasts 

provide the posterior predictive distributions at certain weeks ahead. Such forecasting 

exercise is superior to frequentist forecasting, that is based on point estimates. Note that I 

compute Bayesian forecasts based on information about lower and upper significance levels, 

posterior mean estimates, posterior standard deviations for all the endogenous variables.11 

 

I use observed values of confirmed cases, flights, and life satisfaction at the beginning of the 

forecast period (week 39 of 2021) and the week before (because I fit VAR (2)) to compute 

dynamic forecast. In Figure 12, I provide that computed Bayesian forecasts starting from 

2021 week 39 into the future. 

 

 
11 To simplify the reporting, I do not report these estimates and opt instead to summarize results using 

diagrammatic analysis. Results are available under request. 
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The posterior mean estimates forecast an initial increase in the confirmed cases and a drop 

in the flights and life satisfaction, followed by negligible trends of both towards the end of 

the sample period. The posterior mean forecasts capture the observed fluctuations over time. 

The credible intervals are of 95% level and Figure 12(a) reports them for confirmed cases, 

flights, and life satisfaction. As a last, step of forecasting accuracy of Bayesian VAR, I report 

the comparison in forecasting performance between the current Bayesian model and simple 

frequentist VAR model. Clearly, the Bayesian VAR provides superiors forecasts (see Figure 

12 b). The reported evidence shows that the Bayesian forecasting performance is significant 

and there is sufficient predictive power.   

 

<< Insert Figure 12 here>> 

 

6. Conclusions  

The paper employs a unique Bayesian Vector Autoregressive model. This model provides 

responses in wellbeing, travelling in Great Britain to shocks in Covid-19 related data. It also 

provides reverse responses as endogeneity is treated within the VAR while I control for 

exogenous government interventions like the closure of the economy and economic support. 

I also perform forecasting exercise. The main finding shows that the pandemic would cause 

an unprecedented decline in travelling but this is not going to persist beyond the short term, 

while lower travelling would reduce life satisfaction and increase anxiety. The causal 

relationship runs from Covid-19 to models of travel and from the various modes of travelling 

to life satisfaction and happiness in Great Britain, while Covid-19 reduces life satisfaction 

and increases anxiety. Interestingly, results report little to no evidence of responses to 
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confirmed cases of Covid-19 and confirmed deaths as well as hospitalisations to shocks in 

various modes of travel such as flights, car journeys, and rail.       

 

The pandemic has had profound implications across various industries and one industry that 

has been negatively particularly affected is the travel industry. Previous research shows that 

travel could enhance life satisfaction and could boost happiness. This paper uses a new data 

set that allows investigates whether the wellbeing in Great Britain, measured by life 

satisfaction and happiness, has been affected by the dramatic decline in travelling during the 

pandemic. Travel is negatively affected by shocks in Covid-19 and in turn, shocks in travel 

would reduce wellbeing. Interestingly, results show little to no evidence of responses of 

Covid-19 to shocks in various modes of travel. The forecasting exercise shows that the 

unprecedented decline in traveling due to pandemic is not going to persist beyond the 

medium term, though its negative effect on life satisfaction could last in the medium term.  
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Table 1: Covid-19 related data. 

 OBS Mean Std. Dev. Min Max 

Mortality 104 6.710533 1.361091 1.609438 9.158521 

Hospital 83 9.096626 8.076435 0.5 36.68 

Infections 83 0.0144446 0.014947 0.0005 0.0685 

Stringency 110 55.85418 22.81549 0 87.96 

Close Public Transport 110 0.7818182 0.4149017 0 1 

International Travel Controls 110 2.036364 1.140797 0 3 

Restrictions on Internal Movement 110 0.8272727 0.90725 0 2 

Close Public Transport 110 0.7818182 0.4149017 0 1 

School Closing 110 1.490909 0.9553851 0 3 

Workplace Closing 110 1.890909 0.9418453 0 3 

Restrictions on Gatherings 110 3 1.597016 0 4 

Economic Support Index  110   76.36364   38.43802   0    100 

Source: Oxford COVID-19 Government Response Tracker (OxCGRT). 
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Table 2: Descriptive statistics of travel by Great Britain residents. 

