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Abstract

We study personalized pricing (or first-degree price discrimination) in a general

oligopoly model. In the short-run, when the market structure is fixed, the impact

of personalized pricing hinges on the degree of market coverage (i.e., how many

consumers buy). If coverage is high (e.g., because the production cost is low, or

the number of firms is large), personalized pricing intensifies competition and so

harms firms but benefits consumers, whereas the opposite is true if coverage is low.

However in the long-run, when the market structure is endogenous, personalized

pricing always benefits consumers because it induces the socially optimal level of firm

entry. We also study the asymmetric case where some firms can use consumer data

to price discriminate while others cannot, and show it can be worse for consumers

than when either all or no firms can personalize prices.
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1 Introduction

Thanks to advances in information technology, firms are increasingly able to do person-

alized pricing, i.e., offer different consumers different prices based on their individual

preferences.1 Many firms have access to rich consumer-level data, which they have either

collected themselves or acquired from data brokers. Using Artificial Intelligence (AI),

firms can then glean information about a consumer’s preferences and target her with per-

sonalized offers. According to a recent survey, around 40% of firms that have adopted

AI for personalization use it to set real-time prices and promotions (Deloitte, 2018). In-

deed, personalized pricing has been documented in a wide range of industries, including

retailing, travel, and personal finance (see., e.g., OECD, 2018). As far back as 2012,

the Wall Street Journal uncovered evidence that retailers like Staples and Home Depot

were personalizing prices on their websites, based on a consumer’s browsing history and

distance from a competitor’s store.2 In the last decade, firms’ ability to personalize prices

has likely grown significantly—but so too has their ability to do it surreptitiously, so as to

avoid a potential consumer backlash. As a result, personalized prices are often concealed,

for example as personalized discounts which are sent by email or smartphone app.3

What is the welfare impact of personalized pricing? This is an important and timely

question, given ongoing debates about big-tech firms and how they use consumer data.

Policymakers are often wary of personalized pricing, raising concerns that it “transfers

value from consumers to shareholders” (Council of Economic Advisers, 2015). In this

paper we evaluate such concerns using a general oligopoly model. To do this, we focus

on the limit case of perfect, or first-degree, price discrimination; as firms gain access to

richer data and more sophisticated AI, this type of very fine-tuned personalization is likely

to become increasingly feasible. We show that the welfare impact of such personalized

pricing depends on market characteristics—such as cost conditions and the degree of

competition (which both influence the extent of market coverage), the endogeneity of

market structure, as well as asymmetries across firms in terms of their access to data.

We begin in Section 2 by reviewing two well-known benchmarks from the literature.

The first benchmark is monopoly: here personalized pricing allows the firm to extract

1See https://bit.ly/3A4Rk10 and https://bit.ly/38Ygzq6 for a history of personalized pricing.
2See https://on.wsj.com/39sHIFf for further details.
3As an example, see https://bit.ly/37OftAc for how Kroger uses its mobile app to offer person-

alized coupons. There are several other ways that firms can disguise their usage of personalized pricing.

Certain products, such as financial products, are already somewhat personalized, so it is easy for a firm to

also personalize their prices without consumers realizing (see, e.g., FCA, 2019). Even for more standard-

ized products, firms can use “sticky targeting” whereby prices are fixed for all consumers (including the

one being targeted) for a short period (see Shiller, 2021), or can personalize rankings and search results

in order to steer a consumer towards products with a certain price point (e.g., Hannak et al., 2014).
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all the social surplus, and so is good for the firm but bad for consumers. The second

benchmark is the classic linear Hotelling model: Thisse and Vives (1988) show that

personalized pricing (i.e., offering each consumer a different price based on their location

on the Hotelling line) leads to a reduction in the price paid by every consumer. (Intuitively,

each firm tries to poach consumers on its rival’s “turf” with low prices, which then forces

the rival to charge less to its customer base.) Therefore going from monopoly to duopoly

completely reverses the impact of personalized pricing—it now harms firms but benefits

consumers. This insight has been very influential: as we discuss further in the literature

review, the model of Thisse and Vives (1988) is an important building block for many

subsequent papers that touch on issues such as data privacy and data brokers.

The first contribution of this paper is to reconcile the opposing impacts of personalized

pricing under monopoly and Hotelling duopoly. In Section 3 we introduce a discrete-choice

model which nests both monopoly and Hotelling as special cases. There is an arbitrary

number of (single-product) firms, and consumers’ valuations for their products are drawn

from a joint distribution. Consumers either buy one of the products or take an outside

option. Our model is based on Perloff and Salop (1985), but is more general because it

allows for correlated product valuations and partial market coverage (i.e., some consumers

may take the outside option). Under uniform pricing firms cannot use information about

individual consumers’ preferences, and so offer all consumers the same price. Under

personalized pricing firms know each consumer’s valuations for all the products, and

make personalized offers accordingly.4

Section 4 compares market performance in these two regimes. We first study the short-

run case where the market structure is fixed. Contrary to Thisse and Vives (1988), we

show under a mild regularity condition that some personalized prices exceed the uniform

price: although consumers who regard their two best products as close substitutes pay

less under personalized pricing, consumers with a strong preference for one product end

up paying more. Nevertheless, if the market is fully covered under uniform pricing (i.e., if

all consumers buy in equilibrium), competitive personalized pricing does lower industry

profit and increase aggregate consumer surplus under a log-concavity condition. (The

log-concavity condition ensures that there are relatively few consumers with strong pref-

erences compared to those with weak preferences.) We therefore significantly generalize

the aggregate welfare results from Thisse and Vives (1988).

We then show, however, that if the market is not fully covered, the impact of person-

alized pricing can be completely reversed. In particular, competitive personalized pricing

can now increase industry profit and lower consumer surplus, as in the monopoly case.

4In Section 6 we consider an alternative information structure where firms only observe each con-

sumer’s valuation for their own product.
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This always happens—irrespective of the number of firms in the market—when the pro-

duction cost is sufficiently high, such that market coverage is low under both pricing

regimes. Indeed, when product valuations are independent across firms and follow an

exponential distribution, it happens whenever marginal cost is such that the market is

not fully covered under uniform pricing. Using numerical examples, we also show that the

welfare impact of personalized pricing follows a cut-off rule for common distributions such

as the Extreme value (which gives the logit model) and the Normal (which gives the probit

model). Specifically, for a given number of firms, when the production cost is sufficiently

low the impact is similar to Thisse and Vives (1988), when the cost is sufficiently high

the impact is similar to monopoly, and when the cost is intermediate personalized pricing

benefits both consumers and firms.5 Similarly, for a fixed production cost, with relatively

few firms the impact is like in monopoly, with many firms the impact is similar to Thisse

and Vives (1988), and otherwise industry profit and consumer surplus both increase.6

The intuition for why competitive personalized pricing can benefit firms and harm

consumers is as follows. First, consider the case where all consumers value each product

above marginal cost. Here, partial coverage arises when the uniform price excludes some

low-valuation consumers from the market. Personalized pricing brings these consumers

into the market, but since they have low valuations the positive effect on their surplus

is relatively small. On the other hand, consumers who bought under uniform pricing

have a high valuation for at least one product, and so relatively many of these consumers

have a strong preference for one product over another—meaning that personalized pricing

can raise the average price they pay. When this happens, personalized pricing can make

consumers worse off overall, even though it expands demand. Second, consider the case

where marginal cost is higher, such that for each product some consumers have a valuation

below marginal cost. Now each firm faces a new “monopoly segment” of consumers, who

value only its product above marginal cost. This gives firms some monopoly power, which

is an additional force for personalized pricing to harm consumers.

We also study the long-run case where the market structure is endogenous. Specifically,

we consider a free-entry game where firms choose whether or not to pay a fixed cost to

enter the market, and then engage in price competition. We show that if the entry of a

new product does not change consumers’ preferences over existing products, then with

personalized pricing the new entrant fully extracts the increase in match efficiency caused

by its entry. Consequently, in the long run, personalized pricing leads to the socially

5Note that if uniform pricing leads to only partial coverage, personalized pricing increases total surplus

by expanding the market. This explains why profit and consumer surplus can both increase.
6Contrary to Thisse and Vives (1988), in our numerical examples the welfare impact of personalized

pricing is often qualitatively the same under both monopoly and duopoly; in particular, it can raise

industry profit and harm consumers even when the number of firms is relatively large.

4



optimal market structure. If we ignore integer constraints, this implies that personalized

pricing must benefit consumers in the long run relative to uniform pricing.

In Section 5 we consider the case of asymmetrically informed firms, where only some

firms have consumer data and can use it to price discriminate. We show that this “mixed”

case can be worse for consumers than the symmetric cases where either all or no firms can

personalize prices. Intuitively, when a firm with consumer data competes with other firms

that can only do uniform pricing, it is able to “poach” some consumers for whom it is

not their favorite product via a low personalized price. This results in match inefficiency

compared to the symmetric cases and can make consumers worse off in aggregate. This

suggests that it is sometimes desirable (at least from the perspective of consumers) to

force a seller with superior information to share its data with its competitors or prevent

it from personalizing prices.

We discuss other extensions in Section 6, including the case when firms offer person-

alized discounts and are constrained in how large they can be. Section 7 concludes.

Related literature. The literature on price discrimination is extensive, but it mainly

focuses on imperfect price discrimination. (See the survey papers by Varian, 1989; Arm-

strong, 2007; Fudenberg and Villas-Boas, 2007; and Stole, 2007).7 One exception is the

study of spatial price discrimination, where firms can charge customers in different loca-

tions different prices. An important contribution to this literature is Thisse and Vives

(1988), which can also be reinterpreted as a model of competitive personalized pricing.

They consider a two-stage game where firms first choose whether or not to price discrim-

inate and then compete in prices. Using a Hotelling model with uniformly distributed

consumers, they show that discriminatory pricing is a dominant strategy for each firm, and

so the unique equilibrium features price discrimination. When firms have the same cost,

as discussed earlier, they are trapped in a Prisoner’s dilemma because every personalized

price is below the uniform price.8

The Hotelling setup in Thisse and Vives (1988) has been widely used in the subsequent

literature. For example, Shaffer and Zhang (2002) use it to study personalized pricing

when one firm has a brand advantage over the other, while Chen and Iyer (2002) use

7Note that perfect price discrimination can be regarded as the limit case of third-degree price discrim-

ination when each consumer is treated as a separate market. Our paper is therefore more related to the

literature on competitive third-degree price discrimination (see, e.g., Holmes, 1989; Corts, 1998; Arm-

strong and Vickers, 2001; Chen, Li, and Schwartz, 2021; and Adachi, 2022). However, the approaches in

that literature (e.g., the idea of best-response asymmetry in Corts, 1998 or the indirect utility approach

in Armstrong and Vickers, 2001) are not directly useful for studying our problem.
8When firms have different costs, the low-cost firm can earn more than under uniform pricing, but

within the parameter range in Thisse and Vives (1988) industry profit is still lower and consumer surplus

is still higher under discriminatory pricing.
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it to study personalized pricing when firms first need to advertise to reach consumers.

Montes, Sand-Zantman, and Valletti (2019) use it to study whether a monopolistic data

intermediary should sell data to one or both competing firms who can use the data

to conduct personalized pricing. Chen, Choe, and Matsushima (2020) use it to study

consumer identity management which helps consumers avoid being exploited by firms

via personalized pricing. In all these studies, an implicit underlying assumption is that

competitive personalized pricing in the benchmark case intensifies competition, harms

firms and benefits consumers. Our paper shows that this is not necessarily true in a more

general model which allows for partial market coverage.9

Our paper is closely related to Anderson, Baik, and Larson (2021) (ABL henceforth),

who also use a general discrete-choice framework to study competitive personalized pric-

ing.10 One important difference is that they have full market coverage—whereas our paper

allows for partial market coverage, and emphasizes that this can qualitatively change the

impact of personalized pricing. Another important difference is that in our paper firms can

freely offer personalized prices, leading to a relatively simple pure-strategy pricing equi-

librium; ABL, by contrast, assume that it is costly for firms to send targeted discounts,

which leads to a mixed strategy equilibrium in both pricing and advertising.11 (Our mod-

eling choice captures the idea that the cost of making personalized offers is mainly a fixed

one, due to investments in buying consumer data and developing AI tools.)

There is also growing empirical research on personalized pricing. One strand looks

for evidence of firms engaging in personalized pricing. As discussed earlier, detecting

personalized pricing is usually hard because sellers have incentives to disguise personalized

offers, but nevertheless there is some suggestive evidence. For instance, Hannak et al.

