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Abstract 
 

The investigation of the interactions between the demographic dynamics of a 
healthy population and the perturbations induced in it by the progession of an 
epidemics is the object of this study. A SIR epidemic model is progressively 
enriched with demographic features, such as birth-death imbalance, disease-
induced deaths, vertical transmission and infectious immigration and its 
equilibria are investigated. A statistical setting is then established in order to 
test the relevance of the demographic features of the various modelling 
hypotheses.  
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1. Introduction 

 

The relationship between the local (or natural) demographic dynamics and the dynamics 

of infectious diseases is one of the  relevant aspects of the epidemic process that is 

sometimes neglected in mathematical models. Often, a healthy population at 

demographic equilibrium, sometimes supplemented with vertical transmission, or, at 

most, an “a posteriori” variable total population (in the sense of a population at disease-



induced imbalance) is what is used in epidemic modelling and most of the attention is 

focussed on the understanding of the susceptible-infective dynamics. However, as 

shown in a few existing studies, the interaction between epidemiological indicators and 

demographic dynamics is sometimes an imprescindable aspect of epidemics: this is 

particularly evident in the light of the alarming course taken by such infections as 

HIV/AIDS, malaria, tuberculosis and others, which have proved to be able to affect the 

demographic balance of whole nations and even continents. The globalization of human 

contacts and the migration flows also play a relevant role in the transformations of the 

epidemic processes, but their inclusion in the models is still rather limited to special 

cases, while even important studies still omit them. 

In its first part, this paper presents a classification of various demographic features and 

their interactions with the infection dynamics, also in view of applications to global 

epidemics and epidemics in developping countries (imbalanced populations with high 

birth and mortality rates and relatively isolated communities). Various demographic and 

disease-related features (balanced to imbalanced population, vertical transmission, 

immigration) are progressively added to a mass action incidence SIR model 

(susceptible, infective and removed individuals with proportional force-of-infection) 

and equilibria are determined and analyzed in terms of basic reproduction number and 

of natural demography parameters. Simulations are also used to point out the 

differences between the models here presented in terms of graphical representations.  

The second part of the paper proposes a novel statistical procedure of hypothesis testing 

to ascertain the specificity of the population under study and the model to be applied in 

the study of the epidemics.  

 



 

2. Classification of Models 

 

The SIR structure of epidemic models, with demographic dynamics, is used to describe 

several infections, whose specific feature is the acquisition of a permanent immunity 

upon recovery from the disease. However, the structure is flexible enough to 

accommodate partially or completely fatal diseases, vertical transmission and 

demographic imbalance due to either natural demographic dynamics or to disease-

induced mortality or reduction of fertility. All these aspects are considered in the 

following listing and classification of SIR models: a hyerarchical order is followed in 

the progressive introduction of features into the basic structure of model 1. and the 

system of differential equations describing the mathematical structure, a schematic 

analysis of the steady state conditions and a graphic compartmental representation are 

provided for each of the six models considered.  

 

 

2.1 Models with balanced population 

 

When an infection invades a healthy population, there are only two possible initial 

demographic situations: either the population is at equilibrium, as in “mature” societies, 

like many western Europeans countries, or there exists an imbalance between births and 

deaths, as in most developping countries, where, for sociological and economic reasons, 

the birth rate is always higher than the death rate. The infection splits the population 

into categories classified according to their contact with the infectious agent: if the 



infection is relevant enough to alter the biological/clinical status of the infected 

individual, then each of the category may present modifications of its vital dynamics 

such as disease-induced extra mortality during infection and a reduction of fertility or 

infertility during and/or after infection. This first category of models, presents a 

population at equilibrium invaded by disease which is non-fatal in the first model (no 

modifications of the demographic dynamics observed) and fatal in the second one 

(disease-induced extra mortality for the category of infective individuals). 

 

Model 1: Non-fatal Disease Model 

When the disease does not causes death and the birth rate  equals the death rate, then 

the total population remains stable at the disease-free level N. 

 
Figure 1: SIR model with disease-free population at equilibrium 

 

The model is described by the following system of ODE’s: 
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whose steady states are given by a disease-free equilibrium  0;  INS  and an 

endemic equilibrium: 
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where the basic reproduction number is given by 
a

kN
R



0  and presents a bifurcation 

between the two steady states at 10 R . 

By dividing the model variables by the total population 
N

S
s  , 

N

I
i   and multiplying 

each parameter by the mean duration of infection   1  the following non-

dimensional endemic equilibrium is obtained: 
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Model 2: Fatal Disease Model 

 

When the severity of the disease is such that a substantial portion  of the infectives dies 

because of the clinical consequencies of the disease, then the total population 

)()()()( tRtItStN   is subject to disease-induced variability and the model is 

described by the following ODE’s system:  
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Figure 2: SIR model with disease-free population at equilibrium and 

disease-induced deaths. 
 