 Obs Mean Std.Dev. Min Max 

Flights 115 7.581821 0.646171 6.135565 8.567125 

Car 107 0.8023364 0.1841174 0.29 1.03 

Rail 107 0.4060748 0.2312263 0.04 0.98 

LondonTube 107 0.3794393 0.2110613 0.05 0.87 

LondonBus 107 0.3695327 0.1971418 0.01 0.75 

Cycling 107 0.6092523 0.3563989 0.01 1.59 

Source: Transport Great Britain, DfT provides statistics on transport use by mode. 

Table 3: Descriptive statistics of wellbeing in Great Britain. 

 

Obs Mean SD Min Max 

Life satisfaction 95 6.901176 0.207877 6.4 7.2 

Worthwhile 95 7.307059 0.1172992 7 7.6 

Happiness 95 6.934118 0.2275924 6.4 7.4 

Anxious 95 4.022353 0.2656423 3.6 5.2 

Source: Office of National Statistics, ONS.  

Table 4: Lag order selection of Bayesian VAR 

 log(ML) P(M) P(M|y) 

Lag 1 VAR 96.1081 0.25 0.0025 

Lag 2 VAR 90.2462 0.25 0.8811 

Lag 3 VAR 92.9371 0.25 0.0598 

Lag 4 VAR 92.9901 0.25 0.0567 

Source: Author’s estimations. I compute Marginal likelihood (ML) using Laplace–

Metropolis approximation. 
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Table 5: Lag order selection of Bayesian VAR 

 Eigenvalue Equal-tailed 

    

Modulus Mean Std.Dev. MCSE Median [95%    cred. interval] 

1 0.9586793 0.036267 0.000811 0.9566606 0.8954819 1.036839 

2 0.8948975 0.0407443 0.000911 0.8962785 0.8147237 0.969641 

3 0.8208179 0.0551152 0.001232 0.8258579 0.6999911 0.9121833 

Pr(eigenvalues lie inside the unit circle) = 0.871 

Source: Author’s estimations. 

 

Figure 1: Great Britain flights during the pandemic. 

 

Source: ONS. Figure is in thousands. 
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Figure 3: Wellbeing of Great Britain residents. 
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Figure 4: MCMC convergence testing. 

 

Source: Author’s estimations. 
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Figure 5: The response of travelling to shocks in Covid-19. 

 

Source: Author’s estimations. Hospitals refer to hospitalisation, mortality to confirmed deaths, and infections 

to confirmed infections. 
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Figure 6: The response of wellbeing to shocks in Covid-19. 

 

Source: Author’s estimations. Hospitals refer to hospitalisation, mortality to confirmed 

deaths, and infections to confirmed infections. 
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Figure 7: The response of wellbeing to shocks in modes of travel (flights, car, rail, 

tube, and cycling). 

 

Source: Author’s estimations. 
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Figure 8: The response of Covid-19 to shocks in travel. 

 

Source: Author’s estimations. 
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Figure 9: Forecast Error Variance Decomposition: response of travelling. 

 

 

 

Source: Author’s estimations. 
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Figure 10: Forecast Error Variance Decomposition: response wellbeing. 

 

 

Source: Author’s estimations. 
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Forecast 11: Forecast Error Variance Decomposition: response Covid 19 

 

 

Source: Author’s estimations. 
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Figure 12: (a) Forecasting based on Bayesian VAR 

 

(b) Comparing forecasting of Bayesian VAR vs frequentist forecasting. 

  

Source: Author’s estimations. 
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Appendix I 

Figure I.1: response to Covid-19 variables to shocks in wellbeing. 
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Source: Author’s estimations. 

 

Appendix II 

Figure Appendix AII.1: Forecast Error Variance Decomposition: response infections 

 

Source: Author’s estimations. 
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Figure Appendix AII.2: Forecast Error Variance Decomposition: response 

hospitalisations.

 

Source: Author’s estimations. 

Figure Appendix AII.3: Forecast Error Variance Decomposition: response deaths 

 

Source: Author’s estimations. 
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