(2014) find evidence of some form of personalization on 9 out of 16 e-commerce sites

in their study, while Aparicio, Metzman, and Rigobon (2021) document evidence that

increasing use of algorithmic pricing is associated with increasing price differentiation

(for the same product at the same time but across different delivery zipcodes). The other

strand of the empirical literature assesses the impact of personalized pricing (see, e.g.,

Waldfogel, 2015; Dube and Misra, 2019; Shiller, 2020; and Kehoe, Larsen, and Pastorino,

9Jullien, Reisinger, and Rey (2022) develop a generalized Hotelling setup, and show for example that

personalized pricing can raise profit when a manufacturer competes with a retailer that sells its product.
10See also Section 4 of Ali, Lewis, and Vasserman (2020) which uses a similar oligopoly discrete-choice

model with full market coverage to study endogenous consumer information disclosure. They show that

the Thisse and Vives (1988) welfare result continues to hold in a partial revelation equilibrium.
11Such randomized offers cause consumers to sometimes buy the wrong product, which harms match

efficiency. As a result, in ABL personalized pricing can make both firms and consumers worse off compared

to uniform pricing. In contrast, in our model it is possible that both firms and consumers are better off

under personalized pricing as it can expand demand.
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2020). For instance, Shiller (2020) shows that if Netflix could use consumer information

from rich web-browsing data to implement price discrimination, its profit could increase

by about 13%, while the profit improvement would be tiny if it only relied on demographic

information.

2 Two Benchmarks

We start by briefly recapping two well-known benchmarks from the existing literature.

Monopoly The impact of personalized pricing (or perfect price discrimination) under

monopoly is straightforward. Suppose consumers wish to buy at most one unit of a

product, and have heterogeneous valuations for it. Under uniform pricing, the firm sets

a standard monopoly price. Consumers who value the product more than the monopoly

price buy and obtain positive surplus; all other consumers are excluded from the market.

Under personalized pricing, each consumer with a valuation above marginal cost is offered

a personalized price exactly equal to their valuation, and they all buy. As a result, total

surplus is maximized but it is fully extracted by the monopolist. Personalized pricing

therefore increases total welfare and firm profit but reduces consumer surplus.

Hotelling duopoly The other well-known case is the linear Hotelling model studied

by Thisse and Vives (1988). Suppose consumers are uniformly distributed along a unit-

length Hotelling line. Suppose the two firms have cost normalized to zero, with firm 1

located at the leftmost point on the line, and firm 2 located at the rightmost point. A

consumer with location x values firm 1’s product at v1 = V − x and firm 2’s product at

v2 = V − (1−x), where V is large enough that the market is fully covered in equilibrium.

Under uniform pricing firms set the standard Hotelling price of 1. Under personalized

pricing the firms compete for each consumer individually. Consumers with location x <

1/2 prefer product 1, while consumers with location x > 1/2 prefer product 2. Firms

therefore engage in asymmetric Bertrand competition. Thisse and Vives (1988) derive

the following equilibrium price schedules:

p1(x) = v1 − v2 = 1− 2x and p2(x) = 0 for x ∈ [0, 1
2
]

p1(x) = 0 and p2(x) = v2 − v1 = 2x− 1 for x ∈ [1
2
, 1]

, (1)

where pi(x) is the price offered by firm i = 1, 2 to the consumer at x, and each consumer

buys her preferred product, with those having stronger preferences paying more. Note that

each consumer pays (weakly) less under personalized pricing because pi(x) ≤ 1. Therefore,

unlike with monopoly, personalized pricing harms firms and benefits consumers. (Under
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both uniform and personalized pricing the market is fully covered and consumers buy

their preferred product, so personalized pricing has no impact on total welfare.)

However, the observation that each personalized price is lower than the uniform price,

which is highlighted in Thisse and Vives and many subsequent works, can easily be over-

turned. To see this, suppose instead that consumers are distributed along the Hotelling

line according to a symmetric and strictly log-concave (so single-peaked) density. Dis-

criminatory prices are independent of the distribution and so are the same as in (1),

but the uniform price, which equals 1 over the density of consumers at x = 1/2, is now

strictly below 1. As a result, consumers near the two ends of the line (i.e., those with

relatively strong preferences) now pay more under personalized pricing, while consumers

near the middle of the line (i.e., those with relatively weak preferences) still pay less.12

The impact of personalized pricing on industry profit and (aggregate) consumer surplus

is then less clear. In the next section, we develop a more general oligopoly model—which

includes the Hotelling model as a special case—and investigate to what extent competitive

personalized pricing is overall pro-competitive.

3 A General Oligopoly Model

There are n competing firms in a market, each supplying a differentiated product at con-

stant marginal cost c. There is also a unit mass of consumers, each wishing to buy at most

one of the products. If a consumer buys nothing she obtains an outside option with zero

surplus.13 Let v = (v1, ..., vn) ∈ Rn denote a consumer’s valuations for the n products. In

the population v is distributed according to an exchangeable joint cumulative distribution

function (CDF) F̃ (v), with corresponding density function f̃(v). (The exchangeability

means that any permutation of (v1, ..., vn) has the same joint CDF; it implies that there

are no systematic quality differences across products.) Let F and f be respectively the

common marginal CDF and density function of each vi, and let [v, v] be its support. (We

need c < v to have an active market.) To ease the exposition, we assume that F̃ has full

support on [v, v]n, but this is not crucial for the main results.

Note that although we allow a consumer’s valuations for different products to be

correlated,14 sometimes we focus on the IID case where the vi’s are independent across

12Armstrong (2007) makes the same point by considering a specific non-uniform distribution.
13To have our model cover both the case of full market coverage and the case of partial market

coverage, we have chosen to normalize the outside option and vary the marginal cost c. The same

qualitative insights obtain if instead we normalize the production cost and vary the outside option.
14In the duopoly case, our set-up nests Hotelling with a symmetric location distribution if v1 and v2

are large enough (to cover the market) and we treat v1 − v2 as a consumer’s location. For any location

distribution (e.g., uniform), there is at least one correlation structure over (v1, v2) that generates it.
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products (which is the leading case in the literature on random-utility oligopoly models).

We consider two different pricing regimes. Under uniform pricing, firms set the same

price for every consumer (either because they have no data on consumer preferences, or

are forbidden from using it). Under personalized pricing, firms perfectly observe each

consumer’s vector of valuations v = (v1, ..., vn), and offer them a personalized price. (See

Section 6 for an alternative information structure where firm i only observes vi.) In either

regime, consumers perfectly know their own valuations for the competing products and

make the best choice after seeing their prices. Both firms and consumers are assumed to

be risk neutral.

Notation. It will be convenient to introduce the following notation. Let G(·|vi) and g(·|vi)

be respectively the CDF and density function of maxj 6=i{vj}, the valuation for firm i’s

best competing product, conditional on vi. Let vn:n and vn−1:n be the highest and second-

highest order statistics of (v1, ..., vn), and let F(n)(v) and F(n−1)(v) be their respective

CDFs. Then

F(n)(v) = F̃ (v, ..., v) =

∫ v

v

G(v|vi)dF (vi) , (2)

and

F(n−1)(v) = F(n)(v) + n

∫ v

v

G(v|vi)dF (vi) . (3)

To understand F(n−1)(v), notice that for the second-highest valuation to be below v, either

all the vi’s must be less than v, or exactly one of them must be above v and the others

be below v. Let f(n)(v) and f(n−1)(v) be respectively their density functions. In the IID

case we have F̃ (v)
IID
=

∏n
i=1 F (vi), G(v|vi)

IID
= F (v)n−1, F(n)(v)

IID
= F (v)n, and

F(n−1)(v)
IID
= F (v)n + n(1− F (v))F (v)n−1 .

In order to solve the uniform pricing game, it is useful to define the random variable

xz ≡ vi −max
j 6=i

{z, vj} , (4)

where z is a constant. Since xz = vi − z − maxj 6=i{0, vj − z}, one can interpret it as a

consumer’s preference for product i relative to the best alternative (including the outside

option) when all products are sold at price z. Let Hz(x) and hz(x) be respectively the

CDF and density function of xz. More explicitly,

1−Hz(x) = Pr[vi − x > max
j 6=i

{z, vj}] =

∫ v

z+x

G(vi − x|vi)dF (vi) , (5)

and

hz(x) = G(z|z + x)f(z + x) +

∫ v

z+x

g(vi − x|vi)dF (vi) . (6)
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When z is irrelevant (i.e., when z ≤ v), let H(x) and h(x) be respectively the CDF and

density function of x ≡ vi−maxj 6=i{vj}; we use them for the case of full market coverage.15

3.1 Uniform pricing

We first study the regime of uniform pricing, where firms are unable to price discrimi-

nate. We focus on a symmetric pure-strategy pricing equilibrium, and let p denote the

equilibrium uniform price.16 Recalling the definition of xz and Hz(x) in equations (4) and

(5), when firm i unilaterally deviates to a price pi its deviation demand is

Pr[vi − pi > max
j 6=i

{0, vj − p}] = Pr[vi −max
j 6=i

{p, vj} > pi − p] = 1−Hp(pi − p) ,

and its deviation profit is (pi − c)[1−Hp(pi − p)]. It is clear that a firm will never set a

price below marginal cost c or above the maximum valuation v.

To ensure that the uniform pricing equilibrium is uniquely determined by the first-

order condition, we make the following assumption:

Assumption 1. 1−Hz(x) is log-concave in x and 1−Hz(0)
hz(0)

is non-increasing in z.

In the Appendix we report some primitive conditions under which this assumption holds.

For example, the first condition holds if the joint density f̃ is log-concave (Caplin and

Nalebuff, 1991), and both conditions hold in the IID case with a log-concave f . (The

second condition must hold if, for z < z′, xz is greater than xz′ in the sense of hazard rate

dominance.) Assumption 1 also holds in the Hotelling case (see footnote 14) provided

that v1 − v2 has a log-concave density.

Given the first condition in Assumption 1, firm i’s deviation profit is log-concave in

pi, and so the equilibrium price p must solve the first-order condition

p− c = φ(p) , (7)

where

φ(p) ≡
1−Hp(0)

hp(0)
=

∫ v

p
G(v|v)dF (v)

G(p|p)f(p) +
∫ v

p
g(v|v)dF (v)

. (8)

To interpret this, note that 1−Hp(0) is each firm’s equilibrium demand,17 while hp(0) is

the absolute value of the equilibrium demand slope and it measures how many consumers

15Anderson, Baik, and Larson (2021) also use such notation to simplify demand expressions when the

market is assumed to be fully covered.
16If the joint density f̃ is log-concave, the pricing equilibrium is unique and symmetric in the duopoly

case (Caplin and Nalebuff, 1991) and in the IID case (Quint, 2014).
17Due to firm symmetry we can also write that 1−Hp(0) =

1
n
[1− F(n)(p)].
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are marginal for each firm. (The first term in hp(0) captures the extensive margin, and

the second term captures the intensive margin due to competition.)

Given the second condition in Assumption 1, φ(p) is non-increasing. Notice also that

φ(p) is constant for p ≤ v. Then we can show the following result. (All omitted proofs

are available in the Appendix.)

Lemma 1. Suppose Assumption 1 holds.

(i) If c ≤ v − φ(v), the equilibrium uniform price satisfies

p− c = φ(v) =
1/n

∫ v

v
g(v|v)dF (v)

(9)

and p ≤ v, such that the market is fully covered in equilibrium.

(ii) Otherwise, the equilibrium uniform price uniquely solves (7) and p > v, such that the

market is not fully covered in equilibrium.

Intuitively, when cost is relatively low (c ≤ v − φ(v)), marginal consumers are suf-

ficiently valuable that firms choose to cover the whole market; when cost is relatively

high (c > v − φ(v)), firms optimally exclude some low-valuation consumers. Note that a

sufficient (but by no means necessary) condition for partial coverage is that v ≤ c, i.e.,

some consumers value a product less than marginal cost.

The literature on random-utility oligopoly models usually studies the IID case, such

that G(v|v)
IID
= F (v)n−1 and g(v|v)

IID
= (n− 1)F (v)n−2f(v), and so

φ(p)
IID
=

[1− F (p)n]/n

F (p)n−1f(p) +
∫ v

p
f(v)dF (v)n−1

. (10)

Most papers further assume that the market is covered (e.g., Perloff and Salop, 1985; An-

derson, Baik, and Larson, 2021), in which case φ(p) simplifies to 1/[n
∫ v

v
f(v)dF (v)n−1].18

Example: uniform distribution. Suppose the vi’s are independent and uniformly dis-

tributed on [v, v+1]. Here, if p ≤ v then φ(p) = 1
n
, and if p > v then φ(p) = 1

n
[1−(p−v)n].

Therefore if c+ 1
n
≤ v the market is fully covered and the equilibrium price is p = c+ 1

n
;

otherwise the market is not fully covered and p > v uniquely solves

p− c =
1− (p− v)n

n
. (11)

Example: exponential distribution. Suppose the vi’s are independent and exponentially

distributed with F (v) = 1 − e−(v−v) on [v,∞). Here we have φ(p) = 1, and so the

18An exception is Section 4.2 of Zhou (2017), which shows that in the IID case φ(p) in (10) is decreasing

and the equilibrium price decreases in n if f is log-concave.
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equilibrium price is p = c + 1 regardless of whether or not the market is covered (and

irrespective of the number of firms).19 Therefore the market is fully covered in equilibrium

if and only if c+ 1 ≤ v.

