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Abstract

The hawk–dove game admits two types of equilibria: an asymmetric pure equi-

librium in which players in one population play “hawk” and players in the other

population play “dove,” and an inefficient symmetric mixed equilibrium, in which

hawks are frequently matched against each other. The existing literature shows

that populations will converge to playing one of the pure equilibria from almost

any initial state. By contrast, we show that plausible sampling dynamics, in which

agents occasionally revise their actions by observing either opponents’ behavior or

payoffs in a few past interactions, can induce the opposite result: convergence to

one of the inefficient mixed stationary states.

Keywords: Chicken game, learning, evolutionary stability, payoff sampling dy-

namics, action sampling dynamics, binomial distributions. JEL codes: C72, C73.

1 Introduction

The hawk–dove game is widely used to study situations of conflict between strategic

participants.1 As a simple motivating example, consider a situation in which a buyer
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1A few examples of the applications of the hawk–dove game (also known as the chicken game; see,
e.g., Rapoport and Chammah, 1966; Aumann, 1987) are: provision of public goods (Lipnowski and
Maital, 1983), nuclear deterrence between superpowers (Brams and Kilgour, 1987; Dixit et al., 2019),
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Table 1: Payoff Matrix of the Standard Hawk–Dove Game (g ∈ (0, 1))

Player 2

h d

Player 1
h 0, 0 1 + g, 1 − g

d 1 − g, 1 + g 1, 1

(Player 1) and a seller (Player 2) bargain over the price of an asset (e.g., a house). Each

player has two possible bargaining strategies (actions): insisting on a more favorable

price (referred to as being a “hawk”), or agreeing to a less favorable price in order to

close the deal (being a “dove”). The payoffs of the game are presented in Table 1. Two

doves agree on a price that is equally favorable to both sides, and obtain a relatively high

payoff, which is normalized to 1. A hawk obtains a favorable price when being matched

with a dove, which yields her an additional gain of g ∈ (0, 1), at the expense of her

dovish opponent.2 Finally, two hawks obtain the lowest payoff of 0, due to a substantial

probability of bargaining failure.3 Observe that large values of g (close to 1) correspond to

environments that are advantageous to hawks (i.e., being a hawk yields a higher expected

payoff against an opponent who might play either action with equal probability), small

values of g correspond to environments that are advantageous to doves, and values of g

that are close to 0.5 correspond to approximately balanced environments.

The hawk–dove game admits three Nash equilibria: two asymmetric pure equilibria,

and an inefficient symmetric mixed equilibrium. In the pure equilibria (in which one of

the players plays hawk while the opponent plays dove), all conflicts are avoided at the cost

of inequality, as the payoff of the hawkish player is substantially higher than that of the

dovish opponent. By contrast, in the symmetric mixed equilibrium both players obtain

the same expected payoff, yet this payoff is relatively low due to the positive probability

of a conflict arising between two hawks.

A natural question is to ask which equilibrium is more likely to obtain. Standard game

industrial disputes (Bornstein et al., 1997), bargaining problems (Brams and Kilgour, 2001), conflicts
between countries over contested territories (Baliga and Sjöström, 2012, 2020), and task allocation among
members of a team (Herold and Kuzmics, 2020).

2Our formal model studies a broader class of generalized hawk–dove games, in which the gain of a
hawkish player might differ from the loss of the dovish opponent (as shown in Table 2 in Section 3).

3Our one-parameter payoff matrix is equivalent to the commonly used two-parameter payoff matrix
(Maynard-Smith, 1982), in which a dove obtains V

2
against another dove and 0 against a hawk, and a

hawk obtains V −C
2

against another hawk and V against a dove. Specifically, our one-parameter matrix

is obtained from the two-parameter matrix by the affine transformation of adding the constant C−V
2

and

dividing all payoffs by C
2

, followed by substituting g ≡ V
C

.
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theory is not helpful in answering this question, as all these Nash equilibria satisfy all the

standard refinements (e.g., perfection). By contrast, the dynamic (evolutionary) approach

can yield sharp predictions (for textbook expositions, see Weibull, 1997; Sandholm, 2010).

Revision dynamics Consider a setup in which pairs of agents from two infinite pop-

ulations are repeatedly matched at random times (each such match of an agent from

population 1 is against a new opponent from population 2).4 Agents occasionally die

(or, alternatively, agents occasionally receive opportunities to revise their actions). New

agents observe some information about the aggregate behavior and the payoffs, and use

this information to choose the action they will play in all future encounters. We are

interested in characterizing the stable rest points of such revision dynamics, which can

be used as an equilibrium refinement.

Most existing models assume that the revision dynamics are monotone (also known

as sign-preserving) with respect to the payoffs: the frequency of the strategy that yields

the higher payoff (among the two feasible strategies) increases. A key result in evolution-

ary game theory is that in a hawk–dove game, all monotone (two-population) revision

dynamics converge to the asymmetric pure equilibria from almost any initial state (hence-

forth, global convergence; see Maynard-Smith and Parker, 1976, for the classic analysis,

Maynard-Smith, 1982, for the textbook presentation, Sugden, 1989, for the economic im-

plications, and Oprea et al., 2011, for the general dynamic result.) Thus, the existing

literature predicts that an efficient convention will emerge in which trade always occurs

and most of the surplus goes to one side of the market. Casual observation suggests

that this prediction might not fit well the behavior in situations such as the motivating

example, in which the surplus of trade is typically divided relatively equally between the

two sides of the market, and in which bargaining frequently fails.

In many applications, precise information about the aggregate behavior in the pop-

ulation may be difficult or costly to obtain. In such situations, new agents have to

infer the aggregate behavior in the population from a small sample of other players. In

what follows, we study two plausible inference procedures, both of which violate mono-

tonicity. The first procedure is the action-sampling dynamics (also known as sampling

4Our paper focuses on two-population dynamics in which players condition their play on their role in
the game. By contrast, in a one-population model, players cannot condition their play on their role in
the game. The predictions of the one-population model are briefly discussed in Remark 1.
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best-response dynamics; Sandholm, 2001; Osborne and Rubinstein, 2003). In these dy-

namics, each new agent observes the behavior of k random opponents, and then adopts

the action that is a best reply to her sample (with an arbitrary tie-breaking rule).

In some applications, new agents may not be able to observe opponents’ actions,

or they may lack information about the payoff matrix. Plausible revision dynamics in

such situations are the payoff-sampling dynamics (also known as best experienced payoff

dynamics; Osborne and Rubinstein, 1998; Sethi, 2000). In these dynamics, each new agent

observes the payoffs obtained by incumbents of her own population in k interactions in

which these incumbents played hawk, and in k interactions in which these incumbents

played dove. Following these observations, the new agent adopts the action that yielded

the higher mean payoff.

We analyze both sampling dynamics in the hawk–dove game. In our analysis, we

allow agents to have heterogeneous sample sizes (i.e., each new agent is endowed with a

sample size of k that is randomly chosen from an exogenous distribution). It is relatively

straightforward to show that these dynamics admit at least three stationary states: two

asymmetric pure states, and an inefficient symmetric state.5, 6

Global convergence to mixed states We show that sampling dynamics can yield

qualitatively different results compared to monotone dynamics in the hawk–dove game.

Specifically, our first main result (Theorem 1 and Corollary 3) presents a simple condi-

tion for sampling dynamics to induce the opposite result (relative to monotone dynam-

ics), namely, convergence to one of the mixed stationary states from any interior state.

Roughly speaking, this happens iff the following three conditions hold: (1) sufficiently

many agents have small sample sizes, (2) the population includes some agents with rel-

atively large sample sizes (though still below a threshold that is increasing in |g − 0.5|),
and (3) g is not too close to 0.5.

The key to this result is to characterize when populations that start near one of the

pure equilibria get away from this equilibrium. Assume that initially almost all (1 − ǫ)

buyers are hawks, and almost all (1−ǫ) sellers are doves. Consider a new agent who bases

her decision on a sample of k actions. The sample will have a single occurrence of the

5Although the symmetric stationary state does not coincide with the symmetric Nash equilibrium,
they share similar qualitative properties: namely, symmetry between the two populations, and inefficiency
induced by frequent matching of two hawks.

6In some cases, the dynamics admit also asymmetric mixed states, as is demonstrated in Section 7.
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rare action with a probability of about k · ǫ (while the probability of having two or more

occurrences of the rare action is negligible). The presence of agents with small samples is

necessary for moving away from the pure equilibrium, because for dove-favorable games

with g < 0.5 a single occurrence of a rare action can induce new sellers to be hawks only

if their samples are small (similarly, only new buyers with small samples change their

behavior after a single occurrence of a rare action in hawk-favorable games with g > 0.5).

In dove-favorable games, a single occurrence of a rare action can induce a new buyer to

be a dove even for relatively large sample sizes up to a threshold, where this threshold is

larger the farther g is from 0.5 (and the same holds for inducing new sellers to be hawks

in hawk-favorable games). Having a larger sample size k (up to the above-mentioned

threshold) helps to increase the frequency in which rare actions are observed, which

explains why having a sufficiently large expected sample size (Condition (2)) is necessary

for moving away from the pure equilibrium. Finally, when the game is balanced between

the two actions (i.e., g is close to 0.5), a single occurrence of a rare action can change

the behavior of a new agent (in both populations) only if her sample is relatively small,

but in this case, the total frequency in which rare actions occur in the samples might be

too small. This is why having a less balanced game (i.e., condition (3) of g not being too

close to 0.5) induces the population to move away from a pure equilibrium.

