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Abstract

This paper proposes maximum (quasi)likelihood estimation for high dimen-

sional factor models with regime switching in the loadings. The model parame-

ters are estimated jointly by EM algorithm, which in the current context only

requires iteratively calculating regime probabilities and principal components of

the weighted sample covariance matrix. When regime dynamics are taken into

account, smoothed regime probabilities are calculated using a recursive algo-

rithm. Consistency, convergence rates and limit distributions of the estimated

loadings and the estimated factors are established under weak cross-sectional

and temporal dependence as well as heteroscedasticity. It is worth noting that

due to high dimension, regime switching can be identified consistently right

after the switching point with only one observation. Simulation results show

good performance of the proposed method. An application to the FRED-MD

dataset demonstrates the potential of the proposed method for quick detection

of business cycle turning points.
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1 Introduction

A great deal of attention has focused on the loading instability issue in high dimen-

sional factor models1. Various procedures are proposed to detect and/or estimate

common abrupt breaks in loadings, including Cheng, Liao and Shorfheide (2016),

Baltagi, Kao and Wang (2017, 2021) and Bai, Han and Shi (2020), to mention a few.

Other models of time varying loadings, such as i.i.d./random walk, smooth change,

vector autoregression and threshold type, are studied in Bates, Plagborg-Moller, Stock

and Watson (2013), Su and Wang (2017), Mikkelsen, Hillebrand and Urga (2019) and

Massacci (2017), respectively.

An alternative approach of modeling loading instability is common regime switch-

ing. In business cycle analysis, several unobservable factors summarize the comove-

ments of many economic variables and loadings measure the importance of factors for

each economic variable. The importance of each factor may be different depending

on fiscal policy (expansionary, contractionary, neutral), or monetary policy (expan-

sionary, contractionary), or stage of the business cycle (peak, trough, expansion,

contraction), hence loadings may switch synchronously between several states under

different scenarios. In stock return analysis, loadings measure the impact of the factor

return on the expected return of each individual stock, hence loadings may switch

synchronously depending on the stock market scenarios (bull versus bear markets,

high versus low volatility), see for example Gu (2005) and Guidolin and Timmer-

mann (2008) for related discussions. In bond return analysis, the yields of bonds

with different maturities are well captured by the level factor, the slope factor and

the curvature factor, see for example Cochrane and Piazzesi (2005) and Diebold and

Li (2006). The importance of each factor could be different depending on stock mar-

ket volatility, or stage of the business cycle, or unemployment rate, hence loadings

may also switch synchronously according to these state variables. In general, large

factor model with regime switching in loadings could also be useful for other topics,

such as tracking labor productivity.

1For empirical evidences of parameter instability in macroeconomic and financial time series, see
Banerjee, Marcellino and Masten (2008), Stock and Watson (2009) and Korobilis (2013), to mention
a few.
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There are only a few related results on large factor model with regime switching in

loadings. Liu and Chen (2016) proposes an iterative algorithm for estimating model

parameters and the hidden states based on eigen-decomposition and the Viterbi algo-

rithm, however, the asymptotic properties of the estimated parameters are established

only when the true states are known. Considering loadings as general functions of

some recurrent states, Pelger and Xiong (2021) develops nonparametric kernel esti-

mator for the loadings and factors, and establishes the relevant asymptotic theory.

However, Pelger and Xiong (2021) requires observable state variables. In general,

state variables may be misspecified or unobservable.

This paper proposes maximum (quasi)likelihood estimation for high dimensional

factor model with regime switching in loadings when the state variables are unob-

servable. The model parameters are estimated jointly by EM algorithm, which in the

current context only requires calculating principal components iteratively. Asymp-

totic properties of both the estimated parameters and the posterior probabilities of

each regime are established under general assumptions.

More specifically, in the E-step, posterior probabilities of each regime are calcu-

lated based on the observed data and the parameter values at the current iteration,

and the log joint likelihood of the observed data and the unobserved states are av-

eraged with respect to the calculated regime probabilities. When state dynamics are

ignored, regime probabilities at time t are inferred only from xt (the observed time

series at time t). When state dynamics are taken into account, regime probabilities at

time t are inferred from all data using a recursive algorithm modified from Hamilton

(1990). In the M-step, the estimated loadings for each regime are principal compo-

nents of the weighted sample covariance matrix of the observed time series, where the

weight on xt equals the probability of that regime at time t. Since principal compo-

nents can be easily calculated even when N (the dimension of time series) is large,

our method is very easy to implement.

Ignoring state dynamics, this paper establishes the convergence rates of the es-

timated loading space and the estimated factor space, the limit distributions of the

estimated loadings and the estimated factors, and consistency of the estimated prob-

abilities for each regime. This paper then show that all these results are still valid
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when state dynamics are modeled as a Markov process and regime probabilities at

each time t are inferred from all data using the proposed smoother algorithm. Consis-

tency of the transition probability matrix and the unconditional regime probabilities

are also proved. Note that asymptotic analysis under the regime switching setup is

more difficult than under the structural break setup, because the pattern of regimes

for the latter is much simpler.

These asymptotic results are essential in many empirical contexts. First, the limit

distributions of the estimated factors allow us to construct confidence intervals for

the true factors, which represent economic indices in many applications. The result

on the estimated factor space implies that if estimated factors are used in factor-

augmented forecasting (or factor-augmented VAR), the forecasting equation (or the

VAR equation) would have induced regime switching in model parameters. Second,

for asset management, the estimated loadings of each regime allow us to construct

portfolios according to each specific market scenario. For structural dynamic factor

analysis, consistently estimated loadings are also crucial for recovering the impulse

responses. Third, consistency of the estimated probabilities for each regime implies

that for each xt, we can consistently identify which regime xt belongs to as N →∞.
For asset management, this allows us to consistently identify the current market

scenario. For business cycle analysis, this allows us to consistently date turning

points of business cycle and quickly detect new recessions or expansions, especially

when high frequency (weekly, daily) data is utilized.

For cases with small N , various methods have been proposed for estimating factor

models with regime switching. Kim (1994) proposes approximate Kalman filter for

likelihood evaluation and uses nonlinear optimization for likelihood maximization.

Kim and Yoo (1995) and Chauvet (1998) apply Kim (1994)’s method to a small

number of economic series and obtain recession probabilities and turning points very

close to the official NBER dates. Kim (1994) allows for regime switching in both

factor mean and factor loadings, but when N is large, Kim (1994)’s method would be

very time consuming and may have convergence problems2. Other methods, such as

2This is because the number of parameters grows proportionally to N and the likelihood function
is calculated numerically and maximized by nonlinear optimization algorithm.
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Diebold and Rudebusch (1996) and Kim and Nelson (1998), assume stable loadings

and only focus on regime switching in factor mean. If loadings are unstable, these

methods are not applicable. More importantly, if there is only regime switching in

factor mean, we can not consistently identify each regime even when N is large.

In contrast with Kim (1994), our method is fast and easy to implement even

when N is very large. The crucial point behind our EM algorithm is to ignore factor

dynamics3 and integrate out the factors in the likelihood function. If factors dynamics

are taken into account or factors are treated as parameters in the likelihood function,

the estimated loadings would not be the principal components of the weighted sample

covariance matrix, and consequently both the algorithm and the asymptotic analysis

would become infeasible. On the other hand, the efficiency loss of ignoring factor

dynamics is small when N is large.

This paper may also contribute to the literature on dating turning points of busi-

ness cycle. Currently there are two main approaches for dating business cycle using

multiple time series. The first approach, aggregating then dating, is to date business

cycle by focusing on a few highly aggregated time series such as GDP, industrial

production and nonfarm employment. The second approach, dating then aggregat-

ing, is to date turning point in each disaggregated series and then aggregate these

turning points in some appropriate way, see Burns and Mitchell (1946), Harding and

Pagan (2006) and Chauvet and Piger (2008). These papers only use a small number

of time series. Stock and Watson (2010, 2014) studies this issue using many time

series. This paper shows that it is possible to consistently identify turning points if

regime switching is synchronous and N is large enough. If N is small, consistency is

not possible no matter how large T is. This paper also shows that if N is large, it

is possible to consistently detect regime switching right after the turning point with

only one observation, thus the speed of detection could be improved significantly. If

N is small, we have to wait for enough observations from the new regime.

The rest of the paper is organized as follows. Section 2 introduces the model

3Factor dynamics are still allowed for the data generating process.
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setup and estimation procedures ignoring state dynamics. Section 3 presents the

assumptions and asymptotic results ignoring state dynamics. Section 4 introduces

the estimation procedures and asymptotic results taking into account state dynamics.

Section 5 presents simulation results. Section 6 presents an empirical application of

the proposed method to the FRED-MD dataset. Section 7 concludes. All proofs are

relegated to the appendix.

Through out the paper, (N, T ) → ∞ denotes N and T going to infinity jointly,

δNT = min{
√
N,
√
T}. p→ and

d→ denotes convergence in probability and convergence

in distribution, respectively. For matrix A, let ‖A‖, ‖A‖F , ρmax(A) and ρmin(A)
denote its spectral norm, Frobenius norm, largest eigenvalue and smallest eigenvalue,

respectively. Let PA = A(A
′A)−1A′ denote the projection matrix and MA = I − PA.

"w.p.a.1" denotes with probability approaching one.

2 Identification and Estimation

Consider the following factor model with regime switching: for i = 1, ..., N and

t = 1, ..., T,

xit = f
0′
t λ

0
ji + eit if zt = j, (1)

where λ0ji is an r
0
j dimensional vector of loadings for regime j, f

0
t is an r

0
zt
dimensional

vector of factors, zt is the state variable indicating which regime xit belongs to, and eit

is the error term allowed to have cross-sectional and temporal dependence as well as

heteroskedasticity. xit is observable and all right hand side variables are unobservable.

The number of regimes J0 and the number of factors in each regime r0j are fixed as

(N, T )→∞ (N and T go to infinity jointly) and assumed to be known. r0j is allowed

to be different for different j. How to determine r0j and J
0 will be studied in a separate

paper.

The factor process {f 0t , t = 1, ..., T} is allowed to be dynamic, and similar to the
principal component estimator (PCE) in Stock and Watson (2002) and Bai (2003)

and the maximum likelihood estimator (MLE) in Bai and Li (2012, 2016), factor

dynamics are ignored when estimating model parameters. Thus there is no need to
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model factor dynamics. The state process {zt, t = 1, ..., T} is independent with f 0s
and eis for all i and s, but is not required to be a Markov process. The estimation

procedure in this section ignores the dynamics of zt, and the corresponding asymptotic

results in Section 3 are valid no matter whether zt is dynamic or not. In Section 4,

we shall assume {zt, t = 1, ..., T} to be Markov and take into account state dynamics
in parameters estimation and smoothed inference for regime probabilities of each t.

Let q0 = (q01, ..., q
0
J0)

′ denote the (J0×1) vector of unconditional regime probabilities,
i.e., q0j = Pr(zt = j). When {zt, t = 1, ..., T} is a Markov process, let Q0 denote
the (J0 × J0) matrix of transition probabilities and Q0jk denote the probability of
switching from state k to state j.

In vector form, the model can be written as:

xt = Λ
0
jf
0
t + et if zt = j, for t = 1, ..., T, (2)

where Λ0j = (λ0j1, ..., λ
0
jN)

′, xt = (x1t, ..., xNt)
′ and et = (e1t, ..., eNt)

′. Let Λ0 =

(Λ01, ...,Λ
0
J0) and let E = (e1, ..., eT )

′ be the T ×N matrix of errors. When there are

no superscripts, q, Q, Λj and Λ denote parameters as variables.

2.1 Identification

Since factors are unobservable, regimes are defined in terms of the linear spaces

spanned by loadings. Two regimes are different if their loading spaces are differ-

ent, and vice versa. More specifically, the identification condition is: for any j and

k,

min
t

1

N

∥∥∥MΛ0
k
Λ0jf

0
t

∥∥∥
2

= min
t

1

N
f 0′t Λ

0′
j MΛ0

k
Λ0jf

0
t ≥ C for some C > 0. (3)

A sufficient condition for (3) is:

lim
N→∞

1

N
Λ0′kMΛ0j

Λ0k is positive definite for any j and k, (4)

and min
t
‖ft‖ is nonzero.

Condition (4) requires limN→∞
1
N
(Λ0j ,Λ

0
k)
′(Λ0j ,Λ

0
k) to be full rank for any j and k.

Thus Λ0j and Λ
0
k are not allowed to share some columns, and columns of Λ

0
j could not

6



be linear combination of Λ0k and vice versa. An alternative sufficient condition for (3)

is:

lim
N→∞

1

N
Λ0′kMΛ0j

Λ0k 6= 0 for any j and k, (5)

and min
t

∣∣g′jkft
∣∣ is nonzero,

where gjk is the eigenvector of limN→∞
1
N
Λ0′kMΛ0j

Λ0k corresponding to nonzero eigen-

value. Condition (5) only requires that the linear spaces spanned by Λ0j and Λ
0
k are

different, thus Λ0j and Λ
0
k are allowed to share some columns, and some columns of

Λ0j are allowed to be linear combinations of Λ
0
k and vice versa.

Note that condition (4) does not rule out the possibility that any regime j can

be further decomposed into multiple regimes. Suppose the true model contains three

regimes and Λ01, Λ
0
2 and Λ

0
3 are linearly independent with each other. If we consider

Λ01 as the first regime and (Λ
0
2,Λ

0
3) as the second regime, this misspecified model also

satisfies condition (4). To rule out this possibility, we require that

plim
1

|Aj|
∑

t∈Aj
f 0t f

0′
t is positive definite, (6)

where Aj denotes any subset of {t : zt = j} with cardinality |Aj| and lim |Aj |
Tq0j

> 0.

If 1
|Aj |

∑
t∈Aj f

0
t f

0′
t is not positive definite as T → ∞ for some Aj, then Aj and

{t : zt = j, t /∈ Aj} are considered as two separate regimes.

2.2 First Order Conditions and EM Algorithm

Consider the following log-likelihood function for Gaussian mixture in covariance:

l(Λ, σ2, q) =
∑T

t=1
log(

∑J0

j=1
qjL(xt

∣∣zt = j; Λj, σ2 )), (7)

where L(xt |zt = j; Λj, σ2 ) is the density of xt conditional on zt = j and evaluated at
(Λj, σ

2), and

L(xt
∣∣zt = j; Λj, σ2 ) = (2π)−

N
2 |Σj|−

1
2 e−

1
2
x′tΣj

−1xt. (8)
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Σj is the covariance matrix of xt for regime j, and

Σj = ΛjΛ
′
j + σ

2IN . (9)

The above log-likelihood function avoids estimating the factors. If factors are esti-

mated jointly with loadings, we would not have analytical first order conditions as

presented below, and consequently EM algorithm would become infeasible.

Equation (7) is a misspecified (quasi) log-likelihood function. First, similar to the

principal component estimator in Stock and Watson (2002) and Bai (2003), cross-

sectional and serial dependence and heteroscedasticity of the error term are ignored.

We may also take into account heteroscedasticity as Doz, Giannone and Reichlin

(2012) and Bai and Li (2012, 2016). With regime switching, the algorithm and

asymptotic analysis would be much more complicated, but the results should be

conceptually similar. Thus for simplicity, we do not pursue this direction.

Second, state dynamics are ignored. When N is large, xt itself contains large

information for zt, thus the information in z1, ...., zt−1 is marginal. We shall show in

Section 4.2 that asymptotic results remain the same when state dynamics are taken

into account.

Third, factor dynamics are ignored. As shown in Bai (2003) for PCE and in Bai

and Li (2012, 2016) for MLE, when there is no regime switching, the asymptotic

properties of the estimated factors and loadings are robust to the presence of factor

dynamics if both N and T are large. When there is regime switching, the asymp-

totic results in Section 3 are also robust to the presence of factor dynamics. More

importantly, ignoring factor dynamics greatly simplifies the computation algorithm

for regime switching factor models. As shown below, with factor dynamics ignored,

we just need to calculate principal components iteratively. If factor dynamics are not

ignored, Kim (1994)’s method would be very time consuming and may have conver-

gence problems if N is large4.

4When there is no regime switching, as suggested by Doz et al. (2012), large N factor model
with factor dynamics can be calculated by the EM algorithm. However, when there are both regime
switching and factor dynamics, the EM algorithm also fails. This is because in the E-step we need
to calculate the likelihood for each possible state chain z1, ...., zT and there are (J

0)T possibilities,
and in the M-step numerical optimization is still needed.

8



Fourth, equation (7) implicitly assumes that E(f 0t ) = 0 and E(f 0t f
0′
t ) is stable

within each regime, and E(f 0t f
0′
t ) is absorbed into ΛjΛ

′
j in equation (9). This is not

a big issue since all results of this paper still hold when E(f 0t ) 6= 0 and E(f 0t f
0′
t ) is

unstable within regime, as long as Assumption 1 is satisfied.

