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Abstract

In a mechanism, a designer may reveal some information to influence agents’ private
types in order to obtain more payoffs. In the literature, the information is usually
represented as random variables, the value of which are realized by the nature.
However, this representation of information may not be proper in some practical
cases. In this paper, we propose a type-adjustable mechanism where the information
sent by the designer is modeled as a solution of her optimization problem. From
the designer’s perspective, the probability distributions of agents’ private types
may be optimally controlled. By constructing a type-adjustable first-price sealed-
bid auction, we show that the seller may obtain more expected payoffs than what
she could obtain at most in the traditional optimal auction model. Interestingly, to
the satisfaction of all, each agent’s ex-ante expected payoffs may be increased too.
In the end, we compare the type-adjustable mechanism with other relevant models.

Key words: Mechanism design; Optimal auction; Bayesian implementation.

1 Introduction

In mechanism design theory [1–3], there are one designer and some agents. 1

The designer would like to implement a desired social choice function which
specifies an outcome for each possible profile of agents’ private types. In order
to implement the social choice function, the designer constructs a mechanism
which specifies each agent’s feasible strategy set (i.e., the allowed actions of

∗ Corresponding author.
Email address: 18621753457@163.com (Haoyang Wu).

1 In this paper, the designer is denoted as “She”, and the agent is denoted as “He”.



each agent) and an outcome function (i.e., a rule for how agents’ actions get
turned into a social choice).

Note that the designer’s role is changed during the period of a mechanism.
Before announcing a mechanism, the designer acts like a dominator, since she
can decide all agents’ feasible strategy sets and the outcome function that
yields the final result. However, after announcing a mechanism, the designer
acts like a passive receiver, since she should accept any outcome yielded by
the mechanism, even if some outcome may correspond to low payoffs from
her perspective. The reason for this embarrassment is that the outcome is
not only dependent on the outcome function, but also dependent on agents’
private types, which are unknown to the designer.

There have been several possible ways to improve the designer’s situations.
For example, the designer may hold a charity auction. Engers and McManus
[4] proposed that agents’ bids in a first-price charity auction are greater than
those in a standard (non-charity) auction [5] because of the charitable benefit
that winners receive from their own payments.

Additionally, agents’ private types may not be fixed. Maschler et al ([6], Sec-
tion 2.9.5) claimed that agents’ types may change with changing circum-
stances. Hence, in order to improve payoffs, the designer may reveal some
information to influence agents’ informational environments, and then induce
agents to change their private types. For example, Bergemann and Välimäki
[7] proposed that for many practical cases, agents’ types cannot be considered
to be independent of the mechanism, and the seller may have control over
pieces of evidence that determine the bidders’ private valuations for the ob-
ject on sale. In auctions with interdependent values, the seller may have some
information that would affect the valuations of the bidders if known by them
[8], [9]. Kamenica and Gentzkow [10] proposed a model of Bayesian persuasion
in which the Sender can strategically control the the Receiver’s information
to influence her beliefs, and thus affect the actions that she takes.

So far, in the literature, the information revealed by the designer is usually
represented as random variables, the value of which are realized randomly by
the nature. It should be noted that this representation of information may not
be proper in some practical cases. For example, let us consider a symmetric
first-price sealed-bid (FPSB) auction, where the probability distribution of
each bidder i’s initial private valuation is identical to each other. Before each
bidder i submits his bid bi, the seller sends a signal 2 with a positive cost c as

2 The signal is just an abstract notion, and practically it can denote different things,
such as an advertisement, or a training course to improve bidders’ knowledge to
understand the sold object. The reason why the signal is assumed to be costly is
that this is common in practical cases, and more importantly, a costly signal is more
credible than a costless signal from any rational agent’s perspective.
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public information to change bidders’ information environments. We assume
that the seller knows the probability density function of each bidder’s initial
private valuation, and knows how each probability density function changes
with the signal cost. 3 After learning about the signal, each agent adjusts his
private valuation θi to the sold object, and then submits his bid bi.

Without loss of generality, we assume that: 1) Each agent i’s private valuation
θi and bid bi both increase concavely with the signal cost c. 2) If c is small,
then a tiny increment δc of cost c will yield a big increment δbi of each bid
bi, i.e., δc/δbi < 1 for a small c. Since the seller’s payoffs is the winner’s bid
minus the seller’s signal cost, then it will always be beneficial for the seller to
increase the signal cost c as long as δc/δbi < 1 holds. Obviously, the seller’s
payoffs will reach the maximum when the signal cost c reaches a critical value
such that δc = δbi for each bidder i.