Heterogeneous populations and stable symmetric mixed states Our next result

focuses on the action-sampling dynamics. We show that the behavior of the population

is qualitatively different for homogeneous populations (in which all agents have the same

sample size) than for heterogeneous populations. Specifically, we show (Theorem 2) that

all homogeneous populations (with a sample size of at least 2) converge from almost all

initial states to one of the pure states under the action-sampling dynamics. By contrast,

Theorem 3 shows that the symmetric stationary mixed state (in which both populations

obtain the same expected payoff, and bargaining frequently fails) is asymptotically stable

in a large class of heterogeneous populations in which some agents have relatively small

samples, while the remaining agents have large samples. Interestingly, the symmetric

mixed state is asymptotically stable even in populations in which most agents perfectly

observe the opposing population’s true distribution of play, while a small minority relies

on small samples (provided that g is sufficiently far from 0.5).
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The argument that the symmetric stationary state is unstable in homogeneous pop-

ulations and stable in heterogeneous populations is sketched as follows. A symmetric

stationary state under the action-sampling dynamics is characterized by solving the

equation p = Pr(X(k, p) ≤ m), where X(k, p) is a binomial random variable and

m ∈ {0, 1, . . . , k − 1}. This is so because the rate of hawks (p) among the new agents

is equal to the probability that the number of the opponents’ hawkish actions observed

by a new agent (which has a binomial distribution) is below some threshold (m). One

can show that this solution is close to the peak of the unimodal density of X(k, p), which

implies that a small perturbation in p has a strong effect on Pr(X(k, p) ≤ m), and thus

it substantially changes the new agents’ behavior, which takes the population away from

the symmetric state. By contrast, in heterogeneous populations the stationary state falls

in between the peaks of the two distributions, which implies that small perturbations

have a weak effect on the agents’ behavior.

Our final result (Theorem 4) shows that the conditions for the stability of the symmet-

ric mixed state are broader under the payoff-sampling dynamics, and that populations

with relatively small sample sizes (either homogeneous or heterogeneous) can have an

asymptotically stable symmetric mixed state.

Taken together, our results show that when some agents have limited information

about the aggregate behavior of the population (which seems plausible in various real-life

applications, such as the motivating example of buyers and sellers of houses), then an

egalitarian, yet inefficient, convention may arise in which bargaining frequently fails.

Our proofs rely on deriving new properties of binomial distributions, which may be of

independent interest. One such new property (Proposition 4) is that there do not exist

any two different probabilities p 6= q ∈ (0, 1) such that the probability of obtaining at

most m successes out of k trials is q when the success probability in each trial is p, and

at the same time, the probability of obtaining at most m successes out of k trials is q

when the success probability in each trial is p.

Structure Section 2 presents the related literature. Our model is described in Section

3. Section 4 presents a “complete” characterization for global convergence to one of the

mixed stationary states. In Section 5 we show that homogeneous populations converge

to pure stationary states under the action-sampling dynamics. Section 6 presents various
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sufficient conditions for the stability of the symmetric stationary state. The analytic

results of the paper are supplemented by a numeric analysis in Section 7. We conclude

in Section 8. Formal proofs are presented in the appendix. Appendix A.1 describes our

results for binomial distributions.

2 Related Literature

Related theoretical literature The action-sampling dynamics were pioneered by

Sandholm (2001) and Osborne and Rubinstein (2003). Oyama et al. (2015) applied

these dynamics to prove global convergence results in supermodular games. Recently,

Heller and Mohlin (2018) studied the conditions on the expected sample size that implies

global convergence for all payoff functions and all sampling dynamics.7

Salant and Cherry (2020) (see also Sawa and Wu, 2021) generalized the action-

sampling dynamics by allowing new agents to use various procedures to infer from their

samples the aggregate behavior of the opponents (in addition to allowing for payoff hetero-

geneity in the population). Salant and Cherry pay special attention to unbiased inference

procedures in which the agent’s expected belief about the share of opponents who play

hawk coincides with the sample mean. Examples of unbiased procedures are maximum

likelihood estimation, beta estimation with a prior representing complete ignorance, and

a truncated normal posterior around the sample mean. In our setup, the payoffs are

linear in the share of agents who play hawk, which implies that the agent’s perceived

best reply depends only on the expectation of her posterior belief. This implies that our

results hold for any unbiased inference procedure.

The present paper, similar to the papers cited above, studies deterministic dynamics

in infinite populations. When there is convergence to a stable stationary state in such

dynamics, the convergence is fast (Oyama et al., 2015). By contrast, stochastic evolution-

ary models (see, e.g., the seminal contribution of Young, 1993, and the recent hawk–dove

application in Bilancini et al., 2021), which are also based on revising agents observing

a finite sample of opponents’ actions, focus on the very long-run behavior of stochastic

processes when players’ choice rules include the possibility of rare “mistakes” (sufficient

7Hauert and Miekisz (2018) use the term “sampling dynamics” to refer to a variant of the replicator
dynamics, in which when an agent samples another agent and mimics the other agent’s behavior, it is
more likely that these two agents will be matched with each other. This is less related to our use of the
notion of “Sampling dynamics”, which is in line with the literature cited in the main text.
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conditions for stochastic evolutionary models to yield fast convergence are studied in

Kreindler and Young, 2013; Arieli et al., 2020).

The payoff-sampling dynamics were pioneered by Osborne and Rubinstein (1998) and

Sethi (2000) and later generalized in various respects by Sandholm et al. (2020). It has

been used in a variety of applications, including price competition with boundedly rational

consumers (Spiegler, 2006), common-pool resources (Cárdenas et al., 2015), contributions

to public goods (Mantilla et al., 2018), centipede games (Sandholm et al., 2019), finitely

repeated games (Sethi, 2021) and the prisoner’s dilemma (Arigapudi et al., 2021). The

existing literature assumes that all agents have the same sample size.

A methodological contribution of the present paper is in extending the setup of payoff-

sampling dynamics to analyze heterogeneous populations in which new agents differ in

their sample sizes, and this heterogeneity leads to qualitatively new results.

It is well known that mixed stationary states in multiple-population games cannot be

asymptotically stable under the commonly used replicator dynamics (see, e.g., Sandholm,

2010, Theorem 9.1.6). By contrast, we show that both classes of sampling dynamics,

which are plausible in various real-life applications, can induce asymptotically stable

mixed stationary states in a two-population hawk–dove game.

Related experimental literature Selten and Chmura (2008) experimentally tested

the predictive power of various solution concepts in two-action, two-player games with

a unique completely mixed Nash equilibrium. They show that both the payoff-sampling

equilibrium and the action-sampling equilibrium outperform the predictions of both the

Nash equilibrium and the quantal-response equilibrium.

Recently, Stephenson (2019) tested the predictive validity of various evolutionary

models in coordinated attacker–defender games.8 Stephenson’s experimental design is

very favorable for monotone dynamics because each participant is shown the exact (population-

dependent) payoff that would be obtained by each action at each point in time. Never-

theless, subjects frequently violate monotonicity: 10%–20% of the subjects switch from

higher-performing strategies to lower-performing strategies.

The key prediction of monotone dynamics for hawk–dove games (in which agents

8Experiments that directly test the dynamic predictions of evolutionary game theory are quite scarce.
Two notable exceptions are the experiments showing the good fit of the dynamic predictions in the
rock–paper–scissors game (Cason et al., 2014; Hoffman et al., 2015).
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from one population are randomly matched with agents from another population) is

experimentally tested in Oprea et al. (2011) and Benndorf et al. (2016). Both experiments

apply an interface that is favorable to monotonicity (i.e., each participant is shown the

exact population-dependent payoff of each action). Both experiments show that the

prediction of monotone dynamics holds in this setup, and that the populations converge

to an asymmetric pure equilibrium in which one population (say, the buyers) plays hawk

and the other population (say, the sellers) plays dove.

Consider a revised experimental design, where an agent observes only the behavior of

her own opponent, rather than the aggregate behavior of the opposing population. An

interesting testable prediction of our model is that in this experimental design, the popu-

lations are likely to converge to the symmetric stationary state in the relevant parameter

domain (in particular, when g is not too far from 1; see Figure 7.1).9

3 Model

3.1 The Hawk–Dove Game

Let G = {A, u} denote a symmetric two-player hawk–dove game, where:

1. A = {h, d} is the set of actions of each player, and

2. u : A2 → R is the payoff function of each player.

Let i ∈ {1, 2} be an index referring to one of the players, and let j = {1, 2} \ {i} be an

index referring to the opponent. We interpret action h as the hawkish (more aggressive)

action and d as the dovish action. The payoff matrix u(·, ·) of a generalized hawk–dove

game is given in Table 2. When both agents are dovish, they obtain a relatively high

payoff, which is normalized to 1. When both agents are hawkish, they obtain their lowest

feasible payoff, which is normalized to 0. Finally, when one of the players is hawkish

and her opponent is dovish, the hawkish player gains g ∈ (0, 1) (relative to the payoff 1

obtained by two dovish players), while her dovish opponent loses10 l ∈ (0, 1). The game

9Benndorf et al. (2016, 2021) studied a more general setup in which each participant in each round
is randomly matched with an opponent from the other population with probability κ ∈ (0, 1), and is
randomly matched with an opponent from her own population with the remaining probability 1 − κ.
Our theoretical predictions fit the setup of κ close to one.

10Herold and Kuzmics (2020) allow a broader domain in which the assumption of g, l ∈ (0, 1) is replaced
with the weaker assumption of g > 0, l < 1, and l + g > 0. All of our results hold in this extended setup.
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Table 2: Payoff Matrix of a Generalized Hawk–Dove Game g, l ∈ (0, 1)

Player 2
h d

Player 1
h 0, 0 1 + g, 1 − l

d 1 − l, 1 + g 1, 1

admits three Nash equilibria: two asymmetric pure Nash equilibria: (h, d) and (d, h), and

a symmetric mixed Nash equilibrium in which each player plays h with probability g

1+g−l
,

and obtains a relatively low expected payoff of (1+g)(1−l)
1+g−l

< 1.

An important special subclass is the standard hawk–dove games, in which g = l (see

Table 1); i.e., the gain of the hawkish player is equal to the loss of her dovish opponent.

3.2 Evolutionary Process

We assume that there are two unit-mass continuums of agents (e.g., buyers and sellers)

and that agents in population 1 are randomly matched with agents in population 2.

Aggregate behavior in the populations at time t ∈ R
+ is described by a state p (t) =

(p1 (t) , p2 (t)) ∈ [0, 1]2, where pi (t) represents the share of agents playing the hawkish

action h at time t in population i. We extend the payoff function u to states (which

have the same representation as mixed strategy profiles) in the standard linear way.

Specifically, u(pi, pj) denotes the average payoff of population i (in which a share pi of

the population plays h) when randomly matched against population j (in which a share

pj plays h). With a slight abuse of notation, we use d (resp., h) to denote a degenerate

population in which all of its agents play action d (resp., h). A state p = (p1, p2) is

symmetric if p1 = p2. A state p = (p1, p2) is mixed (or interior) if p1, p2 ∈ (0, 1).

