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Abstract

This study develops an innovation-driven growth model with natural selection of het-
erogeneous households and endogenous takeoff. Families differ in their ability to accumu-
late human capital. In an early stage of development, households with lower education
ability accumulate less human capital but choose to have more children and enjoy an evo-
lutionary advantage. In a later stage of development, families with high education ability
increase their number of children as their human capital rises over time. In the long
run, high-ability households accumulate more human capital, and all families choose the
same steady-state fertility rate. Therefore, households’ population share and human cap-
ital converge to stationary distributions. Initially, the heterogeneity of households makes
it more likely for an endogenous takeoff to occur; however, the temporary evolutionary
disadvantage of high-ability families has a lasting negative impact on long-run growth.
Finally, we provide evidence that heterogeneity in education indeed has adverse effects on
education, innovation and economic growth in the long run.
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1 Introduction

Modern macroeconomic models often feature a representative household or a fixed composition
of heterogeneous households. However, when heterogeneous households choose to have different
fertility rates, their composition in the economy changes over time. This differential reproduc-
tion of individuals is famously known as natural selection. In this study, we explore how the
heterogeneity of households and natural selection of heterogeneous households affect the macro-
economy. Family attitudes toward the education of their children last long, and the intra-family
educational attitudes and human capital transmission abilities matter.1 Unfortunately, not all
households are equally endowed, so heterogeneity matters for human capital accumulation. How
does this heterogeneity affect fertility? And how would the resulting natural selection influence
technological progress and the takeoff of the economy? To explore these questions, we develop
a novel growth model with endogenous fertility, an endogenous activation of innovation and
natural selection of heterogeneous households, which persistently differ in their propensity to
educate their children.
Following the seminal unified growth theory of Galor (2005, 2011, 2022), we assume that

households differ in their ability to accumulate human capital. In this case, families that are
more able to provide high-quality learning focus on child quality and have fewer children than
less able families.2 Naturally, this quality-quantity tradeoff magnifies the share of less able
families in the economy, at least temporarily. Therefore, in an early stage of development,
households that have a lower education ability accumulate less human capital but choose to
have more children and enjoy an evolutionary advantage. In a later stage of development,
households with a higher education ability choose to increase their number of children as their
human capital rises over time because their higher level of human capital compensates for their
lower fertility. In the long run, households with a higher education ability end up having a
higher level of human capital, and all households choose the same steady-state fertility rate.
Therefore, households’ population share and human capital converge to stationary distributions.
Initially, the heterogeneity of households makes it more likely for an endogenous takeoff to

occur. The presence of heterogeneous households implies that some households supply more
human capital for production and innovation, whereas some households supply less. In our
model, the former effect dominates the latter effect such that the initial amount of human
capital available for production and innovation increases as a result of this heterogeneity. The
intuition can be explained as follows. For an economy to activate its innovation process, the
market size of the economy is critical. The core idea in Romer (1990) is that ideas are non-rival,
so that a larger market size implies more profits for new ideas developed by innovative firms.
Hence, paradoxically, the higher-fertility families being less willing to educate their children
initially contribute more to the workforce and to a larger market size of the economy rewarding
the innovation pioneers with more profits extracted from a larger mass of low-skilled workers.
However, the evolutionary disadvantage of high-ability households during the transitional

dynamics implies that the population share of high-ability households decreases and the pop-
ulation share of low-ability households increases towards the steady state. The lower long-run

1For example, Alesina et al. (2021) find that differences in family attitudes toward education persist and
rebound after even some of the most forceful attempts to eliminate differences in the population.

2This negative relationship between child quantity and quality is consistent with the empirical evidence in
Klemp and Weisdorf (2019).
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share of high-ability households is due to a well-known property that a temporary growth effect
has a permanent level effect. Suppose two variables start at an equal level. Then, one of them
grows at a slower rate temporarily before growing at the same rate as the other variable. In
this case, the temporary disadvantage of the former will endure forever. So, despite population
trends being similar in the long run, a temporarily lower population growth rate of the higher-
ability households will never be compensated. The scale-invariant property of our model then
implies that economic growth depends on the average level of human capital in the economy and
that the lower share of high-ability households in the long run gives rise to a lower steady-state
equilibrium growth rate as a result of natural selection of heterogeneous households. Finally,
we provide evidence that heterogeneity in education indeed has adverse effects on education,
innovation and economic growth in the long run.
This study relates to the literature on innovation and economic growth. The pioneering

study by Romer (1990) develops the seminal innovation-driven growth model; see also Aghion
and Howitt (1992), Grossman and Helpman (1991) and Segerstrom et al. (1990) for other early
studies. Some subsequent studies introduce endogenous fertility into variants of the innovation-
driven growth model to explore the relationship between economic growth and endogenous
population growth; see, for example, Jones (2001), Connolly and Peretto (2003), Chu et al.
(2013), Peretto and Valente (2015) and Brunnschweiler et al. (2021). This study contributes
to this literature by exploring the endogenous fertility decisions of heterogeneous households
and their evolutionary differences in an innovation-driven growth model.
This study also relates to the literature on endogenous takeoff and economic growth. An

early study by Galor and Weil (2000) develops the unified growth theory that explores the en-
dogenous transition of an economy from pre-industrial stagnation to modern economic growth;3

see Galor (2005) for a comprehensive review of unified growth theory and also Galor and Mount-
ford (2008), Galor, Moav and Vollrath (2009) and Ashraf and Galor (2011) for subsequent
studies and empirical evidence that supports unified growth theory. Galor and Moav (2002),
Galor and Michalopoulos (2012) and Carillo et al. (2019) explore how natural selection of
different traits, such as the quality preference of fertility, the degree of risk aversion and the
level of family-specific human capital, affects the transition from stagnation to growth. This
study complements these interesting studies by exploring how natural selection of heteroge-
neous households with different ability to accumulate human capital affects the transition of
an economy from human capital accumulation to innovation-driven growth.
Therefore, this study also relates to a recent branch of this literature on the endogenous