Industry profit under uniform pricing is

ΠU ≡ n(p− c)[1−Hp(0)] = n
[1−Hp(0)]

2

hp(0)
, (12)

where we have used the equilibrium price condition (7). Since all consumers buy their

favorite product as long as it has a positive surplus, (aggregate) consumer surplus is

VU ≡ E[max{0, vn:n − p}] =

∫ v

p

(v − p)dF(n)(v) =

∫ v

p

[1− F(n)(v)]dv , (13)

where the last equality is from integration by parts. Notice that these expressions are

valid regardless of whether or not the market is fully covered.

3.2 Personalized Pricing

Now consider the regime where firms perfectly observe each consumer’s vector of valua-

tions v = (v1, ..., vn) and set personalized prices accordingly. In this case, firms engage

in a game of asymmetric Bertrand competition for each consumer. To rule out uninter-

esting equilibria, we assume that firms do not play dominated strategies, and that when

consumers are indifferent between several offers they buy the product with the highest

valuation (so that total welfare is maximized). Consider a consumer who values, say, firm

1’s product the highest and firm 2’s product the second highest. Competition is then

essentially between these two firms. Suppose v1 ≥ c (otherwise the consumer takes the

outside option). Competition forces firm 2 to price at marginal cost. Firm 1 prices at

c+ v1− v2 if v2 ≥ c, and otherwise acts as a monopolist and charges v1. In both cases the

other n− 2 firms charge weakly more than c, and firm 1 sells to the consumer. (Since the

prices of these n−2 firms can be anything above c, there are multiple equilibria, but they

are all outcome-equivalent.) To ease the exposition, we henceforth focus on the equilib-

rium in which these other n− 2 firms charge c. Firm i’s equilibrium pricing schedule can

then be written as:

p(vi,v−i) =







c+ vi −maxj 6=i{c, vj} if vi ≥ maxj 6=i{c, vj}

c otherwise
(14)

19Using integration by parts, the denominator in (10) can be rewritten as f(v)−
∫ v

p
F (v)n−1f ′(v)dv.

For the exponential distribution f(v) = 0 and f(v) = −f ′(v), so this equals the numerator of (10).
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where v−i denotes a consumer’s valuations for all products other than i. Intuitively, if a

firm’s product is a consumer’s favorite and has a valuation above cost, the firm charges

the consumer a price equal to the difference between her valuation for its product and

that of the best alternative (which is either the outside option, or the best rival product

sold at marginal cost).20 Note that if v ≥ c, the “max” constraint from the outside option

in (14) is irrelevant and so all consumers buy their favorite product in equilibrium (i.e.,

the market is fully covered under personalized pricing).

To calculate profit, notice that when firm i wins a consumer, its profit margin is

p(vi,v−i)− c = vi −maxj 6=i{c, vj} = xc, where xc has a CDF Hc(x). That is, firm i earns

xc whenever xc ≥ 0, so its equilibrium profit is
∫∞

0
xdHc(x), and industry profit under

personalized pricing is

ΠD = n

∫ ∞

0

xdHc(x) = n

∫ ∞

0

[1−Hc(x)]dx . (15)

(There are alternative ways to calculate profit as we will show later.)

Consumers always buy their favorite product (as long as it is valued above c). Given

the equilibrium pricing schedule in (14), it is clear that a consumer’s favorite firm sets its

price such that the consumer is indifferent between its product and the next best option

(which is either the outside option or the second-best product sold at marginal cost).

Therefore, consumer surplus under personalized pricing is

VD ≡ E[max{0, vn−1:n − c}] =

∫ v

c

(v − c)dF(n−1)(v) =

∫ v

c

[1− F(n−1)(v)]dv . (16)

Notice that expressions (15) and (16) are both valid regardless of whether or not c < v.

4 The Impact of Personalized Pricing

We now examine how a shift from uniform to personalized pricing affects market per-

formance. We first study the short-run impact, when the number of firms n is taken as

given. In the case of full market coverage, we significantly generalize the insight from

Thisse and Vives (1988), showing that competitive personalized pricing harms firms and

benefits consumers (on average). However, we also show that when the market is only

partially covered, their insight can be completely overturned. We then study the long-run

impact, when n is determined by firms’ free-entry decisions.

20Note that a consumer-specific pricing schedule includes uniform pricing as a special case. Therefore,

in an extended game where firms simultaneously choose whether to adopt discriminatory pricing and

what prices to offer, the only equilibrium is that all firms adopt personalized pricing.
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4.1 The short-run impact with a fixed market structure

Suppose the number of firms is fixed. Our first result shows that, under a mild regularity

condition, the highest personalized price exceeds the uniform price. As a result, some

consumers benefit from personalized pricing while others suffer. Recall that h(x) is the

density of vi −maxj 6=i{vj}.

Lemma 2. Suppose Assumption 1 holds, and that h(x) < h(0) for x > 0. Then the

highest personalized price exceeds the uniform price.

Proof. Using equation (14) the highest personalized price is pmax = c+ v −max{c, v}. If

v ≤ c, pmax = v and so it must exceed the uniform price. If v > c, pmax = c + v − v and

so p < pmax if and only if p− c < v − v. Under Assumption 1, φ(p) is decreasing and so

the uniform price must satisfy p− c = φ(p) ≤ φ(v) = 1
nh(0)

. At the same time,

1

n
=

∫ v−v

0

h(x)dx < h(0)(v − v) ,

where the equality is from the fact that the probability of vi ≥ maxj 6=i{vj} is 1
n
, and

the inequality is from the assumption that h(x) < h(0) for x > 0. Therefore we have

p− c < v − v.

Note that the hypotheses of the lemma hold, for example, in the IID case with a

log-concave f . However they fail in the linear Hotelling model studied earlier in Section

2, because there h(x) is constant in x ≥ 0 (which explains why, in that case, the highest

personalized price exactly equals the uniform price as shown in Thisse and Vives, 1988).

The remainder of this subsection addresses the subtler question of how personalized

pricing affects profit and aggregate consumer surplus.

4.1.1 The case of full market coverage

We first study the case where the market is fully covered under uniform pricing, i.e., where

p ≤ v. From Lemma 1, this happens when c ≤ v − φ(v). This condition in turn implies

c < v, which means that the market is also fully covered under personalized pricing.

Total welfare is therefore the same under uniform and personalized pricing, because in

both cases all consumers buy their preferred product. The following result reports the

impact of personalized pricing on profit and consumer surplus.

Proposition 1. Suppose Assumption 1 holds and c ≤ v−φ(v) (in which case the market

is fully covered under both pricing regimes). Then for any n ≥ 2, relative to uniform

pricing, personalized pricing harms firms and benefits consumers.
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Proof. Under the stated full-coverage condition, xz = vi − maxj 6=i{z, vj} simplifies to

x = vi − maxj 6=i{vj} for both z = p and z = c as c < p ≤ v. Recall that H and h

are respectively the CDF and density function of x. Then industry profit under uniform

pricing is

ΠU = p− c =
1

nh(0)
,

while under personalized pricing it is

ΠD = n

∫ ∞

0

[1−H(x)]dx = n

∫ ∞

0

1−H(x)

h(x)
dH(x) ≤ n

[1−H(0)]2

h(0)
=

1

nh(0)
.

The inequality follows because, under Assumption 1, 1−H is log-concave and therefore
1−H
h

is decreasing. The final equality follows because firm symmetry implies 1−H(0) =
1
n
. Therefore, firms suffer from personalized pricing. Since total welfare is unchanged,

consumers benefit from personalized pricing.

The intuition for this result is as follows. Notice that consumers with a relatively small

gap between their top two valuations pay less under personalized pricing, while the reverse

is true for consumers with a relatively large gap between their top two valuations. Under

log-concavity (in Assumption 1) there are relatively more of the former consumers, and so

personalized pricing harms firms but benefits consumers in aggregate. Note that since our

set-up includes Hotelling as a special case (see footnote 14), Proposition 1 significantly

generalizes the result in Thisse and Vives (1988).21

4.1.2 The case of partial market coverage

We now turn to the (perhaps more realistic) case where the market is not fully covered

under uniform pricing. From Lemma 1, we know this happens when c > v − φ(v).

One simple impact of personalized pricing is that it now expands total demand: under

uniform pricing, a consumer buys if the best match is above the uniform price p > c;

under personalized pricing, a consumer buys if the best match is above c. Personalized

pricing therefore strictly improves total welfare.

Before investigating the impact on firms and consumers, we offer an alternative formula

to calculate industry profit under personalized pricing, which is more convenient to use

in some of the subsequent analysis. Conditional on firm i winning a consumer and its

21Although not highlighted in Anderson, Baik, and Larson (2021), this generalization of Thisse-Vives

is also implied by their Proposition 6 which does comparative statics with respect to the advertising cost

in their model. Our proof is similar to that of Proposition 7 in ABL which shows the opposite result

when 1 −H is log-convex. If we were to instead work directly with the primitive valuation distribution

F̃ , this result would be considerably harder to prove, even in the IID case.
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product being valued at vi, its expected profit margin is

m(vi) ≡ vi −

∫ vi

v

max{c, x}d
G(x|vi)

G(vi|vi)
=

∫ vi
c

G(x|vi)dx

G(vi|vi)
, (17)

where we have used (14) and integration by parts. Then industry profit under personalized

pricing is

ΠD = n

∫ v

c

m(vi)G(vi|vi)dF (vi) = n

∫ v

c

[G(v|v)−G(v|v)F (v)]dv , (18)

where the second equality is from using (17) and integration by parts. In the IID case,

G(v|v) = G(v|v) = F (v)n−1, so it simplifies to

ΠD
IID
=

∫ v

c

1− F (v)

f(v)
dF (v)n . (19)

We will now show that when the market is only partially covered, competitive per-

sonalized pricing can raise profit and lower aggregate consumer surplus. To understand

why, it is useful to first investigate why the simple proof in Proposition 1 breaks down

with partial coverage. Under Assumption 1, we still have that

ΠD = n

∫ ∞

0

[1−Hc(x)]dx ≤ n
[1−Hc(0)]

2

hc(0)
, (20)

but now the last term is greater than

ΠU = n
[1−Hp(0)]

2

hp(0)
,

because p > c and both 1 − Hz(0) and
1−Hz(0)
hz(0)

decrease in z. (In the full-coverage case,

c < p ≤ v and so Hc = Hp = H.) This observation also suggests that if 1 − Hz(x) is

log-linear in x, then the inequality in (20) binds and so we have ΠD > ΠU whenever the

market is not fully covered. That is indeed what we show in the following example.

An exponential distribution example. Before pursuing some general analytic re-

sults, it is illuminating to first consider an IID example with an exponential distribution

F (v) = 1−e−(v−v). As shown on page 11, in this exponential example the uniform price is

c+1 irrespective of whether or not the market is fully covered. With full market coverage

(which requires c ≤ v − 1), personalized pricing has no impact on profit or consumer

surplus in this exponential example. This can be seen from noticing that 1 − H(x) is

log-linear.22

22Alternatively, notice that with a covered market ΠU = 1. To show ΠD = 1, use equation (15) and

1−H(x) =

∫ ∞

v+x

F (v − x)n−1dF (v) =

∫ ∞

v

F (t)n−1f(t+ x)dt = e−x

∫ 1

0

(1− u)n−1du =
e−x

n
,

where the third equality is from changing the integral variable from t to u = e−(t−v).
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We now show that with partial coverage (meaning that c > v−1), personalized pricing

always benefits firms but harms consumers. This example suggests that, at least for some

distributions close to the exponential one, moving away from full market coverage can

qualitatively change the impact of personalized pricing.

Under uniform pricing with price 1+ c, a fraction F (1+ c)n of consumers are excluded

from the market, so industry profit is ΠU = 1 − F (1 + c)n. Under personalized pricing,

using (19) and the fact that 1−F (v) = f(v) in this exponential example, we immediately

have ΠD = 1 − F (c)n. Therefore, under the condition for partial coverage (1 + c > v),

ΠD > ΠU , i.e., personalized pricing boosts profit.

The impact on consumer surplus is still unclear, because as noted earlier personal-

ized pricing also increases total welfare. Consumer surplus under uniform pricing and

personalized pricing are respectively

VU =

∫ ∞

1+c

(v − c)dF (v)n − ΠU and VD =

∫ ∞

c

(v − c)dF (v)n − ΠD ,

where the integral term in each expression is the total welfare in each regime. The former

is greater than the latter if and only if

F (1 + c)n − F (c)n >

∫ 1+c

c

(v − c)dF (v)n ,

which is true as v − c < 1 for v ∈ (c, 1 + c). Therefore, personalized pricing boosts profit

so much that consumers always suffer from it.

One way to see the intuition is as follows. Notice that under personalized pricing

total demand is 1 − F (c)n, and so the average price that consumers pay is 1 + c, which

is exactly equal to the uniform price. Personalized pricing therefore raises profit, because

it expands the size of the market. At the same time, this market expansion is from

consumers whose highest valuation is between c and 1 + c—and since this is below the

average price, personalized pricing lowers aggregate consumer surplus. This insight can

be generalized: if personalized pricing weakly raises the average price paid by consumers,

it must harm consumers overall even though it also expands the demand.

