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1 Introduction

This paper investigates the impact of consumption and production externalities on

consumption, savings and capital levels. In contrast to the previous literature, this

paper considers a continuous time overlapping generations model (perpetual youth

model), in which individual labor productivity decreases with age. The effects of the

externalities (if any) critically depend on the rate of labor productivity decline.

In the previous literature, there is strong evidence of the existence of consumption

and production externalities. Important contributions include Brekke and Howarth

(2002), Frank (1999), Johansson-Stenman et al. (2002, 2006), Luttmer (2005), and

Solnick and Hemenway (1998, 2005).1 The theoretical implications of externalities on

savings and growth, however, are less clear than one would hope. It seems reasonable

to assume that a negative consumption externality gives rise to a higher consump-

tion level, as demonstrated, in a static framework, by Dupor and Liu (2003). In a

dynamic context, however, a higher consumption level in the present is associated

with dissaving and a lower consumption level in the future, thereby requiring a house-

hold to trade off the benefit from a higher consumption level today with the cost from

lower consumption levels (also from lower consumption levels relative to others, ceteris

paribus) tomorrow. If the said benefit falls short of the cost, the negative consump-

tion externality will induce a household to shift consumption from the present towards

the future, thereby lowering the propensity to consume. In case the benefit equals

the cost, a household will not react to the consumption externality at all. Only if

the benefit exceeds the cost will households raise the propensity to consume, thereby

ending up with lower consumption and capital levels.

Two questions suggest themselves. First, under which conditions do (consumption)

externalities change household behavior in a market equilibrium, and does it raise or

lower the propensity to consume? Second, if households change behavior, will the

1They present significant evidence for negative consumption externalities. Further important
references include Alpizar et al. (2005), Carlsson et al. (2007), Easterlin (1995), Ferrer-i-Carbonell
(2005), McBride (2001), Neumark et al. (1998). Production externalities are discussed by Caballero
and Lyons (1990, 1992), and Lindstrom (2000).
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response be distortionary? This paper addresses these questions in the context of

a model of perpetual youth (PY model, in the following) in which labor supply is

exogenous. The consumption externality considered is a “keeping up with the Joneses”

externality, and the production externality is a “learning-by-investing” externality.

If the (human and accumulated) wealth of a new generation deviates from aver-

age wealth, the PY model will exhibit a generation replacement effect (GRE), as a

consequence of the continuous inflow of new generations. The presence of a GRE

opens a channel for the externality to have an impact on consumption and capital,

as the steady state capital stock is not determined anymore by the Keynes-Ramsey

rule, but by a modified rule which takes the GRE into account. This observation is

important for explaining the results of this paper. In particular, in the absence of a

GRE, a consumption externality has no effects on behavior at all. In this case, the

marginal benefit of increasing consumption today will exactly equal the marginal cost

of a lower (relative) consumption tomorrow. In the presence of a GRE, however, the

consumption externality affects consumption and savings. In particular, if the wealth

of new generations is below-average, the consumption externality leads to a rise in the

propensity to consume, thereby to lower steady state levels of average consumption

and capital. While this argument might be considered as intuitive, the opposite holds,

if the wealth of new generations is above-average — a possibility opened up by a high

rate of labor productivity decline. In this case, a household’s wealth declines with

age, and the consumption externality induces it to lower the propensity to consume.

In addition, the paper offers three other main results.

First, the production externality always raises consumption and savings. How-

ever, it introduces a distortion, as market prices fail to reflect the social value of

capital accumulation, thus capital rises by less than optimal. As a consequence, if the

consumption externality tends to raise capital — in case labor productivity declines

with age — the consumption externality raises efficiency by introducing an additional

distortion.

Second, the impact of a consumption externality on the individual (steady state)
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consumption growth rate is ambiguous as well. If the generation replacement effect is

absent, the consumption externality (alone) has no effect on individual consumption

growth rates. Otherwise, the impact of a consumption externality depends on whether

or not the rate at which human capital depreciates is smaller than the rate at which

accumulated capital depreciates (the difference of which introduces a wealth effect

that is not present in a representative agent model).

Third, all effects displayed in the analysis depend on the perpetual inflow of new

generations rather than on their finite lifetime. That is, the results also hold in the

setting of overlapping families of infinitely-lived agents, as in Weil (1989).

These results are related as follows to the prior literature. Rauscher (1997) and

Brekke and Howarth (2002) discuss the impact of consumption externalities on con-

sumption choice and growth and show that, with exogenous labor supply, a consump-

tion externality has no steady state effects in a standard Ramsey model. Arrow and

Dasgupta (2007) identify the class of preferences for which, in a representative agent

economy, a consumption externality does not introduce a distortion,2 and conclude

that “the intuition that conspicuous consumption inevitably leads to a problem of

‘the commons’ is mistaken.” (Arrow and Dasgupta 2007, p.2) Along the same vein,

Liu and Turnovsky (2005) and Turnovsky and Monteiro (2007) demonstrate that in a

representative agent economy with exogenous labor supply, without a concurrent pro-

duction externality, a consumption externality alone does not introduce a distortion.

In addition, a consumption externality has no effect on the steady state equilibrium.

In their setting, the (steady state) capital stock is determined by the Keynes-Ramsey

rule in both the market economy and the command optimum. Consequently the

market economy’s capital stock assumes its optimal level, and so must — in spite of

a consumption externality — the market’s consumption level. In contrast to these

papers, Abel (2005) considers an overlapping generations economy, in which each

generation is alive for two periods. He shows that in his framework, the equilibrium

rate of return depends on the consumption externality. Similarly, Fisher and Heijdra

2This class includes, among others, CRRA utility functions with both subtractive and multiplica-
tive specifications of reference consumption.
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(2008) consider consumption externalities and show that steady state consumption

and capital levels decline as a consequence of initial overconsumption due to the con-

sumption externality. This result is in contrast with the observations reported for

representative agent economies, above.3

I will argue below that the results discussed above critically depend on the nature

of the GRE, thereby on the rate at which labor productivity declines.

Section 2 of the paper presents the economy’s structure of both the market econ-

omy framework and a command optimum. Section 3 considers the steady state effects

of both consumption and production externalities on the propensity to consume, con-

sumption and capital levels and on individual consumption growth rates. Section

4 concludes the paper. The appendix contains a number of derivations that were

distracting when placed in the main text.

2 The Economy’s Structure

In this section, we extend the continuous time overlapping generations model by

consideration of consumption and production externalities. In light of the evidence

referred to in the introduction, we focus on a “keeping (catching) up with the Joneses”

consumption externality, and a “learning-by-investing” production externality.

Population. An individual born at time v (“vintage”) is uncertain about the length

of his or her life. As in Blanchard (1985), both the instantaneous probability of death

of a cohort (the death or mortality rate), d, and the birth rate, b, are age-independent

and constant over time and cohorts. Birth and death rates are independent of each

other, and they may be different.

At time t, the population size is L(t). At each instant of time, a new cohort is

born, the size of which is b L(t). Also, at time t, the mass of people who die is dL(t).

3In this paper, technology is represented by a neoclassical production function. In an endogenous
growth framework, Carroll et al. (1997) and Corneo and Jeanne (1997) demonstrate that the steady
state growth rates of consumption, capital and output increase in the consumption externality.
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Accordingly, for a large population size, the rate of population growth is

n = b − d . (1)

Population at some date t1 is given by: L(t1) = L(t0) en (t1−t0). Without loss of

generality, L(0) = 1. Consequently, L(t) = en t.

Denote the size of a vintage-v cohort at time t by L(v, t). Under this popula-

tion structure L(v, t) = L(v, v) e−d (t−v) = b L(v) e−d (t−v) = b en v e−d (t−v) = b eb v−d t.

Similarly, the share of a vintage-v cohort in total population at time t is:

l(v, t) ≡ L(v, t)/L(t) = [b eb v e−d t]/e(b−d) t = b e−b (t−v) . (2)

The expected remaining lifetime of any agent is: d−1. As a special case, the representative-

agent model emerges from the PY model by setting b = 0, and d = −n.

In the following, we focus on the case without population growth:

n = 0 ⇔ b = d ⇒ L(t) = 1 . (A.1)

As we conceptually distinguish the birth rate from the death rate, we will be able to

distinguish their respective effects. In particular, we will clarify which of the results

are driven by the constant inflow of cohorts (b > 0) and which are driven by the

finiteness of lifetime (d > 0).

Households. Time-t utility of a vintage-v household is a function u(.) of consumption

c(v, t). The first argument in c(.) refers to the birth date (“vintage”), and the second

argument refers to time. At time t, an individual household not only cares about its

own consumption, but also about how own consumption compares to some reference

consumption level x(t). Instantaneous utility is given by u(c(v, t), x(t)).

