
Munich Personal RePEc Archive

Implicit Nulls and Alternatives for

Hypothesis Tests

Dutta, Jayasri and Zaman, Asad

Barnard College, Columbia University, Katholieke Universiteit

Leuven, Center for Operations Research and Econometrics

April 1989

Online at https://mpra.ub.uni-muenchen.de/113344/

MPRA Paper No. 113344, posted 21 Jun 2022 06:46 UTC



Implicit Nulls and Alternatives for Hypothesis

Tests∗

Jayasri Dutta† Asad Zaman‡

April 1989, revised December 1992

Abstract

A test can be said to ‘detect’ an alternative hypothesis only if its power

against this alternative exceeds its size. We use this principle to define

the implicit null and alternative for a test. We analyze the performance

of several tests for location and scale parameters.

∗We would like to thank Chris Cavanaugh, Phoebus Dhrymes, Christian Gourieroux,

Michael Mcaleer, and particularly Alain Trognon for comments; and seminar participants

at Columbia, Bonn, and Tilburg Universities, and at INSEE for discussions.
†Barnard College, Columbia University , Katholieke Universiteit Leuven and Center for

Operations Research and Econometrics, Louvain
‡Department of Economics, Columbia University

1



1 Definition of the Implicit Null and Alternative

1.1 Introduction

Given any statistic T with a known distribution under the null hypothesis, we
obtain a hypothesis test by rejecting the null for improbable values of T . For
example, if f0(x) is the density of the observation X under the null, the classical
tail test rejects the null for small values of T0(X) ≡ f0(X). Since any statistic
with known distribution can be used, it is easy to generate numerous different
ways of testing the same null hypothesis. Typically different tests have superior
power in different regions of the parameter space. This method of generating a
test pays no attention to the alternative hypotheses, and it is frequently unclear
against which alternatives a given test procedure will perform best. Our object
in this paper is to associate with each test statistic T two sets of distributions,
the implicit null denoted Θ∗

0 and the implicit alternative denoted Θ∗

1 such it is
natural to view T as a test statistic for the null hypothesis H0 : θ ∈ Θ∗

0 versus
the alternative H1 : θ ∈ Θ∗

1. Our analysis reveals, for example, that the tail
test T0 described above is appropriate when the family of alternatives is the set
of translates of f0 but not so when alternatives include rescaled versions of the
original density.

With few exceptions, theoretical work on hypothesis tests in econometrics
is confined to asymptotic analysis and based on local alternatives. For example
Davidson and Mackinnon(1987) define the terms implicit null and alternative to
be directions in the tangent space of the manifold defined by the null hypothesis.
Thus their definition does not apply to any fixed point in the parameter space
at all. Our definitions use finite sample properties and are global — that is,
they take into consideration the structure of the full set of alternatives (rather
than just those close to the null). Except in cases where a uniformly most
powerful (UMP) or a UMP Invariant test exists, it is very difficult to analyze
finite sample global properties of hypothesis tests. Most investigations of this
kind use numerical methods to compute and compare powers of various tests.
Our methods are an improvement in the sense that we get analytical results.
However, our results merely indicate regions on which tests will have power
greater than the level of the test, without giving more precise information about
the power. Thus numerical methods will provide more information. Our results
will provide guidance on the appropriate regions of the parameter space to
explore via numerical methods.

We apply our definitions to several tests in the regression model to determine
the implicit nulls and alternatives. While most tests perform as advertised
(i.e. the implicit null and alternatives are as expected), some, for example
the Goldfeld-Quandt test, the Breusch-Pagan test, and others do not have the
expected properties.
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1.2 The Implicit Null and Alternative

Suppose we observe X ∼ FX(x, θ), where θ ∈ Θ the parameter space. We
propose to use a statistic T (X) to test the null hypothesis H0 : θ ∈ Θ0, rejecting
for large values of T . For every constant c, we can evaluate P (T (x) > c|θ) for
θ ∈ Θ0. Choose cα to be such that

sup
θ∈Θ0

P(T (X) > cα|θ) = α.

A test of level α rejects H0 whenever T (x) > cα. We will consider tests defined
by the test statistic T (x); obviously, this defines rejection regions for each α ∈
(0, 1).

For small α, the strategy of rejecting for T (X) > cα ensures that when the
null is true, the probability of rejection is low. However, for any given θ1 /∈ Θ0,
the probability of rejection may be even lower than α; in this case, the test is
biased. Define the power of a level-α test based on T (x), at θ, as

β(θ, α) = P (T (x) > cα|θ).
We define the implicit α-alternative to be the set Θα

a = {θ ∈ Θ : β(θ, α) > α};
the implicit α-null is the complement of this set Θα

0 = {θ : θ /∈ Θα
a}. Note that

Θ0 ⊆ Θα
0 . By definition the test which rejects for T (X) > cα is unbiased for

H0 : θ ∈ Θα
0 versus the alternative H1 : θ ∈ Θα

a .
It is possible that for some θ ∈ Θ, a test based on T (x) is unbiased at some

level α, and biased at another, say α′. Since the level the test, α, cannot be
chosen on theoretical grounds, it seems reasonable to require that the alternative
hypothesis of a test, which is a qualitative feature, should be invariant to the
choice of α .