The production cost and market coverage. Given the full-coverage result in Propo-

sition 1, it is clear that for a more general (regular) distribution, the impact of personalized

pricing can only be reversed when the market is sufficiently far away from being fully cov-

ered. As we saw earlier, by changing the marginal cost c we can change the degree of

market coverage. In particular, when c is sufficiently close to the valuation upper bound

v, most consumers are excluded from the market. In that case we can show that the
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impact of personalized pricing is completely different from the full coverage case.23

Proposition 2. Suppose v < ∞ and f(v) > 0. For any given n ≥ 2, there exists ĉ < v

such that when c > ĉ personalized pricing benefits firms and harms consumers compared

to uniform pricing.

To understand this result—and more generally how varying c affects the impact of

personalized pricing—we refer to the following graphs which illustrate the duopoly case.

(The graphs also work for the n > 2 case if we interpret v2 as maxj≥2{vj}.)
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Figure 1: The impact of personalized pricing with partial market coverage

Consider first the case depicted in Figure 1a, where c < v (so the market is fully

covered under personalized pricing) but p > v (so the market is only partially covered

under uniform pricing). Under personalized pricing, the consumers with v1 > v2 buy

from firm 1 and pay v1 − v2 + c, and the other half buy from firm 2 and pay v2 − v1 + c.

Compared to the regime of uniform pricing with price p, those consumers in the northwest

and southeast corners pay more, those with weaker preferences in the middle region pay

less, and those in the “expansion” region, who were excluded from the market under

uniform pricing, now buy. As c increases, the “expansion” triangle grows, which is a

positive effect for consumers; at the same time the two corner regions expand as the lines

23One may wonder whether this result is immediate from (13) and (16). From those expressions, it is

clear that if c and p were sufficiently close to each other and meanwhile both were bounded away from

v, then VU > VD given vn:n is greater than vn−1:n in the sense of first-order stochastic dominance. This

ranking, however, is no longer obvious when both c and p approach v.
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of |v1 − v2| + c = p move toward the center, which is a negative effect for consumers.

(The latter effect happens because the uniform price p increases in c slower than the

personalized prices, which can be seen from equation (7). This reflects the fact that

under personalized pricing firms fully pass cost increases through to consumers, whereas

under uniform pricing firms share some of the burden.) Since the consumers in the

expansion region have low valuations, the positive effect is relatively small, and so it

becomes possible for personalized pricing to hurt consumers.

When c exceeds v, as depicted in Figure 1b, a new effect emerges. Now some consumers

value only one product above cost. These consumers lie in the “monopoly” regions in the

figure. Each firm acts as a true monopolist over these “captured” consumers and extracts

all their surplus under personalized pricing. For the consumers in the “competition”

region who value both products above the cost, the situation is the same as in Figure

1a. As c increases, both the monopoly and competition regions shrink, but the monopoly

region becomes proportionally more important. When c is close to v, the monopoly region

dominates, so the impact of personalized pricing becomes qualitatively the same as in the

monopoly case, as proved in Proposition 2.24 (Notice also that since both regions shrink

as c increases, the size of the impact goes to zero in the limit.)

Following this discussion, we have an even stronger result when c is sufficiently large.

Using the results in the proof of Proposition 2, we can show the following:

Corollary 1. Suppose v < ∞ and f(v) > 0. For any given n ≥ 2, there exists ĉ < v

such that for c > ĉ each firm is better off and consumers are worse off under competitive

personalized pricing than under monopoly uniform pricing.

Proposition 2 and the above discussion suggest a possible cutoff result, whereby per-

sonalized pricing benefits firms if and only if c exceeds a threshold c′, and harms consumers

if and only if c exceeds another threshold c′′. (Where c′′ > c′ because personalized pricing

raises total welfare.) Although it appears hard to formally prove such a cutoff result,

numerical simulations suggest it is true. In particular, Figure 2 plots the impacts of per-

sonalized pricing on industry profit (ΠD − ΠU) and on consumer surplus (VD − VU) for

four common distributions (all in the IID case) and for different values of c.25

Figure 2a considers the exponential case with F (v) = 1− e−(v−1) on [1,∞). At c = 0

the market is (just) covered under uniform pricing and so the impact is zero, but for

higher values of c the market is only partly covered, so as explained before personalized

24Alternatively, when c is close to v, conditional on a consumer valuing one firm’s product more than

c, it is very unlikely that the consumer values any other product more than c. Therefore when c is high,

each firm is essentially a monopolist competing only against the outside option.
25As indicated by some of these examples, the assumption v < ∞ in Proposition 2 does not appear to

be crucial, but we have not been able to extend that result to the case with an unbounded support.
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Figure 2: The impact of personalized pricing when n = 2, for different values of c
(The dotted and the solid lines represent, respectively, industry profit and consumer surplus.)

pricing benefits firms and harms consumers. (This example also demonstrates that to

reverse the impact of personalized pricing, we do not necessarily need the cost to be

high enough so that the “monopoly” effect in Figure 1b arises.) Figures 2b and Figure

2c consider, respectively, the Extreme value distribution with F (v) = e−e−(v−2)
(which

leads to the logit model), and the normal distribution with mean 2 and variance 1 (which

leads to the probit model). In both cases, for low values of c (when coverage is high)

personalized pricing benefits consumers and harms firms as in the full-coverage case, for

high values of c (when coverage is low) personalized pricing has the opposite impact, while

for intermediate c both consumers and firms benefit from personalized pricing. Finally,

the same pattern is also observed in Figure 2d, which considers the case where valuations

are uniformly distributed on [1, 2]. In this example, when c ≤ 1/2 the market is covered,

so we know from earlier that personalized pricing harms firms and benefits consumers.

When c > 1/2 the market is only partially covered, and personalized pricing benefits firms

whenever c is above about 1.02, and harms consumers whenever c is above about 1.19.
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The number of firms and market coverage. Another parameter which influences

market coverage is the number of firms. When n is small, the impact of personalized

pricing should be similar to under monopoly; when n is large, the best match should

be relatively high, and so the impact of personalized pricing should be similar to the

full-coverage case.

We first report an analytical result for the case where n is large, using an approximation

argument similar to the one for the case of large c. However, the approximation of the

uniform equilibrium price when n is large is technically more difficult. We rely on the

approximation results developed in Gabaix et al. (2016) which use extreme value theory,

but that technique works only in the IID case. Let

γ = lim
v→v

d

dv

(

1− F (v)

f(v)

)

(21)

denote the tail index of the valuation distribution of each product. When f is log-concave,

we must have γ ∈ [−1, 0].26

Proposition 3. Consider the IID case without full market coverage for any n. Suppose

f is strictly positive and finite everywhere on its support and has a tail index γ ∈ (0, 1).

Then there exists n̂ such that when n > n̂ personalized pricing harms firms and benefits

consumers.

Given the opposite is true in the monopoly case, this again suggests the possibility of

a cutoff result in terms of n. Since an analytic result seems hard to obtain, we instead

report some numerical examples in Figure 3 below (the IID case with c = 0). Figure 3a is

for the exponential distribution, and confirms our earlier analytic result that personalized

pricing always benefits firms and harms consumers. Figure 3b shows that for the Extreme

value distribution, personalized pricing benefits firms if and only if n < 10, and harms

consumers if and only if n < 7. Hence the predictions from Thisse and Vives (1988) fail

for a relatively large range of n. A qualitatively similar pattern emerges in Figure 3c for

the Normal distribution. Figure 3d considers the uniform distribution with support [0, 1],

where the impact of personalized pricing is reversed once we move beyond monopoly.

(However, simulations for higher values of c show that the impact of personalized pricing

can be similar to in monopoly for some values of n > 1.)

26Given f is log-concave, 1− F is log-concave, so γ ≤ 0. To see γ ≥ −1, notice that

d

dv

(

1− F (v)

f(v)

)

= −1−
1− F (v)

f(v)

f ′(v)

f(v)
.

If limv→v f
′(v) ≤ 0, the claim is obvious. If limv→v f

′(v) > 0, then we must have v < ∞ and f(v) > 0, in

which case 1−F (v)
f(v) = 0 and given the log-concavity of f we also have f ′(v)

f(v) < ∞. Then γ = −1. (Without

the log-concavity of f , f ′(v)
f(v) can be ∞, in which case γ can be less than −1.)
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Figure 3: The impact of personalized pricing when c = 0, for different values of n
(The dotted and the solid lines represent, respectively, industry profit and consumer surplus.)

4.2 The long-run impact in a free-entry market

In the long-run, the ability to do personalized pricing may also influence firms’ incentives

to enter the market. To investigate this we now consider a free-entry game, where firms

first decide whether or not to pay a fixed entry cost, and then after entering they compete

in prices. The free-entry equilibrium is determined by the usual zero-profit condition.

(As in the literature, we implicitly assume a sequential entry game to avoid coordination

problems, and we ignore integer constraints on n.)

Let us first study the case with personalized pricing. Due to Bertrand competition,

the profit on each consumer is simply the difference between her best and second-best

product valuations, adjusted for the marginal cost. Hence, with n firms in the market,

each firm’s profit can be expressed as

1
n
ΠD = 1

n
E[max{c, vn:n} −max{c, vn−1:n}] . (22)

On the other hand, the increase in match efficiency when the number of firms goes from

n− 1 to n is

E[max{c, vn:n}]− E[max{c, v̂n−1:n−1}] , (23)
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where v̂n−1:n−1 denotes the best match among the original n− 1 products. (We use v̂i to

denote the valuation for product i ≤ n−1 when there are only n−1 firms in the market.)

To determine whether there is too much or too little entry relative to the social optimum,

it then suffices to compare (22) and (23).

Assumption 2. Entry of a new firm does not affect consumers’ valuations for existing

products. That is, the distribution of (v̂1, ..., v̂n−1) when there are n−1 firms in the market

is the marginal distribution of (v1, ..., vn−1) when there are n firms in the market.

Under the above assumption (which is clearly true, e.g., in the IID case),27 it turns

out that (22) and (23) are actually equal to each other. Hence one can show that:

Lemma 3. Under Assumption 2, the free-entry equilibrium under personalized pricing is

unique and it is also socially optimal.

The intuition for this result is straightforward. Suppose n − 1 firms are already in the

market, and consider the entry of an nth firm. Amongst consumers for whom vn ≤

maxj≤n−1{c, vj}, this additional firm creates no social surplus and earns zero profit. How-

ever, amongst consumers with vn > maxj≤n−1{c, vj}, this new firm raises total surplus

by vn −maxj≤n−1{c, vj}, and fully extracts it via Bertrand competition. As a result, the

incentives of the social planner and this new firm are perfectly aligned.28

Now consider the case with uniform pricing. Let n∗ denote the socially optimal number

of firms. A simple corollary of Lemma 3 is the following:

Corollary 2. Suppose Assumption 2 holds and each firm’s profit under uniform pricing

decreases in n.

27Assumption 2 fails if the entry of a new product induces existing firms to reposition their products,

or if consumers have consideration-set dependent preferences. For example, Assumption 2 fails in the

Salop circle model because entry of a new firm causes existing ones to relocate, and this changes consumer

valuations for their products. (Contrary to Lemma 3 below, Section 3.5 of Stole, 2007 shows that entry

is socially excessive in the Salop circle model under perfect price discrimination.) However Assumption

2 can hold in other spatial models, such as in Chen and Riordan (2007) where entry of a new firm does

not lead to repositioning by existing firms.
28Levin and Smith (1994) show a related result in the context of IPV auctions (see their Proposition 6).

The difference is that in their setup bidders simultaneously decide whether to participate in an auction

and end up playing a symmetric mixed-strategy equilibrium. The corresponding social planer’s problem

is to choose the (symmetric) probability that each bidder participates. Although the outcome is not the

first best due to the randomness of the number of bidders, the free-entry outcome coincides with the

social planner’s solution and the underlying intuition is similar to that in our model. In particular, they

also show the equivalence of (22) and (23) in their IID case when c is irrelevant. See also Chapter 6 in

Milgrom (2004) for some related discussions.
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(i) Entry under uniform pricing is excessive if ΠU > ΠD at n = n∗, but insufficient if

ΠU < ΠD at n = n∗.

(ii) Uniform pricing therefore leads to excessive entry if the market is fully covered and

Assumption 1 holds.

To understand part (i) of the corollary, note that we have just shown that the increase

in match efficiency due to an extra firm entering the market is exactly equal to that

firm’s profit under personalized pricing. Hence, with uniform pricing, entry is either

excessive or insufficient depending upon whether ΠU is respectively above or below ΠD.
29

To understand part (ii), recall that Proposition 1 showed that with full coverage and

Assumption 1 it is always the case that ΠU > ΠD. Anderson, de Palma, and Nesterov

(1995) and Tan and Zhou (2021) also prove this excessive entry result in the IID case; our

proof is much simpler than theirs, and our result is more general since it also potentially

allows for correlated valuations.

Finally, another simple but important consequence of Lemma 3 is the following:

Proposition 4. Compared to uniform pricing, personalized pricing (weakly) benefits con-

sumers in the long run.

In the long-run firms earn zero profit (after accounting for the fixed entry cost) irrespec-

tive of the pricing regime. Therefore since total welfare is maximized under personalized

pricing, so is aggregate consumer surplus.