First order conditions for Λ and σ2

The parameters Λ, σ2, q are estimated by maximizing l(Λ, σ2, q). The derivative of

qj(2π)
−N

2 |Σj|−
1
2 e−

1
2
x′tΣ

−1
j xt with respect to Λj equals itself multiplied by the derivative

of −1
2
log |Σj| − 1

2
x′tΣ

−1
j xt with respect to Λj, and

∂ log |Σj|
∂Λj

= 2Σ−1j Λj, (10)

∂x′tΣ
−1
j xt

∂Λj
= −2Σ−1j xtx′tΣ−1j Λj, (11)

see Chapter 14.3 in Andersen (2003) for details on calculating these derivatives. The

probability of zt = j conditional on xt and evaluated at (Λ, σ
2, q) is

Pr(zt = j
∣∣xt; Λ, q, σ2 ) =

qjL(xt |zt = j; Λj, σ2 )
∑J0

k=1 qkL(xt |zt = k; Λk, σ2 )
. (12)

For simplicity, we just use ptj to denote Pr(zt = j |xt; Λ, q, σ2 ). It follows that

∂l(Λ, σ2, q)

∂Λj
=
∑T

t=1
ptj(−Σ−1j Λj + Σ−1j xtx′tΣ−1j Λj).

Set ∂l(Λ,σ
2,q)

∂Λj
to 0, we have

Σ−1j Λj = Σ
−1
j SjΣ

−1
j Λj, (13)

where Sj =
∑T

t=1 ptjxtx
′
t/
∑T

t=1 ptj. Sj can be considered as sample covariance matrix

for Σj based on importance sampling. The weights ptj/
∑T

t=1 ptj depend on the im-

portance of the sample xt for regime j, the larger ptj is, the more important xt is for

regime j. If true values of Λ, q, σ2 are plugged into ptj, then E(
∑T

t=1 ptjxtx
′
t) = Tq

0
jΣj

and E(
∑T

t=1 ptj) = Tq
0
j .

From equation (9), we have ΣjΛj = Λj(Λ
′
jΛj + σ

2Ir0j ). Left multiply SjΣ
−1
j on

both sides, we have SjΛj = SjΣ
−1
j Λj(Λ

′
jΛj + σ

2Ir0j ). From equation (13), we have
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Λj = SjΣ
−1
j Λj, thus

SjΛj = Λj(Λ
′
jΛj + σ

2Ir0j ). (14)

If Λj is a solution for equation (14) and Λ
∗
j equals post-multiplying Λj by the eigenvec-

tor matrix of Λ′jΛj, then Λ
∗
j is also a solution for equation (14) and Λ

∗′
j Λ

∗
j is diagonal.

Thus we can directly choose solution Λj with Λ
′
jΛj being diagonal. It follows that

solution Λj are eigenvectors of Sj and Λ
′
jΛj+σ

2Ir0j are the corresponding eigenvalues.

We show in Appendix F that σ2 satisfy the following condition:

σ2 =
1

N
tr(
1

T

∑T

t=1
xtx

′
t −

∑J0

j=1
qjΛjΛ

′
j). (15)

From the first order conditions, we can estimate the parameters as follows:

EM algorithm

Choose any q such that qj > 0 for all j, e.g., qj = 1/J0. Start from randomly

generated initial values of Λ̂(0) and σ̂2(0) = 1. For h = 0, 1, ...,

(E-step): calculate p̂
(h)
tj = Pr(zt = j

∣∣∣xt; Λ̂(h), σ̂2(h), q ) from equation (12), and

calculate Ŝ
(h)
j =

∑T

t=1 p̂
(h)
tj xtx

′
t/
∑T

t=1 p̂
(h)
tj ;

(M-step): given p̂
(h)
tj and Ŝ

(h)
j , Λ̂

(h+1)
j are eigenvectors of Ŝ

(h)
j and normalize Λ̂

(h+1)
j

such that Λ̂
(h+1)′
j Λ̂

(h+1)
j + σ̂2(h+1)Ir0j are the corresponding eigenvalues, and σ̂

2(h+1) =

1
N
tr( 1

T

∑T

t=1 xtx
′
t−
∑J0

j=1 qjΛ̂
(h+1)
j Λ̂

(h+1)′
j ). Note that computation of Λ̂

(h+1)
j and σ̂2(h+1)

requires iteration because Λ̂
(h+1)
j depends on σ̂2(h+1) and vice versa.

Iterate the E-step and the M-step until converge. Let Λ̂j = (λ̂j1, ..., λ̂jN)
′, Λ̂ =

(Λ̂1, ..., Λ̂J0) and σ̂
2 denote the estimated parameters, and p̂tj = Pr(zt = j

∣∣∣xt; Λ̂, σ̂2, q )

denote the estimated regime probabilities.

The asymptotic results in Section 3 hold for any q as long as qj > 0 for all j. Here

we choose qj = 1/J
0 for all j. Once we have Λ̂ and σ̂2, q0j can be estimated by

q̂j =
1

T

∑T

t=1
p̂tj. (16)

We may also replace qj = 1/J0 by qj = q̂j and repeat the EM algorithm. If we

iterate between (Λ̂, σ̂2) and q̂j until convergence, this turns out to be the maximum
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likelihood estimator when q is estimated jointly with Λ and σ2 because equation (16)

is the first order condition for q, see Appendix F.

The asymptotic results in Section 3 also holds for any σ̂2 as long as σ̂2 is bounded

and bounded away from zero in probability. Consistency of σ̂2 is not needed. When

implementing the above algorithm, σ̂2 will be restricted in [ 1
C2
, C2] for some C large

enough such that the true σ2 lies in [ 1
C2
, C2]. We may also simply fix down σ̂2 = 1 to

avoid the iteration between Λ̂
(h+1)
j and σ̂2(h+1). This only affects the Euclidean norm

of Λ̂
(h+1)
j .

Remark 1 Since Sj is a weighted average of xtx
′
t, Λj can be considered as a GLS

estimator. This is related to the GLS estimation for factors in Breitung and Tenhofen

(2011) and Choi (2012). Here the weights are ptj = Pr(zt = j |xt; Λ, q, σ2 ), while in
those papers the weights are inverse of error variances.

2.3 Estimate the Factors

Let 1zt=j denote the indicator function, i.e., 1zt=j = 1 if zt = j and 0 otherwise.

Ignoring factor dynamics, conditioning on xt, the conditional expectation of ft is

f̂t =
∑J0

j=1
E(ft

∣∣∣xt, zt = j; Λ̂j, σ̂2 )p̂tj =
∑J0

j=1
Λ̂′j(Λ̂jΛ̂

′
j + σ̂

2IN)
−1xtp̂tj. (17)

If factor dynamics are taken into account, conditioning on x1:t ≡ (x1, ..., xt),

f̂t =
∑J0

z1=1
...
∑J0

zt=1
E(ft

∣∣∣x1:t, z1:t; Λ̂, σ̂2 ) Pr(z1:t
∣∣∣x1:t; Λ̂, σ̂2, q ),

which is formidable since we need to calculate (J0)t probabilities. For large N , the

benefit of considering factor dynamics is marginal and is outweighed by the compu-

tational simplicity of ignoring factor dynamics.

3 Asymptotic Results

We assume the following conditions hold as (N, T )→∞.
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Assumption 1 (1) For j = 1, ..., J0, 1
Tq0j

∑T

t=1 f
0
t f

0′
t 1zt=j

p→ ΣFj for some positive

definite ΣFj , and plim
1
|Aj |

∑
t∈Aj f

0
t f

0′
t is also positive definite, where Aj is defined in

section 2.1.

(2) For some α > 16, there exists M > 0 such that E(‖f 0t ‖
α
) ≤M for all t.

Assumption 1(1) rules out the possibility that for regime j, the subsample {t :
zt = j} can be further decomposed into multiple regimes, see the discussion in Section
2.1. Assumption 1(1) allows the factor process to be dynamic such that C(L)ft = εt.

Assumption 1(2) assumes that factors have bounded moments.

Assumption 2 (1) For j = 1, ..., J0, 1
N
Λ0′j Λ

0
j → ΣΛj for some positive definite ΣΛj

and
∥∥λ0ji

∥∥ ≤M for any i = 1, ..., N .

(2) For any j = 1, ..., J0 and k = 1, ..., J0, mint
1
N
f 0′t Λ

0′
j MΛ0

k
Λ0jf

0
t ≥ C for some

C > 0.

Assumption 2(1) ensures that within each regime, each factor has a nontrivial

contribution.
∥∥λ0ji

∥∥ is assumed to be uniformly bounded over i. Assumption 2(2)

is the identification condition for determining which regime each xt belongs to, see

Section 2.1 for more details.

Assumption 3 (1) E(eit) = 0, E(e
α
it) ≤M for some α > 16.

(2)
∑N

k=1 τ ik ≤ M for any i, where E(eitekt) = τ ik,t with |τ ik,t| ≤ τ ik for some

τ ik > 0 and for all t.

(3)
∑T

s=1 γts ≤ M for all t, where E(eiteis) = γi,ts with
∣∣γi,ts

∣∣ ≤ γts for some

γts > 0 and for all i.

(4) E(
∥∥∥ 1√

T

∑T

t=1(eitekt − E(eitekt))1zt=j
∥∥∥
2

) ≤ M for all i = 1, ..., N , k = 1, ..., N

and j = 1, ..., J0.

Assumption 3 allows the error term to have limited cross-sectional and serial

dependence as well as heteroscedasticity. These conditions are conventional in the

literature for approximate factor model.

Assumption 4 For j = 1, ..., J0, 1
T

∑T

t=1 1zt=j
p→ q0j and 0 < q

0
j < 1.

12



Note that Assumption 4 does not require zt to follow a Markov process, but if zt

is Markov, we can calculate smoothed estimates of probabilities of each regime for

each xt.

Assumption 5 (1)For some β ≥ 2, E(
∥∥∥ 1√

N

∑N

i=1 λ
0
jieit

∥∥∥
β

) ≤ M for all j = 1, ..., J0

and all t.

(2) E(
∥∥∥ 1√

T

∑T

t=1 f
0
t eit1zt=j

∥∥∥
2

) ≤M for all j = 1, ..., J0 and all i.

Assumption 5(1) assumes that errors are weakly correlated across i for each t.

When β = 2, Assumption 5(1) is implied by Assumptions 2(1), 3(1) and 3(2). As-

sumption 5(2) assumes that errors are weakly correlated across t for each i. Assump-

tion 5(2) is implied by Assumptions 1(2), 3(1) and 3(4) if we further assume factors

are nonrandom or independent with errors.

Assumption 6 For each j = 1, ..., J0, the eigenvalues of Σ
1
2
Λj
ΣFjΣ

1
2
Λj
are different.

With Assumption 6, loadings and factors are identifiable up to a rotation. For

identification of the loading space and factor space, Assumption 6 is not needed.

Assumption 7 (1) E(
∥∥∥ 1√

NT

∑N

k=1

∑T

t=1 λ
0
i (eitekt − E(eitekt))1zt=j

∥∥∥
2

) ≤ M for all

i = 1, ..., N and j = 1, ..., J0; and E(
∥∥∥ 1√

NT

∑N

i=1

∑T

t=1(eiteis − E(eiteis))f 0t 1zt=j
∥∥∥
2

) ≤
M for all s = 1, ..., T and j = 1, ..., J0.

(2) E(
∥∥∥ 1√

NT

∑N

k=1

∑T

t=1 λ
0
kf

0′
t ekt1zt=j

∥∥∥
2

) ≤M for j = 1, ..., J0.

(3) Define Φji = plim 1
T

∑T

s=1

∑T

t=1 E(f
0
t f

0′
s eiseit1zs=j1zt=j). For j = 1, ..., J0,

1√
Tq0j

∑T

t=1 f
0
t eit1zt=j

d→ N (0,Φji).

(4) Define Γjt = lim
1
N

∑N

i=1

∑N

k=1 λ
0
jiλ

0
jkE(eitekt). For j = 1, ..., J

0, 1√
N

∑N

i=1 λ
0
jieit

d→
N (0,Γjt).

Assumption 7 is conventional, part (3) and part (4) are just central limit theorems

and will be used for deriving the limit distributions of the estimated factors and

loadings.

Consistency of estimated loading space

13



Theorem 1 Under Assumptions 1, 2(1), 3 and 4, 1
N

∥∥∥MΛ̂j
Λ0j

∥∥∥
2

F
= Op(

1√
δNT
) for each

j as (N, T )→∞.

Theorem 1 shows that the estimated loading space is consistent without observing

the state variable zt. Note that the estimated loadings Λ̂j and the estimated regime

probabilities p̂tj depend on each other, thus we can not use standard technique in

the literature, e.g., Bai (2003), for analyzing Λ̂j. The crucial point is to utilize large

N , see the Appendix for more details. Based on Theorem 1, we can show that the

estimated regime probabilities are consistent.

Consistency of estimated regime probabilities

Theorem 2 Under Assumptions 1-4 and 5(1), as (N, T ) → ∞, for each j and for
any η > 0,

(1) supt |p̂tj − 1zt=j| = op( 1Nη ) if T
16
α /N → 0 and T

2
α
+ 2
β /N → 0,

(2) |p̂tj − 1zt=j| = op( 1Nη ).

Note that η could be arbitrarily large, and α and β could also be large as long as

Assumptions 1(2), 3(1) and 5(1) are satisfied. Theorem 2 shows that p̂tj is consistent

as N → ∞ and is uniformly consistent if T is relatively small compared to N . The

proof utilizes the exponential likelihood ratio.

Theorem 2 implies that we can consistently identify which regime xt belongs to for

all t, if there is common regime switching in loadings and the dimension of xt tends

to infinity. Theorem 2 also implies that we can consistently detect regime switching

right after the turning point with only one observation, so that we do not need to wait

for many observations of the time series from the new regime. This could improve

the speed of detection of new turning points, especially when high frequency data is

used.

Convergence rate of estimated loading space

If the true states zt were known, asymptotic properties of the estimated loadings

and factors are straightforward. Based on Theorem 2, we shall show that using
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estimated regime probabilities does not affect the asymptotic results. First, define

WjNT = (
Λ̂′jΛ̂j

N
+ σ̂2

N
Ir0j )(

1
T

∑T

t=1 p̂tj) and Hj =
∑T
t=1 f

0
t f

0′
t 1zt=j

T

Λ0′j Λ̂j

N
W−1
jNT , then we have:

Proposition 1 Let Vj be a r
0
j × r0j diagonal matrix consisting of eigenvalues of

Σ
1
2
Λj
ΣFjΣ

1
2
Λj
in descending order and Υj be the corresponding eigenvectors. Under

Assumptions 1-6, and assume T
16
α /N → 0 and T

2
α
+ 2
β /N → 0, as (N, T )→∞,

(1) WjNT
p→ q0jVj for each j,

(2) Hj
p→ Σ

− 1
2

Λj
ΥjV

1
2
j for each j.5

Proposition 1 is an important auxiliary result. Note that the proof strategy of

Proposition 1 is slightly different from Bai (2003)’s framework, because here the first

order condition (14) does not tells us whether Λ̂j is eigenvectors corresponding to the

largest r0j eigenvalues of Sj or not
6.

Theorem 3 Under Assumptions 1-6, and assume T
16
α /N → 0 and T

2
α
+ 2
β /N → 0,

as (N, T )→∞, 1
N

∥∥∥Λ̂j − Λ0jHj
∥∥∥
2

F
= Op(

1
δ2NT
) for each j.

Theorem 3 establishes the convergence rate of the estimated loading space for each

regime. This could help us study the effect of using estimated loadings on subsequent

applications. For example, if estimated loadings are used to construct portfolios,

Theorem 3 could help us calculate how the estimation error contained in Λ̂j would

affect the performance of these portfolios.

Limit distributions of estimated loadings

Theorem 4 Under Assumptions 1-7, and assume
√
T/N → 0, T

16
α /N → 0 and

T
2
α
+ 2
β /N → 0, as (N, T )→∞,

√
Tq0j (λ̂ji−H ′

jλ
0
ji)

d→ N (0, V −
1
2

j Υ′jΣ
1
2
Λj
ΦjiΣ

1
2
Λj
ΥjV

− 1
2

j )

for each j.

Theorem 4 shows that for each j and i, λ̂ji has a limiting normal distribution.

This allows us to construct confidence interval for the estimated loadings. Also note

that the rotation matrix Hj is different for different regime.

5Hj corresponds to (H
−1)′ for the rotation matrix H in Bai (2003).

6Because of this, we can not use Weyl’s inequality. Bai (2003)’s proof of Proposition 1 relies on
his Lemma A.3(i), which relies on Weyl’s inequality. Our proof utilizes Theorem 1 and makes some
modifications on Bai (2003)’s framework.
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Remark 2 q̂j
p→ q0j is proved in the proof of Proposition 1(2). We can also prove con-

sistency and limit distribution of σ̂2 (the probability limit of σ̂2 is limn→∞
1
n

∑n

i=1 σ
2
i ),

we omit it since this is not our focus.

Asymptotic properties of estimated factors

Theorem 5 Under Assumptions 1-7, and assume
√
N/T → 0, T

16
α /N → 0 and

T
2
α
+ 2
β /N → 0, as (N, T )→∞,
(1) 1

T

∑T

t=1

∥∥∥f̂t −H−1
zt
f 0t

∥∥∥
2

= Op(
1

δ2NT
),

(2)
√
N(f̂t −H−1

zt
f 0t )

d→ N (0, V −
1
2

zt Υ
′
zt
Σ
− 1
2

Λzt
ΓzttΣ

− 1
2

Λzt
ΥztV

− 1
2

zt ).

Theorem 5(2) shows that the limit distribution of f̂t is mixed normal, since the

rotation matrix H−1
zt
and the asymptotic variance depend on the state variable zt.