transition from pre-industrial stagnation to innovation-driven growth; for example, Peretto
(2015) develops a Schumpeterian growth model with the endogenous activations of variety-
expanding innovation and quality-improving innovation. Subsequent studies extend the model
in Peretto (2015) to explore different mechanisms that trigger an endogenous takeoff; see for
example, Chu, Fan and Wang (2020) on status-seeking culture, Chu, Kou and Wang (2020)
on intellectual property rights, Iacopetta and Peretto (2021) on corporate governance, Chu,
Furukawa and Wang (2022) on rent-seeking government, and Chu, Peretto and Wang (2022) on
agricultural revolution. This study contributes to this branch of the literature by introducing
natural selection of heterogeneous households to a tractable innovation-driven growth model

3Other early studies on endogenous takeoff and economic growth include Hansen and Prescott (2002), Jones
(2001) and Kalemli-Ozcan (2002).
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with endogenous takeoff.
The rest of this study is organized as follows. Section 2 sets up the model. Section 3 presents

the two stages of economic development. Section 4 explores the implications of heterogeneous
households and natural selection. Section 5 provides empirical evidence. Section 6 concludes.

2 An R&D-based growth model with natural selection

To model natural selection, we introduce heterogeneous households and endogenous fertility
to the seminal Romer model. To keep the model tractable, we consider a simple structure
of overlapping generations and human capital accumulation.4 Each individual lives for three
periods. In the young age, the individual accumulates human capital. In the working age, the
individual allocates her time between work, fertility and education of the next generation. In
the old age, the individual consumes her saving.

2.1 Heterogeneous households

There is a unit continuum of households indexed by i ∈ [0, 1]. Within household i, the utility
of an individual who works at time t is given by

U t(i) = u [nt(i), ht+1(i), ct+1(i)] = η lnnt(i) + γ lnht+1(i) + ln ct+1(i), (1)

where ct+1(i) is the individual’s consumption at time t+1, nt(i) denotes the number of children
the individual has at time t, η > 0 is the fertility preference parameter, ht+1(i) denotes the
level of human capital that the individual passes onto each child, and γ is the quality preference
parameter. We assume that all individuals within the same household i have the same level of
human capital at time 0. Then, they will also have the same level of human capital for all t as
an endogenous outcome.
The individual allocates et(i) units of time to her children’s education. The accumulation

equation of human capital is given by

ht+1(i) = φ(i)et(i) + (1− δ)ht(i), (2)

where the ability parameter φ(i) > 0 is heterogeneous across households i ∈ [0, 1] and follows a
general distribution with the following mean:5

φ ≡

∫ 1

0

φ(i)di.

The heterogeneity of households is captured by their differences in φ(i), which in turn give rise
to an endogenous distribution of human capital. We focus on heterogeneity in φ(i) because it

4The formulation is based on Chu, Furukawa and Zhu (2016) and Chu, Kou and Wang (2022) with homoge-
neous households and exogenous fertilty.

5It is useful to note that φ is the unweighted mean which is exogenous, whereas the weighted mean changes
endogenously as the population share of households evolves over time.
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allows for a stationary distribution of the population share of different households in the long
run, whereas heterogeneity in other parameters, such as η or γ, imply that households with the
largest η or smallest γ would dominate the population in the long run. As for the parameter
δ ∈ (0, 1), it is the depreciation rate of human capital that a generation passes onto the next.
An individual in household i allocates 1 − et(i) − σnt(i) units of time to work and earns

wt [1− et(i)− σnt(i)]ht(i) as real wage income, where the parameter σ ∈ (0, 1) determines the
time cost of fertility. For simplicity, we assume that there are economies of scale in educating
children, and the cost of having more children is reflected in the time cost of childrearing.6 The
individual devotes her entire wage income to saving at time t and consumes the return at time
t+ 1:7

ct+1(i) = (1 + rt+1)wt [1− et(i)− σnt(i)]ht(i), (3)

where rt+1 is the real interest rate. Substituting (2) and (3) into (1), the individual maximizes

max
et(i), nt(i)

U t(i) = η lnnt(i)+γ ln [φ(i)et(i) + (1− δ)ht(i)]+ln {(1 + rt+1)wt [1− et(i)− σnt(i)]ht(i)} ,

taking {rt+1, wt, ht(i)} as given. The utility-maximizing level of fertility nt(i) is

nt(i) =
η

σ(1 + η + γ)

[
1 + (1− δ)

ht(i)

φ(i)

]
, (4)

which is decreasing in φ(i) but increasing in ht(i). In other words, households with a lower
ability to accumulate human capital and a higher level of human capital choose to have more
children. The utility-maximizing level of education et(i) is

et(i) =
1

1 + η + γ

[
γ − (1 + η)(1− δ)

ht(i)

φ(i)

]
, (5)

which is increasing in φ(i) but decreasing in ht(i). In summary, for a given ht(i), households
with a larger φ(i) choose a higher level of education et(i) but a smaller number nt(i) of children,
reflecting the quality-quantity tradeoff.
Substituting (5) into (2) yields the autonomous and stable dynamics of human capital as

ht+1(i) =
γ

1 + η + γ
[φ(i) + (1− δ)ht(i)] , (6)

where ht+1(i) is increasing in φ(i) and ht(i). The total amount of human capital in the economy
at time t is

Ht =

∫ 1

0

ht(i)Lt(i)di,

where Lt(i) is the working-age population size of household i. The law of motion for Lt(i) is

Lt+1(i) = nt(i)Lt(i) =
η

σ(1 + η + γ)

[
1 + (1− δ)

ht(i)

φ(i)

]
Lt(i), (7)

6This time cost is equivalent to a reduction in income of σwtht(i) per child.
7Our results are robust to individuals consuming also in the working age; derivations available upon request.
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and the size of the aggregate labor force in the economy at time t is

Lt =

∫ 1

0

Lt(i)di.