5 Asymmetrically Informed Firms

So far we have assumed that either all firms do uniform pricing or all firms do person-

alized pricing. Implicitly, therefore, we have assumed that all firms have access to the

same data and technology. However, in certain markets, some firms may have more data

and better technology than others. For example, Amazon possesses lots of information

about customer shopping behavior, and in principle it can use such information to offer

personalized prices for its own products—whereas third-party sellers of similar products

on Amazon are often smaller retailers who lack such information. Similarly, in music

29The assumption that each firm’s profit under uniform pricing decreases in n ensures the uniqueness

of the free-entry equilibrium. (It must hold if the uniform price decreases in n, which, as shown in Zhou,

2017, holds at least in the IID case with a log-concave f .) To see this, let πn(pi, p) be firm i’s profit when

it offers a uniform price pi and the other n − 1 firms offer a price p. Let pn be the equilibrium uniform

price. Then πn(pn, pn) < πn−1(pn, pn−1) ≤ πn−1(pn−1, pn−1), where the first inequality is because a

firm’s profit must increase when the number of competitors drops and they further set higher prices

pn−1 > pn, and the second inequality is simply from the no-deviation equilibrium condition when there

are n− 1 firms in the market.
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streaming, large players like Amazon and Apple may have more data, and also the ability

to make more refined personalized offers, compared to smaller players like Spotify and

Pandora. The goal of this section is to investigate market performance in such a “mixed”

case, where some firms do uniform pricing and others do personalized pricing. By com-

paring with the two symmetric regimes studied earlier, we can then evaluate the impact

of policies that prevent large retailers such as Amazon from price discriminating or which

force them to share their data.

In order to capture this “mixed” case, suppose that firms 1 to k have consumer data

and can price discriminate, while firms k + 1 to n have no consumer data and therefore

have to offer a uniform price. When k = 0 all firms do uniform pricing as in Section 3.1,

whereas when k = n all firms do personalized pricing as in Section 3.2. When 0 < k < n

a subtle technical issue arises: if all firms set prices simultaneously, there is no pure-

strategy pricing equilibrium,30 and the mixed-strategy equilibrium is rather complicated

to characterize. To avoid this problem, we assume that the n− k firms with no consumer

data simultaneously set their uniform prices first, and after seeing their prices the other

k firms use their data to simultaneously offer personalized prices. This timing seeks to

capture the idea that firms with lots of data, such as Amazon, often also have more

advanced pricing technologies and so can adjust their prices more frequently.31

5.1 Equilibrium analysis

Consider 0 < k < n and let p denote the equilibrium price of each firm that has no data.

Given that uniform price, let us first derive the equilibrium personalized prices charged

by firms 1 to k. Let

x̂p,c ≡ v1 − c−max{0, v2 − c, ..., vk − c, vk+1 − p, ..., vn − p}

be the advantage of firm 1 relative to a consumer’s other alternatives (including the

outside option) when each firm prices at its lowest equilibrium price, i.e., when firms 1

to k price at c, and firms k + 1 to n price at p. Let Ĥp,c be the CDF of x̂p,c. Firms 1 to

k compete exactly as in Section 3.2, except that now consumers have an outside option

30In any hypothetical pure-strategy equilibrium, each uniform-pricing firm has a positive measure of

consumers who are (almost) indifferent between it and some personalized-pricing firm but buy from the

latter because of its precisely targeted prices. If the uniform-pricing firm slightly reduces its price, it will

win these consumers and so its demand will increase discontinuously. This discontinuity in demand leads

to non-existence of pure-strategy pricing equilibrium.
31Such a timing is also often assumed in the literature. See, e.g., Thisse and Vives (1988) and

Jullien, Reisinger, and Rey (2022) for a similar treatment in their duopoly models when one firm price

discriminates but the other does not.
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max{0, vk+1−p, ..., vn−p}. Therefore in equilibrium firm 1, say, offers personalized prices

p1(v1, ..., vn) =







c+ x̂p,c if x̂p,c > 0

c otherwise .

Since firm 1 wins a consumer if and only if xp,c > 0, its equilibrium profit is

π̂D =

∫ ∞

0

xdĤp,c(x) =

∫ ∞

0

[1− Ĥp,c(x)]dx . (24)

Note that provided p > c, x̂p,c exceeds xc in the sense of first order stochastic dominance.

Therefore comparing with equation (15) from earlier, each personalized-pricing firm here

in the mixed regime earns more than when all firms price discriminate (i.e., π̂D > 1
n
ΠD).

We now derive the equilibrium uniform price p charged by the n− k firms that have

no data. Suppose firm n unilaterally deviates to price pn. To calculate firm n’s demand

we should set the prices of the firms that do personalized pricing to c. (To understand

this, note that if, say, vn − pn < v1 − c, firm n cannot win the consumer because firm 1

can offer her more surplus with a personalized price close to marginal cost.) Therefore, a

consumer buys from firm n if and only if

vn − pn ≥ max{0, v1 − c, ..., vk − c, vk+1 − p, ..., vn−1 − p} , (25)

i.e., firm n offers more surplus than the outside option, each other firm that sets a uniform

price, and all firms that set personalized prices when they charge c. This suggests that

under regularity conditions, (i) the equilibrium uniform price p in this mixed regime is

lower than that in the regime of uniform pricing, and so (ii) for any given deviation

price pn, firm n’s deviation demand in this mixed regime is smaller than in the regime

of uniform pricing, which further implies that each uniform-pricing firm earns less in this

mixed regime than in the regime of uniform pricing.

Let x̃p,c be the difference between the left and righthand sides of (25) at pn = p, i.e.,

x̃p,c ≡ vn − p−max{0, v1 − c, ..., vk − c, vk+1 − p, ..., vn−1 − p} ,

and let H̃p,c be its CDF. Firm n’s deviation demand can then be expressed as 1−H̃p,c(pn−

p). Suppose this demand behaves well (e.g., it is log-concave in the IID case when each

vi has a log-concave density). Then the equilibrium uniform price solves

p− c =
1− H̃p,c(0)

h̃p,c(0)
. (26)

(If c = p, this equation degenerates to the first-order condition in the regime of uni-

form pricing. Therefore, whenever the right-hand side increases in c, p is lower than the
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equilibrium price in the regime of uniform pricing.) Firm n’s profit is

π̃U = (p− c)[1− H̃p,c(0)] =
[1− H̃p,c(0)]

2

h̃p,c(0)
. (27)

As argued before, whenever p is lower than the equilibrium price in the regime of uniform

pricing, we have π̃U < 1
n
ΠU .

Industry profit in the mixed regime is ΠM = kπ̂D+(n−k)π̃U . The expected consumer

surplus is

VM = E[max{0, vk−1:k − c, vn−k:n−k − p}] , (28)

where vk−1:k denotes the second best among {v1, ..., vk} and vn−k:n−k denotes the best

among {vk+1, ..., vn}. (If k = 1 the vk−1:k − c term vanishes.) To see this, let v0 =

max{0, vn−k:n−k − p} be a consumer’s outside option when the first k firms compete for

her by offering personalized prices. If max{v1−c, ..., vk−c} ≥ v0, the consumer buys from

one of the first k firms, in which case her surplus is max{v0, vk−1:k − c}. (If the second

best among the k firms is worse than v0, the consumer’s surplus is v0; otherwise it is

vk−1:k− c.) Otherwise, she takes the outside option v0. Therefore, the expected consumer

surplus is E[max{v0, vk−1:k − c}], which leads to the expression for VM in equation (28).

5.2 Comparison

We now compare the mixed case with the uniform and personalized pricing regimes that

we studied earlier. For brevity we focus on consumer surplus—and show that under

certain conditions the mixed case is the worst for consumers.

When the production cost c is sufficiently high we can compare the three regimes

analytically.32 In particular, similar to Proposition 2, we can show that if v < ∞ and

f(v) > 0, there exists a ĉ such that when c > ĉ we have VD < VM < VU , i.e., consumers

rank the mixed case between the other two regimes.33 Intuitively, recall that when c is

sufficiently large, each firm approximately acts like a monopolist. As a result, as more

firms are able to personalize prices, consumers must become worse off.

When valuations are IID exponential and one firm can personalize prices (i.e., k = 1),

we can also provide an analytical comparison for any level of c. In particular, we can

32In general, the comparison between VM and VU and VD is not trivial. To see this, recall that

VU = E[max{0, vn:n − pU}] where pU is the equilibrium price in the uniform pricing regime, while VD =

E[max{0, vn−1:n − c}]. The comparison with VM is non-trivial because vn:n > max{vk−1:k, vn−k:n−k} >

vn−1:n, while under regularity conditions we should have pU > p > c.
33More precisely, for c close to v, following a similar logic as in the proof of Proposition 2, we can show

VM ≈ (n−k)f(v) ε
2

8 . (We can also prove that ΠM ≈ kf(v) ε
2

2 +(n−k)f(v) ε
2

4 , and hence ΠU < ΠM < ΠD.)

The details are available upon request.
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prove that there exists a c̃ such that when c < c̃ we have VM < VD ≤ VU i.e., consumers

are worst off in the mixed case. Intuitively, this happens because the firm that is able

to personalize can “poach” some consumers for whom it is not their favorite product via

a low personalized price—but this harms match efficiency, and can reduce total welfare

by so much that consumers end up worse off in aggregate compared to the uniform and

discriminatory pricing regimes. On the other hand, we can also prove that when c > c̃

we have VD < VM < VU , i.e., the same ranking as in the previous paragraph for large c.

(The proof of these consumer surplus rankings is available in the Appendix.)

Numerical simulations with other distributions confirm the patterns outlined above.

Figure 4 depicts consumer surplus in the three regimes as a function of c, for respectively

the Extreme value and Normal distributions (for n = 2, and in the mixed case also k = 1).

At low values of c coverage is high, and the mismatch effect highlighted above causes the

mixed regime to be worst for consumers. On the other hand, at higher values of c firms

are more like local monopolists, and hence the discriminatory regime when all firms do

personalized pricing is worst for consumers.

Overall, our results suggest that when coverage is relatively high, policies which force

a large firm to share its data or prevent it from personalizing prices can benefit consumers.
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Figure 4: Consumer surplus when n = 2, for different values of c
(The solid, dashed, and dotted lines are respectively the mixed, uniform, and discriminatory cases.)

6 Discussion and Extensions

6.1 Valuation correlation

Although our model allows for valuations to be correlated across products, so far we

have not discussed how the impact of personalized pricing might vary with the degree of

this correlation. Although it appears hard to obtain general results, it is clear that in
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the limit case with perfectly (positively) correlated valuations the impact of personalized

pricing disappears—because firms will price at marginal cost under both the uniform and

discriminatory regimes. The following example suggests that, as one might expect, a

greater degree of correlation weakens the impact of personalized pricing.

Example: bivariate Normal distribution. Suppose n = 2 and valuations are drawn from

a bivariate Normal distribution with mean µ, variance σ, and correlation coefficient ρ ∈

(−1, 1). Suppose the market is fully covered.34 Then one can show that:35

ΠD = 2σ

√

1− ρ

π
and ΠU = σ

√

π(1− ρ) , and hence ΠD − ΠU ∝ −
√

1− ρ .

In this example, as product valuations become more correlated (i.e., as ρ increases),

profit falls under both uniform and discriminatory pricing, and the impact of personalized

pricing on profit also becomes smaller. (Given the assumption of a covered market, the

impact on consumer surplus also gets smaller.) Intuitively, higher correlation means that

products are less differentiated, and so firms compete more fiercely. In the limit case of

perfect positive correlation (i.e., as ρ → 1), personalized pricing has no impact on profit

or consumer surplus because firms’ products become homogeneous.

6.2 An alternative information structure

So far we have assumed that under personalized pricing, firms observe a consumer’s valu-

ation for each product. Here we consider a natural alternative, where firms observe only

a consumer’s valuation for their own product, i.e., each firm i observes only vi. For con-

venience, we refer to these two cases as “full” and “partial” discrimination respectively.36

Under partial discrimination a firm offers a price p(v) to a consumer who has valuation

v for its product. It turns out that p(v) can be derived in the same way as a bid in a

standard first-price auction. Recall that G(·|vi) and g(·|vi) are respectively the CDF and

density function of maxj 6=i{vj} conditional on vi, and note that in a standard first-price

auction with interdependent values (see, e.g., Milgrom and Weber, 1982) a bidder with

34Strictly speaking, full market coverage is impossible because the lower support of the valuation

distribution is unbounded. However the market is almost covered if µ is large enough for a given c.
35Since the joint density of the bivariate Normal is log-concave, the first part of Assumption 1 is

satisfied (the second part is not needed since the market is covered). Also notice that v1 − v2 is normally

distributed with mean 0, variance 2σ2(1− ρ) ≡ τ2, and density function h(x) = 1√
2πτ

e−
x2

2τ2 . Hence

ΠU =
1

2h(0)
, and ΠD = 2

∫ ∞

0

xh(x)dx = −2τ2
∫ ∞

0

h′(x)dx = 2τ2h(0) ,

where we used xh(x) = −τ2h′(x). Substituting in for h(0) and τ gives the stated profit expressions.
36Note that one could loosely interpret full discrimination as when firms have access to comprehensive

third-party data, and partial discrimination as when firms only have access to first-party data.
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value z bids b(z), where

b(z) ≡

∫ z

c

[1− L(x|z)]dx with L(x|z) = exp

(

−

∫ z

x

g(t|t)

G(t|t)
dt

)

. (29)

We now impose the following regularity condition:

Assumption 3. For all z ∈ [v, v], [v−b(z)−c] g(z|v)
G(z|v)

increases in v whenever it is positive.