Agents occasionally die and are replaced by new agents (equivalently, agents occa-

sionally receive opportunities to revise their actions). Let δ > 0 denote the death rate

of agents in each population, which we assume to be independent of the currently used

actions. It turns out that δ does not have any effect on the dynamics, except to multiply

the speed of convergence by a constant. The evolutionary process is represented by a

continuous function w : [0, 1]2 → [0, 1]2, which describes the frequency of new agents in

each population who adopt action h as a function of the current state. That is, wi (p)

describes the share of new agents of population i who adopt action h, given state p.

Thus, the instantaneous change in the share of agents of population i that play hawk is

10



given by ṗi = δ · (wi (p) − pi) .

Remark 1. Our two-population dynamics fit situations in which each player can condition

her play on her role in the game (being Player 1 or Player 2). Common examples of such

situations are (1) when sellers are matched with buyers, as in the motivating example,

and (2) when each player observes if she has arrived slightly earlier or slightly later at

a contested resource (Maynard-Smith, 1982). The two-population dynamics essentially

induce the same results as one-population dynamics over a larger game with 2 × 2 “role-

conditioned” actions (see, e.g., Weibull, 1997, end of Section 5.1.1): being a hawk in both

roles, being a dove in both roles, being a hawk as Player 1 and a dove as Player 2 (the

“bourgeois” strategy of Maynard-Smith, 1982), and being a hawk as Player 2 and a dove

as Player 1.

By contrast, in one-population dynamics of the original two-action game, an agent

cannot condition her play on her role. It is well known that all monotone one-population

dynamics converge to the unique mixed Nash equilibrium in hawk–dove games (see,

e.g., Weibull, 1997, Section 4.3.2). It is relatively straightforward to establish that one-

population sampling dynamics lead to qualitatively similar results (convergence is to a

somewhat different interior state than in the mixed Nash equilibrium, but the comparative

statics with respect to the payoff parameters remain similar).

Monotone Dynamics The most widely studied dynamics are those that are monotone

with respect to the payoffs. A dynamic is monotone if the share of agents playing an

action increases iff the action yields a higher payoff than the alternative action.11,12

Definition 1. The dynamic w : [0, 1]2 → [0, 1]2 is monotone if for any player i, any

interior pi ∈ (0, 1), and any pj ∈ [0, 1]: ṗi > 0 ⇔ u (h, pj) > u (d, pj) .

Oprea et al. (2011) showed that under monotone dynamics, from almost any initial

state, the populations converge to one of the two asymmetric pure equilibria in which

one population always plays h and the other population always plays d (generalizing the

seminal analysis of Maynard-Smith and Parker, 1976).

11In games with more than two actions, there are various definitions that capture different aspects of
monotonicity. All these definitions coincide for two-action games. In particular, Definition 1 coincides in
two-action games with Weibull’s (1997, Section 5.5) textbook definitions of payoff monotonicity, payoff
positivity, sign preserving, and weak payoff positivity.

12The best-known example of payoff monotone dynamics is the standard replicator dynamic (Taylor,
1979), which is given by ṗi = wi (p) − pi = pi (u (h, pj) − u (pi, pj)) .
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3.3 Sampling Dynamics

In what follows, we study two plausible nonmonotone dynamics, in which new agents

base their choice on inference from small samples.

Distribution of sample sizes We allow heterogeneity in the sample sizes used by

new agents. Let θ ∈ ∆ (Z+) denote the distribution of sample sizes of new agents.

A share of θ (k) of the new agents have a sample of size k. Let supp (θ) denote the

support of θ, let max(supp(θ)) denote the maximal sample size in the support of θ, and

let max(supp((θ)) = ∞ if θ’s support is unbounded. If there exists some k, for which

θ(k) = 1, then we use k to denote the degenerate (homogeneous) distribution θ ≡ k.

Definition 2. An environment is a tuple E = (g, l, θ) where g, l ∈ (0, 1) describe the

underlying hawk–dove game, and θ ∈ ∆ (Z+) describes the distribution of sample sizes.

Action-sampling dynamics The action-sampling dynamics (Sandholm, 2001) fit sit-

uations in which agents do not know the exact distribution of actions being played in the

opponent’s population, but know the payoffs of the underlying game. Agents estimate

the unknown distribution of actions by sampling a few opponents’ actions. Specifically,

each new agent with sample size k (henceforth, a k-agent) samples k randomly drawn

agents from the opponent’s population and then adopts the action that is the best reply

against the sample. To simplify notation, we assume that in case of a tie, the new agent

plays action d. Our results are qualitatively the same for any tie-breaking rule.

Let X(k, pj) ∼ Bin (k, pj) denote a random variable with binomial distribution with

parameters k (number of trials) and pj (probability of success in each trial), which is

interpreted as the number of h-s in the sample. Observe that the sum of payoffs of

playing action h against the sample is (1 + g) · (k − X(k, pj)) and the sum of payoffs of

playing action d against the sample is (k − X(k, pj)) + X(k, pj) · (1 − l) = k − lX(k, pj).

This implies that action h is the unique best reply to a sample of size k iff (1 +

g)(k − X(k, pj) > k − lX(k, pj) ⇔ X(k,pj)

k
< g

1+g−l
. This, in turn, implies that the

action-sampling dynamic in environment (g, l, θ) is given by

wA
θ (pj) ≡ wA

i (p) =
∑

k∈supp(θ)

θ(k) · Pr

(

X (k, pj)

k
<

g

1 + g − l

)

. (3.1)
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Payoff-sampling dynamics The payoff-sampling dynamics (Osborne and Rubinstein,

1998) fit situations in which agents either do not know the payoff matrix or do not have

feedback about the actions being played in the opponent’s population. Specifically, a

new k-agent observes for each of her feasible actions the mean payoff obtained by playing

this action in k interactions (with each play of each action being against a newly drawn

opponent), and then chooses the action whose mean payoff was highest. One possible

interpretation for these observations is that each new k-agent tests each of the available

actions k times, and then adopts for the rest of her life the action with the highest mean

payoff during the testing phase. As above, we assume that a tie induces a new agent to

play action d (and the results are qualitatively the same for any tie-breaking rule).

We refer to the sample against which action h (resp., d) is tested as the h-sample

(resp., d-sample). Let X(k, pj), Y (k, pj) ∼ Bin (k, pj) denote two iid random variables

with a binomial distribution with parameters k and pj. Random variable X(k, pj) (resp.,

Y (k, pj)) is interpreted as the number of times in which the opponents have played action

h in the h-sample (resp., d-sample). Observe that the sum of payoffs of playing action h

(resp., d) against its h-sample (resp., d-sample) is (1+g)(k−X(k, pj)) (resp., k−lY (k, pj)).

This implies that action h has the highest mean payoff iff (1 + g)(k − X(k, pj)) > k −
lY (k, pj) ⇔ (1 + g)X(k, pj) < gk + lY (k, pj). Thus the payoff-sampling dynamic in

environment (g, l, θ) is given by

wP
θ (pj) ≡ wP

i (p) =
∑

k∈supp(θ)

θ(k) · Pr((1 + g)X(k, pj) < gk + lY (k, pj)). (3.2)

Henceforth, we omit the superscript A / P (i.e., we write wθ(pj)) when referring to

properties that hold for both action-sampling and payoff-sampling dynamics, or when it

is clear from the context which class of sampling dynamics we are dealing with.

4 Global Convergence to Mixed States

Recall that under monotone dynamics the population converges from almost any initial

state to one of the pure equilibria. In this section, we fully characterize the conditions for

which the opposite result holds under sampling dynamics; i.e., the populations converge

from almost any initial state to one of the mixed (interior) stationary states.
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Figure 4.1: Illustrative Phase Plots (g = l = 0.25 and θ ≡ 3)
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The figure illustrates the phase plots of the action-sampling dynamics (left panel) and the payoff-
sampling dynamics (right panel) for the environment in which g = l = 0.25 and θ ≡ 3. The green
solid (resp., orange dashede) curve shows the states for which ṗ1 = 0. The intersection points of
these curves are the stationary states. A solid (resp., hollow) dot represents an asymptotically
stable (resp., unstable) stationary state.

4.1 Analysis of w(p1) and Preliminary Results

The dynamic characteristics of both classes of sampling dynamics are closely related to

the properties of the polynomial wθ(p1), its inverse w−1
θ (p1), and their intersection points,

which are analyzed in this subsection.

Figure 4.1 illustrates the phase plots of the sampling dynamics and the properties of

the polynomial wθ(p1) and its inverse w−1
θ (p1) for the environment in which g = l = 0.25

and θ ≡ 3. The green solid curve is the polynomial p2 = wθ(p1), which describes the

states in which ṗ1 = 0. The orange dashed curve is the polynomial p2 = w−1
θ (p1).

The following fact is immediate (for both classes of sampling dynamics) from the basic

properties of binomial random variables.

Fact 1. wθ(pj) is a strictly decreasing polynomial function that satisfies wθ(0) = 1 and

wθ(1) = 0. This implies that the inverse function w−1
θ : [0, 1] → [0, 1] exists, is continu-

ously differentiable, and that w−1
θ (0) = 1 and w−1

θ (1) = 0.

Fact 1 implies that the two curves intersect at (0, 1), (1, 0) and at a unique symmetric

state (p, p). The curves might admit additional intersection points.
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Appendix A.2 presents the standard definitions of stationary states, asymptotically

stable states, and unstable states. Observe that a state is stationary (i.e., it is a fixed

point of the dynamics) iff it is an intersection point of the two curves wθ and w−1
θ .

Fact 2. State (p1, p2) is stationary iff wθ(p1) = w−1
θ (p1) = p2.

Our first result shows that the population converges to one of the stationary states

from any initial state.13

Proposition 1. limt→∞ p (t) exists for any p(0), and it is a stationary state.