In the above-mentioned example, the information (i.e., the costly signal) sent
by the seller is modeled as a solution of an optimization problem, which aims to
find a critical signal cost. Obviously, the information is deterministic. Hence,
this circumstance should not be analyzed by using traditional mechanisms,
where the information sent by the designer is represented as random variables.

This paper aims to propose a generalized mechanism to model such case.
In Section 2, a series of notions are defined, such as type-adjustable mecha-
nism, type adjustment function, optimal adjustment cost and type-adjustable
Bayesian implementation. In Section 3, an example is constructed to show that
by sending an optimal signal, the designer may obtain more expected payoffs
than what she could obtain at most in the traditional optimal auction model.
Interestingly, to the satisfaction of all, each agent’s expected payoffs may be
increased too. In Section 4, we compare the type-adjustable mechanism with
other related models in the literature. Section 5 draws conclusions.

2 Model

Following Section 23.B of MWG’s book [1], we consider a setting with one
designer and I agents (i = 1, · · · , I) with private types. The set of each agent
i’s possible type θi is denoted as Θi, and Θ = Θ1 × · · · × ΘI . Each agent
knows his type, but not necessarily the types of the others. For any outcome
x ∈ X, the utility function of each agent i with type θi is denoted as ui(x, θi) :
X × Θi → R, the designer’s utility is denoted as ud(x) ∈ R. For a set X

3 A similar assumption can be seen in Section 2.1 of Ref [7], where Bergemann and
Välimäki assumed that the initial type and transition function of each agent are
common knowledge.
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of possible outcomes, a social choice function (SCF ) f : Θ → X specifies an
outcome for each profile of agents’ types θ ∈ Θ. For each agent i = 1, · · · , I, his
initial type 4 is denoted as θ0i ∈ Θi. Let φ

0(θ0) = (φ0
1(θ

0
1), · · · , φ0

I(θ
0
I )) denote

the profile of probability density functions of agents’ initial types θ0 ∈ Θ.

Assumption 1: The designer knows the profile of probability density functions
of agents’ initial types φ0(θ0).

Definition 1 (Type-adjustable mechanism):
Given a set of outcomes X and an SCF f : Θ1 × · · · × ΘI → X, a type-

adjustable mechanism is denoted as Γc = (S1, · · · , SI , g, c), and is constructed
by the following steps:
1) The designer performs a costly action a which is observable to all agents.
The cost c ∈ R+ of the action a is assumed to be known by all agents. 5

2) The designer specifies a feasible strategy set Si for each agent i, and an
outcome function g : S1 × · · · × SI → X.
3) After observing the action a and knowing the outcome function g, each
agent i adjusts his initial type θ0i ∈ Θi by using an type adjustment function,
which is defined in the following Definition 2.
4) Each agent i chooses a strategy si ∈ Si to perform.
5) The mechanism yields the outcome g(s1, · · · , sI) ∈ X.

Definition 2 (Type adjustment function):
For each agent i = 1, · · · , I with private type θi, given an action with cost
c, his type adjustment function is defined as µi(θi, c) : Θi × R+ → Θi

6 . Let
µ(θ, c) = (µ1(θ1, c), · · · , µI(θI , c)) denote the profile of agents’ type adjustment
functions, in which θ = (θ1, · · · , θI) is a profile of all agents’ types. Consider
two following cases of cost c:
• c = 0: It is reasonable to assume that no agent will adjust his initial type
after observing the action, i.e., µ(θ0, 0) = θ0 for any θ0 ∈ Θ.
• c > 0: Each agent will adjust his initial type after observing the action. Let
θci denote the result of agent i’s adjusted type, i.e., µi(θ

0
i , c) = θci . Let

θc = (θc1, · · · , θcI) ∈ Θ, θc−i = (θc1, · · · , θci−1, θ
c
i+1, · · · , θcI), µ(θ0, c) = θc.

4 Here, the term “initial type” denotes each agent’s private type before the designer
constructs any mechanism.
5 Since the action a acts as an open signal to all agents, it is natural to require
the action a be costly. Otherwise if the designer can send any signal without any
cost, it is unreasonable to assume that any rational agent is willing to believe such
costless signal.
6 In Ref [5] (Page 60, Line 12), Myerson proposed: “if there are quality uncertain-
ties, then bidder i might tend to revise his valuation of the object after learning
about other bidders’ value estimates.” Here, different from Myerson’s proposition,
in Definition 2 we propose that each agent revises his type after learning about the
signal cost c. An example will be given in Section 3.
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Assumption 2: The designer knows each agent i’s type adjustment function
µi(θi, c).

