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Abstract

We analyze the effect of working from home on the agglomeration economies of large cities and

the aggregate productivity implications of such effect. Using advertised wages from job ads, we show

that occupations with the highest work-from-home adoption during the COVID-19 pandemic saw a

strong decrease in the urban wage premium. The decline in the urban wage premium is accompanied

by an exodus of employment (based on firms’ locations) from large cities to small cities. In contrast,

occupations with low or moderate levels of work-from-home adoption saw little overall reduction in the

urban wage premium. The empirical evidence in our paper points to weakened agglomeration economies

in large cities among professions with the highest prevalence of working from home. A decomposition

exercise reveals that a sizable portion of the decline in the urban wage premium is driven by the decline

in the urban wage premium of relationship-building skills, suggesting the decreased agglomeration effect

in large cities is at least partially a result of reduced occurrence of interactive activities.
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1 Introduction

Much evidence has shown that productivity and wages tend to be higher in large cities than in small cities

and rural areas (Ciccone and Hall, 1996; Glaeser and Mare, 2001; Baum-Snow and Pavan, 2012; Moretti,

2013; Diamond, 2016). A key driver of the higher productivity and wages in large cities is the agglomeration

effect stemming from the geographic clustering of workers and firms. The increased interaction and physical

proximity between workers in large cities facilitate the interchange of knowledge and the learning of new

skills from each other, which boosts the productivity of local workers (Jaffe et al., 2003; Glaeser, 1999;

Wheaton and Lewis, 2002; Charlot and Duranton, 2004; Akcigit et al., 2018; Davis and Dingel, 2019;

Jarosch et al., 2021; Baum-Snow et al., 2021). The co-agglomeration between firms and industries in large

cities also reduces the cost of professional networking and the friction of building new business relationships,

both of which create positive externalities on the productivity of large cities and industry clusters (Ellison

et al., 2010).

However, the outbreak of the COVID-19 pandemic in 2020 forced many workers and employers to

abruptly adapt to remote work environment (Bick et al., 2022; Bartik et al., 2020; Brynjolfsson et al., 2020).

This sudden transition led to significant investment in work-from-home (WFH) technologies, which vastly

improved the adaptability and quality of WFH technologies. As a result, a sizable fraction of workforce and

employers have indicated that they would continue to rely on the WFH technologies to work remotely even

after the pandemic ends, implying that the increased adoption of WFH has become irreversible (Barrero

et al., 2021).

This paper studies the effect of the adoption of WFH technologies on the agglomeration economies

of cities and the aggregate productivity implications of such effect. On the one hand, WFH brings many

benefits to workers, such as reduced commuting time, increased flexibility of schedules, and increased time

with families and friends. The increased flexibility from WFH has been shown to have positive productivity

impact on some workers (Bloom et al., 2015; Barrero et al., 2021). Workers could also access the high

productivity in large cities without having to bear the cost of housing there by supplying their labor input to

large and expensive cities remotely while living in smaller and cheaper cities. In such a case, the adoption

of WFH could have increased the labor supply to the high-productivity firms in large cities, which could

enhance the aggregate productivity, wages, and output.

On the other hand, a possible negative side effect of working remotely is that the positive productivity

1



spillovers coming from the spontaneous interactions between workers facilitated by their physical proximity

at workplace could be eliminated. The interactive “coffee talks” that went missing due to WFH may have

reduced the amount of knowledge and idea exchanges between workers within firms and between workers

across firms within industry clusters in large cities. In addition, the reduction in physical presence due to

WFH may have also diluted large cities’ role of facilitating the formation of strong professional networks

and the fostering of complex business relationships. If the agglomeration effect of large cities is indeed

weakened, productivity and wages of firms in large cities could be negatively affected and that could lead to

workers switching to lower-productivity firms in smaller cities, resulting in not only a decline in the urban

wage premium but also a decline in the aggregate productivity, wages, and output.

To crystallize the competing forces of how WFH affects the strength of agglomeration economies, the

urban wage premium, and the aggregate economic output, we present a stylized spatial equilibrium model.

The model shows that reducing the cost of WFH lowers both the wage and the rent premiums of large cities

(where teleworkable jobs are more available), regardless of whether the agglomeration effect is weakened

in large cities. If the strength of the agglomeration economies does not weaken with the reduction of onsite

workers, reducing the cost of WFH would increase labor supply to producers in large cities, resulting in a

greater number of workers working for firms located in large cities while living in small cities. This would

lead to more workers accessing the high productivity in large cities, resulting in both a higher aggregate

wage and higher output levels. In contrast, if the strength of the agglomeration economies decreases greatly

with the reduction of onsite workers, then workers switching from onsite to remote working encouraged by

the rise of WFH adoption may strongly lower the strength of the agglomeration economies and productivity

of large cities. If the strength of the agglomeration economies in large cities weakens enough, the lowered

productivity in large cities may encourage workers to switch to low-productivity firms in smaller cities. The

decreased productivity in large cities and the equilibrium reallocation of workers would lower aggregate

wages and output levels.

Based on the model, we derive two sets of testable predictions to test the validity of our model and to

distinguish whether or not the agglomeration economies have been weakened by the rise of WFH. First, the

increased adoption of WFH implies that the urban wage premium would necessarily decrease, regardless of

whether the agglomeration economies are reduced in large cities. To test this prediction in data, we examine

whether the urban wage premium decreased more among jobs with high levels of WFH adoption during

the pandemic. Second, if the weakening of the agglomeration effects is the primary driver of the decreased
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urban wage premium, then employment (based on firms’ locations) in occupations with high WFH adoption

should see a disproportionate decrease in large cities compared to in smaller cities. On the other hand, if

the increased labor supply is the primary driver of the decreased urban wage premium, then employment in

occupations with high WFH adoption should see a disproportionate increase in large cities.1

We use several data sources to test these predictions. First, we use data on advertised wages from

Burning Glass Technologies to study changes in the urban wage premium across occupations year by year

around the pandemic. We show that the urban wage premium indeed decreased considerably among jobs

for which WFH adoption during the COVID-19 pandemic was very prevalent. In contrast, we do not find

evidence that the urban wage premium decreased for jobs for which the level of WFH adoption was low or

moderate. We also find that for jobs with a high level of WFH adoption in the wake of the pandemic, the

urban wage premium decreased sharply regardless of whether the jobs require college degrees.

One possible concern for our result is that such estimate may be spuriously driven by spatial sorting of

skill demand during the pandemic. In other words, the demand for high-reward skills, which are associated

disproportionately with white-collar teleworkable jobs, may have sorted out of large cities during the pan-

demic (Dingel and Neiman, 2020). Therefore, our estimate may have captured the spatial sorting of skills

rather than a genuine decrease in the urban wage premium. Fortunately, the Burning Glass data provide

detailed skill requirements associated with each job posting. We find that while a portion of the decline in

the estimated urban wage premium can be attributed to skill sorting, holding each job’s observable skills

constant, the urban wage premium still declined significantly among jobs with high WFH adoption.

We next proceed to test whether the decreased urban wage premium among the high-WFH jobs is pri-

marily driven by reduced agglomeration effects in large cities or increased labor supply (of remote workers)

in large cities. To test this, we use the Quarterly Census of Employment and Wages (QCEW) to see if the

count of employment of occupations with high WFH adoption grew faster or slower during the pandemic

in large cities than in small cities. The result shows, compared with the year before the pandemic started,

employment (based on firms’ locations) of occupations with high WFH adoption declined in large cities

disproportionately. In other words, not only did the relative wage of the high-WFH jobs decrease in large

cities, there was also an accelerated exodus of high-WFH jobs from large cities. This empirical observation

1One note of caution is that if we see a disproportionate increase in employment in high-WFH occupations in large cities,

such observation may still be consistent with decreased agglomeration effects. The decrease just may not be enough to offset the

increased labor supply. But conversely, if we see a concurrent disproportionate decrease in employment and decrease in wages in

high-WFH occupations in large cities, such observation would be strong evidence for a declined agglomeration effect in large cities.
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implies that the declined relative wage in large cities is likely not due to an increase in the remote labor

supply but likely due to the weakening of agglomeration economies in large cities.

Lastly, in addition to directly testing the model predictions, we provide further evidence supporting

the hypothesis that the decreased urban wage premium among the jobs with high WFH adoption has been

driven by a decrease in agglomeration economies in large cities. Since the Burning Glass data provide skill

requirements of each job posted online, we conduct a Gelbach decomposition exercise where we dissect

the change in the urban wage premium of high-WFH jobs into the urban wage premiums of skills required

for those jobs (Gelbach, 2016). We hypothesize that if increased labor supply to large cities enabled by the

possibility of remote work drove down the urban wage premium, we should see the urban wage premium of

skills that complement particularly well with remote working mode decrease and contribute significantly to

the overall decrease in the urban wage premium among the high-WFH jobs. Alternatively, if the weakening

of agglomeration economies in large cities was the primary driving force behind the decreased urban wage

premium, we should see a decrease in the urban wage premium of skills commonly associated with or

conducive to knowledge spillovers, building networks, and nurturing business relationships.

The Gelbach decomposition exercise shows that skill families such as “Building Relationship” and

“Marketing and Public Relations” experienced a sizable decrease in the urban wage premium and con-

tributed significantly to the decrease in the urban wage premium of high-WFH jobs. The decline in the

urban wage premium of the relationship-building skills shows suggests a loss of marginal value of these

skills in large cities, indicating that activities which complement the skills such as exchanging ideas and

building new business partners in large cities are likely to have diminished.

Our paper contributes to several strands of literature. First, our findings add to the actively ongoing

studies of how the rise of WFH during the COVID-19 pandemic affected cities and productivity. Many

papers have documented the shift of housing demand from city centers to the suburbs and from large cities

to small cities as a result of the increasing prevalence of WFH (Liu and Su, 2021; Gupta et al., 2021; Althoff

et al., 2022; Ramani and Bloom, 2021; Li and Su, 2022). Other papers analyze the role of the endogenous

change in productivity due to the WFH shock and how such change in productivity affects the well-being and

inequality of the U.S. population (Delventhal and Parkhomenko, 2022; Davis et al., 2021). Our paper shows

that jobs for which WFH became very prevalent saw a decline in the strength of agglomeration economies

in large cities. Our paper shows evidence of declined productivity due to the missing physical presence of

onsite workers, and we highlight this weakening physical interaction and its productivity consequence as a
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negative side effect of the adoption of WFH.

Moreover, our paper contributes to the vast literature that investigates the agglomeration economies of

cities and urban productivity premium. This literature seeks to understand why workers and firms are more

productive in larger cities. Previous papers have found evidence that the productivity premium of large

cities are driven both by more productive firms and workers sorting into large cities and large cities raising

the productivity of firms and workers (Combes et al., 2008; D’Costa and Overman, 2014; Gaubert, 2018;

Martellini, 2022). Additionally, Glaeser and Mare (2001), De La Roca and Puga (2017), and Eckert et al.

(2022) show that the experience in large cities not only raises the productivity and wages of workers, but

also raises workers’ wage growth even after they leave large cities.

Our paper sheds light particularly on the mechanisms of cities’ agglomeration effects. Earlier papers

have provided micro-foundations and evidence for various mechanisms that give rise to agglomeration

economies, three of which are the most prominently discussed: knowledge spillovers, input-output link-

ages, and labor pooling (Duranton and Puga, 2004; Rosenthal and Strange, 2003; Bleakley and Lin, 2012).