Let’s define st(i) ≡ Lt(i)/Lt as the working-age-population (i.e., labor) share of household i.

Lemma 1 The labor share st(i) of household i at time t ≥ 1 is given by

st(i) =

∏t−1

τ=0
nτ (i)L0(i)

∫ 1
0

∏t−1

τ=0
nτ (i)L0(i)di

,

where the fertility decision nt(i) of household i at time t ≥ 1 is given by

nt(i) =
η

σ(1 + η + γ)

{
t−1∑

τ=0

[
γ(1− δ)

1 + η + γ

]τ
+

[
γ(1− δ)

1 + η + γ

]t [
1 + (1− δ)

h0(i)

φ(i)

]}

,

which is an increasing function of h0(i)/φ(i).
Proof. See Appendix A.

Notice that changes to nτ (i) in any one period will affect st(i) in all future generations. The
reason is general and does not depend on the specific assumptions of this model: a temporary
growth effect has a permanent level effect. Therefore, if the fertility rate of an ability group
drops temporarily, this group would ceteris paribus forever have a lower population share than
it would otherwise have had. As we will later see, if the high-ability household experiences a
temporary reproduction loss, the economy will have a lower share of high-ability people forever.
We will also show that this loss will permanently lower per capita output, R&D investment,
and productivity growth.

2.2 Final good

Perfectly competitive firms use the following production function to produce final good Yt,
which is chosen as the numeraire:

Yt = H
1−α
Y,t

∫ Nt

0

Xα
t (j)dj, (8)

where the parameter α ∈ (0, 1) determines production labor intensity 1− α, and HY,t denotes
human-capital-embodied production labor. Xt(j) denotes a continuum of differentiated inter-
mediate goods indexed by j ∈ [0, Nt]. Firms maximize profit, and the conditional demand
functions for HY,t and Xt(j) are given by

wt = (1− α)
Yt
HY,t

, (9)
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pt(j) = α

[
HY,t
Xt(j)

]1−α
. (10)

2.3 Intermediate goods

Each intermediate good j is produced by a monopolistic firm, which uses a one-to-one linear
production function that transforms Xt(j) units of final good into Xt(j) units of intermediate
good j ∈ [0, Nt]. The profit function is

πt(i) = pt(i)Xt(i)−Xt(i), (11)

where the marginal cost of production is constant and equal to one (recall that final good is the
numeraire). The monopolist maximizes (11) subject to (10) to derive the monopolistic price as

pt(j) =
1

α
> 1, (12)

where 1/α is the markup ratio. One can show that Xt(j) = Xt for all j ∈ [0, Nt] by substituting
(12) into (10). Then, we substitute (10) and (12) into (11) to derive the equilibrium amount of
monopolistic profit as

πt =

(
1

α
− 1

)
Xt = (1− α)α

(1+α)/(1−α)HY,t. (13)

2.4 R&D

We denote vt as the value of a newly invented intermediate good at the end of time t. The
value of vt is given by the present value of future profits from time t+ 1 onwards:

vt =

∞∑

s=t+1

[

πs/

s∏

τ=t+1

(1 + rτ )

]

. (14)

Competitive R&D entrepreneurs invent new products by employingHR,t units of human-capital-
embodied labor. We specify the following innovation process:

∆Nt =
θNtHR,t
Lt

, (15)

where ∆Nt ≡ Nt+1−Nt. The parameter θ > 0 determines R&D productivity θNt/Lt, where Nt
captures intertemporal knowledge spillovers as in Romer (1990) and 1/Lt captures a dilution
effect that removes the scale effect.8 If the following free-entry condition holds:

∆Ntvt = wtHR,t ⇔
θNtvt
Lt

= wt, (16)

then R&D HR,t would be positive at time t. If θNtvt/Lt < wt, then R&D does not take place
at time t (i.e., HR,t = 0). Lemma 2 provides the condition for HR,t > 0, which requires R&D
productivity θ to be sufficiently high in order for innovation to take place.

8See Laincz and Peretto (2006) for a discussion of the scale effect.
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Lemma 2 R&D HR,t is positive at time t if and only if the following inequality holds:

∫ 1

0

[1− et(i)− σnt(i)]ht(i)st(i)di >
1

θ
. (17)

Proof. See Appendix A.