Definition 1 A parameter θ ∈ Θ is an implicit alternative of the test T (x) if
and only if for each α ∈ (0, 1),

β(θ, α) = P(T (X) > cα|θ) > α,

where
sup

θ0∈Θ0

P(T (x) > cα) = α.

It is in the implicit null if and only if, for each α ∈ (0, 1),

β(θ, α) ≤ P(T (x) > cα|θ) ≤ α.

Define Θ∗

1 as the set of implicit alternatives; and Θ∗

0 the set of implicit nulls
of a test. Clearly,

Θ∗

0 = ∩0<α<1Θ
α
0 ;

Θ∗

a = ∩0<α<1Θ
α
a .

With this definition, it is obvious that hypothesis tests based on the statistic
T (X) are unbiased at all levels for the null H0 : θ ∈ Θ∗

0 versus the alternative
H1 : θ ∈ Θ∗

a.
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1.3 Relation to Stochastic Dominance and MLR

A useful characterization of the implicit alternative can be given in terms of
stochastic dominance. Recall that random variable X is said to be stochastically
larger than Y if for all t ∈ R, P(X > t) ≥ P(Y > t). Since the following lemma
is just a restatement of the definition of the implicit null and alternatives, we
omit the proof.

Lemma 1 The distribution of the test statistic T (x) must be stochastically
larger under the implicit alternative than under the implicit null; that is, if
θ1 ∈ Θ∗

a and θ0 ∈ Θ∗

0,

P(T (x) > c|θ1) ≥ P(T (x) > c|θ0),

for each c ∈ R.

Stochastic dominance induces a partial ordering of probability distributions;
hence, Θ∗

a and Θ∗

0 are disjoint. The ordering is not complete, so that some
θ may be neither in the null nor the alternative. The implicit null is always
non-empty, since it contains at least Θ0.

Our definitions are well behaved in the situation where T (x) is the uni-
formly most powerful test for H0 : θ = θ0. The Monotone Likelihood Ratio
or MLR, property implies that a uniformly most powerful test exists. MLR is
stronger than stochastic dominance. Suppose θ is a real parameter, and the
densities fX(x, θ) have MLR. By Lemma 2 of Chapter 3 in Lehmann(1986),
the distribution of the likelihood ratio T (X) = fX(x, θ1)/f

X(x, θ0) is stochasti-
cally increasing in θ. It follows that for the uniformly most powerful test based
on T (X), the implicit null is Θ∗

0 = {θ ≤ θ0} and the implicit alternative is
Θ∗

a = {θ > θ0}).
Also note that if a test statistic T (X) provides a UMP Invariant test for

H0 : θ ∈ Θ0 versus the alternative H1 : θ ∈ Θ1, then it is easily seen that the
implicit null is Θ0 and the implicit alternative is Θ1. See for example exercise
6 of Chapter 1 of Lehmann(1986) which establishes that the test based on the
maximal invariant is unbiased at all levels. It follows immediately that the
implicit null and alternative are as stated. From this general result, we can
obtain implicit nulls and alternatives for many common tests. For example,
in the linear regression model y = Xβ + ǫ with ǫ ∼ N(0, σ2I), the usual F
test for the general linear restriction H0 : Rβ = r versus H1 : Rβ 6= r is a
UMP invariant test. This is established in Chapter 7 of Lehmann(1986); for
an elementary exposition see Zaman(1989). It follows immediately that the
implicit null and alternative are exactly as stated.

All examples cited above are related to the fact that Monotone Likelihood
Ratio implies stochastic dominance. In the next section we discuss an example
where stochastic dominance holds but MLR fails and there is no UMP or UMP
invariant test.
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2 Location Parameters

2.1 Pitman’s Test

Suppose X ∈ Rk has distribution FX(x − θ), and density fX(x − θ) for some
θ ∈ Rk. Consider testing the null hypothesis H0 : θ = 0 versus the alternative
H1 : θ 6= 0.

Lemma 2 (Pitman(1938)) The test which rejects for large values of T (X) =
1/fX(X) has the implicit null Θ∗

0 = {0}, and the implicit alternative Θ∗

a = {θ 6=
0}.

Proof: Let Aα = {x ∈ Rk : T (X) ≤ cα} be the acceptance region of the α-
level test based on T . For any θ1 6= 0, The probability of acceptance is smaller
than the same probability under the null:

P(X ∈ Aα|θ1) = P(X − θ1 ∈ Ak − θ1|θ1)
= P(X ∈ Ak − θ1|θ0 = 0)

≤ P(X ∈ Ak|θ0 = 0)

The last inequality is due to the fact that under the null hypothesis, all translates
Ak − θ1 have smaller probability than Ak. ✷

This establishes that T (X) is stochastically larger under the alternative θ1 6=
0 than under the null. Clearly, this holds whether or not the family F possesses
the monotone likelihood ratio property. It is easily established that the test
based on T is a Bayes test when we place the natural invariant prior, Lebesgue
measure, on the space of alternatives.