Our paper provides one more piece of evidence that in-person interaction afforded by physical proximity

with a large group of workers likely enhances productivity of local workers. This finding is manifested in

the relative productivity decline in large cities due to the sudden increase in the prevalence of WFH. We

further validate this conclusion by showing that declined relative wage returns to relation-building skills in

large cities drove down the urban wage premium of high-WFH jobs. The declined marginal value of relation

and social skills in large cities indirectly suggests the occurrence of events rewarding these skills decreased.

The rest of the paper is organized as follows. Section 2 presents a stylized model and its predictions.

Section 3 describes the data. Section 4 presents the empirical results and tests the model predictions. Section

5 presents the Gelbach decomposition exercise to further shed light on the mechanism of the changing

agglomeration economies. Section 6 concludes.

2 Stylized Model of Working from Home and Agglomeration

To illustrate how the increased adoption of WFH could affect agglomeration economies, the urban wage

premium, and productivity, we present a highly stylized model to capture the mechanisms at play and to

summarize the key implications of WFH in the presence of local agglomeration externalities.

Assume there are two locations: H and L. H represents a large and high-density city, and L represents a
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small and low-density city. We assume that people who work in location H can either be physically present

(onsite) by also living in location H , or they can live in location L and work remotely. However, if they

live and work in two different locations, they incur a long-distance cost ϕ. We assume those who work in

location L must also live in L.

Let NHH denote the number of people working for firms located in location H and living in location H

and let NHL be the number of workers working in H but living in L. Likewise, NLL denotes the number of

people working for firms located in location L and living in location L. We normalize the total number of

workers in the economy to be 1.

Workers make the location choice: (i) working and living in H: HH , (ii) working in H and living in L:

HL, or (iii) working and living in L: LL. For simplicity, we assume all workers are identical.

2.1 Production

Large/High-Density City H: The production function in the large and high-density location H is given

by the following equation:

FH(BH , NHH , NHL) = BH(NHH +NHL)
γ ,

where BH is the productivity level in location H , which firms in location H take as given. Given the level

of BH , firms use labor, supplied either onsite NHH or long-distance NHL, as the input for production.

Outside each firm’s determination, the presence of onsite workers carries productivity externality such that

BH = BH(NHH) is a function of the number of onsite workers present in location H:

BH(NHH) = B0HN θ
HH ,

where θ > 0. θ captures the intensity of the productivity externality driven by the agglomeration economies

of workers in location H . We can consider this as externality created by spontaneous physical interaction

and the ease of relationship-building in large and densely packed locations.

Firms’ profit-maximizing problem implies that wage equals to the marginal product of labor:

WH = γB0HN θ
HH(NHH +NHL)

γ−1.
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We can see that the wage level of location H decreases with a higher level of labor supply due to the

diminishing marginal return of labor. However, thanks to the production externality term, a higher presence

of onsite workers can drive up the wage due to the agglomeration effect.

Small/Low-Density City L: The production function in the small and low-density location L is simpler

since only onsite workers can be used in production:

FL(BL, NLL) = BLN
γ
LL.

We assume that the productivity level in location L only contains an exogenous component and is not a

function of the number of onsite workers. This is equivalent to assuming that the intensity of production

externality θ = 0. We believe this is a sensible assumption because the production externality has been

shown to be a phenomenon facilitated by high-intensity of communication and knowledge exchange more

frequently occurring in large cities and industry clusters.

Firms’ profit-maximizing problem yields that the local wage is

WL = γBLN
γ−1
LL .

2.2 Housing Market

We assume that housing cost responds to local housing demand, though with different responsiveness de-

pending on the local housing supply elasticity. Local housing demand in location j, j ∈ {H,L}, is the sum

of population who chooses to live in location j regardless of the location of their labor supply.

The rent of local housing services in location H can be written as

rH = π0H + πH ln(NHH).

The total housing demand in location H is simply the number of workers who work and live in H . The rent

in location L can be written as

rL = π0L + πL ln(NHL +NLL).

Slightly different from location H , the total housing demand in location L is the sum of the housing demand
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from workers who supply labor remotely for firms in H but live in L and the housing demand from workers

who work and live in L.

2.3 Workers’ Location Choice

Workers potentially have three choices: they can work and live in location H , work in location H but live

in location L, or work and live in location L. We include an exogenous cost ϕ associated with working and

living in different locations. Before the pandemic, ϕ was likely to be high. As a result, most people tended

to work and live in the same city. The cost exogenously declined when the remote work option became

prevalent. We then examine the impact of WFH on the equilibrium outcome by evaluating the comparative

static of a decline in ϕ.

Workers can attain the following utility levels based on their work and residential location choice:

UHH = wH − βrH ,

UHL = wH − βrL − ϕ,

ULL = wL − βrL,

where wH and wL are the log wages in locations H and L; rH and rH are log rents in locations H and L; ϕ

is the cost of working remotely from another city.

Since all workers are assumed to be identical, in equilibrium, all three levels of utility must equalize:

Ū = wH − βrH = wH − βrL − ϕ = wL − βrL.

The equalization property of the homogeneity assumption allows us to easily solve for the comparative static

results and study the insights from the model.

2.4 Effect of WFH in Equilibrium

Urban Wage Premium Directly based on the equalized utility levels, it is clear that the reduction of ϕ as

a result of the rise of WFH technologies would force the spatial gap in both rents and wages to narrow. If

we take the difference between the first and the second equations, we can see that the rent premium between
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H and L is a function of ϕ:

rH − rL =
ϕ

β
.

If we take the difference between the third and second equations, we can see that the wage premium between

H and L is exactly ϕ

wH − wL = ϕ.

Therefore, when the cost of remote working ϕ decreases, the urban wage premium would decrease. How-

ever, these conditions cannot reveal how much the equilibrium wages and output levels in H and L are

affected by the decrease of ϕ and how much the aggregate wages and output levels are affected, which are

analyzed below.

Agglomeration and Aggregate Productivity To analyze the impact of lowering ϕ on the equilibrium

productivity, wages, and output, we totally differentiate the sum of production in both locations with respect

to ϕ. This allows us to see the channels through which ϕ affects output. Since we assume a constant and

equal labor share γ in the H and L locations and the total population is normalized to one, the direction of

change for output is the same as the direction of change for wages and productivity.

Here is how output is affected by a decrease in ϕ:

∂(FH + FL)

∂(−ϕ)
= θB0HN θ−1

HH

∂NHH

∂(−ϕ)
(NHH +NHL)

γ

︸ ︷︷ ︸

Weakening of Agglomeration Economies

< 0

+(WH −WL)
∂(NHH +NHL)

∂(−ϕ)
︸ ︷︷ ︸

Reallocation of Labor from L to H

< 0 or > 0

(1)

The effect of reducing ϕ can be decomposed into two components:

1. The decrease in output due to the drop in the agglomeration economies in production in location H:

The output loss will be large if the rise of WFH lead to a large reduction in the number of onsite

workers and if the strength of the agglomeration economies is very sensitive to the number of onsite

workers (i.e., θ is large).

2. The change in output due to the reallocation of labor from location L to location H: Under the

assumption that WH > WL, if the rise of WFH leads to more workers switching to working for

production in location H (i.e., NHH +NHL), the aggregate output would increase by the difference

in the marginal product of labor (i.e., wages) between the two locations due to the reallocation. If
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the rise of WFH leads to more workers switching to working for production in location L, the reverse

would happen, and aggregate output would decrease due to the reallocation.

Based on the model assumptions, the first component is definitively negative, if θ > 0. However, the

sign of the second component depends on the direction of the reallocation of labor between H and L. The

intuition of this equation is the following: The rise of WFH will reduce the number of onsite workers, which

lowers the strength of agglomeration effect of H location, negatively impacting output. However, if WFH

enables enough workers to remotely supply their labor to the higher-productivity H location while living in

L, the gains from such reallocation may offset the productivity loss due to the weakening agglomeration.

However, if the strength of agglomeration economies in H is reduced so much that workers reallocate from

H to L, then the aggregate output will definitively decrease. One note of caution is that there exists a middle

case where more workers on net switch to working for firms in the higher-productivity location H , but the

weakening of agglomeration economies still leads to a net loss of output.

To analyze the sign of the second component, we need to know the direction of the reallocation of labor

due to the rise of WFH (whether ∂NHH

∂(−φ) and
∂(NHH+NHL)

∂(−φ) are positive or negative). To do so, we present

the comparative static exercises for the equilibrium reallocation of population and labor in response to the

change in ϕ. Since the log wages and rents wH , wL, rH , and rL are all functions of NHH , NHL, and NLL,

we can calculate how these population numbers are affected by the size of ϕ in the spatial equilibrium by

applying the implicit function theorem. Appendix A1 shows the precise derivation procedure. Here, we

present the effect of reducing ϕ on the numbers of onsite and remote workers working for H location:

∂NHH

∂(−ϕ)
= −

1

β
(

πL

1−NHH
+ πH

NHH

) , (2)

∂NHL

∂(−ϕ)
=

1

β
(

πL

1−NHH
+ πH

NHH

) +
β
(

πL

1−NHH
+ πH

NHH

)

− θ
NHH

β
(

πL

1−NHH
+ πH

NHH

)(
1−γ
NLL

+ 1−γ
NHH+NHL

) . (3)

Consistent with intuition, we can see lowering the cost of WFH can reduce the number of onsite workers

(NHH ). However, the effect of reducing ϕ on the overall labor supply to production in location H is not

definitive:

∂(NHH +NHL)

∂(−ϕ)
=

β
(

πL

1−NHH
+ πH

NHH

)

− θ
NHH

β
(

πL

1−NHH
+ πH

NHH

)(
1−γ
NLL

+ 1−γ
NHH+NHL

) . (4)
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Interestingly, whether the effect is positive or negative depends on the intensity of the agglomeration

externality θ. If θ = 0 (without considering any externality spillovers), lowering ϕ would unambiguously

increase the total labor supply to location H . The intuition is that a high remote work cost forces everyone

who receives wage from firms in H to bear the cost of housing in location H . This lowers the number of

workers who are able to realize the productivity offered in location H . The drop in the cost of remote work

allows more workers to switch their residential to location L while working for firms in H . In other words,

reducing ϕ alleviates the congestion problem facing those choosing to work in H .

Alternatively, if θ > 0 (the agglomeration productivity externality is activated), the effect is lowered

and could turn negative if θ is sufficiently large. The reason for the counteracting effect of agglomeration

externality is that as workers switch from onsite work to remote work, the productivity spillover from onsite

workers is reduced, which lowers the marginal product of both onsite workers and remote workers. More-

over, since such externality is not internalized in firms’ profit maximizing problem and thus not priced in

wages, the number of onsite workers will be lower than the optimum.

Model Predictions In summary, the model implies that the rise of WFH (reduction in ϕ) will lead to a

reduction in the urban wage premium, regardless of whether the agglomeration economies in large cities are

weakened or not. An increase in the labor pool for firms in large cities enabled by WFH could also drive

down the urban wage premium.

To further test whether the agglomeration economies decreased in large cities, we need to test whether

∂(NHH+NHL)
∂(−φ) < 0. If in addition to a declined urban wage premium, we also find that total employment

decreased in large cities as a result of WFH, that would imply that θ is not only positive but also large

enough to lead to people switching out of working for firms in large cities, which means the agglomera-

tion economies in large cities must have decreased due to WFH. In such case, the model implies that the

declining agglomeration economies in large cities would lead to aggregate output loss, as well as aggregate

productivity and wage losses.