Sketch of Proof. Observe that in any trajectory that begins above (resp., below) both

curves, the share of hawks in both populations decreases (increases), which implies that

the trajectory moves downward and to the left (resp., upward and to the right) until it

intersects with one of the curves. Thus, we can focus on trajectories that begin between

the two curves. Assume w.l.o.g. that the initial state is below w(p1) and above w−1(p1)

(the argument in the opposite case is analogous). In any such state the share of hawks in

population 1 (resp., 2) increases (resp., decreases). This implies that the trajectory moves

upward and to the left until meeting one of the curves. This meeting point must be an

intersection point of both curves, because if the meeting point were only with w(p1) (resp.,

w−1(p1)), the trajectory there would have been horizontal to the left (vertical upward),

which implies that the trajectory would come from the right side of the curve (from below

the curve), leading to a contradiction. See Appendix A.3 for a formal proof.

Our second result shows that if any initial state converges to one of the pure equilibria,

then this equilibrium must be asymptotically stable (as defined in Appendix A.2).

Proposition 2. Assume that p(0) 6= (1, 0) and limt→∞ p (t) = (1, 0); then (1, 0) is

asymptotically stable. The same result holds when replacing (1, 0) with (0, 1).

Sketch of Proof. Due to analogous arguments to the above sketch of proof we can assume

w.l.o.g. that p(0) is between the two curves, and that the trajectory moves upward and

to the left (which is required for convergence to (1,0)) iff the curve w(p1) is above w−1(p1),

and the closest intersection point of the two curves to the left of p(0) is (1,0). These two

conditions imply that any initial state sufficiently close to (1,0) converges to (1,0), which

implies that (1,0) is asymptotically stable. See Appendix A.4 for the formal proof.
13One could also prove Proposition 1 by relying on the Bendixson–Dulac theorem (see Theorem 9.A.6

of Sandholm, 2010). We present a direct proof as the arguments are helpful in the proof of Proposition
2.
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4.2 Single Appearance of a Rare Action

The following lemma characterizes when a single appearance of a rare action in a new

agent’s sample can change the agent’s behavior (see the proof in Appendix A.5; we

require strictly higher payoffs for action h and weakly higher payoffs for action d due to

our tie-breaking rule in favor of action d).

Lemma 1. Consider a new agent in population i with a sample size of k.

1. Action-sampling dynamics: (I) Action h induces a strictly higher payoff against a

sample with a single opponent’s action d iff k < 1+g−l

1−l
and (II) Action d induces a

weakly higher payoff against a sample with a single h iff k ≤ 1+g−l

g
.

2. Payoff-sampling dynamics: (I) a h-sample with a single d induces a strictly higher

mean payoff than a d-sample with no d-s iff k < 1+g

1−l
and (II) a d-sample with no h-s

induces a weakly higher mean payoff than an h-sample with a single h iff k ≤ 1+g

g
.

Lemma 1 allows us to define the upper bounds on the sample size in which a single

appearance of a rare action can change the behavior of a new agent.

Definition 3. Let mA
h = 1 + g

1−l
, mA

d = 1 + 1−l
g

, mP
h = 1+g

1−l
, mP

d = 1+g

g
.

We omit the superscript A, P when stating a result that is true for both dynamics;

for example, we write mh, which denotes mP
h when the underlying dynamics is payoff

sampling, and which denotes mA
h when the underlying dynamics is action sampling.

The parameter mh is the upper bound on the sample size for which a single appear-

ance of d in the sample, when all other sampled actions are h, induces a new agent to

adopt action h. Similarly, md is the upper bound on the sample size for which a single

appearance of h in the sample, when all other sampled actions are d, can induce a new

agent to adopt action d.

We conclude this subsection by presenting a definition of m-bounded expectation of a

probability distribution with support on the set of positive integers. It is the expected

value of the probability distribution by restricting its support to m. Formally,

Definition 4. The m-bounded expectation E≤m (resp., E<m) of distribution θ with sup-

port on integers is14
E≤m (θ) =

∑

1≤k≤m θ (k) · k (resp., E<m (θ) =
∑

1≤k<m θ (k) · k).

14Observe that in our notation the parameter k takes only (positive) integer values (although we allow
the upper bound m to be a non-integer).
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4.3 Asymptotic Stability of Pure Equilbria

Our next result characterizes the asymptotic stability of the pure states. It shows that the

asymptotic stability depends only on whether the product of the bounded expectations

of the distribution of sample sizes is larger or smaller than one, where the bound of each

distribution is the maximal sample size for which a single appearance of a rare action

can change the behavior of a new agent. Formally (where replacing the tie-breaking rule

with an h-favorable one would replace the “<”-s and the “≤”-s in the statement):

Proposition 3. 1. E<mh
(θ)·E≤md

(θ) > 1 ⇒ both pure stationary states are unstable.

2. E<mh
(θ) · E≤md

(θ) < 1 ⇒ both pure stationary states are asymptotically stable.

Sketch of Proof. Consider a slightly perturbed state (ǫ, 1 − ǫ) near the pure equilibrium

(0, 1). Observe that almost all agents in population 1 (resp., 2) play d (resp., h). The event

of two rare actions appearing in a sample of a new agent has a negligible probability of

O(ǫ2). If a new agent has a sample size of k, then the probability of a rare action appearing

in the sample is approximately k · ǫ. This rare appearance changes the perceived best

reply of a new agent of population 1 iff k is smaller than mh. Thus, the total probability

that a new agent of population 1 (resp., 2) adopts a rare action is equal to E<mh
(θ)

(resp., E≤md
(θ)). This implies that the product of the share of new agents adopting a

rare action in each population is ǫ · E<mh
(θ) · ǫ · E≤md

(θ). This shows that the share of

agents playing rare actions gradually increases (resp., decreases) if E<mh
(θ)·E≤md

(θ) > 1

(resp., E<mh
(θ) · E≤md

(θ) < 1), which implies instability (resp., asymptotic stability).

See Appendix A.6 for a formal proof.

Observe that the fact that l > 0 immediately implies that mA
h < mP

h and mA
d < mP

d ,

which, in turn, implies that instability under the action-sampling dynamics holds in a

strictly smaller set of distributions than under the payoff-sampling dynamics.

Corollary 1. If the pure stationary states are unstable under the action-sampling dy-

namics, then they are also unstable under the payoff-sampling dynamics.

Next we observe that the pure stationary states are stable under the action-sampling

dynamics in populations in which all agents have sample sizes of at least 2.

Corollary 2. Assume that θ(1) = 0. The pure stationary states are stable under the

action-sampling dynamics.
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Proof. Observe that either min(mA
h , mA

d ) < 2 or mA
h = mA

d = 2. Both conditions imply

that one of the expressions in the product of E<mh
(θ) · E≤md

(θ) is equal to θ(1), which

implies (by Proposition 3) that the pure stationary states are stable if θ(1) = 0.

4.4 Main Result

Combining Propositions 1–3 yields the main result of this section. It shows that the

population converges from almost any initial state to an interior stationary state if (and

essentially only if) the product of the bounded expectations of the distribution of sample

sizes is larger than 1.

Theorem 1. 1. Assume that E<mh
(θ) · E≤md

(θ) > 1. If p(0) /∈ {(0, 1), (1, 0)}, then

limt→∞ p (t) ∈ (0, 1)2.

2. Assume that E<mh
(θ) · E≤md

(θ) < 1. Then there exist p(0), p̂(0) /∈ {(0, 1), (1, 0)}
such that limt→∞ p (t) = (0, 1) and limt→∞ p̂ (t) = (1, 0).

Proof. 1. Assume that E<mh
(θ) · E≤md

(θ) > 1. Proposition 3 implies that both pure

stationary states are unstable. Combining Propositions 1–2 implies that from al-

most any initial state, the population converges to an interior stationary state.

2. Assume that E<mh
(θ)·E≤md

(θ) < 1. Proposition 3 implies that both pure stationary

states are stable, which implies part (2).

Next we apply Theorem 1 to standard hawk–dove games in which the parameter g = l

describes both the gain of a hawkish player and the loss of her dovish opponent. In order

to simplify the statement we assume that the various m-s are non-integers (to avoid the

weak dependency on the tie-breaking rule).

Corollary 3. Assume that g = l and that 1
g
, 1

1−g
, 1+g

g
, and 1+g

1−g
are non-integers. The

population converges to a mixed stationary state from any interior state iff:

1. Action-sampling dynamics: θ(1) · E
≤max( 1

g
, 1

1−g ) (θ) > 1.

2. Payoff-sampling dynamics: either (a) g <
1

3
and θ(1) · E

≤
1+g

g
(θ) > 1

or (b) g ≥ 1

3
and (θ(1) + 2θ(2))E

≤max(3,
1+g

1−g ) (θ) > 1.
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The straightforward proof, which relies on substituting g = l in Definition 3, is pre-

sented in Appendix A.7. Corollary 3 implies that global convergence to one of the mixed

stationary states holds iff: (1) sufficiently many agents have a sample size of 1, (2) the ex-

pected sample size (conditional on the sample being below a threshold that is increasing

in |g − 0.5|) is sufficiently large, and (3) g is not too close to 0.5. Under the payoff-

sampling dynamics (and assuming g > 1
3
), global convergence holds also if one relaxes

Condition (1) by requiring that (1’) sufficiently many agents have a sample size of at

most 2. As demonstrated in Section 7, these conditions hold for many environments with

relatively small samples under the payoff-sampling dynamics, and for a somewhat limited

set of environments under the action-sampling dynamics.

Remark 2. Theorem 1 implies that if the sample sizes of all agents in the population are

sufficiently large (larger than all the m-s in Definition 3), then the pure stationary states

are stable. Perhaps surprisingly, a moderate increase in the sample sizes of some agents

in the population can yield the opposite effect, that of destabilizing the pure stationary

states. For example, when g = l = 0.25, the pure stationary states are stable under the

action-sampling dynamics given a population in which 75% of the agents have sample

size 1 and 25% have sample size 2 (because θ(1) · E
≤max( 1

g
, 1

1−g ) (θ) = 3
4

· 5
4

= 15
16

< 1). By

contrast, if one increases the samples of the latter group of agents from size 2 to size 3,

then the pure stationary states become unstable (because θ(1) ·E
≤max( 1

g
, 1

1−g ) (θ) = 3
4

· 3
2

=

9
8

> 1); moreover, one can show that in this case the symmetric mixed state is globally

stable.