In this paper, we consider the standard case of a CRRA utility function. We follow
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Dupor and Liu (2003) in specifying the felicity function4 as:

u(c(v, t), x(t)) =

[

c(v, t)
1

1−γ x(t)−
γ

1−γ

]1−σ

− 1

1 − σ
=

[

c(v, t)
(

c(v,t)
x(t)

)
γ

1−γ

]1−σ

− 1

1 − σ
, (3)

where γ is called the “reference parameter.” It, if strictly positive, introduces a

“keeping up with the Joneses” externality. That is, it measures the importance of the

reference consumption level. In particular, the reference parameter can be interpreted

as “marginal degree of positionality.”5 If γ = 0, then the model reduces to the usual

model with interpersonally separable utility.

Parameter σ governs the intertemporal elasticity of substitution. If γ = 0, the

intertemporal elasticity of substitution is given by σ−1. If, however, γ > 0, both

parameters, σ and γ, determine the elasticity of substitution between consumption at

any two points in time. As is overwhelmingly suggested by the empirical literature,

σ is considered to be larger than unity.

Sign Restrictions. We impose the following sign restrictions:

σ > 1 , (A.2)

0 ≤ γ < 1 . (A.3)

In the taxonomy of Dupor and Liu (2003), felicity function (3) exhibits the “keeping

up with the Joneses” property, when ucx(.) > 0 ⇔ γ(σ − 1) > 0, which is implied

by (A.2) and (A.3), for any γ > 0. Positivity of marginal utility of a proportionate

increase in both individual consumption and the reference stock is always satisfied for

felicity function (3). Moreover, to keep the economy from explosive growth, marginal

4As demonstrated by Dupor and Liu (2003), felicity function (3) represents a special case of

the more general specification: u(c(v, t), x(t)) = 1
1−σ

{

[

c(v, t)ε
−γ x(t)ε

1−γ

]
1

ε

}1−σ

. In the limit, as ε

approaches zero, felicity function (3) emerges. This case is often referred to as the “multiplicative
case” (Gaĺı, 1994). Some authors consider an alternative special case: the limit, as ε approaches
unity. This case is referred to as the linear, or subtractive specification (Campbell and Cochrane
1999, Ljungqvist and Uhlig 2000).

5According to Johansson-Stenman et al. (2002), the marginal degree of positionality is the fraction
of marginal utility of consumption stemming from a rise in own consumption relative to the reference
stock. Define r = c/x, and ũ(c, r) ≡ u(c, x). Then γ = [∂ ũ/∂ r ∂ r/∂ c]/[(∂ ũ/∂ c)+(∂ ũ/∂ r ∂ r/∂ c)].
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utility of a proportionate increase of both individual consumption and the reference

stock is required to decline: ucc(.) + ucx|x=c < 0 ⇔ −σ(1 − γ) < 0, which is ensured

by the fact that γ < 1 in (A.3).

It is worth noting the impact of the reference parameter on the consumption

elasticity of marginal utility.

Lemma 1 Holding x(t) fixed, a rise in γ raises the elasticity of marginal utility with

respect to consumption, c(v, t).

Proof. The (absolute) elasticity of marginal utility with respect to consumption is

defined by: −ucc(.) c/uc(.) = (σ − γ)/(1 − γ). Clearly, ∂ [(σ − γ)/(1 − γ)]/(∂ γ) =

(σ − 1)/(1 − γ)2, which is strictly positive by (A.2) and (A.3). ||

To interpret Lemma 1, consider felicity function (3), and let c(v, t)1/(1−γ) x(t)−γ/(1−γ)

be effective consumption. The elasticity of effective consumption with respect to c(v, t)

(i) exceeds unity, and (ii) rises in γ. That is, given x(t), an increase in c(v, t) by one

percentage point raises effective consumption by more than one percentage point, as

a household not only enjoys the higher level of own consumption but also the higher

ratio of its individual consumption level relative to the reference level. Furthermore, an

increase in c(v, t) raises effective consumption by the more the higher is γ. Therefore, a

given increase in c(v, t) by one percentage point lowers marginal utility of consumption

the more the higher is γ. Consequently, the (absolute) elasticity of marginal utility

with respect to consumption rises in γ.

Lemma 1 holds not only for the “multiplicative” specification, employed in (3),

but also for the more general specification suggested in footnote 4.

At time t, expected remaining lifetime utility of a cohort born at date v is:

U(v, t) =

∫ ∞

t

u(c(v, τ), x(τ)) e−(ρ+d) (τ−t) dτ , (4)

where ρ is the household’s pure rate of time preference. The possibility of death

(d > 0) leads to a subjective discount rate (ρ + d) higher than the pure rate of time

preference.
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Reference Consumption. Reference consumption is either equal to average consump-

tion or is affected by average consumption over time.6 Average consumption is defined

by:

c(t) ≡

∫ t

−∞

l(v, t) c(v, t) dv = b

∫ t

−∞

e−b (t−v) c(v, t) dv . (5)

The reference consumption stock develops according to:

ẋ(t) = ϕ (c(t) − x(t)) , x(0) = x0 , (6)

with x0 exogenously given. The reference level x(t) is a weighted average of past aver-

age consumptions. The parameter ϕ ≥ 0 determines the weight of average consump-

tion at different times. The larger is ϕ, the more important is average consumption

in the recent past. As ϕ → ∞, x(t) → c(t), in which case the reference level is given

by current average consumption.

Production. There is a large number of competitive, identical firms. Firm i produces

a homogeneous output, Yi, according to

Yi(t) = AKi(t)
α (E(t) Ni(t))

1−α , A > 0, 0 < α < 1 , (7)

where Ki is capital, Ni are “effective” labor services of firm i, A is total factor pro-

ductivity, and E — which is considered exogenously given by individual firms —

represents a measure for “aggregate labor productivity.”

Define the (aggregate) capital stock K(t) =
∑

i Ki(t). Labor productivity is given

by:

E(t) = K(t)p , −α/(1 − α) < p < 1 , (8)

where, p is the learning parameter. If p > 0, a higher level of K raises labor productiv-

ity.7 As in Romer (1986), the aggregate capital stock serves as a proxy for knowledge,

6Consider an aggregate variable, Z(t). Generally, we define an arbitrary average variable z(t) ≡

Z(t)/L(t) by: z(t) ≡
∫ t

−∞
l(v, t) z(v, t) dv = b

∫ t

−∞
e−b (t−v) z(v, t) dv.

7More generally, E(t) = [K(t)L(t)ψ−1]p, where ψ is the scale parameter. If ψ = 0, labor produc-
tivity rises in the economy-wide capital labor ratio. In this case, no scale effects are present, and
neither the productivity level nor the growth rates depend on the size of the labor force. Here, we
consider ψ = 1 (full scale).
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which gives rise to a learning-by-investing externality. The magnitude of the produc-

tion externality is determined by p. The inequalities in (8) ensure positivity of the

social marginal product of capital (in case p is negative) and diminishing marginal

products of capital.

Any individual laborer’s productivity depends on her age. In particular, age-

dependent productivity, π(t − v), develops according to

π(t − v) = e−λ (t−v) , 0 ≤ λ < ρ
1 − γ

σ − γ
, (9)

where λ measures the rate at which individual labor productivity declines with age.

This formulation can be extended to accommodate more complex paths of productiv-

ity profiles (e.g., an inverse U-shaped pattern). In the following, however, the main

purpose of considering nonconstant productivity paths is to make the present value of

future wage payments dependent on the profile of individual labor productivity. The

simplest formulation of which is given by (9).8

Accordingly, labor supply, L(t), and effective labor supply, N(t), are related as

follows:

N(v, t) = π(t − v)L(v, t) ⇒ N(t) =
b

b + λ
L(t) , (10)

that is, aggregate effective labor supply declines in λ.

Defining aggregate production Y (t) ≡
∑

i Yi(t) = AK(t)α+p(1−α) [ b
b+λ

L(t)]1−α,

average products y(t) ≡ Y (t)/L(t), yi(t) ≡ Yi(t)/Li(t), and capital-labor ratios ki(t) ≡

Ki(t)/Li(t), k(t) ≡ K(t)/L(t), individual and economy-wide average products are:

yi(t) = Aki(t)
α K(t)p(1−α)

[

b

b + λ

]1−α

= Aki(t)
α k(t)p(1−α)

[

b

λ + b

]1−α

, (11)

y(t) = Ak(t)α+p(1−α)

[

b

λ + b

]1−α

, (12)

where we use the fact that in equilibrium, ki = k, and Li = L = 1.

8An alternative interpretation is that λ represents the “retirement rate.” According to this
interpretation, λ serves as a measure for exogenous gradual retirement. The upper bound on λ is a
necessary condition for the existence of a nontrivial steady state equilibrium, as discussed below.
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The learning parameter p, if strictly positive, introduces a (positive) learning-by-

investing externality.

