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Abstract

This paper provides a simple framework for obtaining asset demand using indirect
utility functions. Assuming expected utility maximization, we show that assets are held
according to their mean returns’ proportional marginal utility. We also show that an asset’s
equilibrium equity premium is given by the ratio of the indirect utility function’s mean and
standard deviation elasticities. Furthermore, we show that we can extend these results to
a non-expected utility framework.

KEYWORDS: Moments, Indirect Utility Function, Asset Demand, Duality.

JEL Classification: G11, D14, D80, D81

∗Department of Economics, York University, Toronto, Ontario M3J 1P3, Canada. Email: elie@yorku.ca, Ph:
(416) 736 5083.

†I wish to thank S. Banerji for helpful comments and suggestions.

1



1 Introduction

Starting with the seminal paper by H.M. Markowitz,1 there is now a vast literature on portfolio

choice theory.2 The most widely used model is based on the mean-variance approach. A more

general model, first introduced by Arrow (1965), assumes expected utility maximization. Al-

though the latter is a more general model, the former is simpler and has become the basis for

modern portfolio choice theory.

This paper proposes a simple dual approach for obtaining asset demand functions. It shows

that an individual’s demand for assets can be derived from the indirect utility function (IUF) in

moments space and is given by the proportional marginal utility of means’ returns. We also show

that an asset’s proportional equity premium is given by the ratio of the IUF’s elasticities with

respect to the mean and standard deviation. Moreover, we show that, in both cases, all moments

of the distribution matter. Finally, our derived relationships are based on estimable "right-hand-

side" variables and are consistent with expected and non-expected utility maximization models.

2 Portfolio Choice and the Indirect Utility Function

Consider an individual who invests in +1 assets whose total returns are given by the vector

 = (0 1) We assume that 0 is a risk-free total return, but 1 are bounded

continuous random variables with a cumulative distribution function,  a finite support Z ≡
( :  ∈ []) and finite (at least) first and second-order moments, given by the vector
 = () and the covariance matrix Σ

Let the continuous and bounded vector  = (0 1) denote the amounts invested in the

+ 1 assets. Assuming that the individual has an amount of  = 1 to invest, the feasible set,

X  is given by:

X ≡ { :
X

=0

 = 1} (1)

The individual’s terminal wealth,  is given by,

 =
X

=0

 = 0 (2)

1See Markowitz (1952).
2See, for example, classic early papers by Merton (1969) and Samuelson (1970).



where 0 is the row vector of total returns. Since  = 0 is a linear function of  (and the

vector  is bounded), terminal wealth is also a continuous and finite random variable whose

distribution can be derived from 

It is useful to define the vector of return as:

 ≡  +   = 0 (3)

where 0 = 0 0 = 0,  = (0 1) and (1) is a vector of continuous and bounded

random variables whose cumulative distribution is  with () = 0  = 1 Using this in

equation (2), we can write  as:

 =
X

=0

( + ) (4)

Given that the distribution  (and hence ) is uniquely characterized by its moments,
3 and

assuming expected utility maximization, the solution to the individual’s problem can be char-

acterized by the indirect utility function,  , defined as:

max

{{(

X

=0

( + )} :  ∈ X} ≡  (Σ−2) (5)

where −2 denotes the moments of the distribution other than  and Σ

Appelbaum (2006) shows that the convexity of  is a necessary (but not a sufficient) con-

dition for expected utility maximization.4 On the other hand,  may or may not be convex in

moments without expected utility maximization.5

In addition to the convexity of  it is easy to show that  is increasing in the first moments

but not necessarily in the second moments. To show this, we use the envelope theorem and

obtain from (5) that for all utility functions with ()


 0 we have:




= {

()


}  0  = 0 (6)

From equation (5) we also have:




= {

()


} = [

()


 ]  = 1 (7)

Unfortunately, even for a risk-averse individual, the sign of {()


} is ambiguous unless there

is only one risky asset (in which case [()


 ]  0 for the single risky asset if the individual

3This is the so-called "moments problem." For proof, see Wilks (1964), theorem 5.5.1. p. 126.
4The proof is based on Machina (1984), who shows that expected utility maximization.implies that the IUF

(defined in equation (5)) is convex in the distribution.
5See non-expected utility examples in Appelbaum (2006).



is risk-averse). With many risky assets, the sign of [()


 ] is unknown because it depends

on the correlation between  and all other 
0

  6=  Therefore, even for a risk-averse individual,

an increase in the second moment may not decrease  .

Let us now consider the optimal portfolio. Summing over all assets in equation (6), we have:

X

=0




= {

()


}

X

=0

 = {
()


}  = 0 (8)

Then, substituting
P

=0



back into equation (6), we get the demand for asset  = 0, as:

 =
 (Σ−2)




X

=0

 (Σ−2)


  = 0 (9)

Thus, we have:

Proposition 1: Each asset’s demand is given by the proportional marginal utility of its mean

return.