5 Global Convergence to Pure States

In this section, we show that homogeneous populations (in which all agents have the

same sample size) behave under the action-sampling dynamics in the same way as under

monotone dynamics: namely, they converge from almost any initial state to one of the

pure equilibria. By contrast, In Section 6 we will show that convergence to the sym-

metric mixed stationary state is achieved in many cases in which we have either: (1)

heterogeneous populations or (2) payoff-sampling dynamics.

Theorem 2 shows that if all agents have the same sample size, then the action-sampling

dynamics admit a unique interior stationary state, which is unstable. This implies (to-

19



gether with Proposition 1) that the phase plots of all such dynamics are qualitatively

equivalent to the left panel of Figure 4.1, and that all initial populations eventually

converge to one of the pure equilibria (in the sense that even if a population initially

converges to the unique unstable interior equilibrium, an arbitrarily small perturbation

will still take the population from there to one of the pure equilibria).

Theorem 2. For15 θ ≡ k > 1, the action-sampling dynamics admit a unique interior

stationary state, which is unstable.

It turns out that Theorem 2 is implied by a new general property of binomial distri-

butions, which may be of independent interest. Proposition 4 states that there do not

exist any two different probabilities p 6= q ∈ (0, 1) such that if the success probability in

each trial is p, the probability of obtaining at most m successes is q, and the same holds

when swapping p and q. This is formalized as follows. (Recall that X(k, p) denotes a

binomial random variable with k ≥ 1 trials and probability of success p in each trial.)

Proposition 4. Fix any k ≥ 2 and any 0 ≤ m < k. Then:

Pr (X(k, p) ≤ m) = q ∈ (0, 1) , Pr (X(k, q) ≤ m) = p ⇒ p = q.

The proof of Proposition 4 is presented in Appendix A.1.

Proof of Theorem 2. Each pair of parameters g, l induces a threshold 0 ≤ m < k,

such that playing hawk is the best reply against a sample of size k iff the sample in-

cludes at most m hawkish actions. That is, wk(p1) must coincide with the curve of

Pr (X(p1, k) ≤ m) for some 0 ≤ m < k. This implies that an interior state p is station-

ary iff Pr (X(p1, k) ≤ m) = p2 and Pr (X(p2, k) ≤ m) = p1. Thus, Proposition 4 implies

that there are no asymmetric interior stationary states. Corollary 2 implies that the pure

stationary states are asymptotically stable, and that the curve w(p1) is above (resp., be-

low) the curve w−1(p1) near state (1, 0) (resp., (0, 1)). This implies that curve w(p1) must

be above (resp., below) the curve w−1(p1) in a left (right) environment of the symmetric

stationary state, which implies that this stationary state must be unstable, as illustrated

15 It is straightforward to show that the case in which all agents have sample size 1 induces an
environment in which the stationary states are (p, 1 − p) for any p ∈ [0, 1], and that all these states are
neither asymptotically stable nor unstable (i.e., they are Lyapunov stable) for any g, l and under both
sampling dynamics.
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in the left panel of Figure 4.1. Another, direct argument for that the symmetric station-

ary state is unstable is implied by combining Proposition 6 (|w′
k(p)| =

∣
∣
∣

d Pr(X(k,p)≤m)
dp

∣
∣
∣ > 1)

and Proposition 5 (state (p, p) is asymptotically stable if |w′
k(p)| > 1).

6 Stability of the Symmetric Stationary State

In this section, we present two sufficient conditions for the asymptotic stability of symmet-

ric mixed stationary states. Symmetric stationary states are qualitatively very different

from pure stationary states. In particular, in symmetric states both populations have

the same expected payoff, and the bargaining fails frequently (whenever two hawks are

matched together). By contrast, asymmetric mixed stationary states might be similar to

pure stationary states in the sense of having p1 close to 1, p2 close to 0, and a large payoff

difference between the two populations.

6.1 Auxiliary Result for the Stability of Symmetric States

We begin with a simple auxiliary result showing that the symmetric stationary state is

asymptotically stable iff the derivative of wθ(p) is larger than one. Formally

Proposition 5. Symmetric stationary state (p, p) is unstable if |w′
θ(p)| > 1.

Proof. In order to assess the asymptotic stability, we compute the Jacobian J of ṗi =

δ · (wθ(pj) − pi) at the symmetric rest point (p, p) (ignoring the constant δ, which plays

no role in the dynamics, other than multiplying the speed of convergence by a constant):

J =






−1 w′
θ(p)

w′
θ(p) −1




 .

The eigenvalues of J are −1 + w′
θ(p) and −1 − w′

θ(p). A sufficient condition for instability

at (p, p) is that there exists a positive eigenvalue, which is implied by |w′
θ(p)| > 1.

6.2 Action-Sampling Dynamics

Our next result shows that the symmetric mixed stationary state is often asymptotically

stable under the action-sampling dynamics if the population is heterogeneous, such that

some agents have a relatively small samples, while the other agents have large samples.
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Specifically, the symmetric stationary state is asymptotically stable for any population

in which a positive, yet sufficiently small, share of the population have sample k, the

remaining agents have sufficiently large samples, and either g is sufficiently small or l is

sufficiently large.

Theorem 3. Fix any k > 1 and any 0 < q < 1
k
:

1. For any 0 < l < 1, there exists 0 < g < 1 and k ∈ N, such that the symmetric

stationary state is asymptotically stable under the action-sampling dynamics for any

0 < g < g and any distribution θ satisfying θ(k) = q and
∑

n≥k θ(n) = 1 − q.

2. For any 0 < g < 1, there exists 0 < l < 1 and k ∈ N, such that the symmetric

stationary state is asymptotically stable under the action-sampling dynamics for any

l < l < 1 and any distribution θ satisfying θ(k) = q and
∑

n≥k θ(n) = 1 − q.

Sketch of Proof. To simplify the sketch, we treat the agents with large samples (n ≥ k)

as best responders (i.e., playing the best reply to the population’s true distribution). For

sufficiently small g (resp., sufficiently large l), the symmetric stationary state p has the

property that only agents with sample size k play hawk (resp., dove), while all the agents

with large samples play dove (resp., hawk), and they continue to do so even after a small

perturbation in the share of hawks. Proposition 5 implies that the symmetric stationary

state p is asymptotically stable if |w′
θ(p)| < 1. This latter inequality is implied by the fact

that the best responders continue playing dove (resp., hawk) after any small perturbation

and that q is sufficiently small: |w′
θ(p)| = (1 − q) · 0 + q · |w′

k(p)| < 1. See Appendix A.8

for a formal proof.

Figure 6.1 illustrates the phase plot of a heterogeneous population that satisfies the

conditions of Theorem 3: the games is “hawk-favorable” with parameter g = l = 0.95,

70% of the agents have large samples of size 50, while the remaining 30% of the agents

have small samples of size 2. Numeric analysis shows that the basin of attraction of the

symmetric stationary state in this example covers approximately 88% of the unit square.

It is straightforward to adapt Theorem 3 to show that the stationary symmetric state

is asymptotically stable in various heterogeneous populations for the payoff-sampling

dynamics as well. We omit the formal statement and proof for brevity.
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Figure 6.1: Illustrative Phase Plot for Theorem 3: g = l = 0.95, θ2 = 0.3, and θ50 = 0.7
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Observe that Theorem 3 implies that introducing a small share of agents with a fi-

nite sample size can stabilize the symmetric equilibrium of a population of (exact) best

responders, as long as either g is sufficiently small or l is sufficiently large.

6.3 Payoff-Sampling Dynamics

In this subsection, we show that the symmetric stationary state is asymptotically stable

under the payoff-sampling dynamics for homogeneous populations (and populations in

which all agents have relatively small sample sizes). For tractability in the analysis of

payoff-sampling dynamics, we focus on the cases where the gain of a hawkish player and

the loss of her dovish opponent are large, namely, l, g > 1
max(supp(θ))

. Our result shows

that in this domain, the symmetric stationary state is asymptotically stable in various

populations in which agents have relatively small samples:

1. for any homogeneous distribution of sample sizes θ ≡ k < 20; or

2. for any heterogeneous distribution with a maximal sample size of at most 5.

The threshold of k = 20 is binding. The symmetric stationary state becomes unstable if

the sample size is k ≥ 20. By contrast, the bound of a maximal size of 5 for heterogeneous
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distributions of sample sizes is only a constraint of our proof technique. Numeric analysis

(see Section 7) suggests that the stability of the symmetric stationary state:

1. holds for many distributions of types with larger maximal sample sizes (in partic-

ular, it holds for uniform distributions over {1, . . . , k} for any k ≤ 20); and

2. is often global (i.e., in many cases almost all initial states converge to this state).

Theorem 4. Assume that l, g ∈
(

1
max(supp(θ))

, 1
)

, and either (1) θ ≡ k < 20, or (2)

max (supp(θ)) ≤ 5. Then, the game admits an asymptotically stable symmetric stationary

state under the payoff-sampling dynamics.

Sketch of Proof. When l and g are sufficiently large, the payoff of action h is slightly

below twice the number of d-s in the h-sample, and the payoff of action d is slightly

above the number of d-s in the d-sample. This implies that action h has a higher mean

payoff than action d iff the number of d-s in the h-sample is strictly greater than half the

number of d-s in the d-sample.

Figure 6.2: The Function wk(p) for Various Values of k
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Thus, we can write wk(p) as follows:

wk(p) = P







k − X(k, p)
︸ ︷︷ ︸

#dj in h-sample

>
1

2
(k − Y (k, p))
︸ ︷︷ ︸

#dj in d-sample







= P (2X(k, p) − Y (k, p) < k), (6.1)
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where X(k, p) and Y (k, p) are iid binomial random variables with parameters k and p.

In the formal proof (see Appendix A.9), we show that for any k < 20, wk(p) has a

unique fixed point p(k) such that |w′
k(p(k))| < 1 (see Figure 6.2). This implies, by the

same argument as in the sketch of proof of Theorem 2, that the symmetric stationary

state is asymptotically stable. (By contrast, one can verify that |w′
k(pk)| > 1 for k ≥ 20,

which implies that the symmetric stationary state is unstable for large k ≥ 20.)