Note that for a null hypothesis H0 : X ∼ f0(x), the traditional tail test
rejects for f0(X) ≤ c of equivalently T0(X) = (1/f0(X)) ≥ c′. Even though
alternatives are not explicitly considered, it is clear that this test works well
against alternatives which are translates of f0. However if alternative specifi-
cations for the density of X include scale changes H1 : X ∼ (1/σ)f0(x/σ), the
tail test will not do well against all such alternatives. In fact, for symmetric
unimodal f0, values of σ ≤ 1 will be part of the implicit null of the test, while
σ > 1 will be the implicit alternative.

2.2 Extension of Pitman’s test by Projection

Now suppose X has density fX(x − θ) for θ = (θ1, . . . , θk) ∈ Rk. To test the
null hypothesis H0 : θ1 = θ2 = · · · = θr = 0 where r < n, it seems natural
to eliminate the nuisance parameters θr+1, . . . , θn by integration. The marginal
density of X1, . . . , Xr is simply:

f (X1,...,Xr)(x1, . . . , xr) =

∫

R(n−r)

· · ·
∫

fX(x1 − θ1, . . . , xn − θr) dxr+1 · · · dxn
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By making the change of variables zj = xj − θj for j = r + 1, . . . , n, it is
easily verified that the marginal density does not depend on the unknown nui-
sance paramters θr+1, . . . , θn and that θ1, . . . , θr occur as translation parameters.
Thus after reducing to the marginal densities, we can apply Pitman’s original
procedure to get a test which is unbiased at all levels. This test, which rejects
H0 for f (X1,...,Xr) < c has implicit null exactly the same as H0 and the implicit
alternative every parameter value not in H0.

A further extension of this technique will prove valuable. Let V be an r-
dimensional vector subspace of Rn and consider the null hypothesis that the
projection of θ in V (denoted ΠV (θ)) is zero. Let v1, . . . , vr be an orthonormal
basis for V and let vr+1, . . . , vn be an orthonormal basis for the orthogonal
complement of V . The following result is worth stating as a theorem:

Theorem 1 The test based on rejecting for small values of the statistic T (y)
given below is unbiased at all levels:

T (y) =

∫

fY (y − [ψr+1v1 + · · · + ψnvn]) dψr+1 · · · dψn

Proof: Let V stand for the orthogonal n × n matrix with j-th column vj

and consider the transformation x = V ′y ψ = V ′θ. Note that y = V x and
θ = V ψ. In terms of the parameters ψ, the null hypothesis has the simple form
H0 : ψ1 = · · · = ψr = 0. The marginal density of X1, . . . , Xr can be written as

f (X1,...,Xr)(x1, . . . , xr, ψ) =

∫

Rn−r

· · ·
∫

fY (V (x− ψ))dxr+1 · · · dxn

We reject H0 for small values of this density evaluated at ψ1 = · · · = ψr = 0.
By changing variables from xj to xj − ψj we can write the marginal density as

f(x1, . . . , xr, ψ) =

∫

fY (V x− [ψ1v1 + · · · + ψnvn]))dψr+1 · · · dψn

Evaluating at H0, we get the statistic T (y) of the theorem

2.3 Testing for Equality of Location Parameters

As an application of the test of the previous section, consider testing for equality
of the location parameters. Given y with density fY (y − θ), we wish to test
H0 : θ1 = · · · = θn. Let e be the vector of 1’s and let V be the space orthogonal
to e. The null hypothesis is equivalent to H0 : ΠV (θ) = 0. By the theorem of
the previous section, and unbiased test is obtained by rejecting for small values
of the statistic

T (y) =

∫

fY (y − ψne) dψn
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If the density of y − θ is standard normal (y ∼ N(θ, In)), T (y) is easily
calculated:

T (y) =

∫

1
(√

2π
)n exp

(

−1

2

n
∑

i=1

(yi − ψ)2

)

dψ

=

∫

1
(√

2π
)n exp

(

−1

2

n
∑

i=1

(yi − y + y − ψ)2

)

dψ

=

√
2π

√
n
(√

2π
)n exp

(

−1

2

∑

(yi − y)2
)
∫ √

n√
2π

exp
(

−n
2

(y − ψ)2
)

dψ

=
1

√
n
(√

2π
)n−1 exp

(

−1

2

∑

(yi − y)2
)

Rejecting for low values of T (y) is equivalent to rejecting H0 for large values of
∑

(yi − y)2.
Another interesting case is that of the lognormal distribution. Suppose yi =

log z2
i where zi ∼ N(0, σ2

i ) are independent. Then θi = log σ2
i becomes a location

parameter for the yi which has density:

fYi =
e(yi−θi)

√
2π

exp
(

−(1/2)e(yi−θi)
)