Theorem 5(1) establishes the convergence rate of the estimated factor space. Note

that if {f̂t, t = 1, ...T} is used as proxies for the true factors in factor-augmented fore-
casting (or factor-augmented VAR), the forecasting equation (or the VAR equation)

would have induced regime switching in model parameters, because H−1
zt
depends on

zt. For illustration, consider the following h-period ahead forecasting model using

factors and some other observable variables Wt:

yt+h = a
′f 0t + b

′Wt + ut+h.

If f̂t is used as proxies for f
0
t , the model can be written as

yt+h = −a′Hzt(f̂t −H−1
zt
f 0t ) + a

′Hzt f̂t + b
′Wt + ut+h.

The first term on the right hand side is asymptotically negligible. It is easy to see

that the coefficient a′Hzt depends on zt and this need to be taken into account when

we estimate the forecasting equation.

4 MLE with State Dynamics

In this section we assume state process zt to be Markov and take into account the dy-

namics of zt in the EM algorithm and the asymptotic analysis. Since the state process
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of the business cycle/stock market is highly persistent, regime switching models that

capture the persistence should perform significantly better. In addition, taking into

account state dynamics would also be advantageous for mixed frequency data or

ragged edge data (data released at non-synchronized dates), since the number of

series available is small at early times.

4.1 Algorithm for MLE with State Dynamics

Let φ = (φ1, ..., φJ0)
′ denote the initial probabilities of z1. With state dynamics taken

into account, the log-likelihood function is:

l(Λ, σ2, Q, φ) = log[
∑J0

zT=1
...
∑J0

z1=1

∏T

t=1
L(xt

∣∣zt; Λ, σ2 ) Pr(z1, ..., zT |Q, φ)], (18)

where
∏T

t=1 L(xt |zt; Λ, σ2 ) is the density of (x1, ..., xT ) conditioning on (z1, ..., zT ) and
Pr(z1, ..., zT |Q, φ) is the probability of (z1, ..., zT ).

First order conditions for Λ and σ2

Let ptj|T = Pr(zt = j |x1:T ; Λ, σ2, Q, φ).

∂l(Λ, σ2, Q, φ)

∂Λj
=

∑T

t=1

∂ logL(xt |zt; Λ, σ2 )
∂Λj

ptj|T = 0, (19)

∂l(Λ, σ2, Q, φ)

∂σ2
=

∑T

t=1

∑J0

j=1

∂ logL(xt |zt; Λ, σ2 )
∂σ2

ptj|T = 0. (20)

Recall that x1:t = (x1, ..., xt) and z1:t = (z1, ..., zt). For any given Q and φ, let

Pr(z1, ..., zT

∣∣∣x1:T ; θ̃
(h)
) be the probability of z1:T conditioning on x1:T evaluated at

θ̃
(h)

= (Λ̃(h), σ̃2(h), Q, φ). At the h-th iteration, the EM algorithm maximizes the

expectation of the log-likelihood of (x1:T , z1:T ) with respect to Pr(z1, ..., zT

∣∣∣x1:T ; θ̃
(h)
),

i.e.,

l(h)(Λ, σ2, Q, φ) ≡
∑J0

zT=1
...
∑J0

z1=1
log[

∏T

t=1
L(xt

∣∣zt; Λ, σ2 ) Pr(z1, ..., zT |Q, φ)]

Pr(z1, ..., zT

∣∣∣x1:T ; θ̃
(h)
).
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Since zt is a Markov process, Pr(z1, ..., zT |Q, φ) = Pr(z1 |φ)
∏T

t=2 Pr(zt |zt−1;Q). Thus

l(h)(Λ, σ2, Q, φ) =
∑J0

zT=1
...
∑J0

z1=1
[
∑T

t=1
logL(xt

∣∣zt; Λ, σ2 )

+
∑T

t=2
log Pr(zt |zt−1;Q) + log Pr(z1 |φ)] Pr(z1, ..., zT

∣∣∣x1:T ; θ̃
(h)
)

=
∑T

t=1

∑J0

j=1
logL(xt

∣∣zt = j; Λj, σ2 )p̃
(h)
tj|T

+
∑T

t=2

∑J0

j=1

∑J0

k=1
logQjkp̃

(h)
tjk|T +

∑J0

k=1
log φkp̃

(h)
1k|T , (21)

where p̃
(h)
tjk|T = Pr(zt = j, zt−1 = k

∣∣∣x1:T ; θ̃
(h)
) and p̃

(h)
tj|T = Pr(zt = j

∣∣∣x1:T ; θ̃
(h)
) =

∑J0

k=1 p̃
(h)
tjk|T are smoothed probabilities based on x1:T and θ̃

(h)
. Appendix G presents

a recursive algorithm for calculating p̃
(h)
tjk|T .

From equations (10) and (11),
∂ logL(xt|zt=j;Λj ,σ2 )

∂Λj
= −Σ−1j Λj+Σ−1j xtx′tΣ−1j Λj. Thus

∂
∑T

t=1 logL(xt |zt = j; Λj, σ2 )p̃
(h)
tj|T

∂Λj
=
∑T

t=1
(−Σ−1j Λj + Σ−1j xtx′tΣ−1j Λj)p̃(h)tj|T = 0.

Let S̃
(h)
j =

∑T

t=1 p̃
(h)
tj|T xtx

′
t/
∑T

t=1 p̃
(h)
tj|T , then we have

Σ−1j Λj = Σ
−1
j S̃

(h)
j Σ

−1
j Λj. (22)

Compare S̃
(h)
j with Sj in Section 2.2, we can see the difference is that ptj is replaced

by the smoothed estimates p̃
(h)
tj|T . Similar to equation (14), equation (22) implies that

S̃
(h)
j Λ̃

(h+1)
j = Λ̃

(h+1)
j (Λ̃

(h+1)′
j Λ̃

(h+1)
j + σ̃2(h+1)Ir0j ), (23)

thus Λ̃
(h+1)
j are eigenvectors of S̃

(h)
j and Λ̃

(h+1)′
j Λ̃

(h+1)
j +σ̃2(h+1)Ir0j are the corresponding

eigenvalues. To save space, we show in Appendix F that

σ̃2(h+1) =
1

N
tr(
1

T

∑T

t=1
xtx

′
t −

∑J0

j=1

1

T

∑T

t=1
p̃
(h)
tj|T Λ̃

(h+1)
j Λ̃

(h+1)′
j ). (24)

Remark 3 The second equality of equation (21) is crucial. Since factor dynamics

are ignored, L(x1:T |z1:T ; Λ, σ2 ) =
∏T

t=1 L(xt |zt; Λ, σ2 ), thus we only need to calculate
p̃
(h)
tj|T rather than the probability of the whole chain Pr(z1, ..., zT

∣∣∣x1:T ; θ̃
(h)
). The latter
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requires (J0)T calculations, which is hopeless when T is large. If factor dynamics are

not ignored, then L(x1:T |z1:T ; Λ, σ2 ) = L(x1 |z1:T ; Λ, σ2 )
∏T

t=2 L(xt |x1:t−1, z1:T ; Λ, σ2 ).
L(xt |x1:t−1, z1:T ; Λ, σ2 ) depends on the chain (z1, ..., zT ) through z1:t, thus we need to
calculate Pr(z1:t

∣∣∣x1:T ; θ̃
(h)
). This requires (J0)t calculations, which is hopeless when t

is large.

EM algorithm with state dynamics

Choose any Q and φ such that Qjk > 0 for any j and k and φk > 0 for all k,

e.g., Qjk = 1/J
0 and φk = 1/J

0. Start from randomly generated initial values of Λ̃(0)

and σ̃2(0) = 1. For h = 0, 1, ...,

(E-step): calculate p̃
(h)
tjk|T using the algorithm in Appendix G, and calculate S̃

(h)
j =

∑T

t=1 p̃
(h)
tj|T xtx

′
t/
∑T

t=1 p̃
(h)
tj|T with p̃

(h)
tj|T =

∑J0

k=1 p̃
(h)
tjk|T ;

(M-step): given p̃
(h)
tjk|T and S̃

(h)
j , calculate Λ̃

(h+1)
j as eigenvectors of S̃

(h)
j and nor-

malize Λ̃
(h+1)
j such that Λ̃

(h+1)′
j Λ̃

(h+1)
j + σ̃2(h+1)Ir0j are the corresponding eigenvalues

and equation (24) is satisfied. Note that the computation of Λ̃
(h+1)
j and σ̃2(h+1) re-

quires iteration between equations (23) and (24).

Iterate the E-step and the M-step until converge. Let Λ̃j = (λ̃j1, ..., λ̃jN)
′, Λ̃ =

(Λ̃1, ..., Λ̃J0) and σ̃
2 denote the estimated parameters.

The asymptotic results in Section 4.2 hold for any Q and φ as long as qj > 0 for

any j and Qjk > 0 for any j and k. Here we choose Qjk = 1/J0 and φk = 1/J0.

Based on Λ̃ and σ̃2, Q0jk and φ
0
k can be estimated by

Q̃jk =
∑T

t=2
p̃tjk|T /

∑J0

j=1

∑T

t=2
p̃tjk|T , (25)

φ̃k = p̃1k|T =
∑J0

j=1
p̃2jk|T , (26)

where p̃tjk|T = Pr(zt = j, zt−1 = k
∣∣∣x1:T ; Λ̃, σ̃2, Q, φ). We may also plug Q̃jk and

φ̃k back in the EM algorithm and iterate between (Λ̃, σ̃2) and (Q̃, φ̃) until conver-

gence. This is the maximum likelihood estimator when (Q, φ) is estimated jointly

with (Λ, σ2), see Appendix F for details. The results in Section 4.2 are for (Λ̃, σ̃2)

with no iteration.
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The asymptotic results in Section 4.2 are also valid as long as σ̃2 is bounded and

bounded away from zero in probability. Thus similar to the EM algorithm in Section

2.2, we will restrict σ̃2 in [ 1
C2
, C2] for some large C or simply fix down σ̃2 = 1 to avoid

the iteration between Λ̃
(h+1)
j and σ̃2(h+1).

Estimate the factors

The factors can be estimated by the expectation of ft conditioning on x1:T and

ignoring factor dynamics:

f̃t =
∑J0

j=1
E(ft

∣∣∣x1:T , zt = j; Λ̃j, σ̃2 )p̃tj|T =
∑J0

j=1
E(ft

∣∣∣xt, zt = j; Λ̃j, σ̃2 )p̃tj|T

=
∑J0

j=1
Λ̃′j(Λ̃jΛ̃

′
j + σ̃

2IN)
−1xtp̃tj|T . (27)

4.2 Asymptotic Results for MLE with State Dynamics

For Λ̃j, p̃tj|T and f̃t, the asymptotic results in Section 3 hold under the same assump-

tions. We summarize these results in the following theorem.

Theorem 6 (i) Under the same assumptions as Theorem 1, 1
N

∥∥∥MΛ̃j
Λ0j

∥∥∥
2

F
= Op(

1√
δNT
)

as (N, T )→∞,
(ii) Under the same assumptions as Theorem 2, as (N, T )→∞,

∣∣p̃tj|T − 1zt=j
∣∣ = op(

1

Nη
),

sup
t

∣∣p̃tj|T − 1zt=j
∣∣ = op(

1

Nη
) if T

16
α /N → 0 and T

2
α
+ 2
β /N → 0,

(iii) Under the same assumptions as Proposition 1, as (N, T )→∞,

W̄jNT = (
Λ̃′jΛ̃j

N
+
σ̃2

N
Ir0j )(

1

T

∑T

t=1
p̃tj|T )

p→ q0jVj,

H̄j =

∑T

t=1 f
0
t f

0′
t 1zt=j

T

Λ0′j Λ̃j

N
W̄−1
jNT

p→ Σ
− 1
2

Λj
ΥjV

1
2
j ,

(iv) Under the same assumptions as Theorem 3, as (N, T )→∞,

1

N

∥∥∥Λ̃j − Λ0jH̄j
∥∥∥
2

F
= Op(

1

δ2NT
),
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(v) Under the same assumptions as Theorem 4, as (N, T )→∞,
√
Tq0j (λ̃ji − H̄ ′

jλ
0
ji)

d→ N (0, V −
1
2

j Υ′jΣ
1
2
Λj
ΦjiΣ

1
2
Λj
ΥjV

− 1
2

j ),

(vi) Under the same assumptions as Theorem 5, as (N, T )→∞,

1

T

∑T

t=1

∥∥∥f̃t − H̄−1
zt
f 0t

∥∥∥
2

= Op(
1

δ2NT
),

√
N(f̃t − H̄−1

zt
f 0t )

d→ N (0, V −
1
2

zt Υ
′
zt
Σ
− 1
2

Λzt
ΓzttΣ

− 1
2

Λzt
ΥztV

− 1
2

zt ).

See the Appendix for the proof of Theorem 6. Theorem 6 shows that taking into

account dynamics of zt does not affect the asymptotic properties. This is because

when N is large, the information contained in state dynamics for estimating regime

probabilities becomes marginal.

Note that although the design of the smoothed algorithm utilizes the Markov

property of the state process, the asymptotic results in Theorem 6 do not require the

state process to be Markov. In fact, Theorem 6 allows for arbitrary regime pattern,

as long as Assumption 4 is satisfied. An interesting special case is when the smoothed

algorithm is applied to factor model with common structural breaks in the loadings.

Various methods are proposed recently for estimating the break points, e.g., Cheng

et al. (2016), Baltagi et al. (2017, 2021), Bai et al. (2020) and Ma and Su (2018).

Theorem 6(ii) implies that we can also consistently estimate the break points using

the smoothed algorithm. Finally, we show that the estimated transition probability

matrix is also consistent.

Theorem 7 Assume zt follows a Markov process, under Assumptions 1-4 and 5(1),

as (N, T )→∞, Q̃jk p→ Q0jk for each j and k if T
16
α /N → 0 and T

2
α
+ 2
β /N → 0.

5 Simulations

In this section, we perform simulations to confirm the theoretical results and exam-

ine the finite sample performance of our methods under various empirically relevant

scenarios.
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5.1 Simulation Design

The data is generated as follows:

xit =

{
f 0′t λ

0
1i + eit if zt = 1,

f 0′t λ
0
2i + eit if zt = 2,

for i = 1, ..., N and t = 1, ..., T,

i.e., we consider two regimes. For the factors and the loadings, we consider three data

generating processes (DGP) as listed below:

DGP 1: There are two factors in both regimes and the loadings of both factors

have regime switching.

DGP 2: There are two factors in both regimes and only the loadings of the second

factor have regime switching.

DGP 3: There is one factor in both regimes and its loadings have regime switching.

For all these DGPs, the factors are generated as follows:

f 0t,p = ρf
0
t−1,p + εt,p for t = 2, ..., T and p = 1, ..., r

0.

εt,p is i.i.d. N(0, 1), and f
0
1,p is i.i.d. N(0,

1
1−ρ2 ) so that the distributions of the factors

are stationary. Serial correlation of the factors is controlled by the scalar ρ.

The errors are generated as follows:

eit = αei,t−1 + vit for i = 1, ..., N and t = 2, ..., T ,

where vt = (v1,t, ..., vN,t)
′ is i.i.d. N(0,Ω) for t = 2, ..., T and (e1,1, ..., eN,1)

′ is

N(0, 1
1−α2Ω) so that the distributions of the errors are stationary. Serial correla-

tion of the errors is controlled by the scalar α. For Ω, we set Ωij = β
|i−j| for some β

between 0 and 1, thus cross-sectional dependence of the errors is controlled by β. In

addition, the processes {εt,p} and {vit} are mutually independent for all p and i.
The loadings are generated as follows: For DGP1, both λ01i and λ

0
2i are generated as

i.i.d. N(0, 1−ρ
2

1−α2
2R2

1−R2 I2) across i, and λ
0
1i and λ

0
2i are also independent with each other.

For DGP2, λ01i and the second element of λ
0
2i are generated as i.i.d. N(0,

1−ρ2
1−α2

2R2

1−R2 I3)

across i. For DGP3, both λ01i and λ
0
2i are generated as i.i.d. N(0,

1−ρ2
1−α2

R2

1−R2 ) across i,
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and λ01i and λ
0
2i are also independent with each other. All loadings are independent

of the factors and the errors. The variance 1−ρ2
1−α2

2R2

1−R2 guarantees that the regression

R-square of each series i is equal to R2, this controls the signal-noise ratio. Following

the literature, we set R2 = 0.5.

For the state process {zt, t = 1, ..., T}, we consider four cases as listed below:
Regime Pattern 1: US business cycle 1945Q2-2020Q1

Regime Pattern 2: single common break at t = T/2

Regime Pattern 3: two common breaks at t = T/3 and t = 2T/3, and the loadings

switch back after the second break

Regime Pattern 4: a randomly generated Markov process

Regime pattern 1 is based on the US business cycle from 1945 Quarter 2 to 2020

Quarter 1, as determined by the NBER business cycle dating committee. There are

75 years (300 quarters) in total, thus we have T = 300. For t = 1, ..., 300, zt = 1

if the US economy at time t is in expansion and zt = 2 if the US economy at time

t is in recession. The transition probabilities of the state process calibrated to the

US business cycle is Q011 = 0.95 and Q022 = 0.72 (average duration of expansion is

1/(1−Q011) = 20 and average duration of recession is 1/(1−Q022) ≈ 3.5).
Regime patterns 2 and 3 correspond to the case where loadings have single common

break and multiple common breaks, respectively. Regime patterns 3 is especially

interesting since the case where there are multiple breaks and the loadings switch

back to their original values after the second break is rarely studied in the literature.