Naturally, since the IUF is a function of all moments, so are asset demands. The “pro-

portionality rule,” in equation (9), is simple, intuitive, based on estimable “right-hand-side”

variables, easy to use in empirical applications, consistent with expected utility maximization,

and can also be extended to non-expected utility models.6 To estimate asset demand, first, we

need to choose a functional form for  that is increasing in means and convex in all moments.

Second, asset holdings data is required. If moments data is not available, we can use GARCH,

or nonparametric7 models to estimate the relevant moments.

Finally, in a non-expected utility framework, the IUF will still be a function of all moments;

however, it may or may not be convex. Nevertheless, Proposition 1 will still hold.

2.1 Equilibrium Asset Prices

The equilibrium relationship between expected asset retuns and the moments can be easily

obtaind from the IUF. First, we use the budget constraint to re-write  as:

 = 0 +
X

=1

( −0) +
X

=1

 (10)

6A non-expected utility model, in the context of firms’ decisions, is given in Appelbaum (2006).
7See Appelbaum and Ullah (1997).



Using equation (10), the solution to problem (5) is described by the IUF  (Σ−2), where:

max
1

{{(0 +
X

=1

( −0) +
X

=1

} :  ∈ X} ≡  (Σ−2) (11)

For all assets with an interior solution, the first-order conditions for this problem can be written

as:

[ −0]{
()


} = −{

()


}  = 0 (12)

But, substituting equations (6) and (7) into equation (12), it can be re-written as:

 = 0 − 







≡  ( (Σ−2) (13)

where − 


is the equity premium and − 


 


  = 1 is the slope of the individual’s

IUF indifference curve in ( ) space. Equation (13) gives us the equilibrium relationship

between asset expected returns and the moments of the distribution.8 Alternatively, the (equi-

librium) proportional equity premium (PEP), ( −0), can be written as:

 −0


= − ln

 ln

 ln

 ln
≡ 


 (14)

where  =
¯̄
¯  ln ln 

¯̄
¯   =   is the absolute value of  0 elasticity with respect to  Thus,

we have:

Proposition2: The proportional equity premium is given by the ratio of IUF ’s elasticities

with respect to the mean and standard deviation.

Equation (13) does not consider asset markets’ general equilibrium conditions, as in the

CAPM.9 However, unlike the CAPM equation, equity premia depend on all the distribution

moments in this model. Thus, skewness, kurtosis and even the fifth moment (a measure of tails’

asymmetry) may affect the PEP.

As with asset demand, here, too, once we choose a functional form for  and given estimates

of (relevant) moments, we could estimate equation (14) or (13), together with the system if asset

demand equations to study the effects of the moments on both asset demand and PEP. Finally,

Proposition 2 still holds for non-expected utility maximization models.

8Note that, using equation (13), we obtain the Sharpe Ratio,  as  ≡ −0


= − 


 


  = 1

This is the slope of the individual’s IUF indifference curve in ( ) space. A similar result is obtained in
Appelbaum and Basu (2010) in the context of the macro equity premium puzzle.

9For example, see Sharpe (1964).



3 Conclusion

This paper uses the IUF in moments space to derive asset demand functions and the equilibrium

relationship between expected asset returns and the moments of the distribution. The rules we

derive are simple, intuitive and easy to use in empirical applications. Furthermore, we show that

both asset demand functions and equilibrium asset expected returns depend on all the distri-

bution moments, are easy to apply empirically, consistent with expected utility maximization,

and can be extended to non-expected utility models.

4 References

Appelbaum, E. (2006), “A framework for empirical applications of production theory without

expected utility,” Journal of Economics and Business 58 (4), 290-302.

Appelbaum, E., and P. Basu (2010), “A new methodology for studying the equity premium,”

Annals of Operations Research, 176 (1), 109-126.

Appelbaum, E. and A. Ullah, (1997), “Estimation of Moments and Production Decisions

under Uncertainty,” Review of Economics and Statistics.

Arrow, K.J., (1965), “Aspects of the Theory of Risk Bearing,” Helsinki 1965.

Merton, R.C., (1969), Lifetime portfolio selection under uncertainty: The continuous time

case,

Review of Economics and Statistics 51, 247—257.

Machina, M., (1984), “Temporal Risk and Induced Preferences,” Journal of Economic The-

ory, 33, pp. 199-231.

Markowitz, H.M. (1952), “Portfolio Selection,” The Journal of Finance, 7, 1, 77—91.

Samuelson, P.A., (1970), “The Fundamental Approximation Theorem of Portfolio Analysis

in Terms of Means, Variances and Higher Moments,” Review of Economic Studies, 37, 537-542.

Sharpe, W.F., (1964), “Capital asset prices: A theory of market equilibrium under conditions

of risk,” Journal of Finance 19, 425—42.

Sharpe, W. F., (1966), “Mutual Fund Performance,” Journal of Business, 39, 119—138.

Wilks, S.S, (1964), Mathematical Statistics, John Wiley & Sons, New York.