The hypothesis of homoskedasticity (i.e. H0 : σ2
1 = · · · = σ2

n) is the hypothesis
of equality for the translation parameter θ. The statistic T (y) for this case is
(with all sums being from 1 to n over index i):

T (y) = (2π)−n/2

∫

∞

−∞

e
∑

(yi−θ) exp

(

−1

2

∑

e(yi−θ)

)

dθ

= (2π)−n/2 exp
(

∑

yi

)

∫

∞

−∞

e−nθ exp

(

−1

2
e−θ

∑

eyi

)

dθ

Making the change of variables x = e−θ
∑

eyi in the integral, and substituting
log z2

i for yi, and combining constants into C, we get

T (y) = Ce(
∑

yi)
∫

(

∑

eyi

)−n/2

x−(n−2)/2e−x dx

= C ′
e
∑

yi

(
∑

e2yi)
−n/2

= C ′

(
∏

z2
i

)1/2

(
∑

log z2
i )

−n/2

From this the test statistic based on the ratio of the geometric mean (GM) to
the arithmetic mean (AM) of the quantities z2

i provides a test for homoskedas-
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ticity which is unbiased against all heteroskedastic alternatives. Note that the
test depends on the explicit assumption of normality for the zi.

2.4 The Case of Unknown Variance: Impossibility

Now suppose y ∼ N(θ, σ2IT ) and consider the null hypothesis H0 : θ = 0. If σ2

is known then a the test statistic T (y) = ‖y‖2/σ2 has the correct implicit null
and alternative. It worth noting that this statistic will remain the same for any
unimodal spherically symmetric distribution — let us term this robustness of the
shape of the test or shape robustness. This is not robustness in the usual sense,
which refers to robustness of the size; that is, the choice of the constant c for
which T (y) > c gives an α level test will depend on the particular distribution.
If σ2 is unknown then H0 cannot be tested. That is, there exists no test which
has implicit null H0 and implicit alternative all parameters not in the null.

Lemma 3 (Impossibility) Let R ⊂ RT be any rejection region of size α ∈
(0, 1):

P(y ∈ R|y ∼ N(0, σ2I)) ≤ α.

Then there exist θ 6= 0 and σ2 such that P(y ∈ R|y ∼ N(θ, σ2I) < α.

Proof: The lemma asserts the existence of nonzero θ in the implicit null. If
the rejection region R is a closed set, pick a point x 6∈ R and a small radius
r > 0 such the sphere of radius r around x, N(x, r) = {y : ‖y − x‖ < r} does
not intersect R. Setting θ = x and driving σ to zero will make the probability
of N(x, r) go to 1 and hence the probability of R go to zero, yielding the de-
sired contradiction. For general measurable rejection regions a more complex
argument based on the same idea yields the same result.

2.5 Shape Robustness of the F-test

Next consider the general location-scale problem with arbitrary density f0. Sup-
pose we observe y ∼ (1/σ)f((y − θ)/σ) and wish to test the null hypothesis
H0 : θ = 0. As demonstrated, for f0 normal, if σ is unknown, we cannot find a
test with implicit alternative H1 : θ 6= 0. This impossibility result is valid for
arbitrary densities f0. We can develop a test when the alternative is restricted,
as we now show.

Let X be a vector subspace of RT . While it is not possible to devise tests
with implicit alternative H1 : θ 6= 0 with unknown σ2, it is possible when the
alternative is restricted to the set H1 : ΠX(θ) 6= 0. In this case, the condition
that ΠX⊥(θ) = 0 becomes a maintained hypothesis (valid both under the null
and the alternative). Thus it is possible to obtain an estimate of the variance σ2

by using ‖ΠX⊥(y)‖2 for example. The usual F statistic for testing ΠX(θ) = 0
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versus the alternative H1 : ΠX(θ) 6= 0 is

F = c
‖ΠX(y)‖2

‖ΠX⊥(y)‖2

This statistic has implicit null θ = 0 and implicit alternative θ ∈ X for a large
class of densities f0 and hence is shape robust. This is the content of our next
theorem.

Theorem 2 Suppose the random variable y taking values in RT has density
(1/σ)f0((y−θ)/σ), for some θ ∈ RT and σ > 0. IF f0 is symetric and unimodal,
the hypothesis test based on the F statistic defined above has implicit null Θ0 :
θ = 0 and implicit alternative θ ∈ X.

Remarks: Note that it is well known that F is not size robust; that is, for
any constant c, the probability of rejection, P(F > c|f0) depends on the density
f0. Our result shows that implicit alternative and the null do not depend on the
density f0. This leads naturally to the idea of whether it is possible to ‘estimate’
the constant c in some way so as to adapt to the density. One possibility is to
use the Bootstrap. This way we can exploit the shape robustness of the F test
while avoiding the difficulty of non-robustness of level. We hope to explore these
ideas in further research.