 
 
By using the balance equation for the total population we have 

 



)()()()()(
tI

dt

tdR

dt

tdI

dt

tdS

dt

tdN      (4.1) 

 

which indicates that the total population experiences a phase of decrease until extinction 

or until the disease is eradicated (i.e., 0)(' tN  t  where  0)(:inf  tIt ): in 

this latter case, the population recovers constancy after the disease eradication. 

Therefore, the only admissible equilibrium of (4) is given by the disease-free state  0;S  

attained after the disease eradication; the total number of remaining individuals 

stabilizes at an equilibrium level S , obviously lower than the initial population size 

)0(N  because of the effects of the infection outbreaks. It is then important to detect the 

new population size S on the basis of the epidemic dynamics expressed by (4): if the 

initial population size is large enough and the virulence of the infection is not too 

strong, then the epidemic may be eradicated before the complete extinction of the 

population. By integrating both sides of (4.1) and by recalling the non-increasingness of 

)(tN  and its definition, we have  
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where 0)0(  SN . 

Since the total population is destined to extinction at some time t' if the number of 

infectives does not vanish before, then the basic reproduction number 
 


)0(

0
kN

R  

(i.e., the number of new infections caused by an infectious individual in an infection-

free population) identifies the mode of approach to the disease-free equilibrium.  

It is clear that, given the disease-free equilibrium of the population, only the presence of 

infectives can alter such equilibrium and, therefore, reduce the total size of the 

population: this depletion only occurs during the epidemic outbreaks and disappears 

when the infection is eradicated from the population. If 


t

t
dyyIN

0

)(lim)0(   then the 

outbreak leaves a surviving population of size )0(0 NS  , otherwise the disease 

causes the extinction of the population. 

Two equilibria of the system are detected: the disease-free equilibrium  0;  INS  

refers to a total equilibrium population equal to the initial value )0(S ; the endemic 

equilibrium is given by 
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where the basic reproduction number 
 


Nk

R0  generates a bifurcation point 

between the two equilibria at 10 R . 

Although we have a variable total population, it is still possible to express the 

equilibrium-defining system of equations in non-dimensional terms by using the total 

population at equilibrium N : 
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with the endemic steady state at  
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A comparison with the non-fatal disease case shows that differences between the two 

models lie in the mean duration of infection, respectively   1  and   1  , 

which is here diminished by the shorter infection life due to disease-related death rate . 

 

 

2.2 Models with imbalanced population 

 

When the population, in absence of the disease, has different birth and death rates  and 

, then the growth (or decrease) ratio 

  plays a key role in the definition of the 



equilibria as a bifurcation point between disease-free and endemic steady states. 

Moreover, the structural demographic imbalance of the population causes the disease-

free population either to grow or to decrease, according to whether 

  is smaller or 

larger than 1. 

The differences among the imbalanced population models presented in this section lie in 

the mean duration time of infection, progressively affected by the variable death and 

birth rate of infectives. 

 

Model 3: Non-fatal Disease Model 

 
Figure 3: SIR model with variable natural demography 

 
 
The following system of ODE’s describes this model: 
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When the disease is not present in the population, then the total number of individuals 

varies exponentially, with a variation sign given by the demographic balance    : in 

fact, by substituting )()()()( tRtItStN   in (7), then  NN   . Therefore, if 

   we have model 1 of the previous section; if, on the other hand,    then the 

sign of     determines whether the population becomes extinct (for    we have 

0N ) or an endemic equilibrium (for   ) can be attained at 

 



























0

11
R

N
I

k
S









      (8) 

 

where 
a

kN
R
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0  determines a bifurcation point at 
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The non-dimensional equilibrium is thus given by 
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Model 4: Fatal Disease Model 

Similarly to the models already presented, the analysis of this case is now 

straightforward: the ODE’s system of the model is given by 

 

 

 




















)()()(

)()()()(

)()()()()()()(

tRtaI
dt

tdR

tItItkS
dt

tdI

tStItkStRtItS
dt

tdS







   (10) 

with no disease-free equilibrium (unless   ) and an endemic equilibrium at 
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where 
a

kN
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0  determines a bifurcation point at 


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Figure 4: SIR model with variable natural demography and disease-induced deaths 

 
 



The non-dimensional endemic equilibrium is at 
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Model 5: Vertical Transmission Model 

 

The vertical transmission (mother-to-child) of an infection is common in two cases: a 

severe diseases or an environment with degraded hygenic/nutritional conditions. In both 

cases it seems reasonable to assume a non-negligible disease-induced portion of extra 

mortality; therefore only a fatal disease model is here illustrated. 