Various methods are proposed in the literature recently for estimating the break

points, here we perform simulations for regime patterns 2 and 3 to evaluate the finite

sample performance of our method when it is applied to these interesting cases.

Regime pattern 4 is a Markov process randomly generated with transition prob-

abilities Q011 = 0.95 and Q022 = 0.72, and {zt, t = 1, ..., T} is independent with f 0s
and eis for all i and s. Regime patterns 1-3 are prespecified and are not necessarily

Markov processes, thus here we consider regime pattern 4 to evaluate the performance

of our method when applied to a Markov state process.

We study both the unsmoothed algorithm in Section 2.2 and the smoothed al-

gorithm in Section 4.1. The key difference is that in the E-step, the former uses
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unsmoothed regime probabilities while the latter uses smoothed regime probabilities.

Both algorithms start from randomly generated initial values of the loadings and

iterate between the E-step and the M-step until convergence. To search for global

maximum of the likelihood function, we generate initial values randomly for many

times and take the one with the largest likelihood. For other parameters, we set

σ2 = 1, qj = 0.5 for j = 1, 2, φk = 0.5 for k = 1, 2, Q11 = 0.95 and Q22 = 0.72.

Q11 and Q22 are calibrated to regime pattern 1. Once we get the estimated regime

probabilities and the estimated loadings, Q̃11 and Q̃22 are estimated by equation (25),

and factors are estimated by equations (17) and (27).

5.2 Simulation Results

Figure 1 displays the smoothed probabilities of regime 2 for DGP 1 with (N, T ) =

(100, 300) and (ρ, α, β) = (0, 0, 0). Subfigures 1-4 of Figure 1 correspond to regime

patterns 1-4, respectively. It is easy to see that in all subfigures when the true regime is

regime 1, the smoothed probabilities stay at zero with only a few short and mild spikes.

At the beginning of each shaded region, the smoothed probabilities increase to one

instantly, and at the end of each shaded region, the smoothed probabilities instantly

decrease to zero. Figure 2 displays the unsmoothed probabilities of regime 2 for DGP1

under the four regime patterns with (N, T ) = (100, 300) and (ρ, α, β) = (0, 0, 0). The

estimated probabilities still stay at zero when it’s regime 1 and instantly increase

to one (decrease to zero) when there is regime switching, but compared to Figure

1, Figure 2 shows more and sharper spikes (upward or downward). These spikes

are false positives in detecting regime switching. Figure 3 and Figure 4 display the

smoothed and the unsmoothed probabilities of regime 2 for DGP2, respectively. The

performance of the estimated probabilities deteriorates since for DGP2 only one factor

has regime switching in its loadings. Overall, Figures 1-4 confirm the theoretical

results that turning points (break points) can be identified consistently if N is large.

Figure 5 focuses on regime pattern 1 and displays the estimated probabilities

of regime 2 for DGP1 and DGP2 with N = 200. Comparing the subfigure 3 and

subfigure 4 of Figure 5 to subfigure 1 of Figure 3 and subfigure 1 of Figure 4, it is
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easy to see that N = 200 improves the performance of the estimated probabilities.

Figure 6 also focuses on regime pattern 1 and displays the smoothed probabilities of

regime 2 for DGP1 and DGP2 with (ρ, α, β) = (0.5, 0, 0) or (0, 0.5, 0.5). Comparing

to subfigure 1 of Figure 1 and subfigure 1 of Figure 3, it seems that the value of

(ρ, α, β) does not affect the performance too much if they were far away from 1.

Comparing Figure 2 to Figure 1 and Figure 4 to Figure 3, it is obvious that

the smoothed probabilities performs much better than the unsmoothed probabilities.

Many false positives in Figure 3 and Figure 4 are eliminated by the smoother. This

is because for each t, regimes at t− 1 and t+1 contains information for detecting the
regime at period t. Comparing subfigures 2-3 to subfigures 1 and 4 in Figures 1-4, we

can see that the performance of the estimated probabilities under regime patterns 2-3

is better than the performance under patterns 1 and 4. This is also because regimes

at neighborhood periods provide information for current regime. Roughly speaking,

the performance is better when the regime pattern is relatively simple. In addition,

we can also see that the performance under regime pattern 1 is slightly better than

the performance under regime pattern 4. This is because the subsample size of regime

2 under pattern 4 is larger than the subsample size under pattern 1 (72 vs 45). In

general, we find that to guarantee good performance, subsample size for each regime

should be not less than 40.

The number of initial value trials also significantly affect the performance. We

find that for regime pattern 1, normally 5 trials are enough, but to guarantee good

performance in all of 1000 replications, 30 trials are needed. For regime pattern 4,

normally 2 trials are enough and 15 trials are needed to guarantee good performance

in all replications. For regime patterns 2-3, 5 trials are enough for all replications. In

general, more trials are needed when the regime pattern is complex and subsample

size is small.

Now we consider determining the turning points (break points for regime patterns

2-3) using the estimated probabilities of regime 2. A straightforward way is to deter-

mine the regime at each t by comparing the estimated probability of regime 2 to a

prespecified threshold, i.e, if the estimated probability is above 0.9 (below 0.1), period

t is classified as regime 2 (1). Since there are quite a few false positives in Figures
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2-6, a more robust way is to use the moving average of the estimated probabilities,

pmat ≡ (p̃t2|T + ... + p̃t−d,2|T )/(d + 1), where d is the order of the moving average. If
regime switches from 2 to 1 (1 to 2) at the previous turning point, t − d would be
considered as the turning point from regime 1 to regime 2 (regime 2 to regime 1)

when pmat increases to above the threshold 0.9 (decreases to below 0.1) for the first

time after the previous turning point.

Subfigures 1-2 of Figure 7 display the moving average of the smoothed probabilities

under DGP2 and regime pattern 1 for d = 1 and d = 2, and subfigure 3 displays the

moving average of the unsmoothed probabilities under DGP2 and regime pattern 3

for d = 3. Comparing to subfigure 1 of Figure 3 and subfigure 3 of Figure 4, it is

obvious that almost all false positives are eliminated by the moving average, although

true regime 2 are also eliminated three times in subfigures 1-2. In general, the cost

of using moving average is that true regime 2 may be eliminated if it only lasts for

a short period, and we need to wait for d periods to determine the turning point

(t− d is considered as the turning point when pmat > 0.9). Therefore, d = 1 is a good

choice if regime switches relatively frequently and we want to quickly detect regime

switching. For offline estimation of the break points of regime patterns 2-3, large d is

a better choice.

Finally, to access the adequacy of the asymptotic distributions of the estimated

loadings and factors in approximating their finite sample counterparts, we display in

Figures 8-11 the histograms of the standardized estimated factors for t = T/2 and

the standardized estimated loadings for i = N/2 under DGP3. The number of sim-

ulations is 1000. The histograms are normalized to be a density function and the

standard normal density curve is overlaid on them for comparison. It is easy to see

that in all subfigures of Figures 8-11, the standard normal density curve provides

good approximation to the normalized histograms. The histograms of the estimated

factors in Figure 8 are slightly fat-tailed because of bad initial values. Comparing the

four rows in each of Figures 8-11, we can see that the estimated loadings and factors

using the smoothed algorithm perform better than using the unsmoothed algorithm,

(ρ, α, β) = (0.5, 0.5, 0.5) does not matter too much, and N = 200 significantly im-

proves the performance.
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In addition, we also present in Table 1 the average R2 of the estimated loadings of

regime 1 and regime 2 projecting on the true loadings, the average R2 of the estimated

factors, and the average absolute error of the estimated transition probabilities. It is

easy to see that in Table 1, R2l1 and R
2
l2 are always close to one. R

2
Hf is always close

to one but R2f is much smaller than R
2
Hf . This is consistent with Theorem 5(1) and

Theorem 6(vi). In summary, results in Figures 1-11 and Table 1 lend strong support

to the theoretical results and illustrate the usefulness of the proposed EM algorithms.

6 Empirical Application

In this section we apply the proposed method to detect turning points of US business

cycle from 02/1980 to 02/2020 using the FRED-MD (Federal Reserve Economic Data

- Monthly Data) data set. The FRED database is maintained by the Research divi-

sion of the Federal Reserve Bank of St. Louis, and is publicly accessible and updated

in real-time. The 03/2020 vintage of the FRED-MD data set contains 128 unbal-

anced monthly time series from 01/1959 to 02/2020, including eight groups (output

and income, labor market, housing, consumption and inventories, money and credit,

prices, stock market). After removing those series with missing values and data trans-

formation7, we have 106 balanced monthly series ranging from 03/1959 to 02/2020.

Finally, the data is demeaned and standardized.

For each month from 02/1980 to 02/2020 (481 months in total), we use the data

from 03/1959 to that month for calculating the probability of recession of that month,

i.e., we behave as if we were standing at that month8. More specifically, we apply the

algorithm in Section 4.1 to the data from 03/1959 to the previous month to estimate

the model parameters9, and then use the estimated parameters and the data of that

month to calculate the filtered probability of recession for that month. Since the data

7See the Appendix of McCracken and Ng (2016) for the details of data description and transfor-
mation.

8For simplicity, we do not use the vintage data of that month. Compared to the vintage data,
the data we use contains revision in some series if more accurate observations were available after
that month, but previous studies on business cycle dating show that data revisions have little effects
on the results.

9US business cycle from 03/1959 to the previous month as determined by NBER is used as the
initial values for probabilities.
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of that month is available at the end of that month or the beginning of the next

month, new recession or expansion starting from the beginning of that month could

only be detected with at least one month delay.

To convert the recession probability of each month into a binary variable that

indicates the state of the economy in that month, we compare the estimated recession

probability to a prespecified threshold. More specifically, if the previous turning point

is a trough and the recession probability of month t exceeds 0.8 for the first time after

the previous turning point, month t would be considered as a new turning point from

expansion to recession. Similarly, if the previous turning point is a peak and the

recession probability of month t falls below 0.2 for the first time after the previous

turning point, month t would be considered as a new turning point from recession

to expansion. For robustness check, we also consider (0.9, 0.1) as the threshold, the

results are quite similar.

We consider the turning points determined by the NBER BCDC (business cycle

dating committee) as the benchmark for comparison and we mainly focus on the

accuracy and speed of the proposed method in detecting turning points. The proposed

method is applied to both the whole panel and a subset of the whole panel which

consists of only the first 50 series among all 106 series. The results of using only

the first 50 series are better. We conjecture that this is mainly because not all 106

series had regime switching in the factor loadings at each turning point determined

by the NBER BCDC10, or some series had regime switching in their loadings at time

periods that are different from the NBER BCDC turning points. Thus we may further

improve the performance of the proposed method by selecting series that are most

relevant to and synchronous with business cycle. A careful selection is out of the

scope of this paper.

Table 2 presents the results of using the first 50 series. The number of factors in

each regime is set to be six. mm/yyyy in the second and the seventh row indicate

the starting month of each recession and expansion. The row corresponds to "NBER

10The NBER BCDC mainly focuses on four series, (1) non-farm payroll employment, (2) industrial
production, (3) real manufacturing and trade sales, and (4) real personal income excluding transfer
payments.
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BCDC", "Chauvet Piger" and "This paper" shows the number of months it takes

the NBER BCDC, Chauvet and Piger (2008) and this paper to detect each recession

and expansion, respectively. For example, the recession starting from the beginning

of February 1980 would be detected by the NBER BCDC at the beginning of June

1980, by Chauvet and Piger (2008) at the beginning of August 1980, and by this

paper at the beginning of May 1980, respectively. Overall, it is easy to see that this

paper detects turning points much faster than NBER BCDC and slightly faster than

Chauvet and Piger (2008). On average, this paper detects recessions with 6.25 months

delay and expansions with 5.4 months delay, NBER BCDC detects recessions with 7.4

months delay and expansions with 14.8 months delay, and Chauvet and Piger (2008)

detects recessions with 8.6 months delay and expansions with 6.2 months delay.

Table 2 shows that using more series could improve the speed of turning points

detection. However, using more series could also bring in false positives (turning

points detected by the proposed method using many series but not detected by NBER

BCDC), because the extra series may contain different turning points. Here we detect

eight false recessions: 09/1983-11/1983, 10/1986-02/1987, 07/1989-10/1989, 01/1993-

02/1993, 01/1995-03/1995, 08/1998, 05/2000-08/2000, 06/2010-10/2010, and one

false expansion: 02/1982. While these false positives should not be ignored, most

of them only last for a short periods and would have little effect on macroeconomic

policy. Overall, our results demonstrate the potential of using a large number of se-

ries and factor model with common loading switching for quick real-time detection of

business cycle turning points.

7 Conclusions

The exposure of economic time series to common factors may switch depending on

state variables such as fiscal policy, monetary policy, business cycle stage, stock mar-

ket volatility, technology and so on. For consistent estimation of the factor structure,

it is crucial to take into account such regime switching phenomena. This paper con-

siders maximum likelihood estimation for large factor models with common regime

switching in the loadings and proposes EM algorithm for computation, which is easy
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to implement and runs fast even when N is large. Convergence rates and limit dis-

tributions of the estimated loadings and the estimated factors are established under

the approximate factor model setup. This paper also shows that when N is large,

regime switching can be identified consistently and only one observation after the

switching point is needed. This allows us to detect regime switching at very early

times. Monte Carlo simulations confirm the theoretical results and good performance

of our method. An application to the FRED-MD dataset demonstrates the poten-

tial of using many time series with our method for quick detection of business cycle

turning points.

Some related topics are worth further study. First, it would be interesting to see

the performance of the portfolio constructed using regime specific loadings, and how

the identified regime is related to exogenous variables such as market volatility and

money growth. Second, our results imply that the forecasting equation would have

induced regime switching if estimated factors are used for forecasting, so we want

to know whether it indeed matters. Finally, a selection of time series that are most

synchronous with or related to business cycle could improve the speed and accuracy

of our method for turning points detection, so we would like to see how much we can

achieve after careful selection.
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Figure 1: Smoothed Probabilities of Regime 2 for DGP 1

Notes: Subfigures 1-4 correspond to regime pattern 1-4, respectively. The x-axis is time and the

y-axis is the probability. The shaded regions correspond to regime 2. (N, T ) = (100, 300) and
(ρ, α, β) = (0, 0, 0).
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Figure 2: Unsmoothed Probabilities of Regime 2 for DGP 1

Notes: Subfigures 1-4 correspond to regime pattern 1-4, respectively. The x-axis is time and the

y-axis is the probability. The shaded regions correspond to regime 2. (N, T ) = (100, 300) and
(ρ, α, β) = (0, 0, 0).
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Figure 3: Smoothed Probabilities of Regime 2 for DGP 2

Notes: Subfigures 1-4 correspond to regime pattern 1-4, respectively. The x-axis is time and the

y-axis is the probability. The shaded regions correspond to regime 2. (N, T ) = (100, 300) and
(ρ, α, β) = (0, 0, 0).
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Figure 4: Unsmoothed Probabilities of Regime 2 for DGP 2

Notes: Subfigures 1-4 correspond to regime pattern 1-4, respectively. The x-axis is time and the

y-axis is the probability. The shaded regions correspond to regime 2. (N, T ) = (100, 300) and
(ρ, α, β) = (0, 0, 0).
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Figure 5: Smoothed and Unsmoothed Probabilities of Regime 2 for Regime Pattern
1, (N, T ) = (200, 300) and (ρ, α, β) = (0, 0, 0)

Notes: Subfigures 1-4 correspond to smoothed probabilities for DGP1, unsmoothed probabilities for

DGP1, smoothed probabilities for DGP2 and unsmoothed probabilities for DGP2, respectively. The

x-axis is time and the y-axis is the probability. The shaded regions correspond to regime 2.
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Figure 6: Smoothed Probabilities of Regime 2 for Regime Pattern 1, (N, T ) =
(100, 300) and (ρ, α, β) = (0.5, 0, 0) or (ρ, α, β) = (0, 0.5, 0.5)

Notes: Subfigures 1-4 correspond to smoothed probabilities for DGP1 with (ρ, α, β) = (0.5, 0, 0),
DGP1 with (ρ, α, β) = (0, 0.5, 0.5), DGP2 with (ρ, α, β) = (0.5, 0, 0) and DGP2 with

(ρ, α, β) = (0, 0.5, 0.5), respectively. The x-axis is time and the y-axis is the probability. The
shaded regions correspond to regime 2.
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Figure 7: Moving Average of the Estimated Probabilities of Regime 2

Notes: Subfigures 1-2 correspond to MA(1) and MA(2) of smoothed probabilities for DGP2 under

regime pattern 1, respectively. Subfigure 3 corresponds to MA(3) of unsmoothed probabilities for

DGP2 under regime pattern 3. The x-axis is time and the y-axis is the probability. The shaded

regions correspond to regime 2. (N, T ) = (100, 300) and (ρ, α, β) = (0, 0, 0).
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Figure 8: Histograms of the Estimated Loadings and the Estimated Factors for
Regime Pattern 1