Firms maximize profits and hire factors from households on competitive factor

markets:

r(t) + δ = α A k(t)(α−1)(1−p)

[

b

b + λ

]1−α

, (13)

w(v, t) = (1 − α) Ak(t)α+p(1−α)

[

b

b + λ

]−α

e−λ (t−v) = w(t) e−λ(t−v) , (14)

where r(t) is the rate of interest, w(v, t) is the wage rate, w(t) is the wage rate per

“efficiency unit” of labor, and δ is the rate of depreciation of capital. On an aggregate

(economy-wide) level, the interest rate is obtained by:

r̃(t) = [α + p(1 − α)] A

[

b

b + λ

]1−α

k(t)(α−1)(1−p) − δ . (15)

The rate r̃(t) corresponds to the optimal rate of interest a social planner — taking

into account the production externality — considers. With p = 0, the market interest

rate coincides with the optimal one. With p > 0, however, the optimal rate of interest

exceeds the market one, for a given k.

According to the resource constraint, the average stock of capital evolves according

to:

k̇(t) = y(t) − c(t) − δ k(t) , (16)

where y(t) is negatively affected by the productivity parameter λ, as seen in (12).

2.1 The Market Economy

Households do not have a bequest motive. However, they can buy fair life annuity

contracts from life insurance companies, for which they pay or receive the annuity rate

of interest rA(t). The contracts are canceled upon death of an individual. Actuarial

fairness requires rA(t) = r(t) + d. Thus, the annuity interest factor is given by:

RA(t, τ) ≡
∫ τ

t
[r(s) + d] d s.

Every household inelastically supplies labor services and chooses consumption at

all t ≥ v such as to maximize expected lifetime utility (4) subject to its intertemporal
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budget constraint:9

a(v, t) + h(v, t) −

∫ ∞

t

c(v, τ) e−RA(t,τ) dτ = 0 , (17)

where a(v, t) stands for time-t assets (accumulated wealth) of a vintage-v household,

and human wealth h(v, t) ≡
∫ ∞

t
w(v, τ) e−RA(t,τ)dτ is the discounted integral of future

wage payments. In the market framework, a household does not consider the impact

of its individual consumption on average consumption or on the consumption reference

level.

Individual consumption levels are derived by applying Pontryagin’s maximum prin-

ciple, in the appendix. Define:10

∆(t) ≡

∫ ∞

t

e(σ−γ)−1
∫ τ

t
[(r(s)−ρ)(1−γ)+γ (σ−1)gx(s)] d s−RA(t,τ)d τ . (18)

Then:

c(v, t) = ∆−1 [a(v, t) + h(v, t)] , c(t, t) = ∆−1 h(t, t) , (19)

where the second expression follows from the fact that there is no operative bequest

motive: a(t, t) = 0. Consumption levels are proportional to (accumulated and human)

wealth, with the age-independent factor of proportionality given by: ∆−1(t), which

can be interpreted as the propensity to consume out of total wealth. Notice that

consumption levels are not equal across cohorts, as demonstrated below.

Individual consumption growth rates are given by:

gv(t) ≡
ċ(v, t)

c(v, t)
=

[r(t) − ρ](1 − γ)

(σ − γ)
+ γ

σ − 1

(σ − γ)

ẋ(t)

x(t)
. (20)

The derivation is shown in the appendix. Consumption growth rates are equal across

cohorts. Individual consumption growth rates do not only depend on the rate of

interest and the pure rate of time preference, as suggested by the standard Keynes-

Ramsey rule, but they also depend positively on the growth rate of the consumption

reference stock.
9 The transversality condition required to prevent households from running Ponzi schemes is:

limτ→∞ e−RA(t,τ) a(v, τ) = 0, or, equivalently, limτ→∞ µa(τ) e−(ρ+d)τ a(v, τ) = 0, where µa is the
shadow price of accumulated wealth. Budget constraint (17) follows from combining the flow budget
constraint, ȧ(v, t) = rA(t) a(v, t) + w(v, t) − c(v, t), with the transversality condition.

10Throughout the paper, gz denotes the growth rate of some variable z.
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Average accumulated wealth, a(t), is given by a(t) ≡
∫ t

−∞
l(v, t) a(v, t) dv. Capital

market clearing requires:

a(t) = k(t) . (21)

Finally, average human wealth, h(t), is:

h(t) =

∫ t

−∞

l(v, t) h(v, t) dv =
b

b + λ
h(t, t) =

b

b + λ

∫ ∞

t

w(τ) e−RA(t,τ) e−λ(τ−t) d τ .

(22)

We are now ready to represent a perfect foresight equilibrium by a series of four

differential equations in the variables c, x, k, ∆:

ċ(t)

c(t)
=

[r(t) − ρ](1 − γ)

(σ − γ)
+ γ

σ − 1

(σ − γ)

ẋ(t)

x(t)
+ λ − (b + λ) ∆−1(t)

k(t)

c(t)
, (M.1)

ẋ(t) = ϕ[c(t) − x(t)] , (M.2)

k̇(t) = A

[

b

b + λ

]1−α

k(t)α+p(1−α) − c(t) − δ k(t) , (M.3)

∆̇(t) = −1 + ∆(t)

[

ζ(t) − γ
(σ − 1)

σ − γ

ẋ(t)

x(t)

]

, (M.4)

where ζ(t) ≡ r(t) + d− (r(t)−ρ)(1−γ)
σ−γ

, and r(t) = α A
[

b
b+λ

]1−α
k(t)(α−1)(1−p) − δ. Equa-

tion (M.1) is derived by differentiation of average consumption, as given in (5), with

respect to time, and using (20).11 Equation (M.3) restates the resource constraint.

Equation (M.4) follows right from differentiation of (18).

If b = λ = p = d = 0, the standard Ramsey model emerges. In a steady state

– if ċ = 0 – equation (M.1) represents the Keynes-Ramsey rule: r = ρ. If, however,

(b, λ) ≫ 0, there is a continuous inflow of new cohorts without accumulated wealth

(b > 0), and there is a continuous decay of human wealth of any existing cohort over

time (λ > 0). As a consequence, the (total) wealth of a new cohort may differ from

the average wealth, which gives rise to the generation replacement effect.

Generation Replacement Effect. The Generation Replacement Effect (GRE) refers

11Denote individual consumption growth by gv(t). Here, we consider the fact ċ(t) = b c(t, t) −
b c(t) + gv(t) c(t), where [b c(t, t) − b c(t)] = b∆−1 h(t, t) − b c(t) = b ∆−1 (b + λ)/b h(t) − b c(t).
Considering both ∆−1 h(t) = [c(t)−∆−1 k(t)] and ∆−1(t) = c(t)/[k(t)+h(t)], yields: b c(t, t)−b c(t) =
λ c(t) − (b + λ) c(t) k(t)/[k(t) + h(t)]. Equation (M.1) follows.
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to the difference between average and individual consumption growth rates, due to

c(v, t) 6= c(t). Analytically, the GRE is determined by:

Definition 1 Γ(t) ≡ λ − (b + λ) k(t)
k(t)+h(t)

= λ − (b + λ) ∆−1(t) k(t)
c(t)

.

Employing Definition 1,

gc(t) ≡
ċ(t)

c(t)
= gv(t) + Γ(t) . (23)

In particular, gc(t) R gv(t) ⇔ Γ(t) R 0.

Lemma 2 (Generation Replacement Effect)

(i) h(t, t) = a(t) + h(t) or b = 0 ⇔ Γ(t) = 0.

(ii) b > 0 and λ = 0 ⇒ Γ(t) < 0 ⇔ gc(t) < gv(t) .

(iii) Suppose b > 0. Then there exists λ̃(t) > 0, such that Γ(t) = 0, where λ̃(t) =

b/[h(t)/k(t)]. For λ ≶ λ̃(t) ⇔ Γ(t) ≶ 0.

Proof. (i) Restate the average consumption growth rate as:

ċ(t)

c(t)
=

ċ(v, t)

c(v, t)
− b

c(t) − c(t, t)

c(t)
,

where we consider the fact ċ(t) = b c(t, t)−b c(t)+gv(t) c(t). Taking (23) into account:

Γ(t) = b [c(t, t) − c(t)]/c(t), that is, Γ(t) = 0 ⇐ c(t, t) = c(t) ⇔ ∆−1 h(t, t) =

∆−1 [h(t) + a(t)] ⇔ h(t, t) = h(t) + a(t). Also, Γ(t) = 0 ⇐ b = 0. |

(ii) If b > 0 and λ = 0, h(t, t) = h(t) < h(t) + a(t) ⇔ c(t, t) < c(t) ⇔ Γ(t) < 0, based

on the fact that h(t, t) = (b + λ)/b h(t). |

(iii) From the definition of Γ(t), it directly follows that λ̃(t) = b/[h(t)/k(t)]. Ceteris

paribus, ∂ Γ(t)/(∂ λ) = h(t)/[h(t) + k(t)] > 0. As shown below, λ raises Γ in a steady

state. ||

Lemma 1 shows that in the PY economy, the average consumption growth rate may

differ from the individual consumption growth rate for two reasons. First, with b > 0,

newborn cohorts without accumulated wealth continuously enter the economy. Second,

with b > 0 and λ > λ̃ > 0, the newborn cohorts enter the economy with an above-

average level of human wealth: h(t, t) = h(t) (b + λ)/b > h(t). Thus a newborn

13



cohort’s total (accumulated and human) wealth may be smaller than or larger than

average total wealth. Henceforth, c(t, t) < c(t) in the former case, and c(t, t) > c(t)

in the latter case.