2.5 Empirical Tests in the Context of the COVID-19 Pandemic

We use the sudden increase in the prevalence of WFH during the COVID-19 pandemic as the empirical

setting to test the above predictions and disentangle the effects of WFH. The adoption of WFH during

the pandemic varied widely across different industries and occupations. We test the model predictions by
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examining observed changes in spatial patterns in wages and employment of occupations with high levels

of WFH adoption and occupations low/moderate levels of WFH adoption, separately.

Occupations with Low/Moderate Levels of WFH We first discuss what to expect in the local labor

markets in the occupations with low/moderate levels of WFH adoption. It is important to keep in mind

that, in addition to the rise in the adoption of WFH, the COVID-19 pandemic has also led to a surge in

net migration from large cities to smaller cities. The migration has been not only fueled by the shifting

location demand away from locations of employers due to the prevalence of WFH, but also driven by the

reduced value of urban amenities and activities in large cities during the pandemic. The shifted residential

demand from large cities toward smaller cities is likely to have reduced the local labor supply in large cities

for occupations that require onsite presence (low adoption of WFH), but unlikely to have impacted the local

labor supply for occupations with high adoption of WFH.

In addition, as people moved to smaller cities, the demand for local services (e.g., restaurants) is also

likely to have shifted from large to small cities. The spatial shift in the demand for local services during the

pandemic is likely to have reduced local labor demand in large cities in local service sectors, which tend to

require onsite presence of their workers (low adoption of WFH). In contrast, occupations with high adoption

of WFH during the pandemic tend to be in professional services, which do not respond to local service

demand nearly as much (Eckert et al., 2022). Hence, the local labor demand in high-WFH occupations

should not have been impacted much by the shifted demand for local services.

In Figure 1a, we illustrate how such shifts in the labor demand and supply curves may affect the equi-

librium wage and employment in large cities for occupations with low/moderate levels of WFH adoption.

The double shifts downward could lead to a decrease in employment in large cities in occupations with

low/moderate WFH adoption (M → M ′). However, equilibrium wages in these occupations in large cities

may not move in a particular direction. Thus, the urban wage premium for jobs with low/moderate WFH

adoption may not move much if the local labor demand and supply offset each other. Nevertheless, we

should expect employment in occupations with low/moderate WFH adoption based in large cities to de-

crease and many of them should shift to smaller cities.

Occupations with High Levels of WFH For the occupations with high WFH adoption during the pan-

demic, the predictions should be very different. First, for high-WFH occupations, as mentioned previously,
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neither the labor demand or supply should have been affected by changes in demand for residential loca-

tions or local services. Hence, the migration forces that profoundly affected the labor market of low-WFH

occupations should not apply here.

In contrast, the forces described in the model should play the first-order roles in what to expect in the

labor market of high-WFH occupations during the pandemic. On the one hand, there may be an increase in

the labor supply of (remote) workers for firms in large cities due to the increased prevalence of WFH. On

the other hand, the reduction in onsite workers in large cities may reduce the productivity in large cities due

to the weakening of agglomeration economies, which may reduce the labor demand in large cities.

In Figure 1b, we illustrate how such shifts in the labor demand and supply curves may affect the equi-

librium wage and employment in large cities for occupations with high WFH adoption. The reduced labor

demand and expanded labor supply in large cities will reduce the wages (w → w′′′) and thus reduce the

urban wage premium for the jobs with high WFH adoption. Crucially, if we observe such occupations saw

an increase in employment in large cities, it implies there is a relatively strong increase in labor supply due

to WFH for firms in large cities. Note that such observation may or may not imply that the demand curve

has shifted down. In contrast, if we observe employment of these occupations decreases in large cities, it

implies that labor demand in large cities must have shifted down (because labor supply curve shifted up due

to WFH). Because labor demand in these sectors is likely to be detached from local demand for services, a

downward shift in labor demand implies a decrease in local productivity, which presents evidence that WFH

leads to declining agglomeration economies in large cities.

Table 1 summarizes the expected changes in the urban wage premium and changes in employment

in large and small cities for occupations with low/moderate and high WFH adoption separately, and the

underlying economic forces.

3 Data

3.1 Advertised Wages by Occupation and Geography: Burning Glass Technologies

The wage data come from Burning Glass Technologies. Burning Glass Technologies is a company that

scrapes and cleans job postings off online platforms such as online job boards, company websites, and large

online listings. The data come from roughly 40,000 company websites and online job boards. The company

aims to collect the universe of job postings in the United States. They use a de-duplication algorithm to avoid
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multiple showings of the same job posting. The Burning Glass data cover around 70% of the vacancies in

the U.S. (Carnevale et al., 2014).2 Moreover, since we rely on the wage information of the job postings

and only around 20% of the postings in the data contain wage information, the wage sample in the Burning

Glass data represents about 14% of the U.S. job vacancies. The wage information contains both total salary

and hourly salary, and is shown in the form of a range: a maximum and a minimum value. We take the

mid-point of the maximum and the minimum hourly salary of each job as the wage of the job.

Crucially, the job postings contain extremely detailed occupation code (SOC), which Burning Glass

Technologies produces using the written texts in each job posting. We use the occupational categories to

assign the degree of WFH adoption for the job posting using separate datasets (Hazell et al., 2022). The

data also provide the counties of the locations associated with the job postings. We assume that the locations

embedded in the job postings are the locations of the firms’ office.3 This county variable will be used for

information on the location of the job.

The job postings also provide various job-level characteristics such as minimum degree requirements

and highly detailed arrays of skill requirements, salary types, and pay frequency. The provision of job-level

characteristics allows us to study changes in the urban wage premium controlling for job characteristics. By

observing detailed skill requirements, we are able to disentangle changes in the composition of local skill

demand from changes in the local wage premium holding skill demand constant. Because such information

is absent in most datasets, including administrative data, Burning Glass data provide unique resources to

conduct our analysis. For computational convenience, we take a 10% random sample from the raw Burning

Glass data for our statistical analysis including binned scatterplots and regression analyses.

2Carnevale et al. (2014) show that online job ads tend to be over-represented by vacancies of higher-skilled and white-collar

positions, which implies that the Burning Glass data are susceptible to this bias. However, we do not use the Burning Glass data

to study the total number or the local composition of jobs, or their changes. Instead, we mainly use the wage information of the

posted jobs to analyze how local wages changed differentially across occupations.
3Some may be concerned that the location associated with each job posting may not be the location of the primary job location

or the location of the firm, but instead the location of the workers targeted by the job ads. Since Burning Glass scrapes the Internet

job boards for the data, there are no direct ways to verify whether the job location truly represents the location of the job/firm. To

verify that the location associated with each job posting is largely based on the location of the job, we validate the local industry

shares in the job postings with the local industry shares observed in the QCEW data, which are based on employers’ locations. We

calculate each of the 3-digit NAICS industry share in each MSA for both datasets. In Figure A2, we plot those shares in a binned

scatterplot, separately for the samples in January 2020 (before the start of the pandemic) and in July 2020 (after the start of the

pandemic). The industry compositions largely line up with the compositions based on employers’ locations before and after the

start of the pandemic.
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3.2 Geography of Jobs by Occupation

We calculate the number of jobs in each occupation by county using data from the Quarterly Census of

Employment and Wages (QCEW). The data provide a quarterly count of employment covering more than

95% of all U.S. jobs across industries as defined by the NAICS code. We use the Burning Glass data to

create a highly detailed crosswalk between NAICS and ONET occupational codes. Using the crosswalk, we

calculate the employment number by occupation and county. Importantly, because the QCEW is based on

employment information from business establishments covered by the Unemployment Insurance programs.

The employment numbers reported by QCEW are based on the locations of the employers not workers. This

is crucial for us when we try to test how the rise of WFH affected the labor supply to firms in large cities vs.

in small cities.

3.3 Measuring the Adoption of Working from Home (WFH)

American Community Survey The American Community Survey (ACS) asks respondents how they usu-

ally get to work in the last week (Ruggles et al., 2022). Besides the means of transportation, the respondents

are allowed to choose having worked from home. The information on whether one works from home, com-

bined with the occupation code (OCC2010), allows us to compute the fraction of workers reporting to have

worked from home for each occupation in 2019 and 2020, respectively. We then can compute the prevalence

of WFH for each occupation before and after the start of the pandemic.

Current Population Survey We validate the measurement from the ACS with data from the Current

Population Survey (CPS) (Flood et al., 2022). Beginning in May 2020, the Bureau of Labor Statistics

started to release supplemental information on the effect of COVID-19 pandemic on the labor force. In

particular, the survey started to report monthly whether the respondents worked remotely for pay due to the

pandemic. Since the CPS also reports the occupation code (OCC2010), we are able to do a similar exercise

as with the ACS.

However, we only use the CPS as a supplement data source to validate the measurement from the ACS,

because the CPS data on remote work only started in May 2020. Thus, it is not possible to measure differ-

ential increases in the prevalence of WFH across occupations. Another drawback of the CPS is that it only

asks whether one works remotely due to the COVID-19 pandemic. In the beginning of the pandemic, most
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workers turned remote due to the pandemic. However, as the pandemic progressed, the reasons for contin-

uing to work remotely may become less directly attributed to the pandemic per se. The adoption of WFH

technologies may have compelled some workers and employers to stick with WFH arrangement even when

the pandemic danger subsided. Hence, the CPS reporting on remote work may have become increasingly

inaccurate as the pandemic progressed.

American Time Use Survey The American Time Use Survey (ATUS) provided by the Bureau of Labor

Statistics is another source from which we get information on the increase in the adoption of WFH by

occupation (Hofferth et al., 2020). The ATUS measures the amount of time people spend doing various

activities through a 24-hour period. Each activity is accompanied by a reported location. Hence, the data

enable us to record the fraction of working hours that occurred at home by occupation over time. The ATUS

releases data annually, which allows us to compare the prevalence of WFH before and after the pandemic.

However, the drawback of the ATUS is that the number of respondents tends to be vastly smaller than the

ACS. Hence, we use the ATUS to validate the measurement from the ACS.

O*NET We analyze changes in the adoption of WFH by occupation by examining which occupational

characteristics best predict a more pronounced increase in WFH. We use the Occupational Information

Network (O*NET) data as the source of occupational characteristics. The O*NET is developed by the U.S.

Department of Labor/Employment and Training Administration. The data report the levels and importance

of skills required for each occupation, the activities involved in performing the jobs, and the work context in

terms of the nature of human interaction, physical work conditions, and structural job characteristics. Each

occupation is scored across 57 work context characteristics.

In addition, because of the universal coverage of all occupations, we are able to use the multitude of

occupational characteristics to impute changes in WFH prevalence for some occupations not identified in

the ACS data, based on their similarity of job characteristics to jobs observed in the ACS data.
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4 Empirical Evidence

4.1 The Adoption of WFH Arrangement

We begin the empirical analysis by documenting changes in the adoption of WFH arrangement since the

start of the pandemic. First, we present the aggregate share of workers who work remotely based on the

ACS and the ATUS from 2005–2020. Both datasets have long reported information on locations where

people work. To highlight differences in WFH during the pandemic, we present the number for 2020 as

the imputed share of workers working remotely in 2020 after the first quarter (Q1). We impute the share

of WFH assuming that the share of workers who worked remotely in Q1 of 2020 is the same as the share

observed in 2019.4 Figure 2a shows that the overall prevalence of WFH skyrocketed after the pandemic

started in 2020. Such patterns are reflected in both the ACS and ATUS data.