2.5 Aggregation

Imposing symmetry on (8) yields Yt = H
1−α
Y,t NtX

α
t . Then, we substitute (10) and (12) into this

equation to derive the aggregate production function as

Yt = α
2α/(1−α)NtHY,t. (18)

Using NtXt = α
2Yt, we obtain the following resource constraint on final good:

Ct = Yt −NtXt = (1− α
2)Yt, (19)

where Ct denotes aggregate consumption. Finally, the resource constraint on human-capital-
embodied labor is ∫ 1

0

[1− et(i)− σnt(i)]ht(i)Lt(i)di = HY,t +HR,t. (20)

2.6 Equilibrium

The equilibrium is a sequence of allocations {Xt(j), Yt, et(i), nt(i), ct(i), Ct, ht(i), Ht, HY,t, HR,t, Lt}
and prices {pt(j), wt, rt, vt} that satisfy the following conditions:

• individuals choose {et(i), nt(i), ct(i)} to maximize utility taking {rt+1, wt, ht(i)} as given;

• competitive firms produce Yt to maximize profit taking {pt(j), wt} as given;

• a monopolistic firm produces Xt(j) and chooses pt(j) to maximize profit;

• competitive entrepreneurs perform R&D to maximize profit taking {wt, vt} as given;

• the market-clearing condition for the final good holds such that Yt = NtXt + Ct;

• the resource constraint on human-capital-embodied labor holds such that HY,t +HR,t =∫ 1
0
[1− et(i)− σnt(i)]ht(i)Lt(i)di;

• total saving equals asset value such that wt
∫ 1
0
[1− et(i)− σnt(i)]ht(i)Lt(i)di = Nt+1vt.
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3 Stages of economic development

Our model features two stages of economic development. The first stage features only human
capital accumulation. The second stage features both human capital accumulation and inno-
vation.9 The activation of innovation and the resulting transition from the first stage to the
second stage are endogenous and do not always occur.

3.1 Stage 1: Human capital accumulation only

The initial level of human capital for each individual in household i is h0(i). Suppose the
following inequality holds at time 0:

∫ 1

0

[1− e0(i)− σn0(i)]h0(i)s0(i)di =
1

1 + η + γ

∫ 1

0

[
1 + (1− δ)

h0(i)

φ(i)

]
h0(i)s0(i)di <

1

θ
, (21)

which uses (4) and (5). In (21), both the initial labor share s0(i) ≡ L0(i)/L0 and initial human
capital h0(i) are exogenously given. Then, Lemma 2 implies that HR,0 = 0 and

HY,0 =
1

1 + η + γ

∫ 1

0

[
1 + (1− δ)

h0(i)

φ(i)

]
h0(i)L0(i)di. (22)

In this stage of development, the economy features only human capital accumulation. Human
capital ht(i) accumulates according to the autonomous and stable dynamics in (6), and st(i)
evolves according to Lemma 1. However, so long as the following inequality holds at time t:

∫ 1

0

[1− et(i)− σnt(i)]ht(i)st(i)di =
1

1 + η + γ

∫ 1

0

[
1 + (1− δ)

ht(i)

φ(i)

]
ht(i)st(i)di <

1

θ
, (23)

we continue to have HR,t = 0 and

HY,t =
1

1 + η + γ

∫ 1

0

[
1 + (1− δ)

ht(i)

φ(i)

]
ht(i)Lt(i)di. (24)

Substituting (24) into (18) yields the level of output per worker as

yt ≡
Yt
Lt
= α2α/(1−α)N0

HY,t
Lt

=
α2α/(1−α)N0
1 + η + γ

∫ 1

0

[
1 + (1− δ)

ht(i)

φ(i)

]
ht(i)st(i)di, (25)

where N0 remains at the initial level and output increases as human capital accumulates.

9See Iacopetta (2010), who considers a model in which innovation occurs before human capital accumulation.
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3.2 Stage 2: Innovation and human capital accumulation

Equation (6) shows that human capital ht(i) converges to a steady state given by

h∗(i) =
γφ(i)

1 + η + γδ
, (26)

which is increasing in household i’s ability φ(i). Substituting (26) into (4) and (5) yields the
steady-state levels of education and fertility given by

e∗(i) = e∗ =
γδ

1 + η + γδ
, (27)

n∗(i) = n∗ =
η

σ(1 + η + γδ)
, (28)

where we assume positive population growth (i.e., n∗ > 1) by imposing η > (1 + γδ)σ/(1− σ).
Also, n∗ is the same across all households because they are independent of φ(i). In other words,
the negative effect of φ(i) and the positive effect of h∗(i) on n∗(i) cancel each other. As a result,
the distribution of the population share of different households is stationary in the long run. In
this case, Lemma 2 implies that if the following inequality holds:

(1− e∗ − σn∗)

∫ 1

0

h∗(i)s∗(i)di =
γ

(1 + η + γδ)2

∫ 1

0

φ(i)s∗(i)di >
1

θ
, (29)

then human capital accumulation eventually triggers the activation of innovation, under which
the R&D condition in (16) holds and R&D HR,t becomes positive.
We now derive the equilibrium growth rate in the presence of innovation. Substituting (18)

into (9) yields the equilibrium wage rate as

wt = (1− α)α
2α/(1−α)Nt. (30)

Then, substituting (30) into (16) yields the equilibrium invention value as

vt
Lt
=
(1− α)α2α/(1−α)

θ
. (31)

The structure of overlapping generations implies that the value of assets at the end of time t
must equal the amount of saving at time t given by wage income at time t:

Nt+1vt = wt

∫ 1

0

[1− et(i)− σnt(i)]ht(i)Lt(i)di = wt(HY,t +HR,t), (32)

where the second equality uses (20). Substituting (30) and (31) into (32) yields

Nt+1 =
θNt
Lt
(HY,t +HR,t). (33)

Combining (15) and (33) yields the equilibrium level of HY,t as

HY,t
Lt

=
1

θ
(34)
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for all t. Substituting (4), (5) and (34) into (20) yields the equilibrium level of HR,t as

HR,t
Lt

=

∫ 1

0

[1− et(i)− σnt(i)]ht(i)st(i)di−
HY,t
Lt

=
1

1 + η + γ

∫ 1

0

[
1 + (1− δ)

ht(i)

φ(i)

]
ht(i)st(i)di−

1

θ
.