Assumption 3 definitely holds if g(z|v)
G(z|v)

increases in v, which is satisfied when product

valuations are either IID or (positively) affiliated in the sense of Milgrom and Weber

(1982). However the assumption can also hold even when g(z|v)
G(z|v)

decreases in v, provided

it does not decrease too quickly.

Lemma 4. Suppose Assumption 3 holds. Under partial discrimination there exists a

symmetric equilibrium in which each firm uses the price schedule p(v) = v − b(v), where

b(v) is defined in equation (29) and is strictly increasing in v.

Competition under partial discrimination is similar to that in a first-price auction.

Formally, we can interpret a firm as “bidding” surplus of b(v) = v − p(v) to a consumer

who has valuation v for its product, and then the consumer picking the best (non-negative)

“bid.” The lemma implies that a consumer buys provided at least one product valuation

exceeds cost, because the surplus v − p(v) offered by a firm is positive if and only if

v > c. The lemma also implies that, conditional on buying, a consumer buys the highest-

valuation product because each firm’s offered surplus v − p(v) strictly increases in v.37

Proposition 5. Suppose Assumption 3 holds. Comparing partial and full discrimination:

(i) Total welfare is the same under both regimes.

(ii) When valuations are IID, profit and consumer surplus are the same in both regimes.

(iii) Otherwise firms earn more (less) under partial discrimination if g(z|v)
G(z|v)

increases (de-

creases) in v, and the opposite is true for consumer surplus.

The intuition for these results is as follows. For part (i), total welfare is the same

under both partial and full discrimination because in both regimes consumers buy the

best product conditional on its valuation exceeding marginal cost. Parts (ii) and (iii) then

exploit the connection with auction theory. In particular, notice that under full discrim-

ination competition is the same as in a second-price auction—because the winning firm

earns a profit equal to the difference between the highest and second-highest valuations

37Interestingly, note that Assumption 3 does not guarantee that a firm charges a higher price to a

consumer with a higher valuation for its product. Nevertheless, a sufficient condition for p′(v) > 0 is that
g(v|v)
G(v|v) ≤

g(x|x)
G(x|x) for x ≤ v; this holds, for example, in the IID case if each vi has a log-concave density.
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(including the outside option). The well-known revenue equivalence theorem then implies

that, when valuations are IID, firm and consumer payoffs are the same under both full

and partial discrimination. Meanwhile the theory of auctions with interdependent valua-

tions (e.g., Milgrom and Weber, 1982) implies that bidders (i.e., firms) are better off and

the auctioneer (i.e., consumers) are worse off with partial information if valuations are

positively affiliated, while the reverse is true if they are negatively affiliated.38

Proposition 5 implies that with IID valuations, all our earlier results about full discrim-

ination (for both the short- and long-run) carry over to partial discrimination. Outside

the IID case, this equivalence remains approximately true if the production cost c is

sufficiently high and if v < ∞ and f(v) > 0. This is simply because when each firm

acts approximately like a monopolist, it does not matter whether or not they know con-

sumers’ valuations for other firms.39 More generally, though, Proposition 5 implies that

correlation in valuations matters for whether consumers prefer firms to have more or less

information about their tastes.40

Although beyond the scope of the current paper, it would of course be interesting

to also consider other information structures and investigate how the welfare impact of

price discrimination changes in the amount of information that firms have about con-

sumer preferences. This is, however, a challenging question in general because the space

of information structures is large and the pricing equilibrium under some information

structures is complicated to characterize. One way to proceed is to consider a special

class of information structures. For example, in the linear Hotelling model, some papers

(e.g., Liu and Serfes, 2004; Bounie, Dubus, and Waelbroeck, 2021) have studied the class

of interval information structures and shown that providing firms with finer information

has a non-monotonic impact on profit and consumer surplus. Another way to proceed

is to consider an information design approach and explore the welfare limits when arbi-

trary information structures are feasible. For example, Bergemann, Brooks, and Morris

(2015) and Elliott, Galeotti, Koh, and Li (2021) have respectively studied this issue in

the monopoly case and the competition case.41 Our approach, by focusing on simpler in-

38We note that while the auctions literature focuses on the case of positive affiliation, negative affil-

iation may be reasonable in our context, e.g., if products differ in characteristics space, and consumers

have different preferences over different characteristics.
39More formally, industry profit under partial discrimination is

ΠPD = n

∫ v

c

[p(v)− c]G(v|v)dF (v) = n

∫ v

c

[v − b(v)− c]G(v|v)dF (v) = n

∫ v

c

∫ v

c

L(x|v)dxG(v|v)dF (v).

Following Proposition 2, for high c we find that ΠPD ≈ nf(v) ε
2

2 which equals the approximation of ΠD.
40One may wonder, in the case of full market coverage, whether partial discrimination also reduces

profit and improves consumer surplus relative to uniform pricing. According to Proposition 5, this must

be true if g(z|v)
G(z|v) decreases in v, but we have not been able to show it is true more generally.

41The information structures available to firms, however, might be constrained by communication
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formation structures, is arguably more suitable for evaluating policies which simply either

allow for or ban the use of consumer data.

6.3 Constrained personalized pricing

Up until now, in the regime of personalized pricing we have assumed that firms have

complete flexibility over the prices they charge. However in practice a firm may be

constrained—if its personalized prices differ by too much, it may face a consumer backlash

or scrutiny from policymakers. Therefore here we consider the case where the maximum

price difference across consumers is restricted. We show that the main insights from our

earlier analysis carry over to such a “constrained” setting—in particular, the impact of

personalized pricing on profit and consumer surplus depends on market coverage.

Consider the following two-stage model: firms first simultaneously choose a public

list price which caps their personalized prices, and then offer personalized discounts of

up to ∆ off their list price, where 0 < ∆ < v − max{c, v}.42 Note that ∆ = 0 gives

uniform pricing, while equation (14) implies that for ∆ ≥ v −max{c, v} firms charge the

“unconstrained” personalized prices studied earlier.43

We look for a symmetric equilibrium where each firm sets the same list price p∗.

Suppose that firm i unilaterally deviates and chooses a general list price pi ≥ c+∆ in the

first stage.44 Then in the equilibrium of the second stage, firm i offers personalized prices

p(vi,v−i; pi) =







min{pi, p
∗ −∆+ xp∗−∆} if xp∗−∆ ≥ pi − p∗

pi −∆ otherwise

where xp∗−∆ = vi−max
j 6=i

{p∗−∆, vj} is the advantage of firm i relative to the best alterna-

tive (including the outside option) when all firms offer the minimum possible equilibrium

personalized price p∗ −∆. These prices take a similar form as the “unconstrained” per-

sonalized prices from equation (14). When firm i wins a consumer (in which case other

firms must being offering the lowest possible price p∗ −∆), it can charge a personalized

incentives between firms and consumers. See, e.g., Ali, Lewis, and Vasserman (2020), and Ichihashi and

Smolin (2022) for some recent research in this direction.
42If instead firms simultaneously choose personalized prices (which differ across consumers by no more

than ∆), one can show there is no pure-strategy pricing equilibrium. We circumvent this technical issue

by considering a two-stage game which arguably captures better the practice of personalized discounts.
43Varying ∆ between 0 and v−max{c, v} therefore traces out a path from uniform to “unconstrained”

personalized pricing. This is in the same spirit as some works in the literature on third-degree price

discrimination (e.g., Schmalensee, 1981; Aguirre, Cowan, and Vickers, 2010) that use comparative statics

in the price difference across two market segments to perform welfare analysis.
44Note that a list price satisfying pi < c+∆ is weakly dominated since a firm never prices below cost.
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price which is xp∗−∆ higher than its competitors’, but this price is constrained by its own

list price pi and the lower bound pi −∆.

Using the above, and recalling that Hz denotes the CDF of xz, firm i’s profit is

(pi − c)[1−Hp∗−∆(pi − p∗ +∆)] +

∫ pi−p∗+∆

pi−p∗
(p∗ −∆+ x− c)dHp∗−∆(x) . (30)

The first term is profit from consumers for whom the list price binds because they have

a very strong preference for firm i, while the second term is profit from consumers who

have a less strong preference for firm i and so receive personalized discounts. Taking the

derivative of profit with respect to pi and imposing pi = p∗, a symmetric equilibrium price

p∗ must satisfy the following equation

p∗ −∆− c =
1−Hp∗−∆(∆)

hp∗−∆(0)
. (31)

Intuitively, when a firm slightly increases its list price it obtains more revenue from con-

sumers for whom the list price binds (and they have mass 1 − Hp∗−∆(∆)), but since its

minimum price also increases the firm stops selling to consumers who were just indifferent

about buying from it (hence the hp∗−∆(0) term).

To ensure that the solution to equation (31) is unique and constitutes an equilibrium,

we make the following assumption:

Assumption 4. 1−Hz(x) is log-concave in x and logsubmodular in (x, z).

Note that the logsubmodularity condition requires that 1−Hz(x)
hz(x)

be non-increasing in z for

all x, and so is stronger than the second condition in Assumption 1 from earlier. It is

straightforward to show that Assumption 4 is satisfied if, for example, valuations are IID

with a log-concave distribution.

We then obtain the following result about the equilibrium list price (recall that H and

h are respectively the CDF and density of x = vi −maxj 6=i{vj}):

Lemma 5. Suppose Assumption 4 holds.

(i) The unique (symmetric) equilibrium list price p∗ satisfies equation (31).

(ii) The market is fully covered if and only if c ≤ v − 1−H(∆)
h(0)

.

(iii) Suppose also that h(x) < h(0) for all x > 0. Then as ∆ increases the equilibrium list

price p∗ strictly increases and a firm’s minimum price p∗ −∆ strictly decreases.

To interpret the lemma, notice that as ∆ → 0 the equilibrium list price that solves

equation (31) coincides with the uniform price that we solved for earlier, and the condition

for coverage is also the same. Under the same mild regularity condition as in Lemma

2, an increase in ∆ induces firms to raise their list price (to better price discriminate
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consumers with a strong preference for their product) but also lower their minimum price

(to sell to more consumers). When ∆ → v − max{c, v} the list price equals the highest

“unconstrained” personalized price, while the lowest price charged by firms equals c.

We now turn to how the flexibility of personalized pricing impacts market performance:

Proposition 6. (i) Suppose c ≤ v − φ(v) so that the market is fully covered as ∆ → 0.

A larger ∆ (i.e., more flexible personalized pricing) harms firms and benefits consumers.

(ii) Suppose c > v−φ(v) so that the market is not fully covered as ∆ → 0. Then allowing

a small extent of personalized pricing (i.e., allowing a small ∆ > 0) benefits firms, and it

harms consumers if nG(v|v)f(v) ≥ f(n)(v) (which is true, e.g., when valuations are IID).

Consistent with our earlier results, part (i) of the proposition shows that in a fully

covered market a higher discount harms firms and benefits consumers. Intuitively, as ∆

increases, consumers with a strong preference for one product lose out since they pay more

as the list price increases, but consumers with lower valuations gain since more of them are

able to purchase as the minimum price decreases, and the latter dominates the former due

to logconcavity. Also consistent with our earlier results, part (ii) of the proposition shows

that when the market is not covered as ∆ → 0, a small discount benefits firms but harms

consumers. Figure 5 depicts the impact of larger ∆ on welfare outcomes when n = 2,

c = 1.5, and valuations are IID uniform on [1, 2]. Industry profit and consumer surplus

are non-monotone in ∆; since ∆ = 0 corresponds to uniform pricing while ∆ = 0.5

corresponds to “unconstrained” personalized pricing, consumers prefer uniform pricing

while firms prefer an intermediate degree of personalized pricing.

0 0.1 0.2 0.3 0.4 0.5

0.05

0.10

0.15
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Figure 5: The impact of ∆ on profit (dotted line) and consumer surplus (solid line)

In summary, when firms are constrained in how much personalized prices can vary

across consumers, our main insights from earlier carry over. Specifically, market coverage

matters—in covered markets more flexible personalized pricing harms firms but benefits

consumers, whilst in uncovered markets the opposite can be true.

34



7 Conclusion

This paper has investigated the impact of personalized pricing, a form of price discrimi-

nation which is becoming increasingly relevant in the digital economy. The paper delivers

three main insights: (i) In a general oligopoly model, competitive personalized pricing

intensifies competition, harms firms and benefits consumers under a log-concavity condi-

tion if the market is fully covered; however, (ii) the impact can be completely reversed

in the (arguably more realistic) case without full market coverage. In this case, per-

sonalized pricing tends to amplify the degree of existing competition. Specifically, it

intensifies competition and benefits consumers in markets that are already competitive

enough (e.g., when production cost is low or the number of competitors is big), whereas in

markets where competition is relatively weak (e.g., when product cost is high or the num-

ber of competitors is small), personalized pricing further reduces it, harming consumers.