Consistent with the prediction of Dingel and Neiman (2020) and the documentations of other papers,

we show that the level of WFH adoption differed widely across different types of workers and occupations

(Barrero et al., 2021; Bick et al., 2022; Brynjolfsson et al., 2020).5 Figure 2b shows the evolution of the

share of WFH workers for those with and without college degrees. We find that college-educated workers

were more likely to have started WFH in 2020. Across occupations, Figure 2c shows a very high level of

WFH adoption by computer and mathematical occupations, followed by business and finance occupations.

In contrast, occupations related to food services and health care saw a much lower level of WFH adoption.6

Imputation of WFH Adoption for All SOC-ONET Occupations To determine which jobs saw a high

level of WFH adoption and which jobs saw a low or moderate level of WFH adoption, we measure the level

of WFH adoption using both the directly observable share of WFH workers from the ACS and the work

context variable from the O*NET occupational characteristics. Despite the large sample size, ACS has a

relatively coarse occupation code (OCC2010). As a result, matching the observed changes in WFH shares

by occupation obtained from the ACS with the SOC-ONET occupation code in the Burning Glass data will

4Assume that the share of WFH in 2019 is share2019 and the observed share of WFH in 2020 whole year is share2020. Then

the share of WFH in post-Q1 2020 is just shareQ2−Q42020 =
share2020−0.25share2019

0.75
.

5A few recent papers use customized surveys to document the differential changes in the prevalence of WFH during the

pandemic—e.g., the Survey of Working Arrangements and Attitudes featured in Barrero et al. (2021). We cannot use such survey

data directly in our paper because our analysis requires highly detailed occupation code, which the survey produced in these papers

do not provide.
6Changes in the adoption of WFH are computed with the ACS. To test the validity of the measurement, we use the ATUS

and the CPS data for comparison. For each dataset, we calculate the share of WFH workers in the time period in 2020 under the

pandemic for each occupation group as defined in the IPUMS USA. We then plot the ACS-computed shares against the ATUS- and

CPS-computed shares. See Figures A1 in the appendix.
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create a relatively small successfully matched sample. To improve the matching, we use the Lasso regression

to select the O*NET occupation characteristics that can best predict WFH adoption, and then we project the

observed level of WFH adoption by occupation onto the selected O*NET occupation characteristics, all of

which contain SOC-ONET code and provide a much wider coverage of occupations than the occupation

code provided by the ACS.

Table A1 in the appendix shows the Lasso coefficients and the OLS coefficients post-estimation. Figure

A4 in the appendix shows a scatterplot between the predicted change in the share of WFH workers and the

observed change in the share of WFH workers by occupation within the sample of the regression. We show

that based on the work context characteristics retained by Lasso, the predicted adoption of WFH lines up

well with the observed adoption of WFH.

Definition of High WFH Adoption In the rest of the paper, we conduct analysis for jobs in occupations

with high levels of WFH adoption and jobs in occupations with low/moderate levels of WFH adoption

separately. We define occupations with high levels of WFH adoption are occupations in which the national

share of WFH workers increased by more than 25 percentage points in 2020 after the first quarter. We define

occupations with low/moderate levels of WFH adoption are the rest of the occupations.

4.2 The Effect of WFH Adoption on the Urban Wage Premium

In this section, we analyze the effect of the adoption of WFH during the COVID-19 pandemic on the urban

wage premium. Based on the empirical tests described in Section 2.5, we expect that occupations with high

levels of WFH adoption would experience a drop in the urban wage premium during the pandemic, while

occupations with low or moderate levels of WFH adoption would experience little changes.

First, we plot the residualized log posted hourly wages on the residualized log employment number

of each job’s occupation and MSA. The log employment size measures the size of the local labor market

relevant for each job. Hourly wages are from the Burning Glass data and we measure the employment size

using the QCEW. To residualize the variables, we control for the SOC-ONET occupation code, three-digit

NAICS code, years of education required by the job, salary type, full-/part-time status, tax terms, and the

job posting month.

Figure 3a shows the plot using the sample of all jobs from two separate periods: the pre-pandemic pe-

riod (2018 and 2019) and the pandemic period (2020, 2021, and the first quarter of 2022). Cross-sectionally,
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residual wages tend to be higher in larger labor markets, consistent with the prior empirical evidence. The ur-

ban wage premium, which is the slope of the plotted curve, decreased slightly overall from 0.0247 to 0.0219

during the pandemic, which is approximately a 10% decrease, but the change is statistically insignificant.

Figures 3b and 3c break the sample into jobs that require a college degree and jobs without the require-

ments, respectively. We find that the urban wage premium for both sets of jobs saw a decline, but the decline

for jobs that require a college degree is higher: from 0.0342 to 0.0301 (a 12% decrease). The decline for jobs

that do not require a college degree is from 0.0224 to 0.0203 (a 9% decrease), but the change is statistically

insignificant. The results suggest that jobs that require a college degree saw a greater decline in the urban

wage premium, but the decline does not seem very pronounced even for these jobs with relatively high skill

requirements.

Finally, if we focus on the jobs that belong to occupations with high levels of WFH adoption, the results

are much more striking. Figure 3d shows that the decline in the urban wage premium is very large and

statistically significant for these high WFH adoption jobs: from 0.0555 to 0.0339, which is approximately

a 40% drop. In contrast, for jobs with low/ moderate WFH adoption (shown in Figure 3e), the drop in the

urban wage premium is negligible. The finding that the urban wage premium has dropped drastically for the

jobs with very high levels of WFH adoption but does not seem to have declined markedly for jobs with low

or moderate levels of WFH adoption is consistent with the empirical prediction outlined in Section 2.5.

To further analyze how the urban wage premium progressed before and after the pandemic, we examine

four groups of jobs separately (based on the level of WFH adoption and whether the job requires a college

degree) year by year from 2018 to the first quarter of 2022. We normalize the annual urban wage premium

by the estimates in 2018. Figure 5 presents the evolution of the urban wage premiums. The results suggest

that the urban wage premium for jobs with high levels of WFH adoption declined sharply in 2020 and

stayed at low levels in 2021. In particular, the high-WFH jobs without a college degree requirement saw a

big drop in their urban wage premium in 2020, but such dip was reversed in 2021 and recovered back to

the pre-pandemic level by early 2022. In contrast, the high-WFH jobs that require a college degree saw a

persistently lower urban wage premium after 2020 and did not see a recovery. The discrepancy between the

high-WFH jobs with and without a college degree requirement may be a result of a more permanent adoption

of WFH for higher-skilled jobs, while WFH arrangements could be more of a temporary contingency for

lowered-skilled jobs. In addition, our measurement of the WFH adoption comes only from the 2020 data,

which may not accurately reflect the status of each occupation’s prevalence of WFH in 2021 and 2022. This
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may be another reason for the discrepancy.

In contrast to the sudden drop of the urban wage premium among the high-WFH jobs, the low- or

moderate-WFH jobs, regardless of the college degree requirement, did not see a decrease in the urban wage

premium during the entire course of the pandemic.7

Spatial Sorting of Skill Demand It may be a concern that the pandemic may have led to increased exits

of higher-wage firms from large cities for a variety of reasons, e.g., declining local productivity of large

cities, which will lead to spatial sorting of skill demand. As a result, the reduction in the relative wage in

large cities may not necessarily imply that the urban wage premium declined for a given set of jobs, but may

instead reflect the exits of higher-skill jobs from large cities. Thus, we need to further analyze how much

our estimates of the decline in the urban wage premium is driven by spatial sorting of skill demand, and how

much is driven by a decline in the urban wage premium for a given set of worker skills.

Fortunately, the Burning Glass data provide a very rich vector of skill requirements associated with each

job posting. The added complexity of the data is that some jobs specify one or two skill requirements while

other jobs may specify more than ten distinct skills in their postings. Thus, the length of the skill vector

varies across jobs. For computational convenience, we specify the first 20 skills specified by each job,

ranked by each skill’s overall frequency of mentions across all job postings.8 If a job contains fewer than 20

skills, then the extra skill slots are all categorized as “na.”

To study changes in the urban wage premium for jobs in high-WFH occupations after the pandemic for

a given set of worker skills, we estimate the following equation:

ln(wikjt) = α0 lnMkj + α1 lnMkj × Postt + α2 lnMkj ×Highk + α3 lnMkj × Postt ×Highk (5)

+ α4Postt + α5Highk + α6Postt ×Highk +XikjtΘ+ εikjt,

where wikjt is the posted hourly wage of job i in occupation k at location j in year t; Mkj is the employment

size of occupation j in MSA j (or the employment density i.e., employment/area of each occupation at the

7In Figure A6 in the appendix, we plot the residual changes in log posted wages for the four occupation groups in a few selected

MSAs between the pandemic period and the pre-pandemic period. We can clearly see that the cities that experienced the largest

decline in the residual wages in the computer and mathematical occupations are the ones traditionally associated with being clusters

of the computer industries. Similarly, the cities that experienced the largest decline in the residual wages in the business and finance

occupations are ones traditionally considered large centers of business and finance. In contrast, these patterns do not appear obvious

across MSAs in food preparation, service and health occupations.
8Around 90% of the jobs in the sample specify fewer than 20 skills in their postings.
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county level);9 Postt is an indicator of post-pandemic period (i.e., 1 if t = 2020, 2021, 2022, and 0 if

t = 2018, 2019); Highk is an indicator that k is an occupation with high levels of WFH adoption; Xikjt

is a vector of job-level characteristics, including the dummies for SOC-ONET occupation code, three-digit

NAICS code, years of education required by the job, salary type, full-/part-time status, tax terms, job posting

month, and required skills. The parameter α1 represents the change in the urban wage premium after the

start of the pandemic for occupations with low/moderate levels of WFH adoption; α1 + α3 represents the

change in the urban wage premium after the pandemic for occupations with high levels of WFH adoption.

We estimate the regression using the Burning glass data from 2018 to the first quarter of 2022.

Table 2 presents the estimates of α0, α1, α2, and α3 in Equation 5. Columns 1–3 present the results with

M defined as employment size. Column 1 does not control for any job-specific characteristics. Column

2 includes basic controls (i.e., indicators of occupation, industry, education requirement, salary type, full-

/part-time status, tax terms, and job posting month). Column 3 further controls for the skill fixed effects

using the 20 skills assigned to the jobs. Column 4 presents the results with M defined as employment

density, with the full set of control variables.

Throughout Columns 1–4, estimated changes in the urban wage premium for jobs with low/moderate

WFH adoption are either positive or negative, and the magnitudes are small. In contrast, changes in the urban

wage premium for jobs with high WFH adoption are strongly negative across all specifications. Specifically,

the urban wage premium for jobs with high WFH adoption decreased by 0.0181 without any controls, and

0.0185 with basic controls. The estimated decline is reduced to 0.0163 with the full set of controls of skill

fixed effects. This implies that a small amount of the decline in the urban wage premium for the high-WFH

jobs can be directly attributed to the spatial sorting of skill demand. Much of the decline appears to be a

genuine reflection of the decreased price of labor in large cities holding skills constant.