(35)
We can now substitute (35) into (15) to derive the equilibrium growth rate of Nt as

gt ≡
∆Nt
Nt

=
θHR,t
Lt

=
θ

1 + η + γ

∫ 1

0

[
1 + (1− δ)

ht(i)

φ(i)

]
ht(i)st(i)di− 1, (36)

which is also the equilibrium growth rate of output per worker yt = α
2α/(1−α)Nt/θ. Finally, the

steady-state equilibrium growth rate of Nt and yt is

g∗ =
θγ

(1 + η + γδ)2

∫ 1

0

φ(i)s∗(i)di− 1. (37)

In the steady state, s∗(i) is also the population share of household i and still depends on the
initial distribution of h0(i) and the exogenous distribution of φ(i) as shown in Lemma 1.

4 Heterogeneous households and evolutionary differences

Equation (21) shows that the activation of innovation-driven growth occurs at time 0 if and
only if the following inequality holds:

1

1 + η + γ

∫ 1

0

[
1 + (1− δ)

h0(i)

φ(i)

]
h0(i)s0(i)di >

1

θ
. (38)

Suppose we consider a useful benchmark of an equal initial labor share s0(i) = 1 and an equal
initial level of human capital h0(i) = h0 for all i ∈ [0, 1]. Then, the left-hand side of (38)
simplifies to

h0
1 + η + γ

[
1 + (1− δ)h0

∫ 1

0

1

φ(i)
di

]
>

h0
1 + η + γ

[
1 +

(1− δ)h0

φ

]
, (39)

where
∫ 1
0
[1/φ(i)]di > 1/φ due to Jensen’s inequality. In other words, the presence of hetero-

geneity in φ(i) makes the activation of innovation-driven growth more likely to occur at time
0 than the absence of heterogeneity (i.e., φ(i) = φ for all i ∈ [0, 1]) does. Due to heterogeneity,
some households supply more human capital for production and innovation while others supply
less. Equation (39) implies that the former effect dominates the latter effect such that the
initial amount of human capital available for production and innovation increases as a result of
heterogeneity. The intuition can be explained as follows.
Although some low-ability households may devote almost no time to education and most of

their time to work (and fertility), high-ability households always spend some time to work, as
the following shows:

1− e0(i)− σn0(i) =
1

1 + η + γ

[
1 +

(1− δ)h0
φ(i)

]
>

1

1 + η + γ
> 0.
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The convexity of 1/φ(i) in 1 − e0(i) − σn0(i) gives rise to the positive effect of heterogeneity
on the amount of human capital available for production and innovation. To put it differently,
the low-ability households being less willing to educate their children contribute to a larger
workforce, which in turn rewards the innovation pioneers with more profits extracted from a
larger market size of the economy. We summarize this result in the following proposition.

Proposition 1 The heterogeneity of households makes it more likely for innovation to be ac-

tivated at time 0.

Proof. If the following inequality holds:

h0
1 + η + γ

[
1 + (1− δ)h0

∫ 1

0

1

φ(i)
di

]
>
1

θ
>

h0
1 + η + γ

[
1 +

(1− δ)h0

φ

]
, (40)

which is a nonempty parameter space due to
∫ 1
0
[1/φ(i)]di > 1/φ, then the takeoff of the economy

occurs at time 0 under heterogeneous households but not under homogeneous households.

Next we examine how the labor share of households evolves over time. Given the benchmark
of an equal initial labor share s0(i) = 1 and an equal initial level of human capital h0(i) = h0
for all i ∈ [0, 1], the fertility of household i at time 0 is

n0(i) =
η

σ(1 + η + γ)

[
1 + (1− δ)

h0
φ(i)

]
,

which is decreasing in φ(i). For households with φ(i) > φ, their growth rate n0(i) would be
lower than n0(φ). However, they will have a higher level of human capital in the next period:

h1(i) = γ
φ(i) + (1− δ)h0
1 + η + γ

> γ
φ+ (1− δ)h0
1 + η + γ

.

This higher level of human capital gives rise to a higher growth rate n1(i) and reduces the differ-
ence between n1(i) and n1(φ). However, as shown in Lemma 1, nt(i) remains lower than nt(φ)
for φ(i) > φ until ht(i) converges to its steady-state level in (26) at which point the population
growth rate of all households i ∈ [0, 1] converges to n∗ in (28). Therefore, the population growth
rates of households with φ(i) > φ are lower than the population growth rates of households with
φ(i) < φ until ht(i) converges to its steady-state level in (26). This temporary evolutionary
disadvantage of high-ability households will never be compensated despite population trends
being equal across households in the long run.
The above analysis implies that there exists a threshold for φ(i) above (below) which s∗(i) <

1 (s∗(i) > 1). This in turn implies that10

∫ 1

0

φ(i)s∗(i)di <

∫ 1

0

φ(i)di = φ, (41)

10See the proof of Proposition 2 in Appendix A.
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because the households with larger φ(i) end up having a lower steady-state population share
s∗(i). Therefore, we also have the following inequality:

g∗ =
θγ

(1 + η + γδ)2

∫ 1

0

φ(i)s∗(i)di− 1 <
θγ

(1 + η + γδ)2
φ− 1, (42)

where the right-hand side of the inequality is the steady-state equilibrium growth rate under
homogeneous households (i.e., φ(i) = φ for all i ∈ [0, 1]). In other words, the steady-state
growth rate g∗ becomes lower because the heterogeneity in households and the temporary
evolutionary disadvantage of the high-ability households reduce the average level of human
capital and consequently the level of innovation (recall that gt = θHR,t/Lt) in the long run. We
summarize the above result in the following proposition.

Proposition 2 The temporary evolutionary disadvantage of the high-ability households causes

a lower steady-state equilibrium growth rate g∗ than the case of homogeneous households.