Next, we verify in the formal proof that for any k ∈ {1, 2, 3, 4, 5} it holds that (I) the

fixed points are all in the interval (0.5, 0.68), and (II) |w′
k(p)| < 1 for any k ∈ {1, ..., 5}

and any p ∈ (0.5, 0.68). Let θ be any distribution with max(supp(θ)) ≤ 5. The fact that

wθ(p) is a weighted average of the various wk(p) implies that (I) the fixed point p(θ) of

wθ(p) is in (0.5, 0.68), and (II) |w′
θ(p

(θ))| < 1 ⇒ (p(θ), p(θ)) is asymptotically stable.

7 Numeric Analysis

We present numeric results that complement the analytic results of the previous sections.

Methodology and Parameter Values The analysis focuses on the standard hawk–

dove games, in which the gain of a hawkish player is equal to the loss of her dovish

opponent, i.e., g = l for each i ∈ {1, 2}. We have tested the following 360 = 10 × 27

combinations of parameter values for each of the two sampling dynamics:

1. 10 values for g: 0.05, 0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 0.95.

2. 36 distributions of sample sizes:

(a) 9 homogeneous populations, in which all agents have sample size k, for each

k ∈ {2, 3, 4, 5, 7, 10, 15, 20, 30} (the case of k = 1 is discussed in Footnote 15).

(b) 9 uniform distributions over
{

1, .., k
}

, for each k ∈ {2, 3, 4, 5, 7, 10, 15, 20, 30}.

(c) 9 distributions with support {1, 5}, in which a share q ∈ {10%, 20%, ..., 90%}
have sample size 1, and the remaining agents have sample size 5.

(d) 9 distributions with support {2, 30}, in which a share q ∈ {10%, 20%, ..., 90%}
have sample size 2, and the remaining agents have sample size 30.
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For each set of parameters, we have numerically calculated the phase portrait and the

curves for which ṗ1 = 0 and ṗ2 = 0, and used this to determine the dynamic behavior.

The code is provided in the online supplementary material.16

Results The numeric results are summarized in Figure 7.1. The action-sampling dy-

namics yield global convergence to the pure stationary states (orange shaded region in

Figure 7.1) in 90% of the cases. In the remaining 10% of the cases, the dynamics globally

(or almost globally) converge to the symmetric stationary state (green shaded region),

where these cases involve heterogeneous populations (some agents have small samples,

and others have relatively large samples) and values of g that are far from 0.5.

The payoff-sampling dynamics yield global convergence to the pure stationary states in

about 50% of the cases. In about 40% of the cases the payoff-sampling dynamics globally

(or almost globally) converge to the symmetric stationary state, where this occurs (1)

in all cases in which the action-sampling dynamics converge to the symmetric stationary

state, and (2) in many cases with large values of g. Finally, in the remaining 10% of the

cases the dynamics either converge to asymmetric mixed states (blue shaded region in

Figure 7.1), or that both the pure stationary states and the symmetric stationary state

have sizable basins of attractions (yellow shaded region).

8 Conclusion

A key result in evolutionary game theory is that two populations that are matched to

play a hawk–dove game converge to one of the pure equilibria from almost any initial

state. We demonstrate that this result crucially depends on the revision dynamics being

monotone. Specifically, we show that two plausible classes of dynamics, in which some

agents base their chosen actions on sampling the actions of a few agents in the opponent

population (action-sampling dynamics) or on sampling the payoffs of a few agents in

their own population (payoff-sampling dynamics) can lead to the opposite prediction:

convergence to a symmetric mixed stationary state.

Our results provide a new explanation of why in bargaining situations, such as the

16Our numeric analysis is based on deterministic dynamics in a continuum population. We have
randomly chosen 10 of these combinations of parameter values, and tested each of them by running it
100 times in the stochastic dynamics induced by a finite population of 1,000 agents, using ABED software
(Izquierdo et al., 2019). The results for finite populations are qualitatively the same.
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Figure 7.1: Summary of Results of the Numeric Analysis
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motivating example of buying and selling houses, players in both populations tend to

play hawkish strategies, and bargaining frequently fails. Our model assumes that all

players in each population have the same payoff matrix. Heterogeneity in the payoffs,

and private information regarding one’s payoff, are important aspects of many real-life

bargaining situations. An interesting direction for future research is to apply the analysis

of sampling dynamics in richer models that incorporate heterogeneous payoffs.

A Appendix

A.1 Results for Binomial Random Variables

In this section, we state and prove results for binomial random variables (result that to

the best of our knowledge, do not appear in the existing literature). These results are

used in the proof of Theorem 2, and may also be of independent interest. Our first result

shows that if the success probability p in a single trial coincides with the probability of

succeeding at most m times out of k trials, then the derivative of the latter probability

with respect to p must be larger than 1. This is formalized as follows. (Recall that

X(k, p) denotes a binomial random variable with k ≥ 1 trials and probability of success

p in each trial.)

Proposition 6. For any k ≥ 2 and 0 ≤ m < k, there is a unique value rm ∈ (0, 1) of p

for which Pr (X(k, p) ≤ m) = p. Moreover, at p = rm,

∣
∣
∣
∣
∣

d Pr (X(k, p) ≤ m)

dp

∣
∣
∣
∣
∣
p=rm

> 1.

Proof. Fix some k ≥ 2, and let

fm(p) ≡ P (X(k, p) ≤ m) =
m∑

i=0

(

k

i

)

pi(1 − p)k−i. (A.1)

We have

fm(p) + fk−m−1(1 − p) = P (X(k, p) ≤ m) + P (X(k, 1 − p) ≤ k − m − 1)

= P (X(k, p) ≤ m) + P (X(k, p) ≥ k − (k − m − 1))

= P (X(k, p) ≤ m) + P (X(k, p) ≥ m + 1) = 1.
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Let rm denote the fixed point of the function fm(·), i.e., fm(rm) = rm. The fact that

fk−m−1(1 − p) = 1 − fm(p) implies that rk−m−1 = 1 − rm and f ′
k−m−1(rk−m−1) = f ′

m(rm).

Without loss of generality, we can therefore focus on analyzing the cases of m for

which m ≤ ⌊k−1
2

⌋. To complete the proof, we need to show that |f ′
m(rm)| > 1 for

m ∈ {0, 1, . . . , ⌊k−1
2

⌋}. In what follows, we show this.

We compute as follows:

f ′
m(p) = −

(

k

m

)

(k − m)pm(1 − p)k−m−1 = −k

(

k − 1

m

)

pm(1 − p)k−m−1 (A.2)

f ′′
m(p) =

(

k

m

)

(k − m)pm−1(1 − p)k−m−2((k − m − 1)p − m(1 − p)).

From the above computations, it follows that the function fm(·) is concave for values of

p ≤ p∗ and convex for values of p ≥ p∗ where p∗ = m
k−1

. This is because f ′′
m(p∗) = 0. Either

the concave part or the convex part of the function fm(·) intersects the 45◦ line. Suppose

that the concave part of the function fm(·) intersects the 45◦ line from the origin, i.e.,

rm ≤ p∗. Since m ≤ k−1
2

, it follows that rm ≤ 0.5. By concavity, we have

f ′
m(rm) <

fm(0) − fm(rm)

0 − rm

= −
(

1 − rm

rm

)

≤ −1.

Therefore, we are done in cases where rm ≤ p∗.

We now consider the cases where rm > p∗. By definition,

rm = (1 − rm)k +

(

k

1

)

rm(1 − rm)k−1 + · · · +

(

k

m

)

rm
m(1 − rm)k−m. (A.3)

For j = 0, 1, 2, . . . , m, let aj denote the jth term of the sum on the RHS of Eq. (A.3).

For j = 1, 2, . . . , m, we compute as follows:

aj

aj−1

=

(
k

j

)

rj
m(1 − rm)k−j

(
k

j−1

)

rj−1
m (1 − rm)k−j+1

=

(

k − j + 1

j

)(
rm

1 − rm

)

aj

aj−1

≥ 1 ⇐⇒ (k − j + 1)rm ≥ j(1 − rm) ⇐⇒ rm ≥ j

k + 1
.

Since m
k−1

> j

k+1
for j = 1, 2, . . . , m, we have r ≥ j

k+1
and thus aj ≥ aj−1. This implies
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that aj ≤ am for j = 1, 2 . . . , m − 1. By Eq.(A.3), we can thus infer the following:

rm ≤ (m + 1)

(

k

m

)

rm
m(1 − rm)k−m. (A.4)

By Eqs. (A.2) and (A.4), we have

|f ′
m(rm)| = (k − m)

(

k

m

)

rm
m(1 − rm)k−m−1 ≥

(

k − m

m + 1

)

rm

1 − rm

.

Using the above set of equations, we can write a sufficient condition for |f ′
m(rm)| > 1 as

follows:
(

k − m

m + 1

)

rm

1 − rm

> 1 ⇐⇒ rm >
m + 1

k + 1
. (A.5)

We will now establish that |f ′
m

(
m+1
k+1

)

| > 1. By Eq. (A.2), we have

|f ′
m(p)| = k

(

k − 1

m

)

pm(1 − p)k−m−1 = k · Pr(X(k − 1, p) = m).

where X(k −1, p) is a binomial distribution with parameters k −1 and p. It is well known

that the binomial distribution’s mode with parameters k − 1 and p is attained at ⌊kp⌋.

For p = m+1
k+1

, we have

m ≤ k ·
(

m + 1

k + 1

)

< m + 1.

The above inequalities imply that
⌊

k ·
(

m+1
k+1

)⌋

= m. The binomial distribution Xk−1(·)
has k possible values and thus the probability of the occurrence of the mode has to be

greater than 1
k
, i.e.,

Pr
(

X
(

k − 1,
m + 1

k + 1

)

= m
)

>
1

k
=⇒

∣
∣
∣
∣f

′
m

(
m + 1

k + 1

)∣
∣
∣
∣ > 1.

We need to consider the following two possible cases:

Case 1: m
k−1

< rm ≤ m+1
k+1

. For 1 ≤ m ≤ k−1
2

, we know that |f ′
m(·)| attains its

maximum value at m
k−1

and that it is strictly decreasing for p > m
k−1

. For m = 0, |f ′
m(·)|

is strictly decreasing for p > 0. Thus, we have

|f ′
m(rm)| >

∣
∣
∣
∣f

′
m

(
m + 1

k + 1

)∣
∣
∣
∣ > 1.