4.3 The Effect of WFH on Local Employment

The model in Section 2 suggests that the rise of WFH would lower the urban wage premium, either driven

by reduced agglomeration economies in large cities or by an increased labor supply to firms in large cities

9An essential ingredient of agglomeration economies is frequently argued to be the compact proximity between similar workers,

which facilitates communications and idea exchanges. Since employment density is better at capturing the compactness of workers,

we use employment density at the occupation and county level as an alternative measurement of agglomeration. We calculate

employment density at the county level rather than the MSA level because employment density often varies widely below the level

of MSA. Since county is the lowest level of geography for the wage data, to best capture the geographic variation in employment

density, we compute density at the county level.
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due to the availability of WFH.

One way to distinguish whether the declined urban wage premium is primarily a result of weakening

agglomeration economies is to test whether employment (based on firms’ locations) decreased in large cities

in response to the rise of WFH. If firms in large cities employed fewer workers in occupation with high WFH

adoption and relative wages in large cities declined, this provides strong evidence that the agglomeration

economies in large cities have been weakened.

We use the following simple regressions to study whether employment increased or decreased in MSAs

with large employment sizes or employment density for jobs with different levels of WFH adoption:

∆ ln(Empkjt) =
∑

t=2020,2021

at1 lnMkj × Lowk +
∑

t=2020,2021

at2 lnMkj ×Highk (6)

+ ηkt + θj + ekjt,

and

∆ ln(Empkjt) =
∑

t=2020,2021

at1 lnMkj ×Otherk +
∑

t=2020,2021

at2 lnMkj × CFk (7)

+ ηkt + θj + ekjt,

where ∆ ln(Empkjt) is the change in log employment in occupation k and MSA j between January 2019

and January 2020, or between January 2020 and August 2021; Mkj is the employment size or employment

density; Lowk is an indicator that occupation k has low/moderate levels of WFH adoption; Highk is an

indicator that occupation k has high levels of WFH adoption; Otherk is an indicator that occupation k does

not belong to the occupation groups “Computer and Mathematical” and “Business and Finance,” CFk is an

indicator that occupation k belongs to the occupation groups “Computer and Mathematical” or “Business

and Finance”—these occupations have been shown to be more prone to WFH adoption. Parameters a20201

and a20202 represent how employment changed between 2019 and 2020 with respect to the employment

size of an MSA or employment density for low-/moderate-WFH occupations and high-WFH occupations,

respectively. Similarly, parameters a20211 and a20212 represent how employment changed between 2020 and

2021 with respect to the employment size or density for low-/moderate-WFH occupations and high-WFH

occupations, respectively. We also control for occupation× time period fixed effects and MSA fixed effects.
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We estimate the equations using the QCEW data.10

Table 3 we presents the results. Results in Columns 1 and 3 suggest that employment of both high- and

low-/moderate-WFH occupations was growing relatively more slowly in MSAs with larger employment

size and density even before the pandemic—estimates of both a20201 and a20202 are negative. However, after

the pandemic started, employment declined much more in MSAs with larger employment size and density

for both types of occupations—the estimate of both a20211 and a20212 are negative, and their magnitudes are

much larger than a20201 and a20202 . Results in Column 2 also suggest that employment declined much more

in MSAs with larger employment sizes after the pandemic compared with the pre-pandemic period.

It is noteworthy that the finding that occupations with low/moderate WFH adoption also saw a dispro-

portionate drop in employment in large cities after the pandemic is consistent with the predictions outlined

in Section 2.5. However, the driving forces behind the disproportionate drop in employment in large cities

after the pandemic for the low-/moderate-WFH occupations and for the high-WFH occupations are different

(the upper vs. lower panel of Table 1).

In summary, the findings on (i) the strong decline in the urban wage premium for jobs with high WFH

adoption, and (ii) the disproportionate negative growth of employment in larger cities and industry clusters

suggest that large cities’ productivity premium stemming from their agglomeration economies has weakened

among occupations in which WFH has been widely adopted.11

10All employment numbers are obtained from the QCEW data at the three-digit NAICS code and county level. We use the

Burning Glass data to generate a crosswalk between the three-digit NAICS code and the SOC-ONET occupation code. Each job

posting in the Burning Glass data is assigned with a three-digit NAICS code and SOC-ONET occupation code. We calculate

the empirical distribution of three-digit NAICS conditional on each SOC-ONET. Using the probabilistic crosswalk, we impute the

number of jobs for each SOC-ONET occupation in each county. We then use the county to MSA crosswalk to compute the numbers

at the MSA level.
11Case-by-case analysis reveals the same story but with some added idiosyncratic complexity. In Figure A6, we plot the change

in residual log posted wage for the high-adoption occupations and the low-adoption occupations in a few selected MSAs, and

in Figure A8, we plot the employment growth of high-adoption occupations and low-adoption occupation in the same selected

MSAs. We can see that among the high-adoption occupations, the decline in wages occurred disproportionately in cities commonly

associated with high-tech and business clusters with a large concentration with white-collar jobs, and the dispersion of wage growth

is very large. In contrast, among the low-adoption occupations, wage growths are much more similar across these MSAs. The

contrasting case-by-case observations are consistent with our statistical results. If we look at employment growth among both the

high-adoption and low-adoption, the decline is generally more pronounced in large cities and industry clusters, consistent with our

statistical results. However, there are exceptions. While San Jose, CA’s wage decline in the high-adoption occupations was much

more pronounced than New York or San Francisco, the employment decline was much more muted. This suggests that for San Jose,

the decline in wages may have been significantly driven by a rise in labor supply from workers living elsewhere enabled by remote

working. Another exception is Austin, TX. Even though Austin experienced a decline in wage among high-adoption occupations,

the employment growth in these occupations in Austin was exceedingly high. This could certainly reflect a rise in labor supply due

to remote working. But it may also be the result of the inflow of high-tech firms into Austin during the pandemic. Furthermore,

we also plot the similar numbers for wage growth and employment growth by the selected occupation group, shown in Figure A6

and Figure A8. These figures reveal another notable case in the food prep and service occupations. Even though the decline in

wages does not appear strongly correlated with the sizes of the city, the employment decline is strikingly stronger in large cities

and business clusters. This is likely due to the mechanisms depicted in Figure 1a, where both labor demand for service sectors and

labor supply declined in large cities, leading to a vast decline in employment but indeterminate changes in wages.
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5 Change in Urban Wage Premium by Skill and Agglomeration

Lastly, we zoom out from the empirical tests of the model and indirectly assess the role of the changing

agglomeration economies in the declining urban wage premium by analyzing how the urban wage premium

of skills changed due to the rise of WFH and the change in the urban wage premium of which skill types

can most explain the decline in the urban wage premium among high-WFH jobs. If we see that skills that

are most complementary with or conducive to ideas exchange, relationship building, and networking see a

large drop in the urban wage premium and contribute strongly to the decline in urban wage premium of the

high-WFH jobs, this would further validate the hypothesis that the rise of WFH weakened agglomeration

economies in large cities.

We decompose the residual urban wage premium by applying the Gelbach decomposition method (Gel-

bach, 2016). Here is the intuition of the decomposition: Part of the reasons why the high-WFH jobs have

a high urban wage premium is that the skills that are required for these jobs tend to carry very high urban

wage premium. In other words, the skills such as relationship-building ability exhibit larger returns at firms

in larger cities than at firms in smaller cities. The decrease in the urban wage premium carried by these

skills would necessarily drive down the urban wage premium of jobs in which these skills used. We use

the Gelbach decomposition method to empirically quantify which skill types saw the largest changes in the

urban wage premiums that were statistically the largest drivers of the decline in urban wage premium of the

jobs with high WFH adoption.

5.1 Gelbach Decomposition

We use a simpler version of Equation 5 to estimate the change in the urban wage premium for high-WFH

occupations during the pandemic by restricting the sample to jobs in high-WFH occupations only, since

the results in Table 2 suggest that the decline in the urban wage premium is mainly relevant for high-WFH

occupations:

ln(wikjt) = γ0 lnMkj + γ1Postt + γ2 lnMkj × Postt +XikjtΨ+ ϵikjt, (8)

The change in the urban wage premium for high-WFH occupations during the pandemic is simply γ2.12

12The estimate of α1 + α3 using Equation 5 by pooling all jobs is very similar to the estimate of γ2. We do not report the

estimation results of Equation 8 because of space constraint.
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If we consider changes in the skill-specific urban wage premiums are the variables omitted in this base-

line estimating equation, then the fully specified estimating equation should be the following:

ln(wikjt) = γ̃0 lnMkj + γ̃1Postt + γ̃2 lnMkj × Postt +XikjtΨ̃ (9)

+
∑

s

βs
0 lnMkj × Skillsi +

∑

s

βs
1Postt × Skillsi

+
∑

s

βs
2 lnMkj × Postt × Skillsi + ϵ̃ikjt,

where Skillsi is an indicator that skill s is required in job i. βs
2 represents the change in the skill-specific

wage premium for high-WFH jobs after the pandemic. The change in the residual urban wage premium is

likely to drop from γ2 to γ̃2. The reduced portion is the decline in the urban wage premium that can be

attributed to the decline in all of the skill-specific urban wage premiums.

However, Gelbach (2016) demonstrates that to decompose the contribution of each covariate, we can-

not simple add and subtract each covariate if covariates are statistically correlated. Based on his method,

to decompose the contribution of each covariate, we need to estimate the effect of each covariate on the

outcome variable and how each covariate covaries with the key coefficient in the equation. The intuition in

our context is that if a skill is very frequently required in high-WFH jobs, then a large estimate of βs
2 (i.e., a

large decline in the urban wage premium for skill s) would imply that the decline in s’s urban wage premium

contribute greatly to the overall decline in the urban wage premium in high-WFH jobs. Conversely, if a skill

is rarely required in high-WFH jobs, even a large decline in urban wage premium in such skill would not

have contributed much to the overall decline in the urban wage premium in high-WFH jobs.

Hence, we must also estimate the following equation separately for each skill s:

lnMkj × Postt × Skillsi = Γs
0 lnMkj + Γs

1Postt + Γs
2 lnMkj × Postt +XikjtΓx + ηikjt, (10)

where Γs
2 represents how much each added covariate of skill s covaries with the key regressors. The con-

tribution of the change in the urban wage premium of each skill s to the overall change in the urban wage

premium of high-WFH occupations is the following:

π̂s =
Γ̂s
2 · β̂

s
2

γ̂2
, (11)
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where Γ̂, β̂, and γ̂ represent the estimated coefficients.

Results For computational feasibility, we define s as a skill cluster family defined in the Burning Glass

data. There are 32 skill cluster families. Appendix A2.2 describes the definition of these skill cluster

families.

Table 4 presents the Gelbach decomposition results, i.e., the contribution of the change in the urban

wage premium of each skill cluster family to the overall decline of the urban wage premium for jobs with

high levels of WFH adoption. Column 1 presents the estimates of βs
2 in Equation 9. Column 2 presents the

estimates of Γs
2 in Equation 10. Column 3 presents the estimates of πs according to Equation 11. Column 4

presents the contribution shares.

We rank the skill cluster families by their contribution to the overall decline in the urban wage premium

for the jobs with high WFH adoption. The skills that contributed the most to the overall decline in the urban

wage premium are “Building Relationship”, “Marketing and Public Relations”, “Finance”, “Customer and

Client Support”, “Sales”, and “Business.” The decline in the urban wage premiums of these skills could

theoretically be driven by either a relative decline of productivity of these skills in large cities or an increased

supply of these skills to large cities.