Let φc(θc) = (φc
1(θ

c
1), · · · , φc

I(θ
c
I)) denote the profile of probability density func-

tions of agents’ adjusted types θc ∈ Θ. For each i = 1, · · · , I, let

φ0
−i(θ

0
−i) = (φ0

1(θ
0
1), · · · , φ0

i−1(θ
0
i−1), φ

0
i+1(θ

0
i+1), · · · , φ0

I(θ
0
I )),

φc
−i(θ

c
−i) = (φc

1(θ
c
1), · · · , φc

i−1(θ
c
i−1), φ

c
i+1(θ

c
i+1), · · · , φc

I(θ
c
I)).

Definition 3 (The designer’s expected payoffs):
Given an SCF f : Θ → X and a profile φ0(θ0), the designer’s initial expected

payoffs is denoted as

ūd(0) = Eθ0ud(f(θ
0)) =

∫

θ0∈Θ
ud(f(θ

0))φ0(θ0)dθ0.

By choosing an action with cost c, the designer’s expected payoffs with type

adjustment is denoted as

ūd(c) = Eθcud(f(θ
c))− c =

∫

θ0∈Θ
ud(f(µ(θ

0, c)))φ0(θ0)dθ0 − c.

Assumption 3: For any outcome f(θc), the designer’s utility function ud(f(θ
c))

is assumed to be concave with respect to the cost c, 7 i.e.,

∂ud(f(θ
c))

∂c
> 0,

∂2ud(f(θ
c))

∂c2
< 0, for any c > 0.

Definition 4 (Optimal adjustment cost):
If there exists a cost c∗ > 0 such that

∂ūd(c)

∂c

∣

∣

∣

∣

c=c∗
= 0,

then the designer’s expected payoffs with type adjustment ūd(c) will reach its
maximum at c = c∗, and c∗ is denoted as the optimal adjustment cost.

Definition 5 (Type-adjustable Bayesian implementation):
Given an SCF f and a profile φ0(θ0), f is called type-adjustable Bayesian

implementable if the following conditions are satisfied:
1) There exists a positive optimal adjustment cost, i.e., c∗ > 0.
2) There exists a type-adjustable mechanism Γc∗ = (S1, · · · , SI , g(·), c∗) that
implements f in Bayesian equilibrium. That is, there exists a strategy profile

7 The concave function means that with the increasement of the cost c, the outcome
f(θc) will become better from the viewpoint of the designer, however the marginal
increasement of utility ud(f(θ

c)) decreases with the increasement of c.
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s∗(·) = (s∗1(·), · · · , s∗I(·)) such that:
(i) For all agent i, all θc

∗

i ∈ Θi, and all ŝi ∈ Si,
8

Eθc
∗

−i

[ui(g(s
∗
i (θ

c∗

i ), s∗−i(θ
c∗

−i)), θ
c∗

i )|θc∗i ] ≥ Eθc
∗

−i

[ui(g(ŝi, s
∗
−i(θ

c∗

−i)), θ
c∗

i )|θc∗i ]. (1)

(ii) g(s∗(θ)) = f(θ) for all θ ∈ Θ.

Proposition 1: Given an SCF f and a profile φ0(θ0), if f is type-adjustable
Bayesian implementable, then the designer will obtain more expected payoffs
than her initial expected payoffs ūd(0).
Proof : Since f is type-adjustable Bayesian implementable, then according
to Definition 5, there exists an optimal adjustment cost c∗ > 0 such that
ūd(c

∗) is the designer’s maximum expected payoffs with type adjustment, and
ūd(c

∗) > ūd(0). ✷

Proposition 2: If ūd(c) satisfies the following condition,

∂ūd(c)

∂c

∣

∣

∣

∣

c=0
≤ 0, (2)

then ūd(0) is the designer’s maximum expected payoffs, and it is worthless for
the designer to adjust agents’ types.
Proof : The proof is straightforward and omitted.

3 Example

Following the first-price sealed-bid (FPSB) auction given in MWG’s book (Ref
[1], Page 865), in this section we will construct a revised FPSB auction, and
point out that it is type-adjustable Bayesian implementable. By analyzing the
seller and each bidder’s expected payoffs, we point out that all members will
benefit from the type-adjustable mechanism.

3.1 A revised first-price sealed-bid auction

Suppose there are one seller and two bidders, each bidder i’s initial valuation
(i.e., his initial type) θ0i is drawn independently from the uniform distribution
on [0, 1]. This distribution is known by the seller but the exact value of each
θ0i is bidder i’s private information.

8 In formula (1), the probability density functions of agents’ types (except i) are the
adjusted functions φc∗

−i(θ
c∗

−i). As a comparison, in the traditional notion of Bayesian
equilibrium ([1], Page 883, Definition 23.D.1), the probability density functions of
agents’ types (except i) are just initial functions φ0

−i(θ
0
−i).