Proof. See Appendix A.

4.1 An example

In this section, we provide a simple parametric example to illustrate our results more clearly.
We consider two types of households. Specifically, φ(i) = φ+ ς for i ∈ [0, 0.5] and φ(j) = φ− ς
for j ∈ [0.5, 1]. As before, the households own the same initial amount of human capital (i.e.,
h0(i) = h0 for i ∈ [0, 1]). Their initial population shares are also the same (i.e., s0(i) = 1 for
i ∈ [0, 1]); in this case, the mean of φ(i) is simply φ and the coefficient of variation in φ(i) is
ς/φ. Therefore, for a given φ, an increase in ς raises the coefficient of variation in φ(i).
From (42), the steady-state growth rate g∗ is given by

g∗ =
θγ

(1 + η + γδ)2
[
(φ+ ς)s∗H + (φ− ς)s

∗

L

]
− 1 =

θγ

(1 + η + γδ)2

{
φ− ς

[
s∗L(ς

+
)− s∗H(ς

−

)

]}
− 1,

(43)

where s∗L ≡
∫ 1
0.5
s∗(j)dj = s∗(j)/2 is the steady-state population share of household j ∈ [0.5, 1]

with low ability φ(j) = φ− ς whereas s∗H ≡
∫ 0.5
0
s∗(i)di = s∗(i)/2 is the steady-state population

share of household i ∈ [0, 0.5] with high ability φ(i) = φ+ ς. We note that s∗H + s
∗

L = 1. Then,
from Lemma 1, we have

s∗L
s∗H

=

∏∞

t=0
nt(j)

∏∞

t=0
nt(i)

> 1, (44)

where

nt(j) =
η

σ(1 + η + γ)

{
t−1∑

τ=0

[
γ(1− δ)

1 + η + γ

]τ
+

[
γ(1− δ)

1 + η + γ

]t [
1 + (1− δ)

h0

φ− ς

]}

,

nt(i) =
η

σ(1 + η + γ)

{
t−1∑

τ=0

[
γ(1− δ)

1 + η + γ

]τ
+

[
γ(1− δ)

1 + η + γ

]t [
1 + (1− δ)

h0

φ+ ς

]}

.
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Therefore, s∗L/s
∗

H is increasing in ς, which together with s
∗

H+s
∗

L = 1 implies that s
∗

L is increasing
in ς and s∗H is decreasing in ς as stated in (43).
In summary, an increase in ς leads to an immediate increase in the coefficient of variation

in φ(i) given by ς/φ and a subsequent decrease in the steady-state growth rate g∗ given by (43)
by reducing the average level of human capital and the level of innovation in the long run due
to the temporary evolutionary disadvantage of the high-ability households.

5 Empirical evidence

In the previous section, we show that heterogeneity in the ability to accumulate human capital
reduces the average level of education, innovation and economic growth in the long run. In
this section, we use cross-country data to test this theoretical result. Specifically, we use the
coefficient of variation in the level of education as a scale-invariant measure of heterogeneity
in ability and estimate its effects on education, innovation and economic growth in the long
run. The coefficient of variation in education is calculated from the Barro-Lee educational
attainment dataset.11

The regression equation is specified as

yi,t+m = β0 + β1vari,t + β2hi,t + Zi,t + εi,t,

where yi,t+m is the dependent variable (i.e., education, innovation or economic growth) in coun-
try i at time t + m, vari,t is the coefficient of variation in education and hi,t is the level of
human capital in country i at time t. Zi,t is a vector of control variables including log pop-
ulation, log GDP per capita, trade as a share of GDP, gross capital formation as a share of
GDP, and government expenditure as a share of GDP.12 In order to capture the long run effect
of variation in education, all explanatory variables are lagged 25 years (i.e., m = 25).13 Our
theory predicts that β1 < 0 and β2 > 0. In other words, upon controlling for the level of human
capital, heterogeneity in education (reflecting heterogeneity in the ability to accumulate human
capital) has a negative effect on education, innovation and economic growth in the next period
(i.e., 25 years later).
Table 1 reports our main empirical results. In the first two columns, the dependent variables

are the share of the population with at least some primary education and the log of the average
years of education, respectively. These two variables reflect the average level of education. In

11The Barro-Lee educational attainment dataset provides the fraction of each group completely or incom-
pletely having attained primary, secondary and higher education. The duration for primary education and
secondary education in each country is available from the UNESCO Statistical Yearbook. As in Barro and Lee
(2013), we use a duration of four years for higher education and assign two years to persons who entered tertiary
school but did not complete it. We compute the average years of education for each group and calculate their
standard deviation in each country.
12Except for the coefficient of variation in education, the human-capital index, the number of researchers in

R&D and the number of patent applications, all other variables are from the Penn World Table. The human-
capital index, the number of researchers in R&D and patent applications are from the World Bank. We provide
the summary statistics in Appendix B.
13Here, we choose a lag of 25 years since the age of most people graduated from college is between 20 and 25.