 
Figure 5: SIR model with variable natural demography, disease-induced-deaths and 

vertical transmission 
 

The system of ODE’s describing the model is given by 
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Similarly to the other imbalanced population models, only an endemic equilibrium is 

attained if   : 
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with the basic reproduction number now given by 
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R0  and a bifurcation 
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2.3 Models with immigration 

 

When adding immigration dynamics to the SIR model, then, in general, the resulting 

ODE’s system is no longer autonomous, since the variability of the number of 



immigrants )(tF  may depend on quantities that are independent of the local population 

and the study of the equation system presents analytical difficulties that make most of 

the results impossible to be explicitely expressed. 

In this section, two particular cases of autonomous epidemic models will be considered 

(see Brauer and van der Driessche (2000) and Schinaia (2005)), regarding as variable 

and constant, alternatively, the immigration flow and the total population, so as not to 

increase the number of model variables. The two models are, nevertheless, general 

enough to accommodate a large number of cases, as illustrated in the literature 

references. 

 

 

Model 6 : Variable Total Population and Constant Immigration Model 

A constant inflow of immigrants into a local population is usually observed when the 

area of residence of the population is subject to a regular through-flow of individuals: 

part or all of them (depending on the specific nature of the population, of the area and of 

the flow) tend to settle in the population and, if the flow and the settling number are 

constant, then this modelling scheme can be consistently applied. Examples can be 

found in closed communities such as prisons (see Brauer and van der Driessche (2000)) 

or  

 



 
Figure 6: SIR model with variable natural demography, disease-induced-deaths, 

vertical transmission and constant susceptible/infectious immigration 
 
 
The equations describing this scheme are given by the following ODE’s: 
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It is both logical and easy to check that no disease-free equilibrium is admitted by this 

system because of the term IF  in the second equation. 

By setting to 0 the derivatives and by dividing the variables by the resulting constant 

population N  and the parameters by the mean duration of infection   1   

we have the non-dimensional equations 
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where
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R0  and whose solutions are given by 
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It is easy to check that i is positive only for the positive sign before the square root and 

for 
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Model 7: Constant Total Population and Variable Immigration Model 

A geographical area with limited resources can only host a maximum of, say N 

individuals and, if there is sufficient demographic pressure on its borders, then the 

saturation level N tends to be attained either by local newborns or, when a negative 

imbalance is observed in the local community, by immigration or emigration when the 

imbalance is positive (see Schinaia, 2005). In these cases the total population under 

study is constant and the inflow/outflow of individuals is variable and depends on the 

natural and disease-induced demographic dynamics. 



 
Figure 7: SIR model with variable natural demography, disease-induced-deaths, 

vertical transmission and variable susceptible/infectious immigration 
 
 
If vertical transmission is also assumed, then the following ODE’s describe the system: 
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where the total population is variable, according to 
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The ODE’s of the system can be thus written as 
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By setting to 0 0)()()()(


dt

tdR

dt

tdI

dt

tdS

dt

tdN  and by dividing the variables by the 

resulting constant population N  and the parameters by the mean duration of infection 

   1)()1(   Ppp  we have the non-dimensional equations 
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where    


pp

kN
R

)1(0  and )(   pa  and whose solutions are 

given by 
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Similarly to model 6., it is easy to check that i is positive only for the positive sign 

before the square root; however, the positivity of i involves simultaneous conditions on 

0R  and a. A thoughrough analysis of this model can be found in Schinaia, 2005.  

 
 

Table 1: summary of asymptotic features of the various SIR models. The first 
column refers to the figure numbering and in the threshold column 
there are the parameter values where the phase transition between 
disease-free and endemic equilibrium occurs 

 
model 0R  bifurcation 

threshold equilibria 

1. 
a

kN
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 10 R  d-f / end 

2. 
 

kN
 10 R  d-f 
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kN
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kN
 



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5. 
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kN
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SI FF
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3. Testing Modelling Hypothesis 

 

When designing a model to describe the diffusion of an epidemic in a population, the 

several aspects involved in the modelling process are shaped according to hypotheses 

considered plausible from biological, clinical and demographic viewpoints. Such 



plausibility stems from in vitro biology experiments and socio-demographic 

observations: while, on the one hand, the former can be controlled by the researcher 

along with its statistical significance, the latter, on the other hand, can only be used in 

the model ’as is’ , without much possibility of significance analysis because of their 

structural irrepetibility. In this light, it becomes essential an ‘a posteriori’ analysis of 

the consistency of the whole mathematical structure: when overall data on the epidemic 

diffusion are available (such as those from public health surveillance systems), then 

such analysis is necessarily in the classical form of parametric or non-parametric 

hypothesis testing of theoretical results on the basis of observed data.  