Case 2: rm > m+1
k+1

. Here, we are done by the sufficient condition of Eq. (A.5).

30



Recall that Proposition 4 states that there are no p 6= q ∈ (0, 1), such that Pr (X(k, p) ≤ m) =

q ∈ (0, 1) and Pr (X(k, q) ≤ m) = p. By contrast, Theorem 3 implies that this result does

not hold if one replaces the binomial distribution with a mixture of binomial distributions.

Formally:

Corollary 4. For any k ≥ 2 and any α < 1
k
, there exist 0 ≤ m < k, 0 ≤ m′ < k′, and

p 6= q ∈ (0, 1), such that α · Pr (X(k, p) ≤ m) + (1 − α) · Pr (X(k′, p) ≤ m′) = q

and α · Pr (X(k, q) ≤ m) + (1 − α) · Pr (X(k′, q) ≤ m′) = p.

We conclude this appendix with a proof of Proposition 4:

Proof of Proposition 4. Fix k ≥ 2 and m < k, and for the same reason as in the proof of

Proposition (6), we can assume without loss of generality that m ≤ ⌊k−1
2

⌋. Let f(p) ≡
Pr (X(k, p) ≤ m), and r be the value of p for which f(r) = r. Let F (p) ≡ f(f(p)). It is

easy to see that if f(p1) = p2 and f(p2) = p1, then both p1 and p2 are fixed points of F .

Moreover, since f is decreasing, if p1 < r, then p2 > r. Therefore, it is enough to show

that F has no fixed points in (0, r).

We claim first that if p∗ ≡ m
k−1

≥ r, then there is no fixed point p1 < r for which

p2 ≡ f(p1) ≤ p∗. In other words, F has no fixed point in the range [f−1(p∗), r). To see

this, assume by contradiction that there are such fixed points p1 and p2. Recall that the

function f is concave on (0, p∗), and since r < 0.5 and |f ′(r)| > 1 (Proposition (6)), the

absolute value of the slope of the line connecting the points (0, 1) and (p2, p1) is larger

than one. Because of the concavity of f on this range, the graph of f is above this line,

and the absolute value of the slope of the line connecting (p1, p2) with (p2, p1) (which is

obviously equal to one) must be even larger of that of the line connecting the points (0, 1)

and (p2, p1), i.e., larger than 1 =
∣
∣
∣

p1−p2

p2−p1

∣
∣
∣, a contradiction.

Now, the first and second derivatives of F are

F ′(p) = f ′(f(p)) · f ′(p)

F ′′(p) = f ′′(f(p)) · f ′(p)2 + f ′(f(p)) · f ′′(p).

To complete the case of p∗ ≥ r it is left to show that there are no fixed points of F on

(0,f−1(p∗)). Indeed, for all p ∈ (0, f−1(p∗)), f ′′(f(p)) > 0, which implies that F ′′(p) > 0
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(as f ′′(p) < 0). Thus, on (0, f−1(p∗)), F (x) is convex and since F (0) = 0, in this range

there could be at most one fixed point of F (p). Now, as was shown before, there are no

fixed points of F in [f−1(p∗), r), and by Proposition (6), F ′(r) > 1. This implies that

the graph of F (p) must be below the diagonal for any p ∈ [f−1(p∗), r). This could not

happen if F (p) were above the diagonal at some p ∈ (0, f−1(p∗)). We conclude that there

is no such fixed point, and this completes the proof for the case of p∗ ≥ r.

Now assume p∗ < r. In this case, we will show that F is convex on (0, r). On the

range (0, p∗), f ′′(f(p)) > 0 and f ′′(p) < 0, implying that F ′′(p) > 0 and therefore F are

convex. On the range (p∗, r), the condition for convexity is

f ′′(f(p)) · f ′(p)2 + f ′(f(p)) · f ′′(p) > 0, or

f ′′(f(p))

−f ′(f(p))
>

f ′′(p)

f ′(p)2
.

Since |f ′(r)| > 1 (Proposition 6), |f ′(p)| > 1 for any p ∈ (p∗, r), and therefore it is enough

to show that for p ∈ (p∗, r),
f ′′(f(p))

−f ′(f(p))
>

f ′′(p)

−f ′(p)
.

Let G(p) ≡ f ′′(p)
−f ′(p)

, and we will show that for any p1 ∈ (p∗, r), G(p) increases on (p1, f(p1)).

Indeed, setting the explicit expressions of Eq. (A.2) in G, we have

G(p) =
(k − 1)p − m

p(1 − p)
=

k − 1 − m

1 − p
− m

p
,

and since m < k − 1, G is increasing.

To summarize: since F (0) = 0 and F (r) = r, when p∗ < r, the convexity of F on

(0, r) that we just showed implies that F does not intersect the diagonal on (0, r), and

this completes the proof.

A.2 Standard Definitions of Dynamic Stability

For completeness, we present in this appendix the standard definitions of dynamic sta-

bility that is used in the paper (see, e.g., Weibull, 1997, Chapter 5).

A state is said to be stationary if it is a rest point of the dynamics.
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Definition 5. State p∗ ∈ [0, 1]2 is a stationary state if wi (p∗) = p∗
i for each i ∈ {1, 2}.

Let E (w) denote the set of stationary states of w, i.e., E (w) = {p∗|wi (p∗) = p∗
i }.

Under monotone dynamics, an interior (mixed) state p∗ ∈ (0, 1)2 is a stationary state iff

it is a Nash equilibrium (Weibull, 1997, Prop. 4.7). By contrast, under nonmonotone

dynamics (such as the sampling dynamics analyzed below) the two notions differ.

A state is Lyapunov stable if a population beginning near it remains close, and it is

asymptotically stable if, in addition, it eventually converges to it. A state is unstable if it

is not Lyapunov stable. It is well known (see, e.g., Weibull, 1997, Section 6.4) that every

Lyapunov stable state must be a stationary state. Formally:

Definition 6. A stationary state p∗ ∈ [0, 1]2 is Lyapunov stable if for every neighborhood

U of p∗ there is a neighborhood V ⊆ U of p∗ such that if the initial state p (0) ∈ V , then

p (t) ∈ U for all t > 0. A state is unstable if it is not Lyapunov stable.

Definition 7. A stationary state p∗ ∈ [0, 1]2 is asymptotically stable if it is Lyapunov

stable and there is some neighborhood U of p∗ such that all trajectories initially in U

converge to p∗, i.e., p (0) ∈ U implies limt→∞ p (t) = p∗.

A.3 Proof of Proposition 1 (Convergence to Stationary States)

We say that state p is above (resp., below) curve w(p1) if p2 > w(p1) (resp., (p2 < w(p1)).

Similarly, we say that state p is to the right (resp., left) of the curve w(p1) if w−1(p2) < p1

(resp., w−1(p2) < p1). We say that the state p is on the curve w(p1) if p2 = w(p1).

The fact that the two curves of w(p1) and w−1(p1) are strictly decreasing implies that

a state is above one of these curves iff it is to the right of that curve. The states on the

curve w(p1) (resp., w−1(p1)) are characterized by having ṗ1 = 0 (resp., ṗ2 = 0). Observe

that in any state p above and to the right (resp., below and to the left) of the curve

w(p1), the share of hawks in population 2 is higher relative to the corresponding state

on the curve with the same share of hawks in population 1, which implies that ṗ1 < 0

(resp., ṗ1 > 0). Similarly, in any state p above (resp., below) the curve w−1(p1), the

share of hawks in population 1 is higher relative to the corresponding state on the curve

with same share of hawks in population 2, which implies that ṗ1 < 0 (resp., ṗ1 > 0).

Any state p ∈ [0, 1] can be classified in one of 3*3 classes, depending on its relative

location with respect to the two curves, i.e., whether p is below (i.e., to the left of), above
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(i.e., to the right of) or on the curve w(p1), and similarly whether p is below, above, or

on the curve w−1(p1). The above argument implies that this classification determines

the signs of ṗ1 and ṗ2. If state p is on (resp., above, below) the curve w(p1), then ṗ2 is

zero (resp., negative, positive). Similarly, if state p is on (resp., above, below) the curve

w−1(p1), then ṗ1 is zero (resp., negative, positive).

In particular, any state p that is above (resp., below) both curves must satisfy that

ṗ1, ṗ2 are both negative (resp., positive). This implies that any trajectory that begins

above (resp., below) both curves (namely, w(p1) and w−1(p1)) must always move down-

ward and to the left. This (together with the fact that all stationary states are in the

intersection of the two curves) implies that the trajectory must cross one of the curves.

If this crossing point is an intersection of both curves, then it is a stationary state.

Next observe that any trajectory that starts on one of the curves and strictly above/below

the remaining curve must move to a state that is strictly below one of the curves and

strictly above the remaining curve. This is so because on the crossing point one of the

ṗi is zero and the remaining derivative ṗj is negative (resp., positive), which implies that

the trajectory must move below and to the left (resp., above and to the right) of the

curve that was crossed.

Thus, we have established that any trajectory (which has not converged to a stationary

state) must reach a state that is strictly below one of the curves and strictly above the

remaining curve. If such a state is strictly above the curve w(p1), then by the classification

mentioned above the trajectory must move both downward and to the right; i.e., ṗ1, ṗ2 < 0

(resp., both upward and to the left; i.e., ṗ1, ṗ2 > 0). This implies that the trajectory

must cross one of the curves. The crossing point cannot be only on the curve of w(p1)

(resp., w−1(p1)), because at such a point the trajectory moves horizontally to the left

(vertically downward), which implies that it must cross the lower (resp., higher) curve

w(p1) (resp.,w−1(p1)) from the left side (resp., from above) and we get a contradiction.

The argument in case the state is strictly below the curve w(p1) is analogous.