At the same time, individual consumption growth rates are independent of age and

equal among all cohorts at any given point in time. By the very fact that newborn

cohorts — with consumption levels different from the average consumption levels —

continuously enter the economy, the average consumption growth rate differs from

the individual consumption growth rate. Only in the special case in which h(t, t) =

h(t) + a(t), the two opposing effects discussed above exactly cancel each other, and

no GRE occurs: Γ(t) = 0, and gc(t) = gv(t).

Except for the special case in which h(t, t) = h(t)+a(t), b > 0 is not only necessary

but also sufficient for the GRE to occur. In particular, the GRE does not occur in a

representative agent model where b = 0. However, the GRE occurs even in the setting

of a PY model with infinitely-lived agents, that is, with b > 0, d = 0, as in Weil (1989).

If, however, b > 0, a positive death rate reinforces the GRE. A rise in d raises the

propensity to consume out of total wealth, ∆−1, thereby raising the difference between

a newborn cohort’s consumption and the average consumption level. The latter, in

turn, raises the difference between individual and average consumption growth rates.

2.2 The Planner’s Objective

To be able to address the distortionary impact of externalities, we define a command

optimum here. In analogy to Calvo and Obstfeld (1988), the time-consistent utilitar-

ian social welfare function must take the form:

W (t) =

∫ t

−∞

L(v, t) U(v, t) e−ρ(t−v) e−ρ̃(v−t) d v +

∫ ∞

t

L(v, v) U(v, v) e−ρ̃(v−t) d v .

The planner’s objective, at time t, is the sum of two components. First, the integral of

the expected remaining lifetime utilities of all cohorts alive at time t, measured from

the perspective of his and her birthdate.12 Second, the integral of the lifetime expected

12The factor e−ρ(t−v) discounts time-t-lifetime utility back to the birthdate. Clearly, once a cohort
has survived up to time t, the appropriate discount rate is ρ, not (ρ + d). As shown by Calvo and
Obstfeld (1988), discounting back to birthdates ensures time-consistency.
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utilities of each of the generations to be born, as measured from the respective time

of birth. The planner’s discount rate, ρ̃, needs not equal an individual’s pure rate of

time preference. In the following analysis, we assume both discount rates to coincide.

Consider L(v, t) = b eb v−d t, L(v, v) = b en v, and change the order of integration:

W (t) =

∫ ∞

t

{
∫ τ

−∞

b u[c(v, τ), x(τ)] e[−(ρ+d)+(ρ̃−n)](τ−v)+n t d v

}

e−(ρ̃−n)(τ−t) d τ .

Finally, consider ρ̃ = ρ, and n = b− d = 0. The social welfare function then becomes:

W (t) =

∫ ∞

t

{
∫ τ

−∞

b u[c(v, τ), x(τ)] e−b (τ−v) d v

}

e−ρ (τ−t) d τ . (24)

The planning problem consists of maximizing (24) by choosing c(v, τ) and c(τ) subject

to:

(i) c(τ) = b
∫ τ

−∞
e−b (τ−v) c(v, τ) d v ,

(ii) ẋ(τ) = ϕ[c(τ) − x(τ)],

(iii) k̇(τ) = A
[

b
b+λ

]1−α
k(τ)α+p(1−α) − c(τ) − δ k(τ) ,

where the planner considers the impact of consumption on the reference level. The

costate variables associated with x and k are: µx and µk respectively. Define µ ≡

µx/µk. The (constrained) optimal control problem, which is discussed in the appendix,

yields four differential equations in the variables c, x, k, µ that represent aggregate

behavior in the command optimum:

ċ(t)

c(t)
=

(r̃(t) − ρ)(1 − γ)

(σ − γ)

1

µ(t)

[

1 − µ(t) ϕ

µ(t)

]−1

+ γ
σ − 1

(σ − γ)

ẋ(t)

x(t)

+
1 − γ

σ − γ
ϕ

[

−(r̃ − ρ) +
µ̇(t)

µ(t)

] [

1 − µ(t) ϕ

µ(t)

]−1

, (SO.1)

ẋ(t) = ϕ[c(t) − x(t)] , (SO.2)

k̇(t) = A

[

b

b + λ

]1−α

k(t)α+p(1−α) − c(t) − δ k(t) , (SO.3)

µ̇(t) = µ(t)

[

r̃(t) + ϕ + γ
c(t)

x(t)

1 − µ(t) ϕ

µ(t)

]

. (SO.4)

Two observations are of particular importance. First, from (29) in the appendix, for

any given τ , ∂ Hc/∂ c(v, τ) = 0 yields uc(.) = µc(τ), thus:

ucc[c(v, τ), x(τ)] cv(v, τ) = ∂ [µc(τ)]/∂ v = 0 . (25)
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It follows that cv(v, τ) = 0. This result is very intuitive. An allocation of aggregate

consumption is optimal, if there is no incentive to shift consumption between cohorts

at any time τ . As private and social discount rates are equal, it is optimal to implement

an egalitarian plan under which all cohorts receive the same consumption level at a

given point in time.13 As a consequence, c(v, t) = c(v′, t), v, v′ ≤ t, and the average

consumption level coincides with any cohort’s consumption level: c(v, t) = c(v′, t) =

c(t). Consequently, in the command optimum, both individual consumption levels

and (individual) consumption growth rates are, according to (SO.1), independent of

age.

Second, in contrast to the market equilibrium, optimal consumption levels and

growth rates are independent of both the birth and the death rate.

3 The Effects of Externalities

In the following section, we consider the effects of consumption and production exter-

nalities on balanced growth paths (steady state equilibria). For steady state values, we

omit the time indexes as of here.14 In the market economy, a steady state equilibrium

is given by ċ = ẋ = k̇ = ∆̇ = 0:

0 =
r(k) − ρ

σ̃
+ λ − (b + λ) ∆−1 k

c
, (M.SS.1)

x = c , (M.SS.2)

0 = A

[

b

b + λ

]1−α

kα+p(1−α) − c − δ k , (M.SS.3)

∆−1 = [r(k) + d] −
r(k) − ρ

σ̃
, (M.SS.4)

σ̃ ≡
σ − γ

1 − γ
.

From (M.SS.1)–(M.SS.4) it follows that a steady state equilibrium can be represented

by the two variables c, k, as shown in Figure 1.15

13If the social planner’s discount rate is larger (smaller) than the pure rate of time preference,
optimal consumption increases (decreases) with age.

14That is, c is average consumption. Individual consumption will still be denoted by c(v, t), as it
is generally not constant in a steady state (as discussed below).

15It can readily be verified that the equilibrium is a saddle point.
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Figure 1: Impact of the Consumption Externality

Figure 1 displays the k̇ = 0- and ċ = 0-lines in (k, c) space. The point of intersection

(with k > 0, c > 0) shows the nontrivial steady state equilibrium. The properties of

the k̇ = 0- and ċ = 0-lines, as displayed in the figure, are discussed in the appendix.

Arrows indicate the movements of trajectories.

Figure 1 also shows an asymptote for the ċ = 0-line at: r(k) = ρ − λ σ̃. The

asymptote implies an important fact. At a steady state equilibrium, r(k) > ρ − λ σ̃.

That is, if λ > 0, r(k) is allowed to assume a value lower than ρ (possibly negative)

in a steady state. In particular, we note:

Lemma 3 In a steady state equilibrium,

(i) [r(k) − ρ] R 0 ⇔ Γ ⋚ 0 ,

(ii)there exists λ̃ > 0 such that Γ(λ̃) = 0,

where λ̃ = [α b(d + ρ)]/[(1 − α)(δ + ρ) − α b] > 0 ,

(iii) Γ(λ) ≷ 0 ⇔ λ ≷ λ̃ .
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Proof. (i) Consider (M.SS.1) and Definition 1. Then, 0 = r(k)−ρ
σ̃

+ Γ, and (i) directly

follows.

(ii) From (13) and (14), (w/k) = (1 − α)/α (b + λ)/b [r(k) + δ]. Thus:

h

k
=

w/k

r + d + λ
=

(1 − α)

α

r + δ

r + d + λ
. (26)

As Γ(λ) = λ − (b + λ)/(1 + h/k):

Γ(λ) =
(1 − α)(r + δ) λ − α b(d + r + λ)

r + δ(1 − α) + α(d + λ)
.

From (i), Γ = 0 ⇔ r = ρ. It can easily be verified that Γ(λ̃) = 0. Strict positivity of

λ̃ follows from: λ̃ = b/(h/k) > 0.