 

 

3.1 Non-parametric Testing: Model Comparisons 

 

The most common epidemiological data on infectious diseases are those usually 

provided by surveillance systems; in general, they include longitudinal data sets of 

incidence cases in a reference population, sometimes in the form of non-dimensional 

incidence rates. In some more closely surveilled epidemics, also prevalence cases are 

available, possibly along with further information on the observed disease progression. 

Often, reporting delay, underreporting or other forms of environmental blur affect the 

official data and adjustement techniques have to be expressely developped and applied 

to polish the numerical information and make them usable in modelling and forecasting 

studies (bibliografia). 

A simple, euristic way of testing the various modelling hypothesis is based on a non 

parametric comparison of empirical an time series curve, derived from the available 



data, and the corresponding simulated time series curve, obtained from the theoretical 

model. Let us suppose that iO  be the observed incidence cases at times niti ;...;1     

and that )( itE  be the corresponding simulated incidence, using the model to be tested. 

 

 

3.2 Parametric Testing 

 

The models presented in the previous section follow a hyerarchical order in the sense 

that, by progressively eliminating specific parameters, it is possible to regard the 

various models as 2-dimensional nested into each other. In this fashion, for instance, 0R  

of model 6. is a particular case of 0R  of model 7. with 0p  but the reverse is valid for 

the threshold ( 0R  threshold of 7. is a particular case of the same of 6. under appropriate 

hypotesis). Therefore, ascending the hyerarchy, models 2. and 5. can be considered as 

“null hypothesis” models for, respectively, disease-free population imbalance and 

infectious immigration alternative hypothesis for a fatal disease: similarly, each lower 

order model can be considered as a “null” model for some alternative hypothesis on the 

higher order one. By using appropriate data, a statistical hypothesis testing procedure 

can be carried out on the basis of some parameter properties of epidemic models. 

Let us consider the steady state proportion of susceptibles 
N

S
s   in a population of N 

individuals: data on S  can be obtained by random sample blood testing results on K 

individuals, as suggested in Diekmann and Heesterbeek (2000). Note, however, that this 

is only possible when immunity does not erase all traces of the former infection (i.e., B 



hepatitis, tuberculosis, etc.): in fact, in such a case the r.v.’s j̂  and j̂ , Kj ,,1 , 

are the indicators of each of the admissible patient status: 

 






 testingpositive1
 testingnegative0

ˆ
j   






infection active1
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thus making the estimate Ŝ  of S  a binomial random variable, sum of the blood testing 

results 
j jKS ̂ˆ  and 

K

S
s

ˆ
ˆ   the ML estimate of the proportion s . By the 

invariance property of the ML estimators, we have 
s

R
ˆ
1ˆ

0   and, using the appropriate 

threshold bifurcation value of 0R , we can predict whether the infection is persistant in 

the population (i.e., whether we are observing a transient outburst or the infection is 

permanently settling) with the following systems of hypothesis 
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where r is a value chosen according to the third column in table 1 of the type of model 

considered.  

Furthermore, using the same data set as above, it is possible estimate î  of the 

proportion of infectives in the population by  
j jj

K
i  ˆˆ1ˆ . Now, recalling (18), 

we have that isRif I
ˆˆˆˆˆ

0  is the ML estimate of the proportion of infectious 



immigration in model 6. (time constant immigration) and it can be used as a test statistic 

for an appropriate nullity test: 
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By recalling that )(   pa  from (23), the equivalent estimate in model 7. (time 

constant population), given by isRia ˆˆˆˆˆ 0 , can be similarly used for testing  
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0:
0:

1

0

pH

pH
 

The estimate â  presents, however, the inconvenient of being admissible only with 

imbalanced disease-free population: in fact, in terms of original parameters, we have 

)(   pa and, if   , then 0a  independently of the value of p, thus 

introducing an inconsistency factor in the process. In fact, in such a case, as from (23), 

the endemic equilibrium proportion of infectives is given by 












0

11
1 Rb

m
i , or, in 

terms of original parameters, 



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







0

11
R

i


 . However, if further information is 

available on the clinical/biological progression of the infection and values can be 

assigned to the model parameters k, , , ,  and  then the expression 

k

p
S

 


))(1(  can be solved for p and expressed in terms of estimate Ŝ  as 
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





Sk
p

ˆ
1ˆ  and used as a test statistic to test the nullity of infectious immigration 

in a population at disease-free equilibrium. 
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