A.4 Proof of Proposition 2 (Convergence to Pure Equilibria)

If p is below (resp., above) both curves, then by the classification presented above it

must that ṗ1 > 0 (resp., ṗ2 < 2), which implies (by a similar argument to the proof of

Proposition 1) that convergence to (1,0) is possible only if the trajectory passes through a
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state that is strictly between the two curves, and that the closest intersection point of the

two curves to the left of this state is (1,0). By the classification presented above it must

be that the curve of w−1(p1) is strictly below the curve of w(p1) in a right neighborhood

of (1,0), which implies that (1,0) is asymptotically stable because any sufficiently close

initial state would converge to (1,0)

A.5 Proof of Lemma 1 (Maximal Sample Sizes)

1. (I) The sum of payoffs of action h (resp., d) against a sample with a single d is 1+g

(resp., 1 + (k − 1) (1 − l)). The mean payoff of h is strictly higher than the mean

payoff of d iff k < 1+g−l

1−l
. (II) The sum of payoffs of action d (resp., h) against a

sample with a single h is k − 1 + 1 − l (resp., (k − 1) (1 + g)). The mean payoff of

h is higher than the mean payoff of d iff k < 1+g−l

g
.

2. (I) The sum of payoffs of an h-sample with a single d is equal to 1 + g. The sum of

payoffs of a d-sample with no d is equal to k · l. The former sum is higher than the

latter iff k < 1+g

1−l
. (II) The sum of payoffs of a d-sample with no hj-s is equal to k.

The sum of payoffs of an h-sample with a single hj is equal to (k − 1) (1 + g). The

former sum is higher than the latter iff k < 1+g

g
.

A.6 Proof of Proposition 3 (Stability of Pure Equilibria)

We are interested in deriving conditions for the stability of the pure stationary states. In

what follows, we compute the Jacobian of the sampling dynamics for the state in which

all agents of population i play d and all agents of population j play h. For this, we

consider a slightly perturbed state with a “very small” ǫi share of hawks in population

i and a “very small” ǫj share of doves in population j. By “very small,” we mean that

higher-order terms of ǫi and ǫj are neglected.

Consider a new agent of population i with a sample size of ki. Action h has a higher

mean payoff against a sample size of ki iff (neglecting rare events of having multiple d-

s in the sample): (1) the sample includes the single action d of an opponent, and (2)

ki ≤ mh (due to Lemma 1). The probability of (1) is ki · ǫj + o(ǫj), where o(ǫj) denotes

terms that are sublinear in ǫj, and, thus, it will not affect the Jacobian as ǫj → 0. This

implies that the probability that a new agent of population i (with a random sample size
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distributed according to θ) has a higher mean payoff for action h against her sample is

wθ(1−ǫj) = ǫj ·∑mh

ki=1 θ(ki)·ki+o(ǫj). An analogous argument implies that the probability

that a new agent of population j has a higher mean payoff for action dj against her sample

is wθj
(ǫi) = ǫi ·∑md

kj=1 θj(kj) · kj + o(ǫi). Therefore, the sampling dynamics at (ǫi, 1 − ǫj)

can be written as follows (ignoring the higher-order terms of ǫi and ǫj):

ǫ̇i = ǫj ·
mh∑

ki=1

θ(ki) · ki − ǫi, ǫ̇j = ǫi ·
md∑

kj=1

θj(kj) · kj − ǫj. (A.6)

Define: aθ =
∑mh

ki=1 θ(ki) · ki and bθ =
∑md

kj=1 θj(kj) · kj. The Jacobian of the above

system of Equations (A.6) is then given by J =






−1 aθ

bθ −1




 . The eigenvalues of J

are −1 −
√

aθbθ and −1 +
√

aθbθ. Observe that: (1) if aθbθ < 1 then both eigenvalues

are negative, which implies that the state in which all agents in population i (resp., j)

are doves (resp., hawks) is asymptotically stable, and (2) if aθbθ > 1 then one of the

eigenvalues is positive, which implies that this state is unstable (see, e.g., Perko, 2013,

Theorems 1–2 in Section 2.9).

A.7 Proof of Corollary 3 (Standard Case of g = l)

Substituting g = l in the bounds presented in Definition 3 yields the following bounds:

mA
h =

⌊
1

1−g

⌋

, mA
d =

⌊
1
g

⌋

, mP
h =

⌊
1+g

1−g

⌋

, mP
d =

⌊
1+g

g

⌋

. Observe that min(mA
h , mA

d ) =

min( 1
1−g

, 1
g
) = 1. This implies that E≤mA

h
(θ) · E≤mA

d
(θ) = θ(1) · E

≤max( 1
g

, 1
1−g ) (θ) , which

proves part 1. Next observe that if g < 1
3
, then min(mP

h , mP
d ) = min(1+g

1−g
, 1+g

g
) = 1 and

max(mP
h , mP

d ) = max(1+g

1−g
, 1+g

g
) = 1+g

g
, which proves part (2-a). Finally, observe that if

g ≥ 1
3
, then min(mP

h , mP
d ) = min(1+g

1−g
, 1+g

g
) = 2 and max(mP

h , mP
d ) = max(1+g

1−g
, 1+g

g
) =

max(3, 1+g

1−g
), which proves part (2-b).

A.8 Proof of Theorem 3 (Stable Symmetric State, ASD)

The following notation will be helpful. For each k > 1 and q ∈ (0, 1), let pq

k
(resp., pq

k)

be the unique solution in (0, 1) to the equation p = q · (1 − p)k (resp., p = 1 − q · pk). We

interpret pq

k
(resp., pq

k) as the symmetric stationary state when g and l are close to zero

(resp., close to one) in a population in which a share q of the population have samples of

size k, while the remaining agents always play dove (resp., hawk).
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Let g ∈ (0, 1) (resp., l ∈ (0, 1)) be sufficiently small (resp., large) such that

(k − 1)g < 1 − l and
g

1 + g − l
< pq

k

(resp.,(k − 1)(1 − l) < g and
g

1 + g − l
> pq

k).

Fix any 0 < g < g (resp., any l < l < 1). The definition of pq

k
(resp., pq

k) implies that the

symmetric stationary state (pθ, pθ) in any population with θ(k) = q must satisfy pθ > pq

k

(resp., pθ < pq
k). Observe that the best reply to the true distribution of hawks in the

population in state (pθ, pθ) is to play d (resp., h) because g

1+g−l
< pθ (resp., because

g

1+g−l
> pθ). The central limit theorem implies that new agents with sufficiently large

samples almost always play d (resp., h) in a neighborhood of pθ. This implies that for

each ǫ > 0, there exists k such that |w′
n(pθ)| < ǫ for any n ≥ k. Let ǫ > 0 be sufficiently

small such that q · k < 1 − ǫ. This implies that:

|w′
θ(pθ)| < (1−q) · ǫ+q · |w′

k(pθ)| < ǫ+q · |((1−p)k)′| = ǫ+q · |k · (1−p)k−1| < ǫ+q ·k < 1.

(

|w′
θ(p)| =< (1 − q) · ǫ + q · |w′

k(pθ)| < ǫ + q · |(1 − pk)′| = ǫ + q · |k · pk−1| < ǫ + q · k < 1)

This implies that (pθ, pθ) is asymptotically stable due to Proposition 3.

A.9 Proof of Theorem 4 (Stable Symmetric State, PSD)

Recall that the payoff-sampling dynamics in state (p1, p2) are given by ṗ1 = δ(wθ(p2)−p1

and ṗ2 = δ(wθ(p1) − p2), and that a symmetric state (p(θ), p(θ)) is stationary iff p(θ)

wθ(p
(θ)) = p(θ).

We now establish some properties of the payoff-sampling dynamics and the symmetric

rest points for symmetric distributions of types θ ≡ k. If l, 1−g ∈
(

0, 1
max(supp(θ))

)

, action

hi has a higher mean payoff iff the number of dj-s in the hi-sample is strictly greater

than half the number of dj-s in the di-sample. To express wk(p) concisely in this case, we

define X(k, p) and Y (k, p) to be independent and identically distributed binomial random

variables with parameters k and p. We can then write wk(p) as follows:

wk(p) = P
(

k − X(k, p) >
1

2
(k − Y (k, p))

)

= P (2X(k, p) − Y (k, p) < k). (A.7)
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Observe that wk(p) is a polynomial in p of degree at most 2 · k. We have verified the

following facts about these polynomials for k < 20 (for an illustration see Figure 6.2; the

Mathematica code is given in the online supplementary material, and the explicit values

of the rest points and the derivatives are presented in Table 3):

• For k ∈ {1, 2, . . . , 18, 19} , wk(p) is decreasing in p.

• For k ∈ {1, 2, . . . , 18, 19} , wk(p) has a unique fixed point p(k).

Moreover, 0.5 < p(k) < 0.68 for any k ∈ {1, 2, 3, 4, 5} .

• |w′
1(p)| ≡ 1, and |w′

k(p)| < 1 for any k ∈ {2, 3, 4, 5} and 0.5 < p < 0.68.

Recall that wθ(p) is a convex combination of the wk(p) for the k-s in its support (i.e.,

wθ(p) =
∑

k θ (k) · wk (p)). From the above facts, it follows that:

1. For θ ≡ k < 20, the function wk(p) has a unique fixed point p(k) such that

|w′
k(p(k))| < 1, which implies that (p(k), p(k)) is asymptotically stable.

2. For max(supp(θ)) ≤ 5, the function wθ(p) has a unique fixed point p(θ) such that

p(θ) ∈ (0.5, 0.68) and |w′
θ(p

(θ))| < 1 if θ(1) 6= 1, which implies that (p(θ), p(θ)) is

asymptotically stable.

Table 3: Fixed Points of the Function wk(p) in the Proof of Theorem 4
k 1 2 3 4 5 6 7 8 9 10

p(k) 0.500 0.579 0.620 0.649 0.672 0.690 0.706 0.720 0.731 0.741

|w′
k(p(k))| 1 0.690 0.618 0.645 0.690 0.730 0.763 0.793 0.818 0.840

k 11 12 13 14 15 16 17 18 19 20

p(k) 0.750 0.758 0.765 0.773 0.778 0.784 0.789 0.794 0.799 0.803

|w′
k(p(k))| 0.861 0.88 0.899 0.916 0.932 0.948 0.963 0.978 0.991 1.001

Table 4: Values of |w′
k(p(j))| for k, j ∈ {1, 2, 3, 4, 5}.

k\p(j)
p(1) p(2) p(3) p(4) p(5)

1 1 1 1 1 1
2 0.5 0.690 0.812 0.905 0.981
3 0.562 0.560 0.618 0.687 0.759
4 0.625 0.616 0.623 0.645 0.679
5 0.605 0.642 0.659 0.673 0.690
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