Notes: Subfigures in the first to the fourth row correspond to the smoothed algo-

rithm with ρ = α = β = 0 and (N, T ) = (100, 300), the unsmoothed algorithm with

ρ = α = β = 0 and (N, T ) = (100, 300), the smoothed algorithm with ρ = α = β = 0.5
and (N, T ) = (100, 300), and the smoothed algorithm with ρ = α = β = 0 and

(N, T ) = (200, 300), respectively. Subfigures in the first to the third column correspond

to the estimated loadings for regime 1, the estimated loadings for regime 2 and the estimated

factors, respectively. The curve overlaid on the histograms is the standard normal density function.
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Figure 9: Histograms of the Estimated Loadings and the Estimated Factors for
Regime Pattern 2

Notes: Subfigures in the first to the fourth row correspond to the smoothed algo-

rithm with ρ = α = β = 0 and (N, T ) = (100, 300), the unsmoothed algorithm with

ρ = α = β = 0 and (N, T ) = (100, 300), the smoothed algorithm with ρ = α = β = 0.5
and (N, T ) = (100, 300), and the smoothed algorithm with ρ = α = β = 0 and

(N, T ) = (200, 300), respectively. Subfigures in the first to the third column correspond

to the estimated loadings for regime 1, the estimated loadings for regime 2 and the estimated

factors, respectively. The curve overlaid on the histograms is the standard normal density function.
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Figure 10: Histograms of the Estimated Loadings and the Estimated Factors for
Regime Pattern 3

Notes: Subfigures in the first to the fourth row correspond to the smoothed algo-

rithm with ρ = α = β = 0 and (N, T ) = (100, 300), the unsmoothed algorithm with

ρ = α = β = 0 and (N, T ) = (100, 300), the smoothed algorithm with ρ = α = β = 0.5
and (N, T ) = (100, 300), and the smoothed algorithm with ρ = α = β = 0 and

(N, T ) = (200, 300), respectively. Subfigures in the first to the third column correspond

to the estimated loadings for regime 1, the estimated loadings for regime 2 and the estimated

factors, respectively. The curve overlaid on the histograms is the standard normal density function.
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Figure 11: Histograms of the Estimated Loadings and the Estimated Factors for
Regime Pattern 4

Notes: Subfigures in the first to the fourth row correspond to the smoothed algo-

rithm with ρ = α = β = 0 and (N, T ) = (100, 300), the unsmoothed algorithm with

ρ = α = β = 0 and (N, T ) = (100, 300), the smoothed algorithm with ρ = α = β = 0.5
and (N, T ) = (100, 300), and the smoothed algorithm with ρ = α = β = 0 and

(N, T ) = (200, 300), respectively. Subfigures in the first to the third column correspond

to the estimated loadings for regime 1, the estimated loadings for regime 2 and the estimated

factors, respectively. The curve overlaid on the histograms is the standard normal density function.
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Table 1: Average R2 of the Estimated Loading Space, Average R2 of the Estimated
Factor Space, and Average Absolute Error of the Estimated Transition Probabilities

R2l1 R2l2 R2f R2Hf Q̃11 Q̃22
Smoothed with (ρ, α, β) = (0, 0, 0) and (N, T ) = (100, 300)

Pattern 1 0.996 0.9762 0.7337 0.9889 0.0028 0.013
Pattern 2 0.9931 0.9932 0.5155 0.9896 N.A. N.A.
Pattern 3 0.9949 0.9895 0.541 0.9894 N.A. N.A.
Pattern 4 0.9955 0.9854 0.6256 0.9892 0.0216 0.0378
Unsmoothed with (ρ, α, β) = (0, 0, 0) and (N, T ) = (100, 300)
Pattern 1 0.9959 0.9678 0.6786 0.9782 N.A. N.A.
Pattern 2 0.9931 0.9932 0.4855 0.9885 N.A. N.A.
Pattern 3 0.9949 0.9892 0.5157 0.988 N.A. N.A.
Pattern 4 0.9955 0.9853 0.6127 0.9875 N.A. N.A.
Smoothed with (ρ, α, β) = (0.5, 0.5, 0.5) and (N, T ) = (100, 300)
Pattern 1 0.9933 0.9631 0.7255 0.9849 0.0053 0.0137
Pattern 2 0.9928 0.9929 0.4797 0.9891 N.A. N.A.
Pattern 3 0.9915 0.9827 0.5458 0.9889 N.A. N.A.
Pattern 4 0.9927 0.9782 0.6285 0.9886 0.0239 0.0328
Smoothed with (ρ, α, β) = (0, 0, 0) and (N, T ) = (200, 300)

Pattern 1 0.996 0.9756 0.7408 0.9936 0.0017 0.0151
Pattern 2 0.9933 0.9933 0.5183 0.9949 N.A. N.A.
Pattern 3 0.995 0.9898 0.5611 0.9949 N.A. N.A.
Pattern 4 0.9956 0.9856 0.6227 0.9947 0.019 0.024

Notes: The column under R2l1 shows the average R
2 of the estimated loadings of regime 1 projecting

on the true loadings of regime 1. The column under R2l2 shows the average R
2 of the estimated

loadings of regime 2 projecting on the true loadings of regime 2. The column under R2f shows the
average R2 of the estimated factors projecting on the true factors. The column under R2Hf shows
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APPENDIX

A Details for Theorem 1

Lemma 1 Under Assumption 3(2) and 3(4), ‖E‖ = Op(N
1
4T

1
2 +N

1
2T

1
4 ).

Proof. We shall show E ‖E‖4 = O(NT 2 +N2T ). First note that

‖E‖4 = ‖E ′E‖2 ≤ ‖E ′E‖2F =
∑N

i=1

∑N

k=1
(
∑T

t=1
eitekt)

2.

It is easy to see that E(
∑T

t=1 eitekt)
2 is not larger than the sum of 2E(

∑T

t=1 eitekt −
∑T

t=1 E(eitekt))
2 and 2(

∑T

t=1 E(eitekt))
2. The sum of the former over i and k is not

larger than N2TM since by Assumption 3(4), E(
∥∥∥ 1√

T

∑T

t=1(eitekt − E(eitekt))
∥∥∥
2

) ≤
M . The sum of the latter over i and k is not larger than NT 2M under Assumption

3(2).

Proof of Theorem 1

Proof. Step (1): For (Λ̂, σ̂2, q), let

mt = argmaxj{(2π)−
N
2

∣∣∣Λ̂jΛ̂′j + σ̂
2IN

∣∣∣
− 1
2
e−

1
2
x′t(Λ̂jΛ̂

′

j+σ̂
2IN )

−1xt , j = 1, ..., J0}. (28)

Since
∑J0

j=1 qj = 1,

l(Λ̂, σ̂2, q) ≤
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Λ̂′mt
+ σ̂2IN
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x′t(Λ̂mt

Λ̂′mt
+ σ̂2IN)

−1xt. (29)

Consider the last term on the right hand side of equation (29). By Woodbury identity,

(Λ̂mt
Λ̂′mt

+ σ̂2IN)
−1 = σ̂−2IN − σ̂−2Λ̂mt

(σ̂2Ir0mt + Λ̂
′
mt
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. Thus
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Since (Λ̂′mt
Λ̂mt

)−1 − (σ̂2Ir0mt + Λ̂
′
mt
Λ̂mt
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The summation in the bracket has J0 terms. Throw away all the other terms and

only keep the term for j = zt, we have
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The last equality follows from Lemma 1. Similarly, the third term of expression (36)
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B Details for Theorem 2

Lemma 2 Under the assumptions of Theorem 1, 1

σ̂2+Λ̂′
jl
Λ̂jl
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δNT
) for each j =

1, ..., J0 and each l = 1, ..., r0j , where Λ̂jl denotes the l-th column of Λ̂j.

Proof. (1) Consider expression (33). In step (3.1), (3.2) and (3.4) of proof of Theorem

1, we have shown that the first, the second, and the fourth term on the right hand

side of expression (33) is Op(T ), Op(T logN) and Op(T ) respectively. In step (3.5) we

have shown that the left hand side of expression (33) equals expression (36), and the

last three terms of expression (36) together is Op(N
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)−1Λ̂′mt
et)

1
2 (
∑T

t=1

∥∥Λ0ztf
0
t

∥∥2)
1
2

≤ 1

σ̂2
(
∑T

t=1
e′tPΛ̂mt

et)
1
2 (
∑T

t=1

∥∥f 0t
∥∥2)

1
2 sup

j

∥∥Λ0j
∥∥ = Op(N

3
4T +NT

3
4 ),

where the first inequality follows from Cauchy-Schwarz inequality, the second in-

equality follows from the fact that Λ̂′mt
Λ̂mt

is diagonal and all diagonal elements of

σ̂2Ir0mt + Λ̂
′
mt
Λ̂mt

are larger than σ̂2, and the equality follows from Assumption 1(2),

Assumption 2(1) and expression (37) in step (3.5) of proof of Theorem 1.
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(3) It follows from (1) and (2) that

∑T

t=1
f 0′t Λ

0′
zt
Λ̂mt

(σ̂2Ir0mt + Λ̂
′
mt
Λ̂mt

)−1(Λ̂′mt
Λ̂mt

)−1Λ̂′mt
Λ0ztf

0
t

+
∑T

t=1
e′tΛ̂mt

(σ̂2Ir0mt + Λ̂
′
mt
Λ̂mt

)−1(Λ̂′mt
Λ̂mt

)−1Λ̂′mt
et

=
∑T

t=1
x′tΛ̂mt

(σ̂2Ir0mt + Λ̂
′
mt
Λ̂mt

)−1(Λ̂′mt
Λ̂mt

)−1Λ̂′mt
xt

−2
∑T

t=1
e′tΛ̂mt

(σ̂2Ir0mt + Λ̂
′
mt
Λ̂mt

)−1(Λ̂′mt
Λ̂mt

)−1Λ̂′mt
Λ0ztf

0
t

= Op(N
3
4T +NT

3
4 ). (39)

The two terms on the left hand side of (39) are nonnegative, thus
∑T

t=1 f
0′
t Λ

0′
zt
Λ̂mt

(σ̂2Ir0mt+

Λ̂′mt
Λ̂mt

)−1(Λ̂′mt
Λ̂mt

)−1Λ̂′mt
Λ0ztf

0
t = Op(N

3
4T +NT

3
4 ). Since each term in the summa-

tion is nonnegative, we have
∑T

t=1 f
0′
t Λ

0′
j Λ̂j(σ̂

2Ir0j+Λ̂
′
jΛ̂j)

−1(Λ̂′jΛ̂j)
−1Λ̂′jΛ

0
jf
0
t 1zt=j1mt=j =

Op(N
3
4T +NT

3
4 ) for each j.

As explained in step (3.6) of proof of Theorem 1,
∑T

t=1 1mt=j1zt=j ≥
q0jT

J0
, and

by Assumption 1(1), ρmin(
1∑T

t=1 1mt=j1zt=j

∑T

t=1 f
0
t f

0′
t 1mt=j1zt=j) ≥ c for some c > 0

w.p.a.1. Thus we have

Op(N
3
4T +NT

3
4 ) =

∑T

t=1
f 0′t Λ

0′
j Λ̂j(σ̂

2Ir0j + Λ̂
′
jΛ̂j)

−1(Λ̂′jΛ̂j)
−1Λ̂′jΛ

0
jf
0
t 1zt=j1mt=j

= tr(Λ0′j Λ̂j(σ̂
2Ir0j + Λ̂

′
jΛ̂j)

−1(Λ̂′jΛ̂j)
−1Λ̂′jΛ

0
j

∑T

t=1
f 0t f

0′
t 1zt=j1mt=j)

≥ tr(Λ0′j Λ̂j(σ̂
2Ir0j + Λ̂

′
jΛ̂j)

−1(Λ̂′jΛ̂j)
−1Λ̂′jΛ

0
j)ρmin(

∑T

t=1
f 0t f

0′
t 1mt=j1zt=j)

≥ tr(Λ0′j Λ̂j(σ̂
2Ir0j + Λ̂

′
jΛ̂j)

−1(Λ̂′jΛ̂j)
−1Λ̂′jΛ

0
j)T

q0j c

J0
w.p.a.1.

Thus tr(Λ0′j Λ̂j(σ̂
2Ir0j + Λ̂

′
jΛ̂j)

−1(Λ̂′jΛ̂j)
−1Λ̂′jΛ

0
j) = Op(

N√
δNT
) for each j.

(4) Noting that Λ̂jl is orthogonal to Λ̂jl′ for l 6= l′, we have

∑r0j

l=1

∥∥∥PΛ̂jlΛ
0
j

∥∥∥
2

F
=

∥∥∥PΛ̂jΛ
0
j

∥∥∥
2

F
=
∥∥Λ0j

∥∥2
F
−
∥∥∥MΛ̂j

Λ0j

∥∥∥
2

F
, (40)

∑r0j

l=1

1

σ̂2 + Λ̂′jlΛ̂jl

∥∥∥PΛ̂jlΛ
0
j

∥∥∥
2

F
= tr(Λ0′j Λ̂j(σ̂

2Ir0j + Λ̂
′
jΛ̂j)

−1(Λ̂′jΛ̂j)
−1Λ̂′jΛ

0
j). (41)

Each term in the summation on the left hand side of equation (41) is nonnegative,
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thus
1

σ̂2 + Λ̂′jlΛ̂jl

∥∥∥PΛ̂jlΛ
0
j

∥∥∥
2

F
= Op(

N√
δNT

) for each j and l. (42)

Now consider
∥∥∥PΛ̂j1Λ

0
j

∥∥∥
2

F
. Let Λ̂j,−1 = (Λ̂j2, ..., Λ̂jr0j ), we have

∑
l 6=1

∥∥∥PΛ̂jlΛ
0
j

∥∥∥
2

F
=

∥∥∥PΛ̂j,−1Λ
0
j

∥∥∥
2

F
= tr(Λ0′j PΛ̂j,−1Λ

0
j)

= tr[(Λ̂′j,−1Λ̂j,−1)
− 1
2 Λ̂′j,−1Λ

0
jΛ

0′
j Λ̂j,−1(Λ̂

′
j,−1Λ̂j,−1)

− 1
2 ]

≤
∥∥Λ0j

∥∥2
F
− ρmin(Λ0jΛ0′j ). (43)

The inequality in expression (43) becomes equality when Λ̂j,−1(Λ̂
′
j,−1Λ̂j,−1)

− 1
2 are

eigenvectors of Λ0jΛ
0′
j corresponding to the largest r

0
j − 1 eigenvalues. Expressions

(40) and (43) together implies that
∥∥∥PΛ̂j1Λ

0
j

∥∥∥
2

F
≥ ρmin(Λ0jΛ0′j ) −

∥∥∥MΛ̂j
Λ0j

∥∥∥
2

F
, thus by

Assumption 2(1) and Theorem 1, 1
N

∥∥∥PΛ̂j1Λ
0
j

∥∥∥
2

F
is bounded away from zero in probabil-

ity. This together with expression (42) implies that 1

σ̂2+Λ̂′j1Λ̂j1
= Op(

1√
δNT
). Similarly,

1

σ̂2+Λ̂′
jl
Λ̂jl
= Op(

1√
δNT
) for l = 2, ..., r0j .

Proof of Theorem 2

Proof. (1) From equation (12), p̂tj =
qjL(xt|zt=j;Λ̂j ,σ̂2 )

∑J0

k=1 qkL(xt|zt=k;Λ̂k,σ̂2 )
. Thus when zt = j,

|p̂tj − 1zt=j| =
∑

k 6=j qkL(xt

∣∣∣zt = k; Λ̂k, σ̂2 )
∑J0

k=1 qkL(xt

∣∣∣zt = k; Λ̂k, σ̂2 )
≤
∑

k 6=j

qk
qj
elogL(xt|zt=k;Λ̂k,σ̂2 )−logL(xt|zt=j;Λ̂j ,σ̂2 ),

and when zt = h 6= j,

|p̂tj − 1zt=j| =
qjL(xt

∣∣∣zt = j; Λ̂j, σ̂2 )
∑J0

k=1 qkL(xt

∣∣∣zt = k; Λ̂k, σ̂2 )
≤ qj
qh
elogL(xt|zt=j;Λ̂j ,σ̂2 )−logL(xt|zt=h;Λ̂h,σ̂2 ).

Since
∑J0

k=1 p̂tk = 1, for p̂tj it suffices to consider the case zt = j.