(iii) Considering Figure 1, a rise in λ tilts both the k̇ = 0- and ċ = 0-lines clockwise

(down), as proven in the appendix (in connection with Figure 1). Consequently,

∂ k/(∂ λ) > 0. As Γ = −(r(k)−ρ)/σ̃ it follows that ∂ Γ/(∂ λ) = −r′(k)/σ̃ ∂ k/(∂ λ) >

0. ||

The fact that a rise in λ raises k is intuitive. As labor income declines with age (in

contrast to λ = 0), savings rise, and so does the steady state average capital stock.

Clearly, Γ > 0 does not imply dynamic inefficiency. Noticing that capital increases

in λ, we define λ̄ to be the value of λ, which implies the golden rule capital stock:

r(k(λ̄)) = 0. From above, r(k(λ̃)) = ρ > 0. Thus, λ̄ > λ̃. Dynamic efficiency occurs

for all λ ∈ [0, λ̄]. If, in addition λ ∈ [λ̃, λ̄], then Γ > 0. Dynamic inefficiency is possible

only for λ > λ̄.16

Making use of the Lemmas, we can now analyze the impact of externalities on

steady state equilibria. Figure 1 indicates that (a rise in the strength of) the con-

sumption externality tilts the ċ = 0-line either anticlockwise or clockwise. The effects

of the consumption externality are ambiguous, depending on the sign of Γ.

Proposition 1 (Effects of the Consumption Externality) Suppose p ≥ 0, b >

0, and λ ≤ λ̄. In the market economy, the consumption externality has an ambiguous

16The transversality conditions require a(v, t) to increase at a rate higher than r + d, in a steady
state. They are also satisfied for Γ > 0, in which case a(v, t) grows at a negative rate.
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impact on the steady state allocation. In particular:

Γ ⋚ 0 ⇔
∂ c

∂ γ
⋚ 0 ,

∂ k

∂ γ
⋚ 0 ,

∂ (c/k)

∂ γ
R 0 .

Proof. We use the properties of the k̇ = 0- and ċ = 0-lines. A change in γ has no

impact on the strictly concave k̇ = 0-curve (see the appendix). The ċ = 0-line can be

expressed by:

c = k
(b + λ)[(r + d) σ̃ − (r − ρ)]

r − [ρ − λ σ̃]
.

To the left of the asymptote (for all positive k : r(k) − [ρ − λ σ̃] > 0) consumption

rises (declines) at points above (below) the ċ = 0-line. Hold k fixed:

∂ c

∂ γ
|{ċ=0, k fixed} = (r − ρ)

k (b + λ)(d + r + λ)σ̃γ

[r − ρ + λ σ̃]2
. (27)

As σ̃γ = (σ − 1)/(1 − γ)2 > 0, the sign of (27) depends on the sign of [r(k) − ρ].

If Γ < 0, [r(k)− ρ] > 0 by Lemma 3. From (27) it follows that ∂ c
∂ γ

|ċ=0 > 0, for a fixed

k. That is, a rise in γ induces the ċ = 0-line to tilt up and to the left. As the slope

of the k̇ = 0-line is positive and smaller than the slope of the ċ = 0-line, ∂ k/∂ γ < 0.

As λ < λ̄, kBY < kGR. Thus, 0 < r(kBY ) = ∂ [y(k) − δ k]/(∂ k) = ∂ c/(∂ k) ⇒

∂ c/∂ γ = (∂ c/∂ k) (∂ k/∂ γ) < 0.

c/k = y/k − δ ⇒ ∂ (c/k)/(∂ k) = ∂ (y/k)/(∂ k) < 0, as the production function is

strictly concave. As k declines, c/k rises.

Similar reasoning applies to the other cases, in which [r(k)−ρ] < 0 and [r(k)−ρ] = 0,

respectively. ||

According to Lemma 2, a low value of λ < λ̃ implies: Γ < 0. For this case, Proposition

1 shows that the keeping up with the Joneses externality raises the steady state

propensity to consume out of accumulated wealth, c/k. Intuitively, consumption is

a positional good. A household not only derives utility from its own consumption

level but also from the consumption-to-reference level ratio (roughly, from above-

average consumption). Thus, the consumption externality provides an incentive to

raise individual consumption (relative to the reference level).
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Initially, for given levels of x and k, a rise in γ raises individual consumption levels

and lowers the individual consumption growth rate. This reaction is seen by restating

the steady state version (with ẋ = 0) of Euler equation (20) as follows:

r(k) = ρ +

[

σ − γ

1 − γ

]

gv . (28)

The term in square brackets represents the (absolute) consumption elasticity of marginal

utility. A rise in γ raises the elasticity of marginal utility, as demonstrated by Lemma

1. That is, for a given positive growth rate of individual consumption, a rise in γ in-

duces the marginal utility to decline too strongly over time, and households will aim

to smooth their consumption paths. Consequently, households will bring some future

consumption forward to the present and, according to (28), lower the consumption

growth rate.

As, initially, every individual household raises its consumption level, average con-

sumption rises as well. This reaction, in turn, implies a lowering in aggregate savings.

Subsequently the capital stock declines, and the new steady state is characterized by

a lower level of k. Consequently, average consumption declines as well, as shown in

the proof. As the production function is strictly concave, the average product of cap-

ital declines in k. That is, ∂ (y/k)/(∂ k) = ∂ (c/k)/(∂ k) < 0. Therefore, the average

steady state propensity to consume out of accumulated wealth, c/k, rises.

Lemma 3(iii) shows that given λ > λ̃, Γ > 0. In this case, Proposition 1 demon-

strates that the keeping up with the Joneses externality lowers the propensity to

consume out of accumulated wealth, c/k, and it raises average steady state consump-

tion and capital levels. At first sight, this result does not square well with intuition.

To gain insight, it is important to note that one’s relative consumption (c(v, t)/x(t))

not only matters today but also in the future. Consuming more today rises one’s

relative consumption, ceteris paribus. This rise comes at a cost, however. Consuming

more today lowers tomorrow’s consumption level, thereby tomorrow’s relative con-

sumption, ceteris paribus. In contrast, lowering one’s consumption today allows for a

higher level of consumption (and a better relative position, other things being equal)

in the future. If Γ > 0, households prefer the latter option.
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If Γ > 0, it follows from Lemma 3 that r(k) < ρ. Consequently, the individ-

ual consumption growth rate is negative, as seen in the Euler equation. That is,

an individual’s consumption level declines, and its marginal utility of consumption

rises over time. According to Lemma 1, an increase in γ raises the elasticity of

marginal utility, as for a given gv, the absolute growth rate of effective consumption,

c(v, t)1/(1−γ) x(t)−γ/(1−γ), rises in γ.17 As a consequence, for a given gv, effective con-

sumption declines at too big a rate, and marginal utility increases too strongly over

time.

Initially, for given levels of x and k, Euler equation (28) requires the individual

consumption growth rate to increase (gv to become less negative) as of a rise in γ. This

rise is achieved by initially lowering the individual consumption levels. As, initially,

every individual household lowers its consumption level, average consumption declines

as well. This lowering implies a rise in average savings. Subsequently the capital stock

and average consumption rise. In the new steady state, the propensity to consume,

c/k, is lower (by strict concavity of the production function).

Proposition 1 also shows a third case: Γ = 0. In this special case, the optimal

consumption growth rate is zero. While a rise in γ still raises the elasticity of marginal

utility, Euler equation (28) shows that the rise in the reference parameter induces no

change in gv. Consequently, there is neither an initial nor a steady state response to

the change in γ. In this case, the consumption externality does not have an impact

on the steady state equilibrium. It is important to note, however, that this special

case can only occur if λ > 0. In case individual labor productivity is constant over

lifetime (λ = 0), equation (M.SS.1) implies that r(k) > ρ in a steady state.

According to Proposition 1, a consumption externality alone — even with exoge-

nous labor supply and without a production externality (p = 0) — does have a steady

state impact on consumption and capital, given Γ 6= 0. This result is in contrast with

the previous literature (Liu and Turnovsky 2005, Turnovsky and Monteiro 2007) that

shows that consumption externalities without a concurrent production externality do

17Effective consumption, c(v, t)1/(1−γ) x(t)−γ/(1−γ), grows at the rate: gv/(1 − γ).
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not have an impact on the steady state allocation in representative agent models. This

seeming contradiction can be rectified, however. The representative agent model is

a special case of the present framework, with b = d = 0. By Lemma 2(i), Γ = 0

in the representative agent model. Whenever Γ = 0, Lemma 3 implies r(k) = ρ, in

which case the consumption externality does not have an impact on the steady state

equilibrium, as seen in Euler equation (28).

Corollary 1 Suppose p ≥ 0 and b > 0. If λ = 0:

∂ (c/k)

∂ γ
> 0 ,

∂ k

∂ γ
< 0 ,

∂ c

∂ γ
< 0 .

Proof. λ = 0 ⇒ Γ < 0, by Lemma 2(ii). ||

In case individual labor productivity does not decline over lifetime (λ = 0), indi-

vidual total (accumulated and human) wealth rises over time and so does individual

consumption. The consumption smoothing effect of a rise in γ, initially leads to an

increase in average consumption, and to a rise in the propensity to consume out of

accumulated wealth in the steady state.