Proof:

3 Scale Parameters

yt = x′tβ + ut; t = 1, · · · , N ;

where we assume the errors are symmetric around zero, and there exists a

sequence of constants σt and a distribution F such that ut/σt
i.i.d.∼ F . In this

model, the null hypothesis of homoskedasticity can be stated as:

H0 : σ2
1 = · · · = σ2

t = · · · = σ2
N ;

this is a hypothesis involving N − 1 restrictions. A more geometric description
is useful for the intuition. Let σN stand for the vector (σ2

1 , . . . , σ
2
N ) in RN , and

let eN represent the vector of ones. Let V (e) be the set of all scalar multiples of
e, or equivalently, the vector subspace spanned by e. Then the null hypothesis
is H0 : σN ∈ V (e). The alternative hypothesis H1 : σn 6∈ V (e) is called
non-specific heteroskedasticity. If the set of alternatives is constrained in some
way (usually to lie in some low dimensional subspace), we will call this specific
heteroskedasticity.
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3.0.1 Exact Tests

Consider first the family of exact tests. The construction of the test statistic is
a straightforward application of the scale- invariant testing procedure suggested
by Lehmann and Stein(1948); Kadiyala(1970) discusses properties of this test,
and applications to the regression model.

This class of tests is defined as follows. Let ∆N be a N×N diagonal matrix,
with distinct non-negative elements δNt. The test statistic is

S(uN ;∆N ) =
u′N∆NuN

u′NuN
=

∑N
t=1 δNtu

2
t

∑N
t=1 u

2
t

(1)

The test rejects for large values of S; the critical region of size α can be
chosen, in finite samples, by the numerical evaluation of the probability distri-
bution of S(uN ,∆N ); the distribution cannot be derived explicitly, even if uN

are normally distributed, except for particular choices of δNt.
For each choice of ∆N , we have a different test. Several authors have sug-

gested different choices of ∆N , with particular attention to numerical properties,
both for the calculation of critical values, as well as power considerations in finite
sample simulations.

This test was originally derived for the normal distribution by Lehman
and Stein(op. cit.). Suppose that under the null hypothesis, H0 : uN ∼
N(0, σ2IN ), σ2 > 0. Consider the alternative hypothesisH1 : uN ∼ N(0, σ2ΣN ).
Restrict attention to scale-invariant tests, whose size and power are invariant to

σ2. Then, the test which rejects for small values of
u′

N
Σ−1

N
uN

u′

N
uN

is the most pow-

erful invariant test for testing H0 against H1. Obviously, this test is equivalent
to S(uN ;∆N ), where

∆N = I − Σ−1
N .

This indicates the explicit alternative of this test in the normal model. As
it happens, the test is robust, so that its implicit alternatives and nulls are the
same in all distributions F . In addition, the implicit alternative is much larger
than the class Σ(∆N ) = (I − ∆N )−1, the explicit alternative. Nevertheless, we
can examine different choices of ∆N made by different authors, by considering
the properties of Σ(∆N ).

The main application of the Lehmann-Stein lemma is in testing for auto-
correlation; the most celebrated application being the Durbin- Watson statistic
(Durbin and Watson (1971));in addition exact tests for unit roots were also con-
structed by this method (Berenblutt and Webb (1973); Sargan and Bhargava
(1983)). One of the earliest applications to heteroskedasticity testing was pro-
posed by Goldfeld and Quandt(1965). They suggested a choice of ∆Nt ∈ {0, 1}.
Consider a sample ordered according to some a priori criterion, and construct
the test based on S(uN ,∆N ) where

δNt = 0 if t < N∗ < N

= 1 if t ≥ N∗

10



Clearly, Σ(∆N ) has variances constant within, but not across, the two subsam-
ples (1, · · · , N∗−1) and (N∗, · · · , N), so that the Goldfeld-Quandt test explicitly
tests for a regime change in variances.

Szroeter(1978) examined the properties of this class of tests for heteroskedas-
ticity in the regression model, with δNt set as a monotone increasing function
of t

N . Among his suggestion were

δNt =
t

N

as well as

δNt = 1 − cos(π
t

N
);

the latter being suggested for reasons of computation of the finite sample dis-
tribution. Evans and King(1988) examined these tests, and other similar ones,
for their power against alternative increasing variance sequences. The form of
Σ(∆N ) immediately suggests that the particular choice of δ( t

N ) has to be guided
by the rate of growth of variances suspected in the alternative.

Information on an auxiliary variable, xt can be incorporated by choosing
δNt = d(xt). Evans and King(1985) examine the properties of point-optimal
tests, where the class of tests has δNt(θ) = (1 + θxt); for each choice of θ 6= 0,
the test S(uN ,∆N (θ)) is the most powerful test against a point alternative
ΣN (θ).

4 An Evaluation of Heteroskedasticity Tests

In this Section, we evaluate the two classes of heteroskeasticity tests by char-
acterizing their implicit nulls and alternatives. We also examine the issue of
robustness. This shows that robust tests exist for specific alternatives, i.e when
the alternative hypothesis is restricted to a parameter space, restricted to of
lower dimension than the sample size. For example, the class of exact quadratic
form tests S(uN ,∆N ) are robust, even though they were derived in the con-
text of a given data distribution ( the normal). These tests restrict the class of
alternatives to a monotone order .