Since qj > 0, it suffices to show supt e
logL(xt|zt=k;Λ̂k,σ̂2 )−logL(xt|zt=j;Λ̂j ,σ̂2 ) = op( 1Nη )
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for any k 6= j, i.e., it suffices to show for any M > 0,

Pr(sup
t

[logL(xt

∣∣∣zt = k; Λ̂k, σ̂2 )− logL(xt
∣∣∣zt = j; Λ̂j, σ̂2 )] ≥ log

M

Nη
)→ 0,

or Pr(min
t
[logL(xt

∣∣∣zt = j; Λ̂j, σ̂2 )− logL(xt
∣∣∣zt = k; Λ̂k, σ̂2 )] ≤ η logN − logM)→ 0.(44)

Similar to equations (32),

logL(xt

∣∣∣zt = j; Λ̂j, σ̂2 ) = −N
2
log 2π − 1

2
log
∣∣∣Λ̂jΛ̂′j + σ̂

2IN

∣∣∣− 1
2
σ̂−2

∥∥∥MΛ̂j
xt

∥∥∥
2

−1
2
x′tΛ̂j(σ̂

2Ir0j + Λ̂
′
jΛ̂j)

−1(Λ̂′jΛ̂j)
−1Λ̂′jxt,

logL(xt

∣∣∣zt = k; Λ̂k, σ̂2 ) = −N
2
log 2π − 1

2
log
∣∣∣Λ̂kΛ̂′k + σ̂

2IN

∣∣∣− 1
2
σ̂−2

∥∥MΛ̂k
xt
∥∥2

−1
2
x′tΛ̂k(σ̂

2Ir0
k
+ Λ̂′kΛ̂k)

−1(Λ̂
′

kΛ̂k)
−1Λ̂′kxt,

and similar to equations (34) and (35),
|Λ̂jΛ̂′j+σ̂2IN |
|Λ̂kΛ̂′k+σ̂2IN | =

∣∣∣∣
1
σ̂2
Λ̂′jΛ̂j+Ir0

j

∣∣∣∣
∣∣∣∣
1
σ̂2
Λ̂′
k
Λ̂k+Ir0

k

∣∣∣∣
. Thus

logL(xt

∣∣∣zt = j; Λ̂j, σ̂2 )− logL(xt
∣∣∣zt = k; Λ̂k, σ̂2 )

= −1
2
log

∣∣∣∣
1

σ̂2
Λ̂′jΛ̂j + Ir0j

∣∣∣∣+
1

2
log

∣∣∣∣
1

σ̂2
Λ̂′kΛ̂k + Ir0k

∣∣∣∣

+
1

2
σ̂−2(

∥∥MΛ̂k
xt
∥∥2 −

∥∥∥MΛ0
k
xt

∥∥∥
2

+
∥∥∥MΛ0j

xt

∥∥∥
2

−
∥∥∥MΛ̂j

xt

∥∥∥
2

+
∥∥∥MΛ0

k
xt

∥∥∥
2

−
∥∥∥MΛ0j

xt

∥∥∥
2

)

−1
2
x′tΛ̂j(σ̂

2Ir0j + Λ̂
′
jΛ̂j)

−1(Λ̂′jΛ̂j)
−1Λ̂′jxt +

1

2
x′tΛ̂k(σ̂

2Ir0
k
+ Λ̂′kΛ̂k)

−1(Λ̂
′

kΛ̂k)
−1Λ̂′kxt

≥ −1
2
log

∣∣∣∣
1

σ̂2
Λ̂′jΛ̂j + Ir0j

∣∣∣∣−
1

2
x′tΛ̂j(σ̂

2Ir0j + Λ̂
′
jΛ̂j)

−1(Λ̂′jΛ̂j)
−1Λ̂′jxt

+
1

2
σ̂−2(

∥∥MΛ̂k
xt
∥∥2 −

∥∥∥MΛ0
k
xt

∥∥∥
2

) +
1

2
σ̂−2(

∥∥∥MΛ0j
xt

∥∥∥
2

−
∥∥∥MΛ̂j

xt

∥∥∥
2

)

−1
2
σ̂−2e′tPΛ0ket + σ̂

−2e′tMΛ0
k
Λ0jf

0
t +

1

2
σ̂−2f 0′t Λ

0′
j MΛ0

k
Λ0jf

0
t , (45)

where the inequality follows from throwing away 1
2
log
∣∣∣ 1
σ̂2
Λ̂′kΛ̂k + Ir0k

∣∣∣, 12x
′
tΛ̂k(σ̂

2Ir0
k
+
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Λ̂′kΛ̂k)
−1(Λ̂

′

kΛ̂k)
−1Λ̂′kxt and e

′
tPΛ0jet. It follows that

min
t
[logL(xt

∣∣∣zt = j; Λ̂j, σ̂2 )− logL(xt
∣∣∣zt = k; Λ̂k, σ̂2 )]

≥ −1
2
log

∣∣∣∣
1

σ̂2
Λ̂′jΛ̂j + Ir0j

∣∣∣∣−
1

2
sup
t

x′tΛ̂j(σ̂
2Ir0j + Λ̂

′
jΛ̂j)

−1(Λ̂′jΛ̂j)
−1Λ̂′jxt

−1
2
σ̂−2 sup

t

∣∣∣∣
∥∥MΛ̂k

xt
∥∥2 −

∥∥∥MΛ0
k
xt

∥∥∥
2
∣∣∣∣−

1

2
σ̂−2 sup

t

∣∣∣∣
∥∥∥MΛ0j

xt

∥∥∥
2

−
∥∥∥MΛ̂j

xt

∥∥∥
2
∣∣∣∣

−1
2
σ̂−2 sup

t

e′tPΛ0ket − σ̂
−2 sup

t

∣∣∣e′tMΛ0
k
Λ0jf

0
t

∣∣∣+
1

2
σ̂−2min

t
f 0′t Λ

0′
j MΛ0

k
Λ0jf

0
t

≡ −(A1 + A2 + A3 + A4 + A5 + A6) +
1

2
σ̂−2min

t
f 0′t Λ

0′
j MΛ0

k
Λ0jf

0
t . (46)

Thus for expression (44), it suffices to show

Pr(
1

2
σ̂−2min

t
f 0′t Λ

0′
j MΛ0

k
Λ0jf

0
t ≤ A1 + A2 + A3 + A4 + A5 + A6 + η logN)→ 0. (47)

By Assumption 2(2), mint f
0′
t Λ

0′
j MΛ0

k
Λ0jf

0
t ≥ NC for some C > 0. Thus it suffices

to show that A1, ..., A6 are all op(N) when T
16
α /N → 0 and T

2
α
+ 2
β /N → 0.

Term A1: As shown in equation (14), Λ̂
′
jlΛ̂jl+ σ̂

2 is eigenvalue of Sj =
∑T
t=1 ptjxtx

′

t∑T
t=1 ptj

,

which is bounded by supt ‖xt‖2. We next show that supt ‖xt‖ = Op(N
1
2T

1
α ). By As-

sumption 2(1) and 1(2), supt
∥∥Λ0ztf

0
t

∥∥α ≤ supj
∥∥Λ0j

∥∥α∑T

t=1 ‖f 0t ‖
α
= N

α
2 T . By Holder

inequality, ‖et‖2 =
∑N

i=1 e
2
it ≤ (

∑N

i=1 e
α
it)

2
αN1− 2

α , thus supt ‖et‖α ≤ N
α
2
−1 supt(

∑N

i=1 e
α
it) ≤

N
α
2
−1∑T

t=1

∑N

i=1 e
α
it = Op(N

α
2 T ) by Assumption 3(1). It follows that supt ‖xt‖ ≤

supt
∥∥Λ0ztf

0
t

∥∥+ supt ‖et‖ = Op(N
1
2T

1
α ). Thus

A1 =
1

2
log

∣∣∣∣
1

σ̂2
Λ̂′jΛ̂j + Ir0j

∣∣∣∣ =
1

2

∑r0j

l=1
log

Λ̂′jlΛ̂jl + σ̂
2

σ̂2

≤ 1

2
r0j log

supt ‖xt‖2
σ̂2

= Op(logNT
2
α ) = op(N) when

log T

N
→ 0.

Term A2: By Lemma 2,
1

σ̂2+Λ̂′
jl
Λ̂jl

= Op(
1√
δNT
) for each j and each l. We have
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shown for term A1 that supt ‖xt‖ = Op(N
1
2T

1
α ). Thus

A2 ≤ 1

2
sup
t

(x′tPΛ̂jxt sup
l

1

σ̂2 + Λ̂′jlΛ̂jl
) ≤ 1

2
sup
t

‖xt‖2 sup
l

1

σ̂2 + Λ̂′jlΛ̂jl

= Op(NT
2
α )Op(

1√
δNT

) = op(N) when T
8
α/N → 0 and α > 8.

Term A3:

∥∥∥PΛ0
k
− PΛ̂k

∥∥∥
2

≤
∥∥∥PΛ0

k
− PΛ̂k

∥∥∥
2

F
= tr[(PΛ0

k
− PΛ̂k)

2]

= 2tr(Ir0
k
− PΛ0

k
PΛ̂k) = 2

∥∥∥MΛ̂k
Λ0k(Λ

0′
k Λ

0
k)
− 1
2

∥∥∥
2

F

≤ 2
1

N

∥∥MΛ̂k
Λ0k
∥∥2
F

∥∥∥∥(
1

N
Λ0′k Λ

0
k)
− 1
2

∥∥∥∥
2

F

= Op(
1√
δNT

), (48)

where the last equality follows from Theorem 1 and Assumption 2(1). We have shown

for term A1 that supt ‖xt‖ = Op(N
1
2T

1
α ). Thus

A3 =
1

2
σ̂−2 sup

t

∣∣∣x′t(PΛ0k − PΛ̂k)xt
∣∣∣ ≤ 1

2
σ̂−2

∥∥∥PΛ0
k
− PΛ̂k

∥∥∥ sup
t

‖xt‖2

= Op(δ
− 1
4

NT )NT
2
α = op(N) when T

16
α /N → 0 and α > 16.

Similar to term A3, Term A4 is also op(N) when T
16
α /N → 0 and α > 16.

Term A5: By Assumption 5(1), supt

∥∥∥Λ
0′
k
et√
N

∥∥∥
β

≤∑T

t=1

∥∥∥Λ
0′
k
et√
N

∥∥∥
β

= Op(T ). Thus

A5 ≤
1

2
σ̂−2

∥∥∥∥(
1

N
Λ0′k Λ

0
k)
−1
∥∥∥∥ sup

t

∥∥∥∥
Λ0′k et√
N

∥∥∥∥
2

= Op(T
2
β ) = op(N) when T

2
β /N → 0.

TermA6: By Assumption 1(2), supt ‖f 0t ‖
α ≤∑T

t=1 ‖f 0t ‖
α
= Op(T ), thus supt ‖f 0t ‖ =

Op(T
1
α ). We have shown for term A5 that supt

∥∥∥
Λ0′j et√
N

∥∥∥ = Op(T
1
β ). Thus

A6 ≤ σ̂−2 sup
t

∣∣e′tΛ
0
jf
0
t

∣∣+ σ̂−2 sup
t

∣∣∣∣e
′
tΛ
0
k(
Λ0′k Λ

0
k

N
)−1
Λ0′k Λ

0
j

N
f 0t

∣∣∣∣

≤ σ̂−2 sup
t

∥∥e′tΛ
0
j

∥∥ sup
t

∥∥f 0t
∥∥ (1 +

∥∥∥∥(
Λ0′k Λ

0
k

N
)−1
∥∥∥∥

∥∥∥∥
Λ0′k Λ

0
j

N

∥∥∥∥)

= Op(N
1
2T

1
α
+ 1
β ) = op(N) when T

2
α
+ 2
β /N → 0.
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(2) Similar to expression (47), it suffices to show

Pr(
1

2
σ̂−2f 0′t Λ

0′
j MΛ0

k
Λ0jf

0
t ≤ A′1 + A′2 + A′3 + A′4 + A′5 + A′6 + η logN)→ 0, (49)

where A′1, ..., A
′
6 equals A1, ..., A6 without taking supremum with respect to t. Given

the calculation of terms A1, ..., A6, it is not difficult to see that without taking supre-

mum, A′1, ..., A
′
6 becomes Op(logN), Op(

N√
δNT
), Op(

N

δ
1
4
NT

), Op(
N

δ
1
4
NT

), Op(1) and Op(N
1
2 )

respectively. Since f 0′t Λ
0′
j MΛ0

k
Λ0jf

0
t ≥ NC for some C > 0, A′1, ..., A′6 are all dominated

by this term.

C Details for Theorem 3 and Theorem 4

Proof of Proposition 1

Proof. (1) Let VjNT be an r
0
j × r0j diagonal matrix consisting of eigenvalues of

(Λ0′j Λ
0
j )
1
2 (
∑T
t=1 f

0
t f

0′
t 1zt=j)(Λ

0′
j Λ

0
j )
1
2

NTq0j
in descending order andΥjNT be the corresponding eigen-

vectors. Let Λ̄0j = Λ
0
j(Λ

0′
j Λ

0
j)
− 1
2ΥjNT be normalized version of Λ

0
j , then Λ̄

0′
j Λ̄

0
j = Ir0j .

Let Λ̌j = Λ̂j(Λ̂
′
jΛ̂j)

− 1
2 be normalized version of Λ̂j, then Λ̌

′
jΛ̌j = Ir0j .

From equation (14), we have Λ̌jWjNT = (
1
NT

∑T

t=1 p̂tjxtx
′
t)Λ̌j. The left hand side

equals PΛ̄0j Λ̌jWjNT +MΛ̄0j
Λ̌jWjNT = Λ̄0j Λ̄

0′
j Λ̌jWjNT +MΛ̄0j

Λ̌jWjNT . The right hand

side equals

Λ0j
(
∑T

t=1 f
0
t f

0′
t 1zt=j)Λ

0′
j Λ̌j

NT
+

∑T

t=1 E(ete
′
t)1zt=jΛ̌j

NT
+

∑T

t=1(ete
′
t − E(ete′t))1zt=jΛ̌j
NT

+

∑T

t=1 etf
0′
t 1zt=jΛ

0′
j Λ̌j

NT
+
Λ0j
∑T

t=1 f
0
t e
′
t1zt=jΛ̌j

NT
+

∑T

t=1(p̂tj − 1zt=j)xtx′t
NT

Λ̌j

≡ Λ0j
(
∑T

t=1 f
0
t f

0′
t 1zt=j)Λ

0′
j Λ̌j

NT
+ I + II + III + IV +D. (50)

Note that Λ0j
(
∑T
t=1 f

0
t f

0′
t 1zt=j)Λ

0′
j Λ̌j

NT
= Λ̄0jq

0
jVjNT Λ̄

0′
j Λ̌j, thus we have

Λ̄0j(Λ̄
0′
j Λ̌jWjNT − q0jVjNT Λ̄0′j Λ̌j) +MΛ̄0j

Λ̌jWjNT = I + II + III + IV +D (51)

Terms I, ..., IV correspond to the right hand of equation (A.1) in Bai (2003). By
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Assumption 3(2), ‖I‖2F = Op( 1N ). By Assumption 3(4), ‖II‖
2
F = Op(

1
T
). By Assump-

tions 5(2) and 2(1), ‖III‖2F and ‖IV ‖
2
F are Op(

1
T
). The detailed calculation is similar

to the proof of Theorem 1 in Bai and Ng (2002), hence omitted here. Now consider

term D. Since
∥∥∥
∑T
t=1(p̂tj−1zt=j)xtx′t

NT

∥∥∥ ≤
∑T
t=1|p̂tj−1zt=j|‖xt‖2

NT
≤ supt |p̂tj − 1zt=j|

∑T
t=1‖xt‖

2

NT
,

we have

‖D‖F ≤
∥∥∥∥∥

∑T

t=1(p̂tj − 1zt=j)xtx′t
NT

∥∥∥∥∥
∥∥Λ̌j

∥∥
F
≤
√
r0j sup

t

|p̂tj − 1zt=j|
∑T

t=1 ‖xt‖
2

NT
= op(

1

Nη
).

(52)

The last equality follows from Theorem 2 and
∑T
t=1‖xt‖

2

NT
= Op(1), which can be easily

shown using Assumptions 1(2), 2(1) and 3(1). In summary, the right hand side of

equation (51) is Op(
1

δNT
). The two terms on the left hand side12 are orthogonal to

each other, thus both
∥∥∥MΛ̄0j

Λ̌jWjNT

∥∥∥
F
and

∥∥Λ̄0j(Λ̄0′j Λ̌jWjNT − q0jVjNT Λ̄0′j Λ̌j)
∥∥
F
are

Op(
1

δNT
). Since ‖A‖2F = tr(A′A) for any matrix A and Λ̄0j is orthonormal,

∥∥Λ̄0′j Λ̌jWjNT − q0jVjNT Λ̄0′j Λ̌j
∥∥
F
=
∥∥Λ̄0j(Λ̄

0′
j Λ̌jWjNT − q0jVjNT Λ̄0′j Λ̌j)

∥∥
F
= op(1). (53)

We next show that equation (53) implies that Λ̄0′j Λ̌j
p→ Ir0j and WjNT

p→ q0jVj.

First, the Euclidean norm of each column of Λ̄0′j Λ̌j converges in probability to 1

and the inner product of different columns converges in probability to 0, because

∥∥∥Ir0j − Λ̌
′
jΛ̄

0
j Λ̄

0′
j Λ̌j

∥∥∥
F
≤

√
r0j

∥∥∥Ir0j − Λ̌
′
jΛ̄

0
j Λ̄

0′
j Λ̌j

∥∥∥ ≤
√
r0j tr(Ir0j − Λ̌

′
jΛ̄

0
j Λ̄

0′
j Λ̌j)

=
√
r0j

∥∥∥MΛ̄0j
Λ̌j

∥∥∥
2

F
=
√
r0j

∥∥∥MΛ̌j
Λ̄0j

∥∥∥
2

F
= op(1). (54)

The second inequality follows from the fact that Ir0j − Λ̌
′
jΛ̄

0
j Λ̄

0′
j Λ̌j is positive semi-

definite. The second to last equality follows from the fact that both Λ̄0j and Λ̌j are

orthonormal. The last equality follows from Theorem 1.