The effect of the consumption externality is quite different when λ > λ̃. In this

case, total individual wealth declines over time and so does individual consumption.

The consumption smoothing effect of the consumption externality, by initially raising

the individual consumption growth rate, lowers the steady state propensity to consume

out of accumulated wealth. Thus, the individual labor productivity parameter, λ,

plays a key role in explaining the impact of the consumption externality on individual

behavior.

Individual consumption growth. We now turn to the fact that — even in a steady

state — the individual consumption growth rate is (regularly) different from zero in

the PY model, while the average consumption growth rate is zero. The steady state

impact of the consumption externality on the individual consumption growth rate is

ambiguous.
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Proposition 2 (Individual Consumption Growth)

Suppose p ≥ 0, and b > 0. In the market economy, the impact of a rise in γ on the

individual consumption growth rate is ambiguous. In particular:

∂ gv

∂ γ
R 0 ⇔ [r(k) − ρ] [δ − (d + λ)] R 0 .

Depending on the GRE and the individual labor productivity parameter, the keeping-

up-with-the-Joneses externality may either raise or lower the individual consumption

growth rate.

Proof. From gv = −Γ = −λ + (b + λ)/(1 + h/k) it follows:

∂ gv

∂ γ
= −

b + λ

(1 + h/k)2

∂ (h/k)

∂ k

∂ k

∂ γ
.

From the definition of human wealth, in a steady state, we know: h/k = [b/(b +

λ)] (w/k)/[r(k)+d+λ]. Considering (13) and (14), (w/k) = (1−α)/α (b+λ)/b [r(k)+

δ]. From (26) and as r′(k) < 0, it follows: sgn[∂ (h/k)/∂ k] = sgn[δ − (d + λ)]. Since

sgn kγ = sgn[−(r(k) − ρ)], sgn [(∂ gv)/(∂ γ)] = sgn {[δ − (d + λ)] [r(k) − ρ]}. ||

Proposition 2 shows that the impact of the consumption externality on the individual

consumption growth rate depends on its impact on the GRE, which, in turn, depends

on the externality’s impact on human wealth relative to accumulated wealth (h/k).

The consumption externality exerts three effects on Γ. First, it changes accumulated

wealth, k, as discussed in Proposition 1. Second, it changes the present value of

average human wealth, h = w(k)/[r(k) + d + λ] b/(b + λ), by a change in the steady

state wage stream. Third, it changes h also by a change in the (effective) discount

rate, [r(k) + d + λ], which we will refer to as the discount rate effect. Clearly, if

Γ < 0 ⇔ r(k) > ρ, the consumption externality lowers average accumulated capital,

and thereby — due to a lower steady state wage, and a higher discount rate — also

human capital. Thus, whether the externality raises or lowers h/k is ambiguous. The

ambiguity can be clarified by expressing h/k as in (26). If the discount rate effect

dominates the other effects, that is, if the denominator in (26) is smaller than the

numerator, then h/k rises in k (as the discount rate declines in k), otherwise h/k
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decreases in k. The discount rate effect dominates the other effects if d + λ (the

rate at which human capital effectively depreciates) is smaller than δ (the rate at

which accumulated capital depreciates). Therefore, the impact of the consumption

externality on the individual consumption growth rate depends on the GRE (sign of

Γ) and on whether or not the discount rate effect dominates the other effects (sign of

[δ − (d + λ)]).

It is important to notice that a wealth effect like the discount rate effect discussed

above is absent in standard two period OLG models, in which all labor income accrues

at the beginning of life. The discount rate effect is also absent in representative agent

models. Once b = 0, the Keynes-Ramsey rule determines the steady level of state

capital, which is independent of the present value of human wealth. In the PY model,

if d = λ = 0, the discount rate effect always dominates the other effects. We therefore

have:

Corollary 2 Suppose p ≥ 0 and b > 0. If δ > d = λ = 0, the impact of a rise in γ

on the individual consumption growth rate depends on the GRE only. In particular,

∂ gv

∂ γ
R 0 ⇔ Γ ⋚ 0 .

In Weil’s (1989) model with overlapping families of infinitely-lived agents, the discount

rate effect always dominates the effect on h/k. That is, if [r(k) > ρ], a rise in γ always

lowers h/k. As a consequence, the consumption externality raises both individual

consumption growth rates and the average propensity to consume out of total wealth,

c/k.

Three remarks are in order. First, Proposition 2 shows that the initial responses

to a rise in γ, as discussed in Proposition 1, do not necessarily carry over to the

steady state. That is, for given values of the stocks k and x, a rise in γ initially

induces a consumption smoothing effect. Subsequently, k changes, and so does r(k)

and — according to Euler equation (28) — gv. Whether or not the initial consumption

smoothing effect carries over to the steady state depends on the discount rate effect

— that is, on the sign of [δ − (d + λ)].
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Second, if Γ = 0 the consumption externality has no steady state impact on the

individual consumption behavior, and if δ = d+λ, the consumption externality has no

steady state impact on the individual consumption growth rate. As discussed above,

in an intertemporal context, a household may raise consumption — thereby relative

consumption, ceteris paribus — today, at the cost of a lower consumption level in the

future. Alternatively, a household may lower (relative) consumption today, but enjoy

a higher level of consumption (relative consumption, ceteris paribus) in the future. If

Γ = 0 or δ = d + λ, the net benefits of both strategies are zero, and there is no gain

from changing one’s consumption pattern.

Third, if Γ > 0, the consumption externality was shown to rise the average steady

state consumption level. However, the rise in the consumption level does not neces-

sarily imply a lower growth rate of individual consumption. If the discount rate effect

is not dominating in this case, the consumption externality raises both the growth

rate of individual consumption and the average consumption level — a result that is

not appreciated in the previous literature.

Corollary 3 (Consumption Level versus Growth Rate)

(i) Suppose λ ∈ (λ̃, λ̄), and [δ − (d + λ)] < 0. Then a rise in γ increases both the

average steady state consumption level and the individual steady state consumption

growth rate.

(ii) If λ = 0, a rise in γ always lowers the average steady state consumption level, while

it either raises (if δ > d) or lowers (if δ < d) the individual steady state consumption

growth rate.

Proof. Part (i) follows from Propositions 1, 2 and the fact that Γ > 0 ⇔ [r(k) < ρ].

The restriction λ < λ̄ ensures dynamic efficiency. |

(ii) Lemma 2(ii) shows that Γ < 0 ⇔ [r(k) > ρ]. Propositions 1 and 2 then directly

imply the result.||

A necessary condition for (i) to hold is λ > λ̃ > 0. Only in this case, it is possible

that Γ > 0. Otherwise Γ < 0, and c and gv cannot both rise due to an increase in γ.
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Production Externality. We now turn to the effects of the learning-by-investing

externality. In particular, we consider the effects of a rise in p on the steady state

allocations in both the market economy and the command optimum.

Proposition 3 (Production Externality)

(i) Suppose b > 0 and p > 0. In the market economy, the production externality has

no steady state impact on y/k, c/k, r.

(ii) For λ < λ̄, and k > 1, the production externality unambiguously raises both the

levels of average capital and consumption.

Proof. Consider r+δ = α A k(α−1)(1−p) [b/(b+λ)]1−α. In a steady state, from (M.SS.1)

and (M.SS.3) it follows:

r + (1 − α) δ

α
= (b + λ)

[

(r + d) σ̃ − (r − ρ)

(r − ρ) + λ σ̃

]

,

which is an implicit equation for the market rate of interest: r = r(b, d, α, γ, δ, λ, ρ, σ).

That is, the market rate of interest is independent of p in a steady state. |

As r is independent of p, and (r + δ) = α (y/k), and (y/k) = (c/k) + δ, it follows that

also (y/k), thus (c/k), are independent of p in a steady state. |

As ∂ ln(y/k)/∂ k = 0, it follows that ∂ k/∂ p = (ln k) k/(1 − p), which is positive if

k > 1. Thus, if k > 1, ∂ c/∂ p = (∂ c/∂ k) ∂ k/∂ p = (∂ y/∂ k − δ) ∂ k/∂ p > 0 (by

dynamic efficiecy), and it follows that ∂ k/∂ p > 0 ⇒ ∂ c/∂ p > 0. ||

The production externality does not have an impact on the steady state rate of inter-

est. This result is very similar to what is observed in a representative agent model, in

which the steady state rate of interest is independent of the productivity param-

eter and is given by the Keynes-Ramsey rule. If b = λ = 0, the same applies

here. If, however b > 0, the rate of interest also depends on other parameters —

r = r(b, d, α, γ, δ, λ, ρ, σ) — but it is independent of p.

Consider k > 1. Intuitively, a rise in p, initially (for given k), raises r(k). Euler

equation (28) requires households to raise the individual consumption growth rate,

thereby to reduce consumption levels. Consequently, savings rise, initially. Subse-
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quently, the capital stock starts to increase and r(k) starts do decrease. Eventually,

r(k) returns to its pre-shock value.