By intuition, among these skill cluster families, the rise of WFH is likely to have enabled more workers

with the skills in the family of “Finance” to remotely supply labor to large cities or industry clusters be-

cause skills related to “Finance” tend to complement with electronic tools both for analytical tasks and for

communication. However, the other skill cluster families picked up in the decomposition exercise do not

immediately appear that they will enjoy particularly more advantages with the rise of WFH. Instead, these

other skills mostly involve relationship-building ability and the ability to manage public relations, which

seem to be particularly compatible with activities interactive with customers, clients, supply-chain partners,

and co-workers. These skills are naturally associated with facilitating knowledge spillovers, connecting with

customers and clients, and forming professional networks.

Assuming the decline in the urban wage premium of the relationship-building skills in large cities is

not driven by a rise in supply of these skills to large cities, the declining urban wage premium of these

skills would imply that the marginal product of these skills declined more in large cities. Since intuition

suggests that these skills are highly complementary to interactive activities, the declined marginal product

of these skills implies a reduced expected occurrence of these interactive activities at work. However, if
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these interactive activities generate productivity externalities as suggested in numerous prior papers, the

reduction in these activities in the large cities would further suggest that the agglomeration economies may

have indeed weakened.

6 Conclusion

Our paper studies the effect of WFH on the agglomeration economies of large cities. Using a stylized

model, we show that the reduction in the cost of working remotely would lower the urban wage premium

through two potential mechanisms. On the one hand, the lower cost of WFH may increase in the labor

supply to high-productivity firms in large cities because of the increase in the number workers who live in

small cities but work remotely for firms in large cities. The increased employment at high-productivity firms

in large cities may raise the aggregate productivity, wages, and output. On the other hand, if large cities’

agglomeration economies decreased severely due to the reduction in the number of onsite workers, workers

may switch from working for high-productivity firms in large cities to lower-productivity firms in smaller

cities, leading to a decreased aggregate productivity, wages, and output. To test the model and distinguish

the effect of WFH on aggregate productivity, we derive two testable predictions and take them to data.

Using wage data from advertised job postings, we show that the urban wage premium of occupations

with high levels of WFH adoption decreased significantly during the COVID-19 pandemic. In contrast,

the urban wage premium of occupations with low or moderate levels of WFH adoption did not seem to

exhibit an overall decline. In addition, we demonstrate that among the occupations with high levels of WFH

adoption, employment declined (based on firms’ locations) more in larger cities than in smaller cities. Based

on our model implications, we argue that the declined urban wage premium and the exiting of employment

from large cities imply that the agglomeration economies of large cities decreased as a result of the rise

in WFH adoption. Furthermore, we conduct a decomposition exercise where we dissect the decline in the

urban wage premium into the changes in skill-specific urban wage premiums. We find that the decline in the

urban wage premium for jobs with high WFH adoption is led by the decline in the urban wage premiums of

relationship-building skills and other skills that are compatible with interactive activities with co-workers,

customers, clients, and other professionals, based on intuition. This further suggests that the agglomeration

economies of large cities were weakened by the adoption of WFH.
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Figure 1: The Labor Demand And Supply in Large Cities After COVID-19 Outbreak
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(b) Occupations with High Levels of WFH Adoption
Note: The figures present graphical illustrations of how the local labor markets in large cities change in response to

the COVID-19 pandemic. We illustrate occupations with low or moderate levels of WFH adoption in Figure 1a and

occupations with high levels of WFH adoption in Figure 1b. The solid lines represent the labor demand and supply

curves before the pandemic. The dash lines represent the shifted labor demand and supply curves during the pandemic.
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Figure 2: The Share of Workers Working from Home

(a) All Workers (b) Workers by Education (ACS)

(c) Workers by Selected Occupation Groups (ACS)
Note: The figures plot the share of workers who work from home from 2005 to 2020. In Figure 2a, we use the American

Community Survey (ACS) and the American Time Use Survey (ATUS) to calculate the share of all workers who work from

home in each survey year. For the year 2020, to highlight the share of workers working from home under the pandemic, we

impute the numbers for the period after the first quarter of 2020. We assume that both the ACS and the ATUS data surveyed

respondents randomly in each month of 2020 and that the shares of working from home in the Q1 of 2020 are identical to the

shares estimated for 2019. For the ACS, we study the sample working at least 35 hours a week and aged between 25 and 65. For

the ATUS, we calculate the share of workers working from home by dividing the number of workers whose working activities

all occur at home by the number of workers who recorded working activities during the period surveyed. Figure 2b shows the

shares of workers with or without college degree working from home, based on the ACS data. Figure 2c shows the shares of

workers from four selected occupation groups working from home, based on the ACS data.
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Figure 3: The Urban Wage Premium: 2018-2019 vs. 2020-2022

(a) All Jobs

(b) With College Degree Requirement (c) No College Degree Requirement

(d) High WFH Adoption (e) Low or Moderate WFH Adoption
Note: We show the binned scatterplot of the residual log posted wage against the residual log employment number of the

occupation of the job located in the MSA of the job. We obtain the residualized log posted wage and the log employment

number by first regressing these variables on SOC-ONET occupation code, NAICS code, year of education required, salary

type, full-/part-time status, tax terms, and the month of the posting date. We then add back the means of the origin variables.

For each subfigure, we plot the relationship between the residual posted log wage and log employment separately for the jobs

posted in 2018-2019 and for jobs posted between 2020 and the first quarter of 2022. Figure 3a shows the plot for all jobs posted.

Figure 3b shows the plot for the jobs with college degree requirement (16 years of education). Figure 3c shows the plot for jobs

without college requirement. Figure 3d shows the plot for jobs with high level of WFH adoption. Figure 3e shows the plot for

jobs with low or moderate levels of WFH adoption. We use a 10% random sample of the Burning Glass data.30



Figure 4: The Urban Wage Premium of Selected Occupation Groups

(a) Computer and Mathematical (b) Business and Finance

(c) Food Prep and Service (d) Health
Note: We show the binned scatterplot of the residual log posted wage against the residual log employment number of the

occupation of the job located in the MSA of the job. We obtain the residualized log posted wage and the log employment

number by first regressing these variables on SOC-ONET occupation code, NAICS code, year of education required, salary

type, full-/part-time status, tax terms, and the month of the posting date. We then add back the means of the origin variables. For

each subfigure, we plot the relationship between the residual posted log wage and log employment separately for the jobs posted

in 2018-2019 and for jobs posted between 2020 and the first quarter of 2022. Figure 4a shows the plot for all jobs categorized

in the occupation family of “Computer and Mathematical Occupations”. Figure 4b shows the plot for all jobs categorized in the

occupation family of “Business and Financial Operations Occupations”. Figure 4c shows the plot for all jobs categorized in the

occupation family of “Food Preparation and Serving Related Occupations”. Figure 4d shows the plot for all jobs categorized in

the occupation family of “Healthcare Practitioners and Technical Occupations”. We use a 10% random sample of the Burning

Glass data.
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Figure 5: The Urban Wage Premium by Year

Note: In this figure, we allow the urban wage premium to vary by year and by job types based on the education required and

the level of WFH adoption during the pandemic. To estimate the yearly urban wage premium, we control for each job’s SOC-

ONET occupation code, NAICS code, year of education required, salary type, full-/part-time status, tax terms, and the month

of the posting date. We allow the regression coefficients for log posted wages on log employment in the job’s occupation within

the job’s MSA to vary by year and by job type. We use a 10% random sample of the Burning Glass data.

32



Table 1: Testable Predictions during the COVID-19 Pandemic

Occupations with Low or Moderate WFH Adoption

Urban Wage Premium Employment by City Size

Labor Demand Decreases in Large Cities ↓ ↓ in L; ↑ in S

Labor Supply Decreases in Large Cities ↑ ↓ in L; ↑ in S

Occupations with High WFH Adoption

Urban Wage Premium Employment by City Size

Productivity Decreases in Large Cities ↓ ↓ in L; ↑ in S

Labor Supply Increases in Large Cities ↓ ↑ in L; ↓ in S

Note: This table summarizes the changes in the urban wage premium (column 1) and employment in large (L) and small

(S) cities (column 2) in occupations with low or moderation WFH adoption (upper panel) and high WFH adoption

(lower panel). Different rows indicate the effects of different underlying driving forces. Section 2.5 presents more

detailed discussions.
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Table 2: Changes in the Urban Wage Premium by the Level of WFH Adoption

Log Posted Hourly Wages

(1) (2) (3) (4)

Log M -0.00917*** 0.0231*** 0.0219*** 0.0202***

(0.00242) (0.00351) (0.00354) (0.00403)

Log M × Post 0.00536*** -0.00138 -0.00055 -0.00217**

(0.00122) (0.00086) (0.00076) (0.00096)

Log M × High WFH 0.0656*** 0.0320*** 0.0240*** 0.0192***

(0.00639) (0.00434) (0.00307) (0.00475)

Log M × High WFH × Post -0.0235*** -0.0171*** -0.0157*** -0.0132***

(0.00398) (0.00319) (0.00284) (0.00178)

Measurement of M Emp Size by Emp Size by Emp Size by Emp Density by

Occ & MSA Occ & MSA Occ & MSA Occ & County

Controls: Occupation, Industry, Education

Requirement, Salary Type, Tax Term X X X

Controls: Skills Requirements X X

Observations 4,238,336 4,238,331 4,238,019 4,238,019

Note: This table presents the estimates of the urban wage premiums before and after the start of the COVID-19 pandemic (i.e., α0,

α1, α2, and α3 in Equation 5). The sample comprises the job postings from the Burning Glass data from 2018 to the first quarter

of 2022. The dependent variable is the log posted hourly wage of each job posting. M is defined as the size of employment of

the occupation in the MSA of the posted job (Columns 1–3) or the employment density (employment divided by the county area)

of the occupation in the county of the posted job (Column 4). Post indicates the pandemic period (i.e., the years of 2020–2022).