Let VjNT,i, WjNT,1 and (Λ̄
0′
j Λ̌j)i1 denote the i-th diagonal element of VjNT , the 1st

diagonal element of WjNT and the (i, 1)-th element of Λ̄
0′
j Λ̌j, then the first column

of Λ̄0′j Λ̌jWjNT − q0jVjNT Λ̄0′j Λ̌j is (WjNT,1 − q0jVjNT,i)(Λ̄0′j Λ̌j)i1, i = 1, ..., r0j . Equation
12The left hand side of equation (51) corresponds to a further decomposition of the left hand side

of equation (A.1) in Bai (2003).
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(53) implies that for all i = 1, ..., r0j , (WjNT,1 − q0jVjNT,i)(Λ̄0′j Λ̌j)i1 is op(1). We have
shown through expression (54) that

∑r0j
i=1(Λ̄

0′
j Λ̌j)i1

2 p→ 1, thus there exists at least

one certain i such that (Λ̄0′j Λ̌j)i1 is bounded away from zero in probability. Without

loss of generality, suppose (Λ̄0′j Λ̌j)11 is bounded away from zero in probability. Since

(WjNT,1 − q0jVjNT,1)(Λ̄0′j Λ̌j)11 is op(1), we must have WjNT,1 − q0jVjNT,1 = op(1). This
implies that WjNT,1 − q0jVjNT,i is bounded away from zero in probability for i 6= 1

because by Assumption 6, VjNT,i 6= VjNT,1 w.p.a.1. Since (WjNT,1− q0jVjNT,i)(Λ̄0′j Λ̌j)i1
is op(1) for all i, we must have (Λ̄

0′
j Λ̌j)i1 = op(1) for i 6= 1. This together with

∑r0j
i=1(Λ̄

0′
j Λ̌j)i1

2 p→ 1 implies that (Λ̄0′j Λ̌j)11
p→ 1. In summary, we have shown that

the first column of Λ̄0′j Λ̌j converges in probability to (1, 0, ..., 0).

Similarly, for the second column of Λ̄0′j Λ̌jWjNT − q0jVjNT Λ̄0′j Λ̌j, we can also show
that one element converges in probability to 1 and the other elements are op(1).

Since the inner product of the first column and the second column of Λ̄0′j Λ̌j is op(1),

(Λ̄0′j Λ̌j)12 must be op(1). Thus (Λ̄
0′
j Λ̌j)i2

p→ 1 for certain i 6= 1 and (Λ̄0′j Λ̌j)i2 = op(1)
for all the other i. Without loss of generality, suppose (Λ̄0′j Λ̌j)22

p→ 1 and (Λ̄0′j Λ̌j)i2 =

op(1) for i 6= 2. Since (WjNT,2 − q0jVjNT,i)(Λ̄0′j Λ̌j)i2 is op(1) for all i, we must have
WjNT,2 − q0jVjNT,2 = op(1).
Similarly, the third column of Λ̄0′j Λ̌j converges in probability to (0, 0, 1, ..., 0) and

WjNT,3 − q0jVjNT,3 = op(1). Repeat the argument for all columns of Λ̄
0′
j Λ̌j, we have

Λ̄0′j Λ̌j
p→ Ir0j and WjNT − q0jVjNT = op(1). Since VjNT

p→ Vj, we have WjNT
p→ q0jVj.

(2) By Theorem 2(1),
∣∣∣ 1T
∑T

t=1(p̂tj − 1zt=j)
∣∣∣ ≤ supt |p̂tj − 1zt=j| = op(

1
Nη ). By

Assumption 4, 1
T

∑T

t=1 1zt=j
p→ q0j . Thus

1
T

∑T

t=1 p̂tj
p→ q0j . We have shown that

WjNT
p→ q0jVj, thus

Λ̂′jΛ̂j

N
= WjNT/

1
T

∑T

t=1 p̂tj − σ̂2

N
Ir0j

p→ Vj. It follows that

Hj =

∑T

t=1 f
0
t f

0′
t 1zt=j

T

Λ0′j Λ̂j

N
W−1
jNT

= (Λ0′j Λ
0
j)
− 1
2
(Λ0′j Λ

0
j)

1
2 (
∑T

t=1 f
0
t f

0′
t 1zt=j)(Λ

0′
j Λ

0
j)

1
2

NT
(Λ0′j Λ

0
j)
− 1
2Λ0′j Λ̌j(Λ̂

′
jΛ̂j)

1
2W−1

jNT

= (
Λ0′j Λ

0
j

N
)−

1
2ΥjNTVjNT (Λ̄

0′
j Λ̌j)(

Λ̂′jΛ̂j

N
)
1
2W−1

jNT q
0
j

p→ Σ
− 1
2

Λj
ΥjV

1
2
j . (55)

13



Proof of Theorem 3

Proof. From equation (50), we have Λ̂jWjNT = Λ0j
(
∑T
t=1 f

0
t f

0′
t 1zt=j)Λ

0′
j Λ̂j

NT
+ (I + II +

III + IV +D)(Λ̂′jΛ̂j)
1
2 , i.e.,

Λ̂j − Λ0jHj = (I + II + III + IV +D)(Λ̂′jΛ̂j)
1
2W−1

jNT . (56)

We have shown in Proposition 1 that ‖I + II + III + IV +D‖2F = Op( 1
δ2NT
),WjNT

p→

q0jVj and
Λ̂′jΛ̂j

N

p→ Vj. Thus
1
N

∥∥∥Λ̂j − Λ0jHj
∥∥∥
2

F
= Op(

1
δ2NT
).

Proof of Theorem 4

Proof. Let Ii, IIi, IIIi, IVi and Di denote the i-th row of I, II, III, IV and D

respectively. From equation (56), we have

λ̂
′
ji − λ0′jiHj = (Ii + IIi + IIIi + IVi +Di)(Λ̂

′
jΛ̂j)

1
2W−1

jNT .

By Assumptions 2(1) and 3(2) and Theorem 3, Ii(Λ̂
′
jΛ̂j)

1
2 = Op(

1√
NδNT

). By Assump-

tions 3(4) and 7(1) and Theorem 3, IIi(Λ̂
′
jΛ̂j)

1
2 = Op(

1√
TδNT

). By Assumption 3(2)

and Theorem 3, IIIi(Λ̂
′
jΛ̂j)

1
2 =

∑T
t=1 eitf

0′
t 1zt=jΛ

0′
j Λ

0
jHj

NT
+ Op(

1√
TδNT

). By Assumptions

3(2) and 7(2) and Theorem 3, IVi(Λ̂
′
jΛ̂j)

1
2 = Op(

1√
TδNT

). The detailed calculation of

these four terms is similar to the proof of Lemma A.2 in Bai (2003), hence omitted

here. For the term Di(Λ̂
′
jΛ̂j)

1
2 , we have

∥∥∥Di(Λ̂
′
jΛ̂j)

1
2

∥∥∥
2

=

∥∥∥∥
1

NT

∑T

t=1
(p̂tj − 1zt=j)xitx′tΛ̂j

∥∥∥∥
2

≤ 1

N2T 2

∑T

t=1
(p̂tj − 1zt=j)2x2it

∑T

t=1
‖xt‖2

∥∥∥Λ̂j
∥∥∥
2

F

≤ sup
t

|p̂tj − 1zt=j|2
∑T

t=1 x
2
it

T

∑T

t=1 ‖xt‖
2

NT

∥∥∥Λ̂j
∥∥∥
2

F

N
= op(

1

N2η
),

where the last equality follows from Theorem 2. We have shown in Proposition 1 that
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WjNT
p→ q0jVj, thus W

−1
jNT = Op(1). It follows that

√
Tq0j (λ̂ji −H ′

jλ
0
ji) = q

0
jW

−1
jNTH

′
j

Λ0′j Λ
0
j

N

∑T

t=1 f
0
t eit1zt=j√
Tq0j

+Op(

√
T

N
) + op(1).

Thus by Proposition 1 and Assumption 7(3),

√
Tq0j (λ̂ji −H ′

jλ
0
ji)

d→ N (0, V −
1
2

j Υ′jΣ
1
2
Λj
ΦjiΣ

1
2
Λj
ΥjV

− 1
2

j ) when
√
T/N → 0.

D Details for Theorem 5

Lemma 3 Under Assumptions 1-7, and assume T
16
α /N → 0 and T

2
α
+ 2
β /N → 0,

(1) 1
N
e′t(Λ̂j − Λ0jHj) = Op( 1

δ2NT
) for each j and t,

(2) 1
N
Λ0′j (Λ̂j − Λ0jHj) = Op( 1

δ2NT
) for each j.

Proof. Part (1): From equation (56), we have 1
N
e′t(Λ̂k−Λ0kHk) = 1

N
e′t(I+ II+ III+

IV +D)(Λ̂′jΛ̂j)
1
2W−1

jNT . Consider each term one by one.

e′tI(Λ̂
′
jΛ̂j)

1
2

N
= e′t

∑T

t=1 E(ete
′
t)1zt=j

N2T
Λ0jHj + e

′
t

∑T

t=1 E(ete
′
t)1zt=j

N2T
(Λ̂j − Λ0jHj).

By Assumption 3(1) and 3(2), the first term is Op(
1
N
). By Assumption 3(2) and

Theorem 3, the second term is Op(
1√

NδNT
).

e′tII(Λ̂
′
jΛ̂j)

1
2

N
= e′t

∑T

t=1(ete
′
t − E(ete′t))1zt=j
N2T

Λ0jHj+e
′
t

∑T

t=1(ete
′
t − E(ete′t))1zt=j
N2T

(Λ̂j−Λ0jHj).

By Assumption 7(1), the first term is Op(
1√
NT
). By Assumption 3(4) and Theorem

3, the second term is Op(
1√
TδNT

).

e′tIII(Λ̂
′
jΛ̂j)

1
2

N
= e′t

∑T

t=1 etf
0′
t 1zt=jΛ

0′
j

N2T
Λ0jHj + e

′
t

∑T

t=1 etf
0′
t 1zt=jΛ

0′
j

N2T
(Λ̂j − Λ0jHj).

The first term is Op(
1√
NT
) + Op(

1
T
) since 1

NT
e′t
∑T

t=1 etf
0′
t 1zt=j = Op(

1√
NT
) + Op(

1
T
),
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which follows from Assumptions 3(3), 7(1) and eiteis = γi,ts + (eiteis − γi,ts). By
Theorem 3, the second term is Op(

1√
TδNT

).

e′tIV (Λ̂
′
jΛ̂j)

1
2

N
= e′t

Λ0j
∑T

t=1 f
0
t e
′
t1zt=j

N2T
Λ0jHj + e

′
t

Λ0j
∑T

t=1 f
0
t e
′
t1zt=j

N2T
(Λ̂j − Λ0jHj).

The first term isOp(
1√
NT
) since by Assumption 7(2), 1

NT

∑T

t=1 f
0
t e
′
t1zt=jΛ

0
j = Op(

1√
NT
).

By Theorem 3, the second term is Op(
1√
TδNT

).

∥∥∥∥∥
e′tD(Λ̂

′
jΛ̂j)

1
2

N

∥∥∥∥∥
≤
∥∥∥∥
e′t√
N

∥∥∥∥ ‖D‖F

∥∥∥∥∥
(
Λ̂′jΛ̂j

N
)
1
2

∥∥∥∥∥
.

Thus from equation (52), this term is op(
1
Nη ). Finally, note thatW

−1
jNT

d→ 1
q0j
V −1j , part

(1) is proved.

Part (2) can be proved similarly.

Proof of Theorem 5

Proof. First, by Woodbury identity,

f̂t =
∑J0

j=1
(σ̂2Ir0j + Λ̂

′
jΛ̂j)

−1Λ̂′jxtp̂tj

=
∑J0

k=1

∑J0

j=1
p̂tj(σ̂

2Ir0j + Λ̂
′
jΛ̂j)

−1Λ̂′jΛ
0
kf

0
t 1zt=k +

∑J0

j=1
p̂tj(σ̂

2Ir0j + Λ̂
′
jΛ̂j)

−1Λ̂′jet.

When zt = k, we have

∑J0

j=1
p̂tj(σ̂

2Ir0j + Λ̂
′
jΛ̂j)

−1Λ̂′jΛ
0
kf

0
t

= (σ̂2Ir0
k
+ Λ̂′kΛ̂k)

−1Λ̂′kΛ
0
kf

0
t

+(p̂tk − 1)(σ̂2Ir0
k
+ Λ̂′kΛ̂k)

−1Λ̂′kΛ
0
kf

0
t +

∑
j 6=k
p̂tj(σ̂

2Ir0j + Λ̂
′
jΛ̂j)

−1Λ̂′jΛ
0
kf

0
t

= H−1
k f

0
t + (σ̂

2Ir0
k
+ Λ̂′kΛ̂k)

−1Λ̂′k(Λ
0
kHk − Λ̂k)H−1

k f
0
t − (σ̂2Ir0k + Λ̂

′
kΛ̂k)

−1σ̂2H−1
k f

0
t

+(p̂tk − 1)(σ̂2Ir0
k
+ Λ̂′kΛ̂k)

−1Λ̂′kΛ
0
kf

0
t +

∑
j 6=k
p̂tj(σ̂

2Ir0j + Λ̂
′
jΛ̂j)

−1Λ̂′jΛ
0
kf

0
t

≡ H−1
k f

0
t +Bk1t −Bk2t +Bk3t +Bk4t,
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and

∑J0

j=1
p̂tj(σ̂

2Ir0j + Λ̂
′
jΛ̂j)

−1Λ̂′jet

= (σ̂2Ir0
k
+ Λ̂′kΛ̂k)

−1(Λ̂k − Λ0kHk)′et + (σ̂2Ir0k + Λ̂
′
kΛ̂k)

−1H ′
kΛ

0′
k et

+(p̂tk − 1)(σ̂2Ir0
k
+ Λ̂′kΛ̂k)

−1Λ̂′ket +
∑J0

j 6=k
p̂tj(σ̂

2Ir0j + Λ̂
′
jΛ̂j)

−1Λ̂′jet

≡ Ck1t + Ck2t + Ck3t + Ck4t.

It follows that f̂t−H−1
zt
f 0t = Bzt1t−Bzt2t+Bzt3t+Bzt4t+Czt1t+Czt2t+Czt3t+Czt4t.

Proof of part (1): First consider Bzt1t.

∑T

t=1 ‖Bzt1t‖
2

T
≤
∑J0

j=1

∥∥∥(σ̂2Ir0j + Λ̂
′
jΛ̂j)

−1Λ̂′j(Λ
0
jHj − Λ̂j)H−1

j

∥∥∥
2
∑T

t=1 ‖f 0t ‖
2

T
= Op(

1

δ2NT
),

where the equality is due to the following facts:

(1) By Proposition 1(1), 1
N
(σ̂2Ir0j + Λ̂

′
jΛ̂j) = WjNT/

1
T

∑T

t=1 p̂tj
p→ Vj for all j.

(2)
∥∥∥ 1√

N
Λ̂′j

∥∥∥
F
=
√
tr( 1

N
Λ̂′jΛ̂j)

p→
√
tr(Vj) for all j.

(3) By Theorem 3,
∥∥∥ 1√

N
(Λ0jHj − Λ̂j)

∥∥∥ = Op( 1
δNT
) for all j.

(4) By Proposition 1(1),
∥∥H−1

j

∥∥ = Op(1) for all j.

(5) 1
T

∑T

t=1 ‖f 0t ‖
2
= Op(1) by Assumption 1.

It is easy to see that 1
T

∑T

t=1 ‖Bzt2t‖
2 = Op(

1
N2 ). For Bzt3t, we have

∑T

t=1 ‖Bzt3t‖
2

T
≤ sup

t

‖p̂tzt − 1‖2
∥∥∥(σ̂2Ir0zt + Λ̂

′
zt
Λ̂zt)

−1Λ̂′ztΛ
0
zt

∥∥∥
2
∑T

t=1 ‖f 0t ‖
2

T
= op(

1

N2η
),

where the equality is due to supt ‖p̂tzt − 1‖ ≤ supj supt ‖p̂tj − 1zt=j‖ = op(
1
Nη ) by

Theorem 2. It is easy to see that 1
T

∑T

t=1 ‖Bzt4t‖
2 = op(

1
N2η ). Similarly, we can

show that
∑T
t=1‖Czt1t‖2

T
is Op(

1
δ2NT
),

∑T
t=1‖Czt2t‖2

T
is Op(

1
N
), and both

∑T
t=1‖Czt3t‖2

T
and

∑T
t=1‖Czt4t‖2

T
are op(

1
N2η )(Op(

1
N
) +Op(

1
δ2NT
)). Thus 1

T

∑T

t=1

∥∥∥f̂t −H−1
zt
f 0t

∥∥∥
2

= Op(
1

δ2NT
).

Proof of part (2): By Theorem 3 and Lemma 3(2), Λ̂′k(Λ
0
kHk − Λ̂k) = Op( 1

δ2NT
) for

any k. This together with fact (1) and fact (4) listed above implies Bzt1t = Op(
1

δ2NT
).