4.1 Exact Tests

Consider the test based on S(uN ,∆N ) for fixed ∆. To examine the properties
of this test in finite samples, we will drop the subscript N , since ∆N is fixed for
each N

We will say that a sequence of variances σ2
t is monotone increasing (decreas-

ing) in ∆ if for all t, t′ such that δt < δt′ , we have σ2
t ≤ σ2

t′ ( σ2
t ≥ σ2

t′ ). As

before, u2
t = σ2

twt where wt
i.i.d.∼ F . The null hypothesis of homoskedasticity is
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that σ2
t = σ2 for all t. Our first result characterizes the class of implicit alterna-

tives for the test based on S as being precisely the set of heteroskedastic variance
sequences which are monotonic in δ. The fact that the test based on S(u;∆)
, with ordered δt is unbiased for any monotone ordered variance sequence was
first noted by Szroeter (op. cit.) in the normal maintained hypothesis. Clearly,
this is a robust property which follows from the structure of the test statistic
itself. By requiring that the alternative hypothesis be discriminated against by
any size α-test, we are able to get this monotonicity property to be equivalent
to the implicit alternative.

Theorem 3 The implicit alternative of the test based on S(u;∆) contains all
heteroskedastic variance sequences which are monotone increasing in ∆. This
condition is necessary and sufficient for a variance sequence to be an implicit
alternative for all F . A variance sequence is in the implicit null for all F if and
only if it is monotone non-increasing in ∆.

Proof: Let H1 be the set of all heteroskedastic variance sequences which are
monotone in ∆. We will show that S(u,∆) < S(Σ1/2u,∆) whenever σ2

t are
monotone increasing in ∆. Note that for any c, the inequality S(u,∆) > c is
equivalent to

N
∑

t=1

(δt − c)σ2wt > 0, (2)

and S(Σ1/2u,∆) > c is equivalent to

N
∑

t=1

(δt − c)σ2
twt > 0 (3)

To prove the first assertion of the theorem, we will show that (2) implies (3)
under monotone varinces.

Let T− be the set of all indices such that δt < c and let T+ be the set of all
indices such that δt > c. Because σ2

t is monotonic increasing in ∆ it must be
the case that

max
t∈T−

σ2
t = s− ≤ s+ = min

t∈T+
σ2

t

Multiply both sides of (2) by a constant k such that kσ2 ∈ [s−, s+] and subtract
the RHS of (2) from (3) to get:

N
∑

t=1

(δt − c)(σ2
t − kσ2)wt > 0 (4)

By our choice of k, the terms δt − c and σ2
t − kσ2 have matching signs, so the

inequality asserted in (4) holds, implying (3).
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A similar argument proves the second assertion. If σt are monotone decreas-
ing in ∆, we can choose k so that δt − c and σ2

t − kσ2 have opposite signs and
reverse the inequality in (4). Now if S(u,∆) < c under the null, then it must
be the case that S(u,∆) < c under the monotone decreasing alternative.

We now show that these conditions are necessary and sufficient. To show
that a sequence of variances does not belong to the implicit alternative it suffices
to show that for some set of values of wt of nonzero probability measure we have

S1 ≡
∑N

t=1 σ
2
t δtwt

∑N
t=1 σ

2
twt

<

∑N
t=1 δtwt
∑N

t=1 wt

≡ S0

From this it will follow that the statistic S(u,∆) cannot be stochastically larger
under the alternative (where it equals S1 ) then under the null (where it equals

S0 ). Define weights gi = wi
∑

t
wt

and g′i =
σ2

i
wi

∑

t
σ2

t
wt

; note that S1 =
∑

t g
′

tδt

while S0 =
∑

t gtδt . Assume for some t, t′, δt < δt′ while σt > σ′

t so that
the variances are not monotonic increasing in ∆. Then g′t > gt and g′t′ < g′t.
Thus under the alternative hypothesis, greater weight (relative to the null) is
attached to the smaller number δt and less to the larger one, δ′t. For outcomes
of wt such that the remaining terms in both sums are more or less in balance,
this will force the previous inequality to hold. If w’s have full support, the set
of such outcomes will have probability greater than zero. A parallel argument
for necessity of monotonic decrease in ∆ for a sequence to belong to the implicit
null completes the proof. ✷

This class of tests, which were suggested in the context of the normal distri-
bution, are robust. If the ordering of the variance sequence is known, a priori,
the rejection region can be derived for any underlying distribution.

The fact that the implicit alternative contains all variance sequences mono-
tone in δt implies that two tests, S(u,∆1) and S(u,∆2) have the same nulls
and alternatives if they are monotone increasing functions of each other. For
example, all members of the Szroeter class with δi,t = fi(t) have the same nulls
and alternatives as long as ∂fi/∂t > 0. The actual power achieved against
a particular alternative will differ; this is similarly true of point-optimal tests
within this class. The Goldfeld-Quandt test has δt ∈ {0, 1}. Since this has δt
weakly monotone in t, the class of implicit alternatives is larger than that of the
Szroeter class. Similarly, tests based on auxiliary variables such as δt = (1+θzt)
have implicit nulls and alternatives which depend on the sign of θ, but not its
value. In fact, any Szroeter type test, after ordering the sample according to zt,
will have the same property.