In Appendix B, we also consider a lag of 20 years and a lag of 30 years.
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Table 1: Effects of heterogeneity in education

Education Innovation Growth
(1) (2) (3) (4) (5)

Heterogeneity in education -20.187*** -0.381*** -0.679** -0.847*** -0.992***
(1.875) (0.039) (0.284) (0.158) (0.360)

Human capital 3.952 0.174*** 0.809*** 1.884*** 1.311**
(2.469) (0.053) (0.255) (0.268) (0.518)

log population 0.453 0.016** 0.227*** 1.336*** 0.278***
(0.365) (0.008) (0.058) (0.077) (0.087)

log GDP per capita 2.843*** 0.147*** 1.047*** 1.111*** -0.702***
(0.849) (0.022) (0.133) (0.153) (0.191)

Trade share to GDP 1.566 0.005 -3.121*** -0.100 -0.251
(1.812) (0.055) (0.752) (0.400) (0.457)

Capital formation share 8.206 0.267 0.934 1.977 0.793
(5.570) (0.167) (1.117) (1.265) (1.602)

Government expenditure share 3.950 0.320* 1.948* 1.903* 0.275
(5.869) (0.175) (1.065) (1.143) (1.697)

Year fixed effect Yes Yes Yes Yes Yes
R-squared 0.826 0.827 0.747 0.825 0.090
Observations 954 954 244 624 954

Notes: *** p < 0.01, ** p < 0.05, * p < 0.1. Standard errors in parentheses are clustered by
country. The dependent variables correspond to the share of population with schooling and log
of average years of education respectively in the first two columns. The dependent variables
correspond to log of the number of researchers in R&D (per million people) and log of the
number of patent applications respectively in the columns 3-4. The dependent variable is the
growth rate of GDP per capita in the last column. In all columns, we control year fixed effects.
All independent variables are lagged 25 years.

columns (3) and (4), the dependent variables are the log of the number of researchers in R&D
(per million people) and the log of the number of patent applications, respectively. These two
variables reflect the level of innovation. Finally, in the last column, the dependent variable
is the GDP per capita growth rate. From Table 1, we see that the coefficients of vari,t are
all significantly negative, whereas the coefficients of hi,t are mostly significantly positive. This
finding implies that upon controlling for the level of human capital, heterogeneity in education
harms education, innovation and economic growth in the long run.
We also calculate the coefficients of variation in education for the male and female popula-

tions, respectively. Once again, the data is from the Barro-Lee educational attainment dataset.
As shown in Table 3 in Appendix B, all main results still hold for both samples. The coefficients
of variation in education are all significantly negative (except for the impact of heterogeneity
in female education on the number of researchers in R&D). Comparing panel A and B, the
negative impact of heterogeneity in the ability to accumulate human capital is more significant
for the male population with a larger magnitude of coefficients. In the baseline results, the
explanatory variables are lagged 25 years. If the explanatory variables are lagged 20 or 30 years
instead, all the main results still hold (see Table 4 in Appendix B for more details).
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6 Conclusion

In this study, we have developed a tractable innovation-driven growth model with endogenous
takeoff and natural selection of heterogeneous households. Specifically, households differ in
their ability to accumulate human capital. Within this growth-theoretic framework, we obtain
the following results. Initially, the heterogeneity of households makes it more likely for an
endogenous transition to innovation-driven growth to occur. However, our model features
a rather surprising survival-of-the-weakest scenario in the short run. Only in the long run,
the high-ability households would have accumulated enough human capital to overcome their
temporary evolutionary disadvantage, which however has a lasting negative impact on long-run
economic growth. We also examine cross-country data and find that heterogeneity in education
indeed has adverse effects on education, innovation and economic growth in the long run.
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Appendix A: Proofs

Proof of Lemma 1. The labor share of household i is st(i) ≡ Lt(i)/Lt, where

Lt(i) = nt−1(i)Lt−1(i) = nt−1(i)nt−2(i)Lt−2(i) = ... =
t−1∏

τ=0

nτ (i)L0(i). (A1)

From (4), the fertility choice at time 0 is given by

n0(i) =
η

σ(1 + η + γ)

[
1 + (1− δ)

h0(i)

φ(i)

]
. (A2)

From (6), the level of human capital at time 1 is given by

h1(i) =
γφ(i)

1 + η + γ

[
1 + (1− δ)

h0(i)

φ(i)

]
. (A3)

Substituting (A3) into (4) yields the fertility choice at time 1 as

n1(i) =
η

σ(1 + η + γ)

{
1 +

γ(1− δ)

1 + η + γ

[
1 + (1− δ)

h0(i)

φ(i)

]}
. (A4)

Substituting (A3) into (6) yields the level of human capital at time 2 as

h2(i) =
γφ(i)

1 + η + γ

{
1 +

γ(1− δ)

1 + η + γ

[
1 + (1− δ)

h0(i)

φ(i)

]}
. (A5)

Substituting (A5) into (4) yields the fertility choice at time 2 as

n2(i) =
η

σ(1 + η + γ)

{

1 +
γ(1− δ)

1 + η + γ
+

[
γ(1− δ)

1 + η + γ

]2 [
1 + (1− δ)

h0(i)

φ(i)

]}

. (A6)

Then, we can continue the process to derive the fertility choice at time t ≥ 3 as

nt(i) =
η

σ(1 + η + γ)

{

1 +
γ(1− δ)

1 + η + γ
+ ...+

[
γ(1− δ)

1 + η + γ

]t−1
+

[
γ(1− δ)

1 + η + γ

]t [
1 + (1− δ)

h0(i)

φ(i)

]}

,

(A7)
which can then be re-expressed using a summation sign as in Lemma 1.

Proof of Lemma 2. If (17) holds, then (35) shows that HR,t > 0. Now, let’s consider the
case in which ∫ 1

0

[1− et(i)− σnt(i)]ht(i)
Lt(i)

Lt
di <

1

θ
. (A8)

Recall that the value of assets at the end of time t must equal the amount of saving at time t
given by wage income at time t such that

Nt+1vt = wt

∫ 1

0

[1− et(i)− σnt(i)]ht(i)Lt(i)di. (A9)
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Substituting (A9) into (A8) yields

wt >
θNt+1vt
Lt

≥
θNtvt
Lt

, (A10)

where the second inequality uses Nt+1 ≥ Nt. Equation (A10) implies that ∆Ntvt = wtHR,t in
(16) cannot hold unless HR,t = 0.