Moreover, (iii) in a long-run equilibrium with endogenous market structure, personal-

ized pricing induces the socially optimal level of entry and so favors consumers. We also

considered the case where some firms can use consumer data to price discriminate while

others cannot. We showed that when market coverage is relatively high, this “mixed”

case can be the worst for consumers—and hence policies which prevent data-rich firms

from price discriminating, or which force them to share their data, can improve consumer

surplus.

One important issue that this paper has not addressed is a consumer’s incentive to

allow her data to be collected and then used for personalized pricing (e.g., privacy policies

like GDPR in the EU and CCPA in California give consumers some control over what data

is harvested and how it is used). This issue is studied in our companion paper Rhodes

and Zhou (2022). There we identify a novel externality across consumers: when more

consumers share their data, firms may (adversely) revise their offers to consumers who

choose to remain anonymous. Due to this externality, we demonstrate that (i) although

privacy policies such as GDPR benefit consumers, there are still too many consumers who

choose to share their data relative to the consumer optimum, and (ii) more competition

can harm consumers in aggregate by inducing more of them to share their data.
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Appendix: Omitted Proofs and Details

Primitive conditions for Assumption 1. We report some primitive conditions for Assump-

tion 1. Define a piece of notation

G2(x|y) ≡
∂G(x|y)

∂y
. (32)

Lemma 6. (i) If the joint density f̃ is log-concave, then 1 − Hz(x) is log-concave in x.

(ii) φ(z) = 1−Hz(0)
hz(0)

is non-increasing in z if (a) G2(v|v) ≥ 0 and f ′(v) ≥ 0, or (b) if f̃ is

log-concave and G2(v|v)
G(v|v)

is non-increasing in v. (In particular, condition (b) holds in the

IID case with a log-concave f .)

Proof. (i) Note that

1−Hz(x) =

∫

Ax

f̃(v)dv ,

where Ax = {v : vi−maxj 6=i{z, vj} > x}. To prove 1−Hz(x) is log-concave in x, according

to the Prékopa-Borell Theorem (see, e.g., Caplin and Nalebuff, 1991), it suffices to show

that, for any λ ∈ [0, 1], we have

λAx0 + (1− λ)Ax1 ⊂ Aλx0+(1−λ)x1 , (33)

where the former is the Minkowski average of Ax0 and Ax1 . Let v0 ∈ Ax0 and v1 ∈ Ax1 ,

i.e.,

v0i > z + x0 and v0i > v0j + x0 for any j 6= i ,

and

v1i > z + x1 and v1i > v1j + x1 for any j 6= i .

These immediately imply that

vλi > z + λx0 + (1− λ)x1 and vλi > vλj + λx0 + (1− λ)x1 for any j 6= i ,

where vλi = λv0i + (1− λ)v1i . Hence, we have vλ ∈ Aλx0+(1−λ)x1 , and so (33) holds.

(ii) Recall that

φ(z) =

∫ v

z
G(v|v)dF (v)

G(z|z)f(z) +
∫ v

z
g(v|v)dF (v)

.

For z ≤ v, φ(z) is a constant and so is non-increasing. In the following, we focus on z > v.

Using dG(v|v)
dv

= g(v|v) +G2(v|v), one can check that φ′(z) ≤ 0 if and only if

G(z|z)f(z) +

∫ v

z

g(v|v)dF (v) +

(

f ′(z)

f(z)
+

G2(z|z)

G(z|z)

)
∫ v

z

G(v|v)dF (v) ≥ 0 . (34)
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This must be true if condition (a) holds. To see condition (b), notice that the log-

concavity of the joint density f̃ implies the log-concavity of the marginal density f and

so f ′(z)
f(z)

≥ f ′(v)
f(v)

for v ≥ z. Therefore, a sufficient condition for (34) is

G(z|z)f(z) +

∫ v

z

g(v|v)dF (v) +

∫ v

z

G(v|v)f ′(v)dv +
G2(z|z)

G(z|z)

∫ v

z

G(v|v)dF (v) ≥ 0 .

Applying integration by parts to the third term, we can rewrite the above condition as

f(v)−

∫ v

z

G2(v|v)f(v)dv +
G2(z|z)

G(z|z)

∫ v

z

G(v|v)dF (v) ≥ 0 .

This holds if
G2(z|z)

G(z|z)
≥

G2(v|v)

G(v|v)

for any v ∈ [z, v]. This is true if G2(v|v)
G(v|v)

is non-increasing in v.

Proof of Lemma 1. Here we establish existence and uniqueness of the equilibrium price.

(The rest of the lemma follows from arguments in the text.)

Clearly p− c < φ(p) when p = c. Since φ(p) is non-increasing due to Assumption 1, it

suffices to show that p− c > φ(p) when p = v. The latter must be true if v = ∞, because

φ(p) is non-increasing and thus finite as p → ∞. It also holds if v < ∞ and f(v) > 0,

because in that case φ(v) = 0. Finally, then, consider v < ∞ and f(v) = 0, in which case

f(v) must be decreasing for v sufficiently close to v. Notice that φ(p) ≤
∫ v

p
f(v)dv

G(p|p)f(p)
, which

for p close to v is itself weakly less than (v−p)f(p)
G(p|p)f(p)

= v−p
G(p|p)

. This is clearly less than v − c

when p is close to v.

Remark. To ease the exposition we assumed that the joint distribution of valuations has

full support on [v, v]n. However Lemma 1 also holds under the weaker condition that if

G(v̂|v̂) = 0 for some v̂, then G(v|v) = 0 for any v ≤ v̂. (This is true, e.g., when the joint

distribution has a convex support.) Define v∗ ≡ max{v : G(v|v) = 0}. Then v in the

lemma can be replaced by v∗.

Proof of Proposition 2. Suppose c = v− ε with ε > 0 close to zero. We first approximate

the uniform price in equation (7), which in this case must be close to v. One can check

that φ(v) = 0 and φ′(v) = −1,45 and so using a Taylor expansion we have φ(p) ≈ v − p.

45Notice that

φ′(p) =
−hp(0)G(p|p)f(p)−

∫ v

p
G(v|v)dF (v)

∂hp(0)
∂p

hp(0)2
,

and so φ′(v) = −1 given hv(0) = f(v) and G(v|v) = 1.
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The uniform price is therefore p ≈ 1
2
(v + c) = v − ε

2
, and the profit margin is p − c ≈ ε

2
.

(Note that the approximated price is actually independent of the number of firms.) The

equilibrium demand is 1−F(n)(p) ≈ f(n)(v)(v− p) ≈ f(n)(v)
ε
2
, where f(n)(·) is the density

of the highest order statistic. Hence industry profit under uniform pricing is

ΠU ≈ f(n)(v)
ε2

4
.

On the other hand, under perfect price discrimination recall from (18) that industry profit

is ΠD(c) = n
∫ v

c
[G(v|v)−G(v|v)F (v)]dv. One can check that Π′

D(v) = 0 and

Π′′
D(v) = n [f(v) +G2(v|v)] = nf(v) ,

where G2(·|·) is defined in (32) and we have used the fact G2(v|v) = 0 given G(v|y) = 1

for any y. We can therefore approximate industry profit as

ΠD ≈ nf(v)
(v − c)2

2
= nf(v)

ε2

2
.

Notice that from

F(n)(v) =

∫

[v,v]n
f̃(v)dv ,

we have

f(n)(v) = n

∫

[v,v]n−1

f̃(v,v−i)dv−i ,

where we have used the exchangeability of f̃ . Therefore, f(n)(v) = nf(v).46 With this

result, we can claim that the approximated ΠD is greater than the approximated ΠU , i.e.,

personalized pricing improves profit when c is sufficiently large.

Now consider consumer surplus. Recall from (13) that consumer surplus under uniform

pricing is VU(p) =
∫ v

p
[1 − F(n)(v)]dv. Using V ′

U(v) = 0 and V ′′
U (v) = f(n)(v), we can

approximate it as

VU ≈ f(n)(v)
(v − p)2

2
≈ f(n)(v)

ε2

8
.

On the other hand, recall from (16) that consumer surplus under price discrimination is

VD(c) =
∫ v

c
[1−F(n−1)(v)]dv. Using V ′

D(v) = 0 and V ′′
D(v) = f(n−1)(v), we can approximate

it as

VD ≈ f(n−1)(v)
(v − c)2

2
= f(n−1)(v)

ε2

2
,

46The same result holds if the support of f̃ is not full on [v, v]n but is of full dimension. Due to the

exchangeability, we can write F(n)(v) = n
∫ v

v

∫

Sn−1(vi)
f̃(vi,v−i)dv−idvi, where Sn−1(vi) ⊂ [v, vi]

n−1 is

the support of v−i conditional on vi and when all vj 6=i ≤ vi. Then f(n)(v) = n
∫

Sn−1(v)
f̃(v,v−i)dv−i.

When v = v, Sn−1(v) becomes the whole support of v−i. Therefore, f(n)(v) = nf(v). Intuitively, when

f̃ has a support of full dimension, when one product has the highest valuation, the conditional chance

that another product also has the highest valuation is zero. Since it is equally likely for each product to

have the highest valuation, we have f(n)(v) = nf(v).
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where f(n−1)(·) is the density of the second highest order statistic. From (3) we have

f(n−1)(v) = f(n)(v)−nG(v|v)f(v)+n
∫ v

v
g(v|vi)dF (vi), and so f(n−1)(v) = f(n)(v)−nf(v) =

0, where we have used f(n)(v) = nf(v). In other words, VD is at most of the magnitude

of ε3 when c = v − ε. Therefore, when f(v) > 0, personalized pricing harms consumers

when c is sufficiently large.

Proof of Corollary 1. From the proof of Proposition 2, we derive that when c = v−ε, each

firm’s profit under competitive personalized pricing is 1
n
ΠD ≈ f(v) ε

2

2
, and the monopoly

profit under uniform pricing is Πm
U ≈ f(v) ε

2

4
. Therefore, we have 1

n
ΠD > Πm

U . For

consumer surplus, when c = v − ε, V m
U ≈ f(v) ε

2

8
while VD is at most of the magnitude of

ε3.

Proof of Proposition 3. In the IID case industry profit under uniform pricing can be writ-

ten as

ΠU =
[1− F (p)n]2/n

F (p)n−1f(p) +
∫ v

p
f(v)dF (v)n−1

.

Under the log-concavity condition, the uniform price p is decreasing in n, and so F (p)n

must be of order o( 1
n
), i.e., limn→∞

F (p)n

1/n
= 0. Meanwhile, Theorem 1 in Gabaix et al.

(2016), which approximates the Perloff-Salop price, has shown that as n → ∞,

∫ v

v

f(v)dF (v)n−1 ∼ f(F−1(1−
1

n
)) · Γ(2 + γ) ,

where Γ(·) is the Gamma function. (Notice that Γ(x) is non-monotonic in x ∈ [1, 2]

(decreases first and then increases) and is strictly positive but no greater than 1 in that

range (with Γ(1) = Γ(2) = 1).) At the same time, notice that
∫ p

v
f(v)dF (v)n−1 <

F (p)n−1 × maxv∈[v,p] f(v), so it must be of order o( 1
n
) given f is finite. Therefore, as

n → ∞, we have

ΠU ∼
[1− o( 1

n
)]2/n

o( 1
n
) + f(F−1(1− 1

n
)) · Γ(2 + γ)

.

Since the price is decreasing in n, πU must be finite for any n. This implies that

limn→∞ nf(F−1(1 − 1
n
)) > 0. Therefore, when n is large, those o( 1

n
) terms can be safely

ignored. This yields

ΠU ∼
1

nf(F−1(1− 1
n
)) · Γ(2 + γ)

. (35)

The case of personalized pricing is simpler. Industry profit in this case is

ΠD =

∫ v

c

1− F (v)

f(v)
dF (v)n =

∫ 1

F (c)

1− t

f(F−1(t))
dtn .
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Proposition 2 in Gabaix et al. (2016) has shown that, as n → ∞,47

E[vn:n − vn−1:n] =

∫ 1

0

1− t

f(F−1(t))
dtn ∼

Γ(1− γ)

nf(F−1(1− 1
n
))

.

Notice that

ΠD = E[vn:n − vn−1:n]−

∫ F (c)

0

1− t

f(F−1(t))
dtn ,

and the integrand in the second term is decreasing and so the second term is less than
F (c)n

f(v)
which is of order o( 1

n
). Therefore, the second term can be safely ignored when n is

large, and so

ΠD ∼
Γ(1− γ)

nf(F−1(1− 1
n
))

. (36)

Comparing (35) and (36), we can claim that when n is sufficiently large, personalized

pricing reduces profit (and so improves consumer surplus) if

Γ(1− γ)Γ(2 + γ) < 1 ,

which is true when γ ∈ (−1, 0).48

Proof of Lemma 3. Notice that

E[max{c, vn:n}] =
1
n
E[max{c, vn}|vn > max{v1, ..., vn−1}]

+ (1− 1
n
)E[max{c, v1, ..., vn−1}|vn < max{v1, ..., vn−1}] ,

and with Assumption 2 we also have

E[max{c, v̂n−1:n−1}] =
1
n
E[max{c, v1, ..., vn−1}|vn > max{v1, ..., vn−1}]

+ (1− 1
n
)E[max{c, v1, ..., vn−1}|vn < max{v1, ..., vn−1}] .