Heuristically, it is easy to describe the finite sample implicit alternative
for the Breusch-Pagan test. Consider an arbitrary vector of variances σN =
(· · · , σ2

t , · · ·)′. This can always be written as

σN = XNγN + qN , (5)
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where
γN = (X ′

NXN )−1X ′

NσN ;

qN = (IN −XN (X ′

NXN )−1X ′

N )σN .

Obviously, qN is the vector of omitted heteroskedasticity, which is the part of
σN orthogonal to XN . Define , for any positive vector wN , the quantities

v1
N = PN (· · · , x′tγNwt, · · ·)′;

and
v2

N = PN (· · · , qtwt, · · ·)′.
The test statistic writes as

BPN =
||v1

N ||
||v1

N + v2
N || .

Note that the test statistic is monotonically declining in hN = ||v2
N ||/||v1

N ||, the
size of omitted heteroskedasticity relative to the explained component. This has
a surprising implication: a large amount of heteroskedasticity correlated with
X will not be detected by the Breusch-Pagan statistic if it is small relative to
the total heteroskedasticity.

Presumably, this class of tests is of interest in a situation where the sus-
pected hetroskedasticity is correlated with X. However, the test detects such
an alternative only if this collinear component is a large proportion of actual
heteroskedasticity. This is disturbing, since the statistic can fail to be signifi-
cant even though there is a large amount of heteroskedasticity correlated with
X. This is seen from the fact that , for each non-zero γN , and a fixed, positive
wN , the quantity hN can be increased arbitrarily by choosing qN large enough.

There is a second problem, which is that this particular test is not robust,
in the following sense. Suppose that σ2

t is a variance sequence satisfying the
condition (??). Asymptotically, the test detects this form of heteroskedasticity
with probability 1, irrespective of the form of the finite sample distribution. The
lack of robustness implies that for some data distributions F , the induced test
will be biased against this alternative in all finite samples. Consider the model
exactly as in (5), with qN = 0. To prove that such data distributions exist, it
suffices to demonstrate that for some open set W ∈ R+N , w ∈W implies that

‖w′ΣNXN‖
‖w′

NXN‖ <
‖w′

NΣNPN‖
‖w′PN‖ .

Notice that ΣNXN and XN are not linearly related, so that we can choose
w such that w′ΣNXN is arbitrarily small, holding w′

NXN to any preassigned
value.

This lack of robustness arises because the test statistic is designed to detect
linear correlation between v and x; however, with heteroskedasticity, the effect
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of x on v is multiplicative. As we show next, this can be remedied by an
appropriate choice of the function v(u). As we show , the choice v(u) = lnu2

(instead of v(u) = u2) in Bickel’s statistic B2(v;X) is a robust test. With this
modification, the finite sample implicit alternative for the test consists of all
variances satisfying lnσ2

t = σ0 + x′tγ with γ 6= 0.

Lemma 4 Define vN = (· · · lnu2, · · ·)′. For any distribution F , consider the
test which rejects the null hypothesis of homoskedasticity for large values of the
statistic

DZ(u) =
v′NPNXN (X ′

NXN )−1PNvN

v′NPNvN
.

The finite sample implicit alternative for this test includes all variance sequences
satisfying lnσ2

t = σ0 + x′tγ with γ 6= 0

Proof: We must show that the distribution of DZ(u) is stochastically larger
under heteroskedasticity than under the null hypothesis of homoskedasticity.
We will drop the subscript N since the result is for a sample of fixed size.Let

w∗

t = ln(σ0u
2
t/σt) = lnu2

t − θt, (with θt = x′tγ ) so that w∗

t
i.i.d.∼ F ∗ under both

the null and the alternative hypothesis. Since θ = 0 under the null, it suffices
to show that

(w∗ + θ)′PX(X ′X)−1X ′P (w∗ + θ)

(w∗ + θ)′P (w∗ + θ)
>
w∗

′

PX(X ′X)−1X ′Pw∗

w∗′Pw∗

This inequality will establish that DZ(u) is numerically larger, and not just
stochastically larger, under the alternative hypothesis. To prove it, note that
by assumption the variables X have been centered at zero, so that PX = X.
Since θ = Xγ, we also have X(X ′X)−1X ′θ = θ. Simplifying, and multiplying
both sides by the denominator of the RHS and dividing by the numerator of
the LHS, the inequality becomes

w∗
′

PX(X ′X)−1X ′Pw∗ + 2θ′w∗ + θ′θ

w∗′PX(X ′X)−1X ′Pw∗
>
w∗

′

Pw + 2θ′w∗ + θ′θ

w∗′Pw∗

This follows immediately from the fact that w∗
′

PX(X ′X)−1X ′Pw∗ ≤ w∗′Pw∗,
since projections can only reduce the length of w∗. Because the inequality is
numerical, stochastic inequality holds simultaneously for all distributions F ,
proving the lemma. ✷