6



Different from the traditional FPSB auction, our revision is that before the
auction the seller sends a signal with cost c ≥ 0, which is observable to two
bidders. Let β > 0 be a coefficient. 9 After observing the signal, each bidder
i is assumed to adjust his private valuation to the object according to the
following concave function,

θci = (1 + β
√
c)θ0i . (3)

Then each bidder i submits a sealed bid bi ≥ 0 to the seller. The bidder with
the higher bid wins the object, and must pay money equal to his bid to the
seller. Let θ = (θ1, θ2), consider the following social choice function

f(θ) = (y1(θ), y2(θ), yd(θ), t1(θ), t2(θ), td(θ)), (4)

in which

y1(θ) = 1, if θ1 ≥ θ2; = 0 if θ1 < θ2
y2(θ) = 1, if θ1 < θ2; = 0 if θ1 ≥ θ2
yd(θ) = 0, for all θ ∈ Θ

t1(θ) = −θ1y1(θ)/2

t2(θ) = −θ2y2(θ)/2

td(θ) = [θ1y1(θ) + θ2y2(θ)]/2.

The subscript “d” stands for the seller, and the subscript “1”, “2” stands for
the bidder 1 and bidder 2 respectively. yi = 1 means that bidder i gets the
object, ti denotes bidder i’s payment to the seller, td denotes the sum of two
bidders’ payment to the seller.

3.2 The SCF f is Bayesian implementable

Let us investigate whether the social choice function f(θ) is Bayesian imple-
mentable. We will look for a Bayesian equilibrium in which each bidder i’s
strategy bi(·) takes the form bi(θ

c
i ) = αiθ

c
i = αi(1+β

√
c)θ0i for αi ∈ [0, 1]. Sup-

pose that bidder 2’s strategy has this form, and consider bidder 1’s problem.
For each possible θc1, bidder 1 wants to solve the following problem:

max
b1≥0

(θc1 − b1)Prob(b2(θ
c
2) ≤ b1). (5)

Because bidder 2’s highest possible bid is α2(1 + β
√
c) when θ02 = 1, it is

evident that bidder 1’s bid b1 should not be greater than α2(1 + β
√
c). Note

9 The greater the value β is, the more significantly the signal increases bidders’
valuations to the sold object.

7



that θ02 is uniformly distributed on [0, 1], and b2(θ
c
2) = α2(1 + β

√
c)θ02 ≤ b1

means that θ02 ≤ b1/[α2(1 + β
√
c)]. Thus,

Prob(b2(θ
c
2) ≤ b1) = Prob(θ02 ≤ b1/[α2(1 + β

√
c)]) =

b1
α2(1 + β

√
c)
.

Now we can rewrite bidder 1’s problem (formula 5) as:

max
0≤b1≤α2(1+β

√
c)

(θc1 − b1)b1
α2(1 + β

√
c)

The solution to this maximum problem is

b∗1(θ
c
1) =







θc1/2, if θ01/2 ≤ α2

α2(1 + β
√
c), if θ01/2 > α2

.

Similarly,

b∗2(θ
c
2) =







θc2/2, if θ02/2 ≤ α1

α1(1 + β
√
c), if θ02/2 > α1

.

Let α1 = α2 = 1/2, we see that the strategies b∗i (θ
c
i ) = θci/2 = (1 + β

√
c)θ0i /2

for i = 1, 2 constitute a Bayesian equilibrium for this revised FPSB auction.

Thus, the social choice function f is implemented in Bayesian equilibrium by
the revised FPSB auction. Hence, f is Bayesian implementable.

3.3 The SCF f is type-adjustable Bayesian implementable

Let us consider the seller’s expected payoffs with type adjustment:

ūd(c) = (1 + β
√
c)E[θ01y1(θ

0) + θ02y2(θ
0)]/2− c.

The seller’s problem is to maximize ūd(c), i.e.,

max
c≥0

(1 + β
√
c)E[θ01y1(θ

0) + θ02y2(θ
0)]/2− c.

By appendix, the seller’s initial expected payoffs is ūd(0) = E[θ01y1(θ
0) +

θ02y2(θ
0)]/2 = 1/3. Thus, the seller’s optimization problem is reformulated as:

max
c≥0

(1 + β
√
c)/3− c.

It can be easily seen that Assumption 3 holds and the optimal adjustment cost
is c∗ = β2/36 > 0. According to Section 3.2, the strategies b∗i (θ

c∗

i ) = θc
∗

i /2 =
(1 + β

√
c∗)θ0i /2 for i = 1, 2 constitute a Bayesian equilibrium for the revised

FPSB auction. By Definition 5, the social choice function f is type-adjustable
Bayesian implementable.
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3.4 The seller’s expected payoffs with type adjustment

The seller’s maximum expected payoffs with type adjustment is:

ūd(c
∗) = (1 + β

√
c∗)/3− c∗ =

1

3
(1 +

β2

12
).