Similarly, it is easy to see that Bzt2t = Op(
1
N
), Bzt3t = op(

1
Nη ), Bzt4t = op(

1
Nη ),

Czt1t = Op(
1

δ2NT
), Czt2t = Op(

1√
N
), Czt3t = op(

1
Nη ) and Czt4t = op(

1
Nη ). The leading

17



term is Czt2t. Since
Λ̂′zt Λ̂zt
N

p→ Vzt, Hzt
p→ Σ

− 1
2

Λzt
ΥztV

1
2
zt and

1√
N
Λ0′ztet

d→ N (0,Γztt) by
Assumption 7(4), we have

√
N(f̂t−H−1

zt
f 0t )

d→ N (0, V −
1
2

zt Υ
′
zt
Σ
− 1
2

Λzt
ΓzttΣ

− 1
2

Λzt
ΥztV

− 1
2

zt ).

E Details for Results with State Dynamics

Proof of Theorem 6

Proof. Part (i): Since zT follows Markov process,

l(Λ, σ2, Q, φ) = log[
∑J0

zT=1
...
∑J0

z1=1

∏T

t=1
L(xt

∣∣zt; Λ, σ2 ) Pr(z1 |φ)
∏T

t=2
Pr(zt |zt−1;Q)].

For (Λ̃, σ̃2, Q, φ), define mt as equation (28) with Λ̂j and σ̂
2 replaced by Λ̃ and σ̃2 re-

spectively, i.e, L(xt

∣∣∣zt = j; Λ̃, σ̃2 ) takes maximumwhen j = mt. Since
∑J0

zt=1
Pr(zt |zt−1;Q) =

1 for any zt−1,
∑J0

zt=1
L(xt

∣∣∣zt; Λ̃, σ̃2 ) Pr(zt |zt−1;Q) ≤ L(xt
∣∣∣zt = mt; Λ̃, σ̃

2 ). Thus

l(Λ̃, σ̃2, Q, φ)

= log{
∑J0

zT−1=1
...
∑J0

z1=1

∏T−1

t=1
L(xt

∣∣∣zt; Λ̃, σ̃2 ) Pr(z1 |φ)
∏T−1

t=2
Pr(zt |zt−1;Q)

[
∑J0

zT=1
L(xT

∣∣∣zT ; Λ̃, σ̃2 ) Pr(zT |zT−1;Q)]}

≤ log{
∑J0

zT−1=1
...
∑J0

z1=1

∏T−1

t=1
L(xt

∣∣∣zt; Λ̃, σ̃2 ) Pr(z1 |φ)
∏T−1

t=2
Pr(zt |zt−1;Q)

L(xT

∣∣∣zT = mT ; Λ̃, σ̃
2 )}

≤ log{
∑J0

zT−2=1
...
∑J0

z1=1

∏T−2

t=1
L(xt

∣∣∣zt; Λ̃, σ̃2 ) Pr(z1 |φ)
∏T−2

t=2
Pr(zt |zt−1;Q)

L(xT−1

∣∣∣zT−1 = mT−1; Λ̃, σ̃
2 )L(xT

∣∣∣zT = mT ; Λ̃, σ̃
2 )}

≤ ... ≤
∑T

t=1
logL(xt

∣∣∣zt = mt; Λ̃, σ̃
2 ), (57)

i.e, equation (29) in the proof of Theorem 1 is still valid when state dynamics are

taken into account.

Now consider l(Λ0, σ̃2, Q, φ). Since Pr(zt |zt−1;Q) ≥ minj,kQjk,

∑J0

zt=1
L(xt

∣∣zt; Λ0, σ̃2 ) Pr(zt |zt−1;Q) ≥ L(xt
∣∣zt; Λ0, σ̃2 )min

j,k
Qjk.
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Note that on the right hand side of the inequality, zt denotes the true state. Then

similar to inequality (57),

l(Λ0, σ̃2, Q, φ) ≥
∑T

t=1
logL(xt

∣∣zt; Λ0, σ̃2 ) + T logmin
j,k
Qjk,

i.e., equation (31) is still valid when state dynamics are taken into account.

The rest of the proof is the same as Theorem 1.

Part (ii):

Step (1): We first show
∣∣p̃tj|t − 1zt=j

∣∣ = op( 1Nη ).

The proof is the same as the proof of Theorem 2, with slight modifications. First,

q̂k is replaced by p̃tk|t−1 , and Λ̂j and σ̂
2 are replaced by Λ̃j and σ̃

2. Second, the

proof of Theorem 2 utilizes Theorem 1 while here the proof utilizes part (i). Third,

the proof of Theorem 2 requires q̂k to be bounded away from zero. Here we have

p̃tk|t−1 = Qk·p̃t−1|t−1 ≥ minlQkl > 0 for all k, where Qk· denotes the k-th row of Q.
Step (2): We next prove p̃tk|T = op(

1
Nη ) for k 6= j when the true state is zt = j.

Let Q·k denote the k-th column of Q and "÷" denotes element-wise division for two
vectors.

p̃tk|T = p̃tk|t ×Q′·k(p̃t+1|T ÷ p̃t+1|t ) = p̃tk|t × p̃′t+1|T (Q·k ÷ p̃t+1|t )

≤ p̃tk|t max
l

Qlk
Qlj

1

p̃tj|t
= op(

1

Nη
),

where the inequality is due to the fact that each element of p̃t+1|t = Qp̃t|t is not

smaller than Q·j p̃tj|t and the last equality follows from step (1) and minlQlj > 0.

Part (iii): The proof is the same as the proof of Proposition 1, with slight

modifications. First, Λ̂j, σ̂
2, p̂tj, WjNT and Hj is replaced by Λ̃j, σ̃

2, p̃tj|T , W̄jNT and

H̄j respectively. Second, the proof of Proposition 1 utilizes Theorem 1 and Theorem

2, here we utilize part (i) and part (ii).

Part (iv): The proof is the same as the proof of Theorem 3, with Λ̂j, WjNT and

Hj replaced by Λ̃j, W̄jNT and H̄j respectively.

Part (v): The proof is the same as the proof of Theorem 4, with λ̂ji, Λ̂j, WjNT ,

Hj and p̂tj replaced by λ̃ji, Λ̃j, W̄jNT , H̄j and p̃tj|T respectively. The proof of Theorem
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4 utilizes Theorem 2, Proposition 1 and Theorem 3, here we utilize parts (ii)-(iv).

Part (vi): The proof is the same as the proof of Theorem 5, with f̂t, σ̂
2, Λ̂j,

p̂tj and Hzt replaced by f̃t, σ̃
2, Λ̃j, p̃tj|T and H̄zt. The proof of Theorem 5 utilizes

Theorem 2, Proposition 1, Theorem 3 and Lemma 3. Here we utilize parts (ii)-(iv),

and the results in Lemma 3 also can be proved for Λ̃j.

Proof of Theorem 7

Proof. First, Q̃jk =
∑T

t=2 p̃tjk|T /
∑J0

j=1

∑T

t=2 p̃tjk|T =
1

T−1
∑T

t=2 p̃tjk|T /
1

T−1
∑T−1

t=1 p̃tk|T .

For the denominator, by Theorem 6(ii), we have

1

T − 1
∑T−1

t=1
p̃tk|T =

1

T − 1
∑T−1

t=1
1zt=k + op(

1

Nη
)
p→ q0k. (58)

For the numerator, we have

1

T − 1
∑T

t=2
p̃tjk|T =

1

T − 1
∑T

t=2
p̃tj|T Pr(zt−1 = k

∣∣∣zt = j, x1:T ; Λ̃, σ̃2, Q, φ)

=
1

T − 1
∑T

t=2
[1zt=j + op(

1

Nη
)][1zt−1=k + op(

1

Nη
)]. (59)

The second equality of (59) follows from: (1) p̃tj|T = 1zt=j+op(
1
Nη ) by Theorem 6(ii),

(2) Pr(zt−1 = k
∣∣∣zt = j, x1:T ; Λ̃, σ̃2, Q, φ) = Pr(zt−1 = k

∣∣∣zt = j, x1:t−1; Λ̃, σ̃2, Q, φ)

=
Pr(zt−1 = k, zt = j

∣∣∣x1:t−1; Λ̃, σ̃2, Q, φ)

Pr(zt = j
∣∣∣x1:t−1; Λ̃, σ̃2, Q, φ)

=
Qjkp̃t−1,k|t−1

∑J0

h=1Qjhp̃t−1,h|t−1

= 1zt−1=k + op(
1

Nη
),

where the last equality follows from Theorem 6(ii). Since zt follows a Markov process,

1

T − 1
∑T

t=2
1zt=j1zt−1=k

p→ E(1zt=j1zt−1=k) = E[E(1zt=j1zt−1=k
∣∣1zt−1=k )] = q

0
kQ

0
jk.

(60)

Take equations (58)-(60) together, we have shown Q̃jk
p→ Q0jk.
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F Details on First Order Conditions

First order condition of σ2 with no state dynamics:

∂l(Λ, σ2, q)

∂σ2
=

∑T

t=1

∑J0

j=1
ptj
∂(−1

2
log |Σj| − 1

2
x′tΣ

−1
j xt)

∂σ2

= −1
2

∑T

t=1

∑J0

j=1
ptjtr(Σ

−1
j − Σ−1j xtx′tΣ−1j )

= −1
2

∑J0

j=1

∑T

t=1
ptjtr(Σ

−1
j − Σ−1j SjΣ−1j )

= − 1

2σ4

∑J0

j=1

∑T

t=1
ptjtr(Σj − Sj)

= − 1

2σ4
tr(
∑J0

j=1

∑T

t=1
ptjΛjΛ

′
j + Tσ

2IN −
∑T

t=1
xtx

′
t),

where the second equality is due to

∂ log |Σj|
∂σ2

= tr(Σ−1j ), (61)

∂x′tΣ
−1
j xt

∂σ2
= −tr(Σ−1j xtx′tΣ−1j ), (62)

and the second last equality is due to

Σj(Σj − Sj)Σj = (ΛjΛ′j + σ2IN)(Σj − Sj)(ΛjΛ′j + σ2IN) = σ4(Σj − Sj), (63)

since (Σj − Sj)ΛjΛ′j = (ΛjΛ′j + σ2IN − Sj)ΛjΛ′j = 0 by equation (14). Set ∂l(Λ,σ
2,q)

∂σ2
to

zero, we have σ2 = 1
N
tr( 1

T

∑T

t=1 xtx
′
t −

∑J0

j=1
1
T

∑T

t=1 ptjΛjΛ
′
j).

First order condition of qj with no state dynamics:

The Lagrangean is l(Λ, σ2, q) + w(1 − q1 − q1 − ... − qJ0). The derivative of the
Lagrangean with respect to qj is

∑T

t=1
ptj
qj
−w. Set it to zero, we have∑T

t=1 ptj = wqj.

Take sum with respect to j, we have w = T . Thus qj =
1
T

∑T

t=1 ptj.

First order condition of σ2 with state dynamics:
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From equations (61) and (62),
∂ logL(xt|zt=j;Λj ,σ2 )

∂σ2
= −1

2
tr(Σ−1j −Σ−1j xtx′tΣ−1j ). Thus

∂
∑T

t=1

∑J0

j=1 logL(xt |zt = j; Λj, σ2 )p̃
(h)
tj|T

∂σ2

= −1
2

∑T

t=1

∑J0

j=1
p̃
(h)
tj|T tr(Σ

−1
j − Σ−1j xtx′tΣ−1j )

= −1
2

∑J0

j=1
tr(
∑T

t=1
p̃
(h)
tj|T Σ

−1
j − Σ−1j

∑T

t=1
p̃
(h)
tj|T xtx

′
tΣ

−1
j )

= −1
2

∑J0

j=1
(
∑T

t=1
p̃
(h)
tj|T )tr(Σ

−1
j − Σ−1j S̃(h)j Σ−1j )

= − 1

2σ4

∑J0

j=1
(
∑T

t=1
p̃
(h)
tj|T )tr(Σj − S̃

(h)
j )

= − 1

2σ4
tr(
∑J0

j=1

∑T

t=1
p̃
(h)
tj|T ΛjΛ

′
j + Tσ

2IN −
∑T

t=1
xtx

′
t),

where the second last equality is explained in equation (63). Set
∂ logL(xt|zt=j;Λj ,σ2 )

∂σ2
to

zero, we have σ̃2(h+1) = 1
N
tr( 1

T

∑T

t=1 xtx
′
t −

∑J0

j=1
1
T

∑T

t=1 p̃
(h)
tj|T Λ̃

(h+1)
j Λ̃

(h+1)′
j ).

First order condition of Q with state dynamics:

First, when (Q, φ) also enters the iteration, let (Q̃(h), φ̃
(h)
) denote the value of

(Q, φ) for the h-th iteration, and let θ̃
(h)
= (Λ̃(h), σ̃2(h), Q̃(h), φ̃

(h)
).

Since
∑J0

j=1Qjk = 1, the Lagrangean is
∑T

t=2

∑J0

j=1

∑J0

k=1 logQjkp̃
(h)
tjk|T +

∑J0

k=1wk(1−
Q1k − Q2k − ... − QJ0k). The first order derivative of the Lagrangean with re-

spect to Qjk is
1
Qjk

∑T

t=2 p̃
(h)
tjk|T − wk. Set it to zero, we have

∑T

t=2 p̃
(h)
tjk|T = Qjkwk.

Take sum over j, we have
∑J0

j=1

∑T

t=2 p̃
(h)
tjk|T =

∑J0

j=1Qjkwk = wk. Thus Q̃
(h+1)
jk =

∑T

t=2 p̃
(h)
tjk|T /

∑J0

j=1

∑T

t=2 p̃
(h)
tjk|T .

First order condition of φ with state dynamics:

Since
∑J0

k=1 φk = 1, the Lagrangean is
∑J0

k=1 log φkp̃
(h)
1k|T +w(1−φ1−φ2− ...−φJ0).

The first order derivative of the Lagrangean with respect to φk is
1
φk
p̃
(h)
1k|T −w. Set it to

zero, we have p̃
(h)
1k|T = φkw. Take sum over k, we have 1 =

∑J0

k=1 p
(h)
1k|T =

∑J0

k=1 φkw =

w, thus φ̃
(h+1)

k = p̃
(h)
1k|T =

∑J0

j=1 p̃
(h)
2jk|T .
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G Smoother Algorithm for p̃
(h)
tjk|T

Step (1): Calculate conditional likelihoods L(xt

∣∣∣x1:t−1; θ̃
(h)
) and filtered estimates

p̃
(h)
tjk|t for t = 2, ..., T .

p̃
(h)
tjk|t = Pr(zt = j, zt−1 = k

∣∣∣x1:t; θ̃
(h)
) = L(xt

∣∣∣zt = j; Λ̃(h), σ̃2(h) ))

×Pr(zt = j |zt−1 = k;Q) Pr(zt−1 = k
∣∣∣x1:t−1; θ̃

(h)
)/L(xt

∣∣∣x1:t−1; θ̃
(h)
),

where Pr(z1 = k
∣∣∣x1; θ̃

(h)
) =

L(x1|z1=k;Λ̃(h),σ̃2(h) )φk
∑J0

j=1 L(x1|z1=j;Λ̃(h),σ̃2(h) )φj
and Pr(zt−1 = k

∣∣∣x1:t−1; θ̃
(h)
) =

∑J0

zt−2=1
Pr(zt−1 = k, zt−2

∣∣∣x1:t−1; θ̃
(h)
). The denominator L(xt

∣∣∣x1:t−1; θ̃
(h)
) equals the

sum of the numerator with respect to zt and zt−1.

Step (2): Fix down zt = j, zt−1 = k, for all zt+1,

Pr(zt+1, zt = j, zt−1 = k
∣∣∣x1:t+1; θ̃

(h)
) = L(xt+1

∣∣∣zt+1; Λ̃(h), σ̃2(h) )) Pr(zt+1 |zt = j;Q)

×Pr(zt = j, zt−1 = k
∣∣∣x1:t; θ̃

(h)
)/L(xt+1

∣∣∣x1:t; θ̃
(h)
),

for all zt+1 and zt+2,

Pr(zt+2, zt+1, zt = j, zt−1 = k
∣∣∣x1:t+2; θ̃

(h)
) = L(xt+2

∣∣∣zt+2; Λ̃(h), σ̃2(h) )) Pr(zt+2 |zt+1;Q)

×Pr(zt+1, zt = j, zt−1 = k
∣∣∣x1:t+1; θ̃

(h)
)/L(xt+2

∣∣∣x1:t+1; θ̃
(h)
),

and for τ = t+ 3, ..., T , for all zτ and zτ−1,

Pr(zτ , zτ−1, zt = j, zt−1 = k
∣∣∣x1:τ ; θ̃

(h)
) = L(xτ

∣∣∣zτ ; Λ̃(h), σ̃2(h) )) Pr(zτ |zτ−1;Q)

×Pr(zτ−1, zt = j, zt−1 = k
∣∣∣x1:τ−1; θ̃

(h)
)/L(xτ

∣∣∣x1:τ−1; θ̃
(h)
),

where Pr(zτ−1, zt = j, zt−1 = k
∣∣∣x1:τ−1; θ̃

(h)
) =

∑J0

zτ−2=1
Pr(zτ−1, zτ−2, zt = j, zt−1 =

k
∣∣∣x1:τ−1; θ̃

(h)
).

Step (3): Calculate p̃
(h)
tjk|T =

∑J0

zT=1

∑J0

zT−1=1
Pr(zT , zT−1, zt = j, zt−1 = k

∣∣∣x1:T ; θ̃
(h)
).

Repeat steps (1)-(3) for all j and k.
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