This statistic avoids one of the difficulties with the Breusch-Pagan test; if
the (multiplicative) heteroskedasticity is generated by the x’s, the test will have
power greater than size, regardless of the underlying distribution F . The fact
that in this version , the test detects exponential rather than linear relations
between σ2

t and xt matters in finite samples, but not asymptotically.
The problem that a large enough qN will bias the test , persists in this form

as well. Define θN = XNγN + qN as before; note that DZN is monotonically
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declining in the quantity ||qN |/||XNγN ||. This a quantity which does not involve
wN . Since ||θN || = ||XNγN || + ||qN ||, we can construct sequences of σN such
that γN is constant and ||qN || increases. These are sequences of increasing
heteroskedasticity on which the power of the test is monotonically declining, no
matter what the distribution F .

4.2 Interpreting Nonspecific Tests

The construction of the Pitman test can be derived in another way, which also
clarifies the exact role of distributional assumptions in non-specific testing. 1

By Assumption 1, the maintained hypothesis has wt = u2
t/σ

2
t distributed

i.i.d ; this must also be true of vt = lnwt = lnu2
t − θt where θt = lnσ2

t . Write
F v as the common distribution of vt. Any distributional assumption for w
automatically specifies F v completely. Write

vt = µF + θt + ǫt; t = 1, 2, · · · (6)

where µF = EF vt. Clearly, ǫt are i.i.d with zero mean. The transformation
rewrites the problem in familiar regression form.

Consider testing the null hypothesis

H0 : θ1 = θ2 = · · · = θN = θ > 0.

If µF is known, this hypothesis is testable. In particular, we can estimate θ
under the null hypothesis either as

θ̂ = ln(

∑N
t=1 u

2
t

N
);

or as

θ̃ =

∑N
t=1 vt

N
− µF .

The Pitman test rejects for large values of θ̂ − θ̃, which is, of course, ln(AM :
GM). If F , and hence µF , is unknown, the hypothesis is not identified.

Tests against specific, or parametric families such as θt = h(xt, γt) can be
implemented without knowledge of µF . For example, the linear family of alter-
natives is θt = x′tγ. The hypothesis tested isH0 : γ = 0; and the chi-squared test
yields the test statistic DZN . Obviously, other models of variable dependent
heteroskedasticity could be tested as parametric restrictions.

Next, consider testing subgroup constancy. Divide the sample into k sub-
groups. The hypothesis to be tested is

θi ≡
∑Ni

ti=1 θti

Ni
= θ0; i = 1, · · · , k.

1We are grateful to A.Trognon for this insight.
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This implies that
∑

Evi/Ni is constant over subgroups i. The hypothesis can
be tested without knowledge of µF . Bartlett’s test (Bartlett(1937)) is exactly a
test of this hypothesis.
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5 Conclusions

In many econometric applications, it is important to test for the presence of het-
eroskedasticity. The large array of tests for heteroskedasticity currently avail-
able bear evidence to this. While the nature of heteroskedasticity – and hence,
the most likely direction of the alternative hypothesis – may be evident in some
applications , it is not obvious in many others : typically, in cross sectional appli-
cations, where the data does not follow a natural order. One would like to have
a test which detects all departures from the null hypothesis of homoskedasticity
, even if this means giving up precision in any particular direction. A related
problem is that the exact nature of the data distribution is never known, so that
we would like such a test to perform ”reasonably” in all distributions. As our
result shows, one cannot have both, at least in finite samples. A test is either
robust, or non-specific.

Which of the two must be sacrificed surely depends on the particular prob-
lem. We have demonstrated that the standard tests are all ”specific”: there are
heteroskedastic sequences they necessarily fail to detect. Even though some of
them (e.g. the LM tests) are not robust, modifications can achieve robustness
for a large class of alternatives. We demonstrated this correction for the Breusch
and Pagan (1979) test. The basic principle is likely to carry over to alternative
applications of LM testing. If we are explicitly ready to give up robustness,
the Pitman (1939) principle can be used to derive a truly non-specific test. We
used this to derive a test for the normal distribution. This has the attractive
property of being able to detect discrepancies in the arithmetic and geometric
means of the variance sequence. The trade-off between specificity and robust-
ness is a finite sample phenomenon. Asymptotically, the Pitman test acquires
robustness; while the Bickel tests do not become non-specific.

Part of our interest here was to develop methods of comparison for tests
not based only on asymptotic properties. Asymptotics, even local asymptotics,
glosses over many of the important differences between test procedures. While
global comparisons are usually difficult to interpret in high dimensional param-
eter spaces, it is possible to compare tests at a cruder level. In developing these
comparisons, we have given up precision; for example, in comparing finite sam-
ple implicit alternatives and nulls, all members of the Szroeter (1978) appear
equivalent. They are clearly not, since different tests achieve optimal power
against different directions.
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