Therefore, the match efficiency improvement in (23) is equal to

1
n
E[max{c, vn} −max{c, v1, ..., vn−1}|vn > max{v1, ..., vn−1}] ,

which is just equal to (22).

We need to further show that both the free-entry equilibrium and the socially optimal

solution are unique. (Otherwise, a free-entry equilibrium could differ from a socially

optimal solution due to a selection issue.) It suffices to show that (22) is decreasing

47Note that
∫ 1

0
tdtn = 1− 1

n
, so the approximation is intuitive up to the adjustment Γ(1− γ).

48The equality holds when γ = −1 or 0. Unfortunately, in these cases the approximations are not

precise enough to help us compare profit meaningfully in the limit.
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in n. To see that, it is more convenient to use the expression for ΠD in (15). Under

Assumption 2, xc = vi − maxj 6=i{c, vj} must become smaller in the sense of first-order

stochastic dominance as one more firm is added, and so 1−Hc(x) decreases in n for any

x. This implies that 1
n
ΠD decreases in n.

Omitted materials in Section 5. Here we report the details of the consumer surplus

comparison across the three regimes when valuations are IID and follow the standard

exponential distribution.

Lemma 7. Suppose valuations are IID standard exponential and k = 1. Then there exists

a c̃ such that for c < c̃ we have VM < VD ≤ VU , and for c > c̃ we have VD < VM < VU .

Proof of Lemma 7. From (28), we have that with k = 1, VM = E[max{0, vn−1:n−1− p}] =
∫ v

p
[1 − F(n−1)(v)]dv. Notice also that with IID standard exponential valuations, a firm’s

optimal price is 1 + c regardless of the distribution of the outside option. Hence in both

the uniform pricing and the mixed regime, the uniform price is 1+ c. It then follows that

VM =

∫ ∞

1+c

[1− F (v)n−1]dv <

∫ ∞

1+c

[1− F (v)n]dv = VU .

We also proved on page 16 that VD ≤ VU . Hence it suffices to show that VM < VD for

c < c̃, and VM > VD for c > c̃, which we do in the remainder of the proof.

First, it is easy to show that limc→∞(VD−VM) = 0, and also from l’hôpital’s rule that

lim
c→∞

VD − VM

VM

= −1 < 0 .

That is, in the limit as c → ∞, VD approaches VM from below.

Second, we claim that VD > VM at c = −1.49 To prove this, note that

VD = 1 +

∫ ∞

0

[1− F (v)n−1]dv −

∫ ∞

0

(n− 1)[1− F (v)]F (v)n−1dv

= 1 + VM −

∫ 1

0

(n− 1)tn−1dt = VM +
1

n
> VM ,

where the second line uses the definition of VM to rewrite the second term (from the first

line), and the change of variable t = F (v) to rewrite the third term (from the first line).

Third, note that for c < −1 we have that VD − VM is constant in c, whereas for

c ∈ (−1, 0) we have that VD − VM is decreasing in c. Moreover, VD − VM is quasiconvex

49We allow for negative costs because in this example we normalize the lowest valuation to equal 0.
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in c > 0. To prove this, note that for c > 0 we can write

∂(VD − VM)

∂c
= −F (1 + c)n−1 + F (c)n−1 + (n− 1)[1− F (c)]F (c)n−1

= −[1− e−1 + e−1F (c)]n−1 + F (c)n−1 + (n− 1)[1− F (c)]F (c)n−1

∝ −

[

1− e−1

s
+ e−1

]n−1

+ 1 + (n− 1)(1− s) , (37)

where the second line uses F (1+c) = 1−e−1[1−F (c)], and the third line uses the change

of variable s = F (c). One can check that (37) is concave in s, negative as s → 0 and zero

as s → 1, and decreasing in s as s → 1. This establishes quasiconvexity of VD − VM .

Combining the above three steps then implies that there exists a critical c̃ such that

VD > VM for c < c̃, and VD < VM for c > c̃.

Proof of Lemma 4. The proof largely follows the literature on auctions with interdepen-

dent values. We look for a symmetric equilibrium where b(v) = v−p(v) is the equilibrium

surplus bidding function and b(v) increases monotonically in v. When a firm observes con-

sumer valuation v but deviates and bids according to valuation z, its expected profit is

[v − b(z)− c]G(z|v) . (38)

Its derivative with respect to z is

− b′(z)G(z|v) + [v − b(z)− c]g(z|v) . (39)

The deviation profit (38) should be maximized at z = v in symmetric equilibrium, and

so the first-order condition is

−b′(v)G(v|v) + [v − b(v)− c]g(v|v) = 0 ,

from which we derive a differential equation

b′(v) = [v − b(v)− c]
g(v|v)

G(v|v)
. (40)

The natural boundary condition is b(c) = 0, which allows us to solve for

b(v) =

∫ v

c

(x− c)dL(x|v) =

∫ v

c

[1− L(x|v)]dx ,

where L(x|v) is defined in (29). Notice that b′(v) = −
∫ v

c
∂L(x|v)

∂v
dx > 0 (where we have

used the facts that L(v|v) = 1 and L(x|v) decreases in v), so b(v) is indeed increasing.
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To check that the first-order condition is sufficient, substitute (40) into (39) to get

G(z|v)

(

−b′(z) + [v − b(z)− c]
g(z|v)

G(z|v)

)

= G(z|v)

(

[v − b(z)− c]
g(z|v)

G(z|v)
− [z − b(z)− c]

g(z|z)

G(z|z)

)

.

Under Assumption 3 this is positive for z < v and negative for z > v, and hence the

first-order condition is indeed sufficient for defining the equilibrium.

Proof of Proposition 5. For part (i), note that under partial discrimination b(v) is strictly

positive and strictly increasing in v whenever v > c, and so a consumer buys the best-

matched product whenever its valuation exceeds marginal cost. The same is true under

full discrimination, so the two regimes yield the same total welfare.

For parts (ii) and (iii) let us compare profit. (The comparison of consumer surplus is

just the opposite.) When a firm wins a consumer with valuation v, its profit

p(v)− c = v − b(v)− c =

∫ v

c

L(x|v)dx . (41)

Recall that as derived in (17) the counterpart under full discrimination is

∫ v

c
G(x|v)dx

G(v|v)
. (42)

Suppose first that g(z|v)
G(z|v)

increases in v. Then

L(x|v) = exp

(

−

∫ v

x

g(t|t)

G(t|t)
dt

)

≥ exp

(

−

∫ v

x

g(t|v)

G(t|v)
dt

)

= exp

(

−

∫ v

x

[lnG(t|v)]′dt

)

=
G(x|v)

G(v|v)
.

Therefore, (41) is greater than (42), i.e., firms earn more under partial discrimination.

The opposite is true if g(z|v)
G(z|v)

decreases in v. In the IID case, g(z|v)
G(z|v)

is independent of v, so

the equivalence result follows.

Proof of Lemma 5. The derivative of equation (30) with respect to pi is proportional to

1−Hp∗−∆(pi − p∗ +∆)

hp∗−∆(pi − p∗)
− (pi −∆− c) . (43)
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Firm i’s profit is quasiconcave provided this is decreasing in pi. This is clearly true for

the second term. The derivative of the first term with respect to pi is proportional to

−
h′
p∗−∆(pi − p∗)

hp∗−∆(pi − p∗)
−

hp∗−∆(pi − p∗ +∆)

1−Hp∗−∆(pi − p∗ +∆)
≤

hp∗−∆(pi − p∗)

1−Hp∗−∆(pi − p∗)
−

hp∗−∆(pi − p∗ +∆)

1−Hp∗−∆(pi − p∗ +∆)
≤ 0 ,

where the two inequalities follow because 1−Hp∗−∆(x) is logconcave in x. Quasiconcavity

of firm i’s profit then follows.

Now consider part (i) of the lemma. Substitute pi = p∗ into equation (43) and set it

to 0 to get equation (31). To prove that this equation has a unique solution, rewrite it as

p∗ −∆− c−
1−Hp∗−∆(∆)

1−Hp∗−∆(0)

1−Hp∗−∆(0)

hp∗−∆(0)
= 0 . (44)

The lefthand side of (44) is strictly negative when evaluated at any p∗ ≤ c + ∆. It is

strictly positive when evaluated at p∗ = v. To see this, recall from equation (4) the

definition of the random variable xz ≡ vi − maxj 6=i{z, vj}, which has cdf Hz(x) and pdf

hz(x). Then notice that by assumption v − ∆ − c > max{c, v} − c ≥ 0, and also by

assumption v −∆ > max{c, v} ≥ v and thus sup xv−∆ = v −max{v, v −∆} = ∆ which

in turn implies that 1 − Hv−∆(∆) = 0 and hv−∆(0) > 0. The lefthand side of (44) is

also strictly increasing in p∗. Specifically, the second part of Assumption 4 implies that
1−Hp∗−∆(0)

hp∗−∆(0)
decreases in p∗, and it also implies that

1−Hp∗−∆(∆)

1−Hp∗−∆(0)
decreases in p∗.50

Now consider part (ii) of the lemma. The market is fully covered if and only if

p∗ − ∆ ≤ v. Equivalently, since we have just shown that the lefthand side of (44) is

increasing in p∗, the market is fully covered if and only if the lefthand side of (44) is

positive when evaluated at p∗ = v +∆—which gives the condition stated in the lemma.

Now consider part (iii) of the lemma. Differentiating (31) gives:

∂p∗

∂∆
=

1−
hp∗−∆(∆)

hp∗−∆(0)
− ∂

∂z

(

1−Hp∗−∆(∆)

hp∗−∆(0)

)

1− ∂
∂z

(

1−Hp∗−∆(∆)

hp∗−∆(0)

) ∈ (0, 1) , (45)

since ∂
∂z

(

1−Hp∗−∆(∆)

hp∗−∆(0)

)

≤ 0. Hence p∗ increases and p∗ −∆ decreases in ∆.

Proof of Proposition 6. Start with part (i). Using equation (30) a firm’s equilibrium profit

under a covered market is equal to

(p∗ − c)[1−H(∆)] +

∫ ∆

0

(p∗ −∆x− c)dH(x) .

50To see the second point, notice that logsubmodularity implies that for each x′ > x′′ and z′ > z′′,

[1−Hz′ (x′)] [1−Hz′′ (x′′)] ≤ [1−Hz′ (x′′)] [1−Hz′′ (x′)] .

Letting x′ = 0 and x′′ = ∆ yields the desired result.
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Its derivative with respect to ∆ equals

∂p∗

∂∆
[1−H(∆)] + [H(∆)−H(0)]

[

∂p∗

∂∆
− 1

]

= 1−H(∆)− [1−H(0)]
h(∆)

h(0)
≤ 0 ,

where the equality uses ∂p∗

∂∆
= 1 − h(∆)

h(0)
(from equation (45) evaluated at p∗ − ∆ < v),

and the inequality uses the logconcavity of 1 − H(x) from Assumption 4. Hence profit

decreases in ∆. Since the market is fully covered total welfare is invariant to ∆, consumer

surplus increases in ∆.

Now consider part (ii). Using equation (30) a firm’s equilibrium profit is

(p∗ − c)[1−Hp∗−∆(∆)] +

∫ ∆

0

(p∗ −∆+ x− c)dHp∗−∆(x) .

Its derivative with respect to ∆ around the point ∆ = 0 is

∂p∗

∂∆
[1−Hp∗(0)] + (p∗ − c)

∂[1−Hp∗(0)]

∂p∗

[

∂p∗

∂∆
− 1

]

> 0, (46)

where the inequality uses ∂p∗

∂∆
≥ 0, ∂p∗

∂∆
− 1 < 0, and

∂[1−Hp∗ (0)]

∂p∗
< 0.

Finally, consider consumer surplus. Total surplus is
∫ v

p∗−∆
(v − c)dF(n)(v) since a con-

sumer buys if the value of the best product exceeds the lowest possible price. Its derivative

with respect to ∆ around ∆ = 0 is then

(p∗ − c)f(n)(p
∗)

[

1−
∂p∗

∂∆

]

. (47)

Using
∂[1−Hp∗ (0)]

∂p∗
= −G(p∗|p∗)f(p∗), and multiplying equation (46) by the number of firms

n yields the derivative of industry profit with respect to ∆ around ∆ = 0:

n

{

∂p∗

∂∆
[1−Hp∗(0)] + (p∗ − c)G(p∗|p∗)f(p∗)

[

1−
∂p∗

∂∆

]}

. (48)

Starting from ∆ = 0, a small increase in ∆ reduces consumer surplus if and only if (48) ex-

ceeds (47). Given ∂p∗

∂∆
∈ (0, 1), a sufficient condition for that is nG(p∗|p∗)f(p∗) ≥ f(n)(p

∗).

This is not always true, but in the IID case, we have nG(p∗|p∗)f(p∗) = nF (p∗)n−1f(p∗) =

f(n)(p
∗). The claimed result then follows.
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