Hence, if β >
√
3, then ūd(c

∗) > 5/12. Note that the seller’s maximum ex-
pected payoffs in the traditional optimal auction with two bidders is 5/12 (Ref
[8], Page 23, the ninth line from the bottom). Therefore, if β >

√
3, then by

choosing the optimal adjustment cost c∗ = β2/36, the seller can obtain more

expected payoffs than what she could obtain at most in the traditional optimal

auction model.

3.5 Each bidder’s ex ante expected payoffs

Now we consider each bidder’s ex ante expected payoffs when the seller chooses
the optimal adjustment cost c∗ = β2/36. By appendix, for the case of two
bidders, the winner bidder’s expected payoffs is denoted as follows:

E[θc
∗

winner − b∗winner(θ
c∗

winner)] = E[θc
∗

winner/2] = (1 + β
√
c∗)E[θ0winner]/2

= (1 + β
√
c∗)E[θ01y1(θ

0) + θ02y2(θ
0)]/2

=
1

3
+

β2

18
.

Note that the loser bidder’s expected payoffs is zero. Since the two bidders are
symmetric, then each of them has the same probability 1/2 to be the winner
bidder. Therefore, each bidder’s ex ante expected payoffs is half of the winner’s
expected payoffs, i.e., 1/6 + β2/36.

4 Comparison with related models

4.1 Optimal auction model

Let us recall the traditional first-price auction model with reserve price (Ref
[8], Page 21). There is one object for sale, and N potential buyers are bidding
for the object. Let r > 0 be the reserve price, and [r, ω] be the interval of
each bidder i’s valuation which is independently and identically distributed
according to an increasing distribution function F . Fix a bidder, G denotes
the distribution function of the highest valuation among the rest remaining

9



bidders. According to Krishna’s book (Ref [8], Page 22, Line 13), the ex ante

expected payment of a bidder is

r(1− F (r))G(r) +
∫ ω

r
y(1− F (y))g(y)dy. (6)

For the case of two bidders with valuation range [r, 1] and uniform distribution,

F (r) = r, G(r) = r, ω = 1,

F (y) = y, g(y) = 1, for any y ∈ [r, 1].

By Ref [8] (Page 23), when each of two bidder’s valuation to the object is
uniformly distributed on interval [0, 1], the optimal reserve price r∗ = 1/2.
Therefore, each bidder’s ex ante expected payment in formula (6) is

r∗(1− r∗)r∗ +
∫ 1

r∗
y(1− y)dy

=
1

8
+

∫ 1

1

2

y(1− y)dy =
5

24
.

Since the optimal reserve price is 1/2, then each bidder’s valuation to the ob-
ject is uniformly distributed on interval [1/2, 1]. Hence, each bidder’s expected
valuation is the middle point of interval [1/2, 1], i.e., 3/4.

Consequently, in the traditional optimal auction, each bidder’s ex ante expect-
ed payoffs is his expected valuation 3/4 minus his ex ante expected payment
5/24, i.e.,

3

4
− 5

24
=

13

24
. (7)

As specified in Section 3.5, in the type-adjustable first-price sealed-bid auction,
when the seller chooses the optimal adjustment cost c∗ = β2/36, each bidder’s

ex ante expected payoffs will be 1/6 + β2/36. Obviously, if β >
√

27/2, then
each bidder’s ex ante expected payoffs will be greater than the corresponding
value 13/24 occurred in the traditional optimal auction.

According to Section 3.4, if β >
√
3, then the seller can obtain more expected

payoffs than what she could obtain at most in the traditional optimal auction
model.

To sum up, if β >
√

27/2, then for the social choice function specified by

formula (4) in Section 3.1, not only the seller but also each bidder can obtain
more payoffs from the type-adjustable mechanism than what they could obtain
at most in traditional optimal auctions.
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4.2 Auctions with interdependent values

The main distinctions between our model and the auctions with interdepen-
dent values [8] are as follows:
1) In auctions with interdependent values, the public information is repre-
sented as a random variable, and each bidder’s initial private valuation is
dependent to each other.
2) In our model, the public information sent by the designer is modeled as a
solution of an optimization problem, and each bidder’s initial private valua-
tion is independent to each other. After learning about the public information,
each bidder’s private valuation is relevant to his own initial private valuation
and the public information.