Proposition 3 displays that the effects of a production externality are very different

from those of a consumption externality. The consumption externality affects the rate

of interest and the ratios c/k and y/k, none of which is influenced by the production

externality. If Γ < 0 (if Γ > 0), the production and consumption externalities have

opposing effects (the same effects) on the average consumption and capital levels.

Distortionary Effects of the Externalities. We next show that the effects of both

production and consumption externalities are distortionary – even with exogenous

labor supply. The starting point is a situation without a production externality (p =

0). The steady state equilibrium in the command optimum is characterized in the

appendix — by the equations (SO.SS.1) – (SO.SS.4). Let k̃ and c̃ be optimal capital

and consumption levels. The effects of externalities are considered distortionary if

they alter k/k̃.

Proposition 4 (Distortionary Effects of γ) Suppose p = 0 and b > 0. In the

market economy, if and only if Γ 6= 0, the consumption externality introduces a dis-

tortion. In particular:

Γ
∂ (k/k̃)

∂ γ
> 0 , Γ

∂ (c/c̃)

∂ γ
> 0 , Γ

∂ [(c/k)/ ˜(c/k)]

∂ γ
< 0 .

Proof. From (M.SS.1) and (SO.SS.1), r(k̃) = ρ in the command optimum, and

r(k) = ρ − σ̃ Γ in the market economy. Thus, Γ = 0 ⇒ k = k̃, and ∂ (k̃/k)/∂ γ = 0. |

Γ 6= 0 ⇒ ∂ k/∂ γ 6= 0, by Proposition 1. As r(k̃) = ρ, ∂ k̃/∂ γ = 0. Thus,

∂ (k̃/k)/∂ γ 6= 0, and the consumption externality introduces a distortion. |

Proposition 1 implies Γ ∂ k/(∂ γ) > 0, Γ ∂ c/(∂ γ) > 0, and Γ ∂ (c/k)/(∂ γ) < 0. The

proposition follows from the fact that k̃ does not change in γ. ||

The previous literature considers representative agent economies and shows that with-

out a concurrent production externality, the consumption externality does not have a

distortionary impact on the steady state allocation. In contrast, Proposition 4 demon-

strates that in overlapping generation economies, when there is a GRE (Γ 6= 0), the
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consumption externality always introduces a distortion. Clearly, in a representative

agent economy b = 0 ⇒ Γ = 0, by Lemma 2.

Households do not take into account that individual consumption causes interper-

sonal externalities. Thereby, consumption behavior gives rise to economic distortions.

Suppose Γ < 0 (suppose Γ > 0). Then the consumption externality raises (lowers)

the propensity to consume out of accumulated wealth of the market economy relative

to that of the social optimum.

In the proof, r(k̃) = ρ implies that k̃ is independent of the consumption externality.

The social planner considers the impact of c on x. In a steady state, from the point

of view of the social planner,

u(c(v), x) = u(c, x) =

[

c
1

1−γ x− γ
1−γ

]1−σ

− 1

1 − σ
=

[

c
1

1−γ c−
γ

1−γ

]1−σ

− 1

1 − σ
=

c1−σ − 1

1 − σ
,

and the optimal steady state allocation is independent of γ. It is important to em-

phasize, however, that the result offered by Proposition 4 does not depend on this

fact. In contrast, Proposition 4 holds for a wide class of specifications18, including

all (linear and multiplicative) externality specifications included in Dupor and Liu’s

(2003) general formulation (see footnote 4).

Proposition 5 (Distortionary Effects of p) Suppose b > 0, and p > 0. The pro-

duction externality causes the following (distortionary) effects:

(i) ∂ r̃/∂ p = 0,

(ii) Γ ≤ 0 ⇒ ∂ (k/k̃)/(∂ p) < 0,

(iii) ∂ [ ˜(y/k)/(y/k)]/(∂ p) < 0, and ∂ [ ˜(c/k)/(c/k)]/(∂ p) < 0.

Proof. In a steady state, r̃(k) = ρ, by (SO.SS.1). Thus, r̃(k) is independent of p. |

In a steady state, r̃ = ρ = r + σ̃ Γ, implying that also Γ is independent of p.19 Thus,

r̃ + δ

r + δ
= 1 +

σ̃ Γ

r + δ
⇒

∂

∂ p

[

r̃ + δ

r + δ

]

= 0 ,

18That is, for other specifications the consumption externality will have an impact on the optimal
allocation. However, the impact will be different (thereby distortionary) in the market economy.

19This property can also be seen as follows: Γ = λ − (b + λ)/(1 + h/k), h/k = (1 − α)/α (r +
δ)/(r + d + λ). As r is independent of p, it follows that Γ is independent of p in a steady state.
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where the right hand side follows from the fact that both Γ and r are independent of

p. Considering:

r̃ + δ

r + δ
=

α + p(1 − α)

α

[

k

k̃

](1−α)(1−p)

,

it follows:

∂ (k/k̃)

∂ p

k̃

k
= −[(1 − p)(α + p(1 − α))]−1 + ln (k/k̃)/(1 − p) .

Γ ≤ 0 ⇔ k ≤ k̃ ⇔ ln (k/k̃) ≤ 0. Thus, ∂ (k/k̃)/(∂ p) < 0. |

Finally,

r̃ + δ

r + δ
=

α + p(1 − α)

α

[

˜y/k

y/k

]

.

The left hand side does not depend on p. As the first expression on the right hand

side rises in p, the second expression essentially declines in p. As c/k = y/k + δ, the

proposition follows. ||

Part (i) of the proposition follows from the fact that the rate of interest is determined

by the Keynes-Ramsey rule in the social optimum, and it is determined by a “mod-

ified” Keynes-Ramsey rule in the PY model, in which r = r(b, d, α, γ, δ, λ, ρ, σ). A

change in p neither changes r̃ nor r.20

The production externality, however, has an impact on k/k̃. If Γ < 0, it raises k̃

by more than k. Due to the externality, market prices fail to reflect the social value

of capital accumulation, and k rises by less than optimal.21

Similarly, (for any value of Γ), ∂ [ ˜(y/k)/(y/k)]/(∂ p) < 0. A rise in p induces the

optimal k to increase. By strict concavity of the production function, it induces the

optimal y/k to decline. In contrast, in the market economy, y/k = (r + δ)/α, which

is unaffected by p, as individual firms and households do not take the social value of

capital accumulation into account. So ˜(y/k) declines, while (y/k) is constant in p.

The same reasoning holds for c/k, as c/k = y/k − δ.

20As a consequence, the production externality also does not affect the individual consumption
growth rate in a steady state.

21Theoretically, if Γ > 0, and large enough, the production externality could possibly raise k/k̃,
given ln(k/k̃) > [α + p(1 − α)]−1.
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Corollary 4 Suppose the production externality lowers k/k̃. If Γ > 0, the distor-

tionary impact of the production externality is weakened by the consumption external-

ity.

Proof. Define the elasticity of k/k̃ with respect to p by:

Ep =
∂ (k/k̃)

∂ p

/

k/k̃

p
< 0 ⇒

∂ (−Ep)

∂ γ
= −

p

1 − p

k̃

k

∂ (k/k̃)

∂ γ
< 0 ,

where the last inequality follows from the fact that k/k̃ rises in γ when Γ > 0. ||

The consumption externality raises k, while the production externality raises k̃ relative

to k. In this case, the consumption externality raises efficiency by introducing an

additional distortion. This case, however, can only happen if λ > 0.

4 Conclusions

This paper addresses three questions. First, under which conditions does a consump-

tion externality change household behavior? Second, does a consumption externality

raise (as would be expected) or lower the propensity to consume? Third, under which

conditions will the responses to externalities be distortionary, and will a consumption

externality strengthen or weaken a production externality?

If the wealth of a new generation deviates from average wealth, the PY model

exhibits a generation replacement effect (GRE), which opens a channel for the exter-

nality to have an impact on consumption and capital. In the presence of a GRE, the

steady state capital stock is not determined by the Keynes-Ramsey rule, but by a

modified rule which takes the GRE into account. Consumption externalities influence

the GRE and thus have an impact on behavior whenever there is a GRE.

When the GRE is absent, a consumption externality does not change behavior.

The GRE is absent in two situations: (i) in a representative agent economy, in which

there is no inflow of new generations, (ii) when the wealth of new generations equals

average wealth. The latter, however, can happen only when labor productivity de-

clines with age.
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Wether or not a consumption externality raises or lowers the propensity to consume

depends on the sign of the GRE. If the GRE is negative (low productivity decline),

household raise their propensity to consume due to the consumption externality. If

the GRE is positive, however, households lower their propensity to consume. In this

case, they benefit more from higher consumption levels in the future as compared to

a higher consumption level in the present. In the absence of a GRE, households have

no incentive to alter their consumption stream due to the consumption externality.

This fact reconciles the results derived from representative agent models with those

from an overlapping generations model.