High WFH is an indicator which is equal to 1 if the occupation of the post job has a high level of WFH adoption. Column 1 does

not include any control variables. Column 2 controls for the indicators of occupation code (SOC-ONET), industry code (3-digit

NAICS), years of education required by the job, salary type, part-/full-time status, tax term, and job posting month. Columns 3 and

4 further control for indicators of 20 skill requirements. We use a 10% random sample of the Burning Glass data. Standard errors

are clustered at the MSA level. *** p < 0.01, ** p < 0.05, *p < 0.1.
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Table 3: Employment Growth by Local Employment Size: Before and After 2020

for Different Occupation Groups

Changes in Log Number of Jobs

(1) (2) (3)

Log M × 1/2019–1/2020 × Low WFH -0.00588** -0.00515**

(0.00231) (0.00238)

Log M × 1/2020–8/2021 × Low WFH -0.0226*** -0.0211***

(0.00317) (0.00232)

Log M × 1/2019–1/2020 × High WFH -0.00368 -0.00367

(0.00290) (0.00259)

Log M × 1/2020–8/2021 × High WFH -0.0201*** -0.0172***

(0.00424) (0.00354)

Log M × 1/2019–1/2020 × Other Occ -0.00606**

(0.00234)

Log M × 1/2020–8/2021 × Other Occ -0.0230***

(0.00331)

Log M × 1/2019–1/2020 × Computer & Business -0.00184

(0.00242)

Log M × 1/2020–8/2021 × Computer & Business -0.0149***

(0.00263)

Measurement of M Emp Size by Emp Size by Emp Density by

Occ & MSA Occ & MSA Occ & County

Observations 3,444,562 3,444,562 3,441,043

Note: This table presents the estimates of changes in employment with respect to the employment size or density of a MSA

separately for different types of occupations. Specifically, Columns 1 and 3 present the estimates of Equation 6 and Column 2

presents the estimates of Equation 7. The sample comprises employment numbers from the Quarterly Census of Employment

and Wages (QCEW) over two periods: from January 2019 to January 2020, and from January 2020 to August 2021. The

dependent variable is the change in log employment by occupation and MSA between January 2019 and January 2020, or

between January 2020 and August 2021. The independent variables are log employment of same occupation and MSA in

January 2019 (Columns 1–2) or log employment density of the same occupation in the same county in January 2019 (Column

3), interacted with period dummies and occupation group dummies. Each estimate represents how employment growth varies

with respect to initial employment size or density, by time period and occupation group. In each regression, we control for the

occupation × period fixed effects and MSA fixed effects. Standard errors are clustered at the MSA level. *** p < 0.01, ** p <

0.05, *p < 0.1.
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Table 4: Gelbach Decomposition: Contribution of Changes in Skill-Specific Urban Wage Premiums

to the Decrease in the Urban Wage Premium among High-WFH Jobs

Skill Cluster Family β Γ Contribution Contribution Share

(1) (2) (3) (4)

Building Relationship -0.0074804 0.38501 -0.00288 16.1%

Marketing and Public Relations -0.0045731 0.463777 -0.00212 11.9%

Finance -0.0121239 0.166073 -0.00201 11.3%

Customer and Client Support -0.0143011 0.116857 -0.00167 9.4%

Sales -0.0020816 0.394603 -0.00082 4.6%

Business -0.0012663 0.572231 -0.00072 4.1%

Legal 0.0119927 -0.02609 -0.00031 1.8%

Supply Chain and Logistics -0.0036411 0.062566 -0.00023 1.3%

Environment 0.0187894 -0.0098 -0.00018 1.0%

Public Safety and National Security 0.009914 -0.01323 -0.00013 0.7%

Agriculture, Horticulture, and the Outdoors 0.0373437 -0.00267 -1E-04 0.6%

Manufacturing and Production -0.0011212 0.078731 -8.8E-05 0.5%

Physical Abilities 0.0060615 -0.00682 -4.1E-05 0.2%

Economics, Policy, and Social Studies 0.009322 0.000316 2.94E-06 0.0%

Personal Care and Services 0.0102615 0.002187 2.24E-05 -0.1%

Education and Training -0.0016677 -0.01885 3.14E-05 -0.2%

Maintenance, Repair, and Installation 0.0067114 0.010233 6.87E-05 -0.4%

Architecture and Construction 0.0170415 0.004042 6.89E-05 -0.4%

Energy and Utilities 0.023072 0.005482 0.000127 -0.7%

Engineering 0.0021761 0.063942 0.000139 -0.8%

Media and Writing 0.0021999 0.073163 0.000161 -0.9%

Human Resources 0.0047786 0.062455 0.000298 -1.7%

Industry Knowledge 0.0028938 0.119611 0.000346 -1.9%

Science and Research 0.0051257 0.110132 0.000565 -3.2%

Health Care 0.0158672 0.043392 0.000689 -3.9%

Administration 0.00493 0.203552 0.001004 -5.6%

Information Technology 0.0017551 0.871493 0.00153 -8.6%

Design 0.0136243 0.121618 0.001657 -9.3%

Organizational Skills 0.0126065 0.131803 0.001662 -9.3%

Analysis 0.0046451 0.458867 0.002132 -11.9%

Note: This table presents the Gelbach decomposition results. Column 1 presents the estimates of βs
2 in Equation 9, where s is

the corresponding skill cluster family. Column 2 presents the estimates of Γs
2 in Equation 10. Column 3 presents the estimates

of πs according to Equation 11. Column 4 presents the contribution shares based on the estimates in Column 3.
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Appendix

A1 Comparative Statics of the Model

In this section, we provide the derivation of the comparative statics shown in section based on the spatial

equilibrium model.

We proceed from the equalized utility levels in equilibrium:

Ū = wH − βrH

Ū = wH − βrL − ϕ

Ū = wL − βrL.

To make sure that we can feasibly solve for the comparative statics, we reduce the number of equations

by taking the difference between the first and second equations and the difference between the third and the

second equations. We also plug in the equilibrium wage and rent equations:

0 = −β(π0H + πH ln(NHH)) + β(π0L + πL ln(1−NHH)) + ϕ

0 = c+ (γ − 1) ln(1−NHH −NHL)− θ ln(NHH)− (γ − 1) ln(NHH +NHL) + ϕ.

We are interested in the values of ∂NHH

∂φ
and ∂NHL

∂φ
. Since NHH + NHL + NLL = 1, we do not need

to compute the comparative static for NLL. From the two equations above, there are endogenous variables

NHH and NHL and one exogenous variable ϕ. The functional forms in the two equations are also smooth

and differentiable. We apply the implicit function theorem to solve for the comparative static.

We define:

G1 = −β(π0H + πH ln(NHH)) + β(π0L + πL ln(1−NHH)) + ϕ

G2 = c+ (γ − 1) ln(1−NHH −NHL)− θ ln(NHH)− (γ − 1) ln(NHH +NHL) + ϕ.

Based on IFT,

40








∂NHH

∂φ

∂NHL

∂φ




 = −






∂G1

∂NHH

∂G1

∂NHL

∂G2

∂NHH

∂G2

∂NHL






−1




∂G1

∂φ

∂G2

∂φ






If we expand the matrices, we get:
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By plugging in each derivative terms, we get
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Note that ϕ denotes the cost of working long-distance. Therefore, the effect of reducing the cost of

working long distance should be obtained by adding a negative sign in front of each derivative.

A2 Data Appendix

A2.1 Urban Wage premium by ACS data vs. Burning Glass Data - pre-pandemic

We provide a validation of the urban wage premium estimated from the Burning Glass data by bringing in

data from the American Community Survey (ACS) surveyed in the pre-pandemic year - 2019. In Figure A3,

we plot the relationship between the log posted hourly wage as measured in the 2019 Burning Glass data and

the jobs’ MSAs’ total employment, while controlling for the SOC-ONET occupation codes of the posted

jobs. In the same figure, we similarly plot the relationship between the log hourly wage measured in the

American Community Survey and the surveyed respondents’ MSAs’ total employment, while controlling

for the occupation code (occ2010) assigned to the survey respondents. We see that the urban wage premiums

as manifested by the wage gradient with respect to local employment size are quite comparable between the

two datasets.
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A2.2 The Definitions and Skills and Skill Cluster Family

The Burning Glass data provide a vector of skills for each distinct posted job. There are more than 13,000

distinct skills included in the data. These skills are strings extracted from actual job descriptions. The skill

vectors have two uses in our paper. The first is to provide extremely detailed job-level controls when we

estimate the change in the urban wage premium. The second use is to allow us to estimate the change in the

urban wage premium by skill and conduct the Gelbach decomposition described in section 5.

The challenge pertaining to this data is that the lengths of the skill vectors are different. Some jobs have

only one or two listed skills while others have close to 20. To construct the full set of skill controls for

each job, we control for the first 20 skills associated with each job. To fill in the skill variables for each

job, we rank the skills within each job by each skill’s overall frequency of appearance in the data. Stata

will automatically create dummy variables for each skill in each of the 20 skill variables (the “reghdfe”

command). We do so for the ease of implementation in Stata. Alternatively, we can define 13,000 distinct

dummy variables for each skill, which can get very computationally burdensome. We believe this should not

pose a problem to the validity of our study because our method of control is actually much more stringent

(13,000 × 20 dummy variables).

To dissect the decline in the urban wage premium in the high-WFH jobs, we need to interact lnM with

skill dummies. However, for feasibility, we do not use the detailed skill dummies as the skill unit to analyze.

Instead, we use a much higher level of skill groups. The Burning Glass data group skills into skill clusters

and skill cluster families. There are more than 650 skill clusters, which is still too many. But there are

only 29 skill cluster families. We use the skill cluster families as the units for our Gelbach decomposition

exercise.

Because skill cluster families only cover a subset of skills, a subset of skills are not assigned to a skill

cluster family. We manually assign some very commonly listed skills that are unassigned. Table A2 is a

crosswalk that list our manual assignment of the unassigned skills.
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Figure A1: Validation of the ACS WFH Share by Occupation Group with the ATUS and CPS

(a) Scatterplot Against ATUS WFH Shares in 2020

(b) Scatterplot Against CPS WFH Shares in 2020 (May - Dec)
Note: These figures validate the WFH shares observed in the ACS data. We compute the share of workers who worked from

home in 2020 (post Q1) for each occupation group. We perform the same calculations using the 2020 (post Q1) ATUS data and

the 2020 (May to December) CPS data. Figure A1a plots the share of WFH workers by occupation group using the ACS vs.

the ATUS. Figure A1b plots the share of WFH workers by occupation group using the ACS vs. the CPS.
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Figure A2: Industry Share within MSAs in the Burning Glass Data vs. the Quarterly Census of Employment

and Wages

Note: This figure is designed to validate that the geographic distribution of job postings reflect employers’ location. The y-axis

represents the two-digit NAICS industry share within each MSA in the Burning Glass job postings, and the x-axis represents

the two-digit NAICS industry share within each MSA in the Quarterly Census of Employment and Wages (QCEW) data, which

is based on the employers’ locations. We plot the statistics extracted from January and July of 2020.

Figure A3: Urban Wage Premium in Burning Glass Data vs. in the American Community Survey (ACS) in

the year 2019

Note: In this graph, we attempt to provide external validation for the urban wage premium (UWP) estimated from the Burning

Glass data by bringing in the American Community Survey (ACS) data. We estimate the UWP with the Burning Glass data by

regressing the log posted wages in 2019 on the log total employment size of the MSA of the jobs in question, while controlling

for the occupation code fixed effects (SOC-ONET). Then, we estimate the UWP with the ACS data by regressing the log hourly

wage in 2019 on the log total employment size of the MSA, while controlling for the occupation code fixed effects in the ACS

(occ2010). We plot the demeaned binned scatterplots of both micro datasets.
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Figure A4: Predicted Adoption of WFH vs. Observed Adoption of WFH

Note: This graph is to validate the predicted adoption of WFH with the observed adoption of WFH. We use the subset of

occupations with vectors of O*NET occupational characteristics that can be matched to the ACS occupation code. We calculate

the change in the share of WFH workers per occupation and use the collection of O*NET work context characteristics as

predictors. We first apply the Lasso selection method to reduce the dimension of the work context characteristics. We then

regress the change in the WFH share by occupation on the work context characteristics selected by the Lasso method. The

predicted adoption of WFH is the predicted change in the WFH share based on the work context characteristics. The observed

adoption of WFH is the observed change in the WFH share based on ACS data.
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Figure A5: Residual Wage Growth of High-Adoption Occupations vs. Low-Adoption Occupations

(a) High-Adoption

(b) Low-Adoption
Note: In the figures, we plot the change in residual log posted wages by MSA between the pandemic period (2020 - 2022 Q1)

and the pre-pandemic period (2018 - 2019). We obtain the residualized log posted wage by first regressing it on SOC-ONET

occupation code, NAICS code, year of education required, salary type, full-/part-time status, tax terms, and the month of the

posting date. We then add back the mean of the origin variable. Figure A5a displays the sample of jobs with high levels of