4.3 Dynamic mechanism design

Bergemann and Välimäki [11] proposed that agents’ types may change in a
nontrivial manner across periods of a dynamic mechanism. Consider a dis-
counted discrete-time model with a finite or infinite ending date T . In each
period t ≤ T , each agent i ∈ {1, · · · , I} receives a payoff that depends on the
current physical allocation xt ∈ Xt, the current monetary payment pi,t ∈ R.
The Bernoulli utility function ui of agent i takes the form:

ui(xt, pt, θt) = vi(xt, θi,t)− pi,t

It is assumed that the type θi,t of agent i follows a controlled Markov process on
his state space Θi. The utility function ui and the Markov transition function
of each agent i are assumed to be common knowledge at t = 0. There are three
possible interpretations of controllable types θi,t (Ref [11], Section 2.2): 1) All
agents are present in all periods of the game, and their types evolve according
to an exogenous stochastic process on Θi. 2) All agents are present in all
periods, but their future types depend endogenously on current allocations.
3) Not all agents are present in all periods.

Note: In Bergemann and Välimäki’s model, each agent’s private type is con-
trollable, and the type transition function of each agent is common knowl-
edge. Hence, it looks similar with our model. The main distinctions between
this model and our model are clear: 1) The mechanism defined in our model
is a one-stage game, not a multistage game as specified in the literature of
dynamic mechanisms [11] [12]. 2) The type adjustment function in our model
is a deterministic function, whereas the type transition function of each agent
i in dynamic mechanism is a stochastic function following a Markov process.
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4.4 Bayesian persuasion

In 2011, Kamenica and Gentzkow [10] proposed a model of Bayesian persua-
sion. The model consists of a player called Sender and a player called Receiver.
Each of them has a utility function depending on the Receiver’s action a ∈ A
and the state of the world ω ∈ Ω. The Sender and Receiver share a common
prior µ0 on Ω. Let S be a sufficiently large set of signal realizations. A sig-
nal π : Ω → ∆(S) is a map from the state to the distribution over signal
realizations. The working steps are as follows: 1) Sender chooses a signal π.
2) Receiver observes which signal was chosen. 3) Nature chooses ω according
to µ0. 4) Nature chooses a realized signal realization s according to π(ω). 5)
Receiver observes s. 6) Receiver takes action a.

Given the knowledge of π, Receiver uses Bayes’ rule to update his belief from
the prior to the posterior, and then chooses an action that maximizes his ex-
pected utility. Given this behavior by Receiver, Sender solves an optimization
problem to maximize her expected utility.

Note: The main distinctions between this model and our model are as follows:
in our model, there is no state of the world, and the signal chosen by the
designer is a solution of the designer’s optimization problem, but not a map
from a state to the distribution over signal realizations.

4.5 Information design

According to Kamenica’s descriptions [13], information design is similar to
Bayesian persuasion. However, the former is used more when the designer is
a social planner and there are multiple interacting receivers, and the latter is
used more when the designer is one of the players in the game and there is a
single receiver.

Following the model proposed by Bergemann and Morris [14], there are I
players. Let Θ be the set of payoff states of the world, and θ be a typical
element of Θ. An information structure S consists of (1) for each player i, a
finite set of types ti ∈ Ti; and (2) a type distribution π : Θ → ∆(T ), where
T = T1 × · · · × TI . Thus, S = ((Ti)

I
i=1, π).

In general, the information designer could follow any rule for generating mes-
sages. A “revelation principle” implies that the information designer sends only
action recommendations that are obeyed. Given this restriction, the informa-
tion designer chooses among decision rules σ : T × Θ → ∆(A). The decision
rule encodes the information that the players receive about the realized state
of the world, the types and actions of the other players. The conditional de-
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pendence of the recommended action a on state of the world θ and type profile
t represents the information conveyed to the players.

Note: In the model of information design, the information sent to the players
is modeled as a rule which obeys the probability distribution σ : T × Θ →
∆(A). As a comparison, in our model, there is no such decision rule and the
information is a solution of the designer’s optimization problem. These are the
main distinctions between two models.

4.6 Persuasion with communication costs

Hedlund [15] studied strategic transmission of verifiable information with re-
porting costs that continuously increase in the precision of the report. In his
model, there are two players, a Sender and a Receiver. The game has two
stages: in the first stage, nature reveals the value of a parameter t ∈ T = [0, 1]
to the Sender, which is referred to as the Sender’s type, and then the Sender
chooses a costly report which he delivers to the Receiver. The report takes the
form of a closed interval contained in type space T . Precision is the amount of
relevant information in a report, and the cost of producing a report depends
only on its precision. In the second stage, the Receiver observes the report,
forms a posterior belief with respect to the Sender’s type, chooses an action
and then the game ends.

Note: In our model, the designer (i.e., the Sender) has no type, and the infor-
mation sent by the designer does not represent any precision of report. Hence,
Hedlund’s model is very different from our model.