Along the same line, the steady state effects of a consumption externality were

shown to be distortionary only in the presence of a GRE. The nature of the distortion,

however, depends on the sign of the GRE. If the rate at which labor productivity

declines is low, the consumption and production externalities reinforce each other.

If, however, the rate at which labor productivity declines is high, the consumption

externality was shown to raise efficiency by fostering capital accumulation.

These results have optimal fiscal policy implications. The results support argu-

ments in favor of tax reform based on the argument that consumption externalities

introduce distortions. Given the ambiguous nature of the effects of consumption ex-

ternalities, however, it is less than clear whether or not the tax base should be shifted

towards or away from consumption. That is, given the ambiguity of the results, it

turns out to be an important matter to assess, empirically, the sign of the GRE.

We note the following limitations in this analysis. Households are homogeneous

with respect to initial endowments and preferences. Real life consumption externali-

ties, however, are likely to be related to comparisons within age-groups (as opposed to

economy-wide comparisons) or to comparisons within groups of consumption goods

(as opposed to considering the average consumption level only). These limitations

call for the introduction of heterogeneity in a non-trivial way.

Notwithstanding these limitations, I hope this study helps to clarify effects of

externalities, and it will contribute to the future debate of the effects of externalities
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in dynamic frameworks.

Appendix

A.1 Derivation of Individual Consumption. For any individual, consider the

current value Hamiltonian:22

Hc[c(v, τ), a(v, τ), µa(τ), τ ] = u(c(v, τ), x(τ))+µa(τ)[(r(τ)+d) a(v, τ)+w(v, τ)−c(v, τ)] .

For all τ ≥ t, c(v, τ) is chosen such as to maximize expected utility (4), subject to:

c(v, τ) ≥ 0 ,

ȧ(v, t) = (r(τ) + d) a(v, τ) + w(v, τ) − c(v, τ) ,

a(v, t) given , lim
τ→∞

µa(τ) e−(ρ+d)τ a(v, τ) = 0 .

From ∂ Hc/∂ c(v, τ) = 0 and −∂ Hc/∂ a(v, τ) = µ̇a − (ρ + d) µa, it follows:

gv(t) ≡
ċ(v, τ)

c(v, τ)
=

[r(τ) − ρ](1 − γ)

(σ − γ)
+ γ

σ − 1

(σ − γ)

ẋ(τ)

x(τ)
,

where no individual considers its impact of individual consumption on the reference

level. Thus,

c(v, τ) = c(v, t) e(σ−γ)−1
∫ τ

t
[(r(s)−ρ)(1−γ)+γ(σ−1) gx(s)] d s .

Combining this equation with the intertemporal budget constraint (17), and consid-

ering the definition of ∆(t) in (18) yields: c(v, t) = ∆−1(t) [a(v, t) + h(t)] . ||

A.2 Command Optimum. The current value Hamiltonian for the command op-

22Notice that γ < σ, which is implied by assumptions (A.2) and (A.3), is sufficient for the Hamil-
tonian to be concave in the decision and state variables.
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timum is given by:

Hc[c(v, τ), c(τ), x(τ), k(τ), µx(τ), µc(τ), µk(τ), τ ] =
∫ τ

−∞

b u[c(v, τ), x(τ)] e−b(τ−v) d v

+ µc(τ) [c(τ) − b

∫ τ

−∞

e−b (τ−v) c(v, τ) d v ]

+ µk(t)

[

A

[

b

b + λ

]1−α

kα+p(1−α) − c(t) − δ k(t)

]

+ µx(t) ϕ[c(t) − x(t)] , (29)

where c(v, τ) and c(τ) are decision variables, x(.), k(.) are state variables, and µx(.)

and µk(.) are costate variables. Variable µc(.) is the Lagrange multiplier associated

with the consumption constraint. In the following, I omit time indexes and denote

individual consumption by c(v):

uc(.) + ϕµx = µk ,

r̃ = ρ −
µ̇k

µk

,

ux(.)

µx

− ϕ = ρ −
µ̇x

µx

,

lim
τ→∞

e−ρ τ µx x = lim
τ→∞

e−ρ τ µk k = 0 .

From (3), we know: ux(.)/uc(.) = −γ c(v)/x. Thus, ux(.)/µx = −γc(v)/x [(1−ϕµ)/µ],

where µ ≡ µx/µk. Together with u̇c + ϕ µ̇x = µ̇k, the differential equations describing

behavior in the command optimum follow. ||

A.3 Figure 1. The figure displays two demarcation lines in (k, c) phase space: k̇ = 0,

and ċ = 0.

The k̇ = 0 line. We define the graph of k̇ = 0 by the set kk ≡ {(k, c) ∈ R
2
+ | c =

y(k) − δ k}. As y(0) = 0, (0, 0) ∈ kk. Next, ∂ c/∂ k > 0 as long as r̃(k) > 0, and

∂ c/∂ k < 0 when r̃(k) < 0. As y(k) is strictly concave, and (−δ k) is weakly concave,

y(k) − δ k, that is, the k̇ = 0 line, is strictly concave. The capital stock for which

r̃(k) = 0 is denoted the “golden rule” capital stock in Figure 1: r(kGR) = 0. Finally,

for the maximal attainable stock of capital, kmax, it holds: y(kmax) = δ kmax.
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For any given (k, c), a rise in λ clearly lowers y and tilts the k̇ = 0 line clockwise

down. It lowers both kGR and kmax.

The ċ = 0 line. From (M.SS.1) it follows:

c = k
(b + λ)[(r + d) σ̃ − (r − ρ)]

r − [ρ − λ σ̃]
. (30)

We define the graph of ċ = 0 by the set: cc ≡ {(k, c) ∈ R
2
+ | c = k (b+λ)[(r+d) σ̃−(r−ρ)]

r−ρ+λ σ̃
}.

As k approaches zero, r(k) goes to infinity, and [r(k) k] approaches zero. We therefore

find: (0, 0) ∈ cc.23

Next, in (30), we find an asymptote at: r(k) = ρ− λ σ̃. For (k, c) ≫ 0, I we know

r(k) > ρ − λ σ̃. To the left of the asymptote, the slope of the ċ = 0 curve is positive:

∂ c

∂ k
|ċ=0 =

(b + λ)[(r + d) σ̃ − (r − ρ)]

r − [ρ − λ σ̃]

− k
(b + λ) σ̃

[r − ρ + λ σ̃]2
[ρ + d − (σ − 1)/(1 − γ) λ] r′(k) > 0 ,

where the positive sign follows from two facts. First, r′(k) < 0. Second, [ρ + d− (σ −

1)/(1 − γ) λ] > 0. To see the latter, consider the sign restriction in (9): ρ + d − (σ −

1)/(1 − γ) λ > ρ + d − (σ − 1)/(1 − γ) ρ (1 − γ)/(σ − γ) = d + ρ (1 − γ)/(σ − γ) > 0.

By the fact that there is an asymptote, the positive slope increases in k for 0 ≤ k <

r−1(ρ − λ σ̃).

We finally discuss the impact of (a change in) λ on the ċ = 0 locus. A rise in λ

tilts the ċ = 0 line clockwise. To see this, consider (30):

∂ c

∂ λ
|{k fixed} = k

ρ + r(σ̃ − 1) + σ̃ d

σ̃[r − ρ + λ σ̃]2
(r − ρ − b σ̃) < 0 .

It remains to show that (r−ρ−b σ̃) < 0. In a steady state, I claim that r(k) < ρ+b σ̃.

Suppose, to the contrary, r(k) ≥ ρ + b σ̃. Then there exists some ε ≥ 0 such that:

23As (0, 0) ∈ cc and (0, 0) ∈ kk, there exists a trivial steady state.

34



r(k) = ρ + b(1 + ε) σ̃, or, [r(k) − ρ]/σ̃ = b(1 + ε). From (M.SS.1) and (M.SS.3):

f(k)

k
− δ =

(b + λ)[r + d − (r − ρ)/σ̃]

λ + (r − ρ)/σ̃

=
b + λ

λ + b(1 + ε)
[f ′(k) − δ + d − b − ε b]

=
b + λ

λ + b(1 + ε)
[f ′(k) − δ − ε b] ≤ [f ′(k) − δ] ,

where the third line follows from b = d. The inequality, however cannot possibly be

true by strict concavity of the production function. Thus, r(k) < ρ + b σ̃. ||

A.4 Optimal Steady State. We characterize an optimal BGP (steady state) by

ċ = ẋ = k̇ = µ̇ = 0. From (SO.1)–(SO.4) it follows:

r̃ = ρ , (SO.SS.1)

x = c , (SO.SS.2)

0 = A

[

b

b + λ

]1−α

kα+p(1−α) − c − δ k , (SO.SS.3)

0 =

[

r̃ + ϕ + γ
c

x

1 − µϕ

µ

]

, (SO.SS.4)

where c(v) = c. According to (SO.SS.1)–(SO.SS.4), the steady state values of c and

k do not depend on both x and µ. ||
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