WFH adoption. Figure A5b displays the sample of jobs with low levels of WFH adoption.
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Figure A6: Residual Wage Growth of Selected Occupation Groups

(a) Computer and Mathematical (b) Business and Finance

(c) Food Prep and Service (d) Health
Note: In the figures, we plot the change in residual log posted wages by MSA between the pandemic period (2020 - 2022 Q1)

and the pre-pandemic period (2018 - 2019). We obtain the residualized log posted wage by first regressing it on SOC-ONET

occupation code, NAICS code, year of education required, salary type, full-/part-time status, tax terms, and the month of the

posting date. We then add back the mean of the origin variable. Figure A6a displays the sample of jobs in the occupation

family of “Computer and Mathematical Occupations”. Figure A6b displays the sample of jobs in the occupation family of

“Business and Financial Operations Occupations”. Figure A6c displays the sample of jobs in the occupation family of “Food

Preparation and Serving Related Occupations”. Figure A6d displays the sample of jobs in the occupation family of “Healthcare

Practitioners and Technical Occupations”.
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Figure A7: Employment Growth of High-Adoption Occupations vs. Low-Adoption Occupations

(a) High-Adoption

(b) Low-Adoption
Note: In the figures, we plot the change in log employment by MSA and levels of WFH adoption during the pandemic (from

2020 Q1 to 2021 Q3). Figure A5a displays the sample of jobs with high levels of WFH adoption. Figure A5b displays the

sample of jobs with low levels of WFH adoption. The source of the data is the Quarterly Census of Employment and Wages.
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Figure A8: Employment Growth of Selected Occupation Groups

(a) Computer and Mathematical (b) Business and Finance

(c) Food Prep and Service (d) Health
Note: In the figures, we plot the change in log employment by MSA during the pandemic (from 2020 Q1 to 2021 Q3). Figure

A6a displays the sample of jobs in the occupation family of “Computer and Mathematical Occupations”. Figure A6b displays

the sample of jobs in the occupation family of “Business and Financial Operations Occupations”. Figure A6c displays the

sample of jobs in the occupation family of “Food Preparation and Serving Related Occupations”. Figure A6d displays the

sample of jobs in the occupation family of “Healthcare Practitioners and Technical Occupations”. The source of the data is the

Quarterly Census of Employment and Wages.
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Table A1: Lasso Selection Results: Work Context Characteristics as Predictors for WFH Adoption During

the Pandemic

Lasso OLS

Deal With External Customers -0.0089 -0.0181***

(0.00507)

Deal With Physically Aggressive People -0.01028 -0.0119

(0.00915)

Deal With Unpleasant or Angry People -0.00421 -0.00428

(0.00752)

Electronic Mail 0.006438 0.00691*

(0.00379)

Exposed to Contaminants -0.011 -0.0102**

(0.00481)

Exposed to Disease or Infections -0.00229 -0.00406

(0.00408)

Exposed to Minor Burns, Cuts, Bites, or Stings -0.0029 -0.00375

(0.00542)

Level of Competition 0.013591 0.0175***

(0.00562)

Pace Determined by Speed of Equipment -0.00207 -0.00913*

(0.00480)

Physical Proximity -0.01062 -0.0131**

(0.00629)

Public Speaking 0.009759 0.0137**

(0.00590)

Responsible for Others’ Health and Safety -0.02696 -0.0317***

(0.00621)

Spend Time Bending or Twisting the Body -0.00088 -0.000222

(0.00719)

Spend Time Sitting 0.009258 0.00730

(0.0105)

Spend Time Standing -0.01237 -0.0132

(0.0114)

Spend Time Using Your Hands to Handle, -0.01788 -0.0150***

Control, or Feel Objects, Tools, or Controls (0.00550)

Work With Work Group or Team 0.01448 0.0284***

(0.00796)

Note: This table shows the result of the Lasso regression and the OLS regression after the selection of variables.

We use the O*NET work context characteristics as predictors for the change in the WFH share during the

pandemic, namely the level of adoption of WFH. There are 57 work context characteristics. We show the

regression coefficients for the variables retained by Lasso. The shrinkage parameter λ is searched for based on

Extended Bayesian information criterion (EBIC) (Chen and Chen, 2008). *** p < 0.01, ** p < 0.05, *p <

0.1. 50



Table A2: Manual Assignment of Unassigned Skills

Skill Skill Cluster Family

Building Effective Relationship Building Relationship

Teamwork / Collaboration Building Relationship

Mentoring Building Relationship

Verbal / Oral Communication Communication

Telephone Skills Communication

Written Communication Communication

Writing Communication

Communication Skills Communication

Presentation Skills Communication

Oral Communication Communication

Microsoft Excel Information Technology

Microsoft Word Information Technology

Computer Literacy Information Technology

Problem Solving Analysis

Critical Thinking Analysis

Creativity Analysis

Research Science and Research

Repair Maintenance, Repair, and Installation

Cleaning Maintenance, Repair, and Installation

Preventive Maintenance Maintenance, Repair, and Installation

Work Area Maintenance Maintenance, Repair, and Installation

Decision Making Business

Planning Business

Leadership Business

Organizational Skills Organizational Skills

People Management Human Resources

Typing Administration

Troubleshooting Administration

Time Management Administration

Notes: We manually assign some of the unassigned skills to skill cluster families. We select the

skills that appear in the skill vectors very frequently but unassigned to any skill cluster families.

Some skill cluster families shown above are created by us because the existing categories do

not fit. “Building Relationship”, “Communication”, “Organizational Skills” are created by us.
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Table A3: Most Frequently Listed Skills Under Key Skill Cluster Families (Part 1)

Rank Marketing and Public Relations Finance Custumer and Client Support

1 Social Media Budgeting Customer Service

2 Packaging Accounting Customer Contact

3 Salesforce Customer Billing Customer Checkout

4 Client Base Retention Financial Analysis Cash Handling

5 Marketing Financial Reporting Basic Mathematics

6 Facebook Risk Management Guest Services

7 Market Strategy Account Reconciliation Cash Register Operation

8 Customer Relationship Management (CRM) Financial Statements Point of Sale System

9 Market Research Bookkeeping Claims Knowledge

10 Digital Marketing Financial Management Customer Accounts

11 Newsletters General Ledger Refunds Exchanges and Adjustments

12 Instagram Invoicing Customer Complaint Resolution

13 Market Trend Invoice Processing Processing Item Returns

14 Marketing Materials Generally Accepted Accounting Principles (GAAP) Needs Assessment

15 LinkedIn External Auditing Client Needs Assessment

16 Fundraising Risk Assessment Customer Experience Improvement

17 Social Media Platforms Internal Auditing Claims Adjustments

18 Customer Retention Quickbooks Service Improvement

19 Market Analysis Cash Control Payment Collection

20 Product Marketing Accounts Payable / Accounts Receivable Payment Processing

21 Brand Experience Balance Sheet Bagging Items

22 Market Planning Public Accounting Checking Out Customers

23 Competitive Analysis Insurance Underwriting Satisfaction Failure Correction

24 Brand Awareness Generation Billing Systems Processing Customer Requests

25 Community Relations Month-End Close Processes Issuing Receipts

26 Google Analytics Cash Management Presenting Solutions

27 Customer Acquisition Accounting Systems Customer Service Enhancement

28 Marketing Management Accounting Software Responding to Patient Phone Calls

29 Business-to-Business Sales Securities Product Availability

30 Youtube Sarbanes-Oxley (SOX) End-user training

31 Promotional Materials Audit Planning Product Assortment

32 Marketing Strategy Development Financial Modeling Account Information Maintenance

33 Copywriting Mergers and Acquisitions Customer Referrals

34 Crisis Management Billing Claims Processing

35 Effective Communications Revenue Projections Wellness Services

36 Email Marketing Budget Management Deposit Collection

37 CRM software Bank Secrecy Act (BSA) Inventory Checking

38 Consumer Behavior Invoice Preparation Pizza Delivery

39 Marketing Communications Financial Operation Customer Relationship Marketing

40 Ad Campaigns Tax Returns Settlement Negotiation

41 Marketing Programs Cash Deposits and Receipts Credit Card Transaction Processing

42 Focus groups Fintech Providing Warranties

43 Social Media Marketing Mortgage Lending Product Features Assistance

44 Direct Mail Accruals Price Checks

45 Consumer Segmentation Costing Store Communications

46 Branding Strategy Wealth Management Charge and Disbursement Determination

47 Email Campaigns Cost Analysis Credit Card Applications

48 Account Development Bank Reconciliation Deposit Preparation

49 Consumer Research Financial Planning Client Care

50 Social Content Variance Analysis Customer Account Review
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Table A4: Most Frequently Listed Skills Under Key Skill Cluster Families (Part 2)

Rank Sales Business Analysis

1 Sales Project Management Data Analysis

2 Product Sales Quality Assurance and Control Data Collection

3 Merchandising Staff Management Tableau

4 Sales Goals Supervisory Skills Data Science

5 Business Development Process Improvement Machine Learning

6 Product Knowledge Business Process Business Intelligence

7 Prospective Clients Key Performance Indicators (KPIs) SAS

8 Retail Sales Conflict Management Data Visualization

9 Description and Demonstration of Products Business Administration Statistics

10 Sales Management Project Planning and Development Skills Statistical Analysis

11 Negotiation Skills Product Management Pipeline (Computing)

12 Account Management Performance Appraisals Data Mining

13 Outside Sales Cost Control Requirements Verification and Validation

14 Business-to-Business Change Management Data Governance

15 E-Commerce Performance Management MATLAB

16 Upselling Products and Services Stakeholder Management Ad Hoc Reporting

17 Inside Sales Operations Management Geometry

18 Cross Sell Strategic Planning R

19 Sales Support Business Acumen Algebra

20 Retail Management Performance Analysis Behavior Analysis

21 Articulating Value Propositions Business Planning Data Validation

22 Cold Calling Business Analysis Quantitative Analysis

23 Sales Strategy Thought Leadership Predictive Models

24 Sales Planning Business Operations Alteryx

25 Insurance Recommendation Contract Review Business Metrics

26 Insurance Sales Business Strategy Cognos Impromptu

27 Sales Calls Property Management Big Data Analytics

28 Visual Merchandising Root Cause Analysis Statistical Methods

29 Sales Cycle Business Management Data Manipulation

30 Sales Training Contract Preparation SAP BusinessObjects

31 Direct Sales Lifecycle Management Deep Learning

32 Lead Generation Technical Assistance Natural Language Processing

33 Account Closing Service Level Agreement SPSS

34 Overcoming Objections Event Planning Data Capture

35 Sales Leadership Staff Development Data Reports

36 Sales Reporting Contract Management Predictive Analytics

37 Telemarketing Process Design Business Intelligence Reporting

38 Sales Meetings Business Solutions Qlikview

39 Sales Prospecting Restaurant Management Statistical Process Control (SPC)

40 Consultative Sales Team Management Qlik

41 Sales Administration Due Diligence Calculus

42 Sales Channels Real Estate Experience trigonometry

43 New Business Development Professional Services Marketing Ad Hoc Analysis

44 Complex Sales Progress Reports Computer Vision

45 Closing Sales Business Systems Analysis Microstrategy

46 Product and Service Information Personnel Management Data Trending

47 Sales Principles Resource Management Data Verification

48 Technical Sales Business Communications Model Building

49 Sales Development Profit Targets Decision Trees

50 Life Insurance Sales Policy Implementation Pandas
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