4.7 Signaling games

Since the seller performs a costly action as an open signal to bidders, some
one may consider our model to be similar with the signaling game model.
However, the two models are different:

1) In the signaling games (Ref [16], Section 8.2.1, Page 324), there are one
leader and one follower. The leader has private information about his type,
and the follower has no private information. Before the game begins, it is com-
mon knowledge that the follower has prior beliefs about the leader’s private
type. The leader moves first, and the follower observes the leader’s action (i.e.,
signal), then updates his beliefs about the leader’s type and chooses his own
action. The equilibrium of the signaling game is the perfect Bayesian equi-
librium (PBE), which is simply a set of strategies and beliefs such that, at
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any stage of the game, strategies are optimal given the beliefs, and beliefs are
obtained from equilibrium strategies and observed actions using Bayes’ rule.

2) In our model, the leader (i.e., the designer of a mechanism, or the seller of
an auction) has no private information, and the followers (i.e., the agents of an
mechanism, or the bidders of an auction) have private information (i.e. private
types, or private valuations to the sold object). The leader moves first (i.e.,
sends a costly signal), then the followers observe the leader’s action and choose
their own actions (i.e., perform their strategies, or submits their bids). At last,
the mechanism yields the outcome according to the outcome function. The
equilibrium of our model is the type-adjustable Bayesian equilibrium defined
by formula (1).

4.8 Inducing agents to invest efforts strategically

Kleinberg and Raghavan [18] investigated how the designer induces agents to
invest efforts strategically. There are two kinds of players: an evaluator creates
a decision rule for assessing an agent in terms of a set of features, and this
leads the agent to make choices about how to invest private effort across their
actions to improve these observable features. Kleinberg and Raghavan devel-
oped a model (hereafter KR model) for this process of incentivizing private
efforts, when actions can only be measured through intermediate features. The
evaluator’s design task is to create an evaluation rule that takes the feature
values as input, and produces a numerical score as output. The agent’s goal
is to achieve a high score, and to do this, they will optimize how they allocate
their effort across actions.

Note: The distinctions between KR model and our model are as follows:
1) The KR model considers the interaction between the designer (i.e., the
evaluator) and agents, but does not consider the interactions among agents.
As a comparison, our model considers the strategic interactions among agents.

2) In the KR model, what the agent observes from the designer (i.e., the
evaluator) is a decision rule. The agents strategically choose private efforts,
generate their observable features, and the evaluator rewards them in some
way based on those features. What the evaluator wants to do is to incentivize
agents to choose certain effort profile. As a comparison, in our model, the
agents observes a costly signal from the designer. Given agents’ initial profile
of probability distributions of private types, what the designer wants to do is
to choose an optimal signal in order to induce agents to adjust distributions
of private types to optimal profile.
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4.9 Auctions with information release

Szech [19] investigated optimal disclosure of costly information packages in
auctions. Consider a seller to sell one indivisible object to n risk-neutral bid-
ders with independent valuations via a second-price auction. The precise tim-
ing of the model is as follows: 1) The seller announces individual entry fees to
each bidder, and commits to giving out an information structure (describing
which bidder will get how much information), excluding all bidders that refuse
to pay. 2) The bidders decide if they want to pay their fee. 3) The bidders
who have paid get their information. 4) All bidders who have paid participate
in the second-price auction.

Note: The distinctions between Szech’s model [19] and our model are that:
1) In our model, the public information is a costly message sent by the seller,
and is free from each bidder’s perspective. As a comparison, in Szech’s model
each bidder need to pay fees for the information, which is represented as some
package which can be allocated among the bidders.
2) In our model, the probability density function of each bidder’s private
valuation is controlled by the seller through choosing a costly signal. As a
comparison, there is no such control in Szech’s model.

4.10 Information structures in optimal auctions

Bergemann and Pesendorfer [20] proposed a model of information structures
in optimal auctions, where the seller may control the bidders’ information
structures which generate the bidders’ private information. Each bidder’s in-
formation structure Si is represented as a pair containing a space of signal
realization and a joint probability distribution over the space of valuation-
s and signals. The seller may assign an information structure that informs a
bidder perfectly, or an information structure that gives the bidder only a rough
guess about her true value for the object. The seller’s choice of information
structure is made prior to the auction and does not involve transfer payments
from the bidders. At the interim stage, every bidder observes privately a sig-
nal si rather than his true valuation vi of the object. Given the signal si and
the information structure Si, each bidder forms an estimate about his true
valuation of the object, then report their value estimate to a revelation mech-
anism which determines the probability of winning the object and a transfer
payment for every bidder.

Note: In Bergemann and Pesendorfer’s model, the signal is represented as a
random variable, which is different from our model. Another distinction is that
in our model, each bidder has an initial private valuation of the object before
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the designer sends a costly signal to each bidder.

4.11 Optimal auctions with information disclosure

Gershkov [21] analyzed the properties of an optimal selling mechanism when
the bidders’ information about the quality of the object to be auctioned is
under control of the seller. In Gershkov’s model, bidders’ valuations for the
object consist of two components: a private and a common value component.
While each bidder observes his private value component individually before
the auction, the information that all bidders observe about the common value
component depends on the disclosure policy of the seller. The seller may adopt
a disclosure policy that reveals all information to all bidders, or, alternatively,
to conceal it from the bidders. After the choice of disclosure policy, all bidders
observe their information about the common value component as specified by
the chosen policy. Finally, at the last stage of the game, an auction takes place.
The main result of Gershkov’s model is that: in the optimal mechanism the

seller reveals all information to all bidders and therefore implements a second

price or English auction with a reservation price at the final stage.

Note: In Gershkov’s model, the information about common value component
is assumed to have been existed before the seller chooses disclosure policy, and
is represented as a random variable. What the seller can control is to choose
whether to disclose the information or to conceal it. Therefore, Gershkov’s
model is different from our model.

4.12 Optimal advertising of auctions

Szech [22] analyzed a symmetric independent private values auction model: a
revenue-maximizing seller faces a cost cn of attracting n bidders. These costs
can be thought of as advertising costs, or as costs of making bidders familiar
with the object to be auctioned. Szech’s question is that: How many bidders
does the seller choose to attract compared to the socially optimal number? The
main result is the following: If the distribution of valuations has an increasing
failure rate (IFR), then the seller overadvertises the auction. Conversely, with
a decreasing failure rate (DFR), the seller underadvertises.

Fang and Li [23] examine a model where a seller holds an object for sale
through a second-price auction to n risk-neutral potential bidders, all of whom
are initially unaware of the auction and must be solicited. The seller is allowed
to set a reserve price and employs an advertising policy consisting of the
potential bidders’ entering probabilities. After receiving the advertisement,
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potential bidders know their valuations of the object for sale and participate
in the auction according to independent Bernoulli trials.

Note: The two papers both consider the advertisement as a tool to solicit po-
tential bidders. As a comparison, in our model there is no such advertisement
for soliciting bidders, and the signal sent by the seller is used to induce each
bidder to adjust his private type. Hence, the model settings of advertising are
different from our model.

5 Conclusions

In this paper we propose a type-adjustable mechanism in which the public
information sent by the designer is not represented as a random variable,
but is modeled as a solution of an optimization problem. Therefore, from the
designer’s perspective, the probability distribution of each agent’s type may
be optimally controlled as she wishes. In this sense, each agent’s private type
is not his own endogenous property, but is decided by each agent himself and
the designer together. The main results of this paper are as follows:
1) As proved in Proposition 1, for a type-adjustable Bayesian implementable
social choice function, the seller may obtain more expected payoffs than her
initial expected payoffs.
2) As shown in Section 3, the seller may breakthrough the limit of expected
payoffs which she could obtain at most in the traditional optimal auction
model:
• If β >

√
3, then by choosing the optimal adjustment cost c∗ = β2/36, the

seller can obtain more expected payoffs than the maximum expected payoffs
5/12 yielded by the traditional optimal auction.

• If β >
√

27/2, then each bidder’s ex ante expected payoffs 1/6 + β2/36

will be greater than the corresponding value 13/24 in the traditional optimal
auction. Put differently, every member in the type-adjustable auction may
benefit from the seller’s optimal signal, and hence this is Pareto-efficient.

Appendix

As specified in Section 3, θ01 and θ02 are drawn independently from the uniform
distribution on [0, 1]. Let Z be a random variable Z = θ01y1(θ

0) + θ02y2(θ
0).

fθ0
1

(z) =















0, z < 0

1, z ∈ [0, 1]

0, z > 1

.
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Fθ0
1

(z) = Prob{θ01 ≤ z} =















0, z < 0

z, z ∈ [0, 1]

1, z > 1

.

FZ(z) = [Fθ0
1

(z)]2 =















0, z < 0

z2, z ∈ [0, 1]

1, z > 1

.

Therefore,

fZ(z) =















0, z < 0

2z, z ∈ [0, 1]

0, z > 1

.

As a result,

E(Z) =
∫ 1

0
z · 2zdz =

∫ 1

0
2z2dz = 2/3.

Therefore, E[θ01y1(θ
0) + θ02y2(θ

0)]/2 = 1/3.

By formula (4), the seller’s initial expected payoffs is the sum of two bidders’
payment to the seller when the cost is zero, ūd(0) = E[θ01y1(θ

0)+θ02y2(θ
0)]/2 =

1/3.
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