Proof of Proposition 2. From Lemma 1, the steady-state population share of household i
is given by

s∗(i) =

∏∞

t=0
nt(i)

∫ 1
0

∏∞

t=0
nt(i)di

,

where we have used L0(i) = L0 for all i. Lemma 1 shows that nt(i) is monotonically decreasing
in φ(i) before reaching the steady state n∗ in (28), which then becomes independent of φ(i).
Therefore, it must be the case that

s∗(i) < s∗(j)⇔ φ(i) > φ(j).

Given that
∫ 1
0
s∗(i)di = 1, there must exist a threshold for φ(i) above (below) which s∗(i) < 1

(s∗(i) > 1). Let’s define:

∆ ≡

∫ 1

0

φ(i)s∗(i)di− φ =

∫ 1

0

φ(i)s∗(i)di−

∫ 1

0

φ(i)di =

∫ 1

0

φ(i)[s∗(i)− 1]di.

We order the households such that φ(i) > φ(j) for any i < j. In this case, s∗(i) < 1 for i ∈ [0, ε]
and s∗(i) > 1 for i ∈ [ε, 1]. Therefore, we can re-express ∆ as

∆ =

∫ ε

0

φ(i)[s∗(i)− 1]di

︸ ︷︷ ︸
<0

+

∫ 1

ε

φ(i)[s∗(i)− 1]di

︸ ︷︷ ︸
>0

.

If φ(i) = φ(j) = φ(ε) for all i ∈ [0, ε] and j ∈ [ε, 1], then ∆ = 0 because

φ(ε)

∫ ε

0

[s∗(i)− 1]di+ φ(ε)

∫ 1

ε

[s∗(i)− 1]di = φ(ε)

∫ 1

0

[s∗(i)− 1]di = 0.

Otherwise, ∆ < 0 because φ(i) > φ(ε) > φ(j) for any i ∈ [0, ε) and j ∈ (ε, 1] such that

∫ ε

0

φ(i)[s∗(i)− 1]di < φ(ε)

∫ ε

0

[s∗(i)− 1]di < 0,

φ(ε)

∫ 1

ε

[s∗(i)− 1]di >

∫ 1

ε

φ(i)[s∗(i)− 1]di > 0,

implying ∆ < φ(ε)
∫ 1
0
[s∗(i)− 1]di = 0. Therefore, (41) and (42) hold.
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Appendix B: Data and robustness

Table 2: Summary statistics

Variable Obs Mean S.D. Min Max
Share of population with schooling (%) 954 81.15 20.86 13.72 100
Years of education (log) 954 1.895 0.509 -0.191 2.586
Number of researchers (log) 244 6.728 1.665 2.003 8.952
Number of patent applications (log) 624 5.313 2.829 0 13.78
Growth of GDP per capita (%) 954 1.949 4.889 -50.23 35.26
Coefficient of variation in education 954 1.140 0.822 0.220 8.075
Variation in education (male) 954 0.991 0.638 0.228 5.984
Variation in education (female) 954 1.432 1.409 0.209 17.71
Human capital 954 1.808 0.613 1.009 3.463
log population 954 1.883 1.686 -2.212 7.067
log GDP per capita 954 8.587 1.175 5.683 12.38
Trade share to GDP (%) 954 -0.050 0.332 -8.188 0.860
Capital formation share (%) 954 0.211 0.133 0.002 2.000
Government expenditure share (%) 954 0.178 0.106 0.012 1.122

Note: The coefficient of variation in education is calculated from the Barro-
Lee educational attainment dataset. The human-capital index, the number
of researchers in R&D and the number of patent applications are from the
World Bank. All other variables are from the Penn World Table.
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Table 3: Effects of heterogeneity in education (male vs female)

Education Innovation Growth
(1) (2) (3) (4) (5)

Panel A: Male
Heterogeneity in education -20.872*** -0.372*** -1.072*** -1.048*** -1.148***

(1.904) (0.041) (0.346) (0.216) (0.439)
Human capital 1.904 0.173*** 0.704*** 1.915*** 1.415***

(1.975) (0.045) (0.251) (0.267) (0.537)
R-squared 0.768 0.782 0.752 0.824 0.088
Observations 954 954 244 624 954
Panel B: Female
Heterogeneity in education -12.362*** -0.279*** -0.309 -0.423*** -0.534***

(2.096) (0.044) (0.193) (0.068) (0.200)
Human capital 11.684*** 0.252*** 0.896*** 1.901*** 1.391***

(3.372) (0.073) (0.246) (0.268) (0.417)
R-squared 0.798 0.836 0.745 0.826 0.091
Observations 954 954 244 624 954
Country-level controls Yes Yes Yes Yes Yes
Year fixed effect Yes Yes Yes Yes Yes

Notes: *** p < 0.01, ** p < 0.05, * p < 0.1. Standard errors in parentheses are clustered
by country. The dependent variables correspond to the share of population with schooling
and log of average years of education respectively in the first two columns. The dependent
variables correspond to log of the number of researchers in R&D (per million people) and
log of the number of patent applications respectively in the columns 3-4. The dependent
variable is log of GDP per capita in the last column. In all columns, we control year fixed
effects. Country-level controls include log population, log GDP per capita, trade share to
GDP, gross capital formation share to GDP and government expenditure share to GDP.
All independent variables are lagged 25 years.
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Table 4: Effects of heterogeneity in education (20 or 30 years lags)

Education Innovation Growth
(1) (2) (3) (4) (5)

Panel A: 20-year lag
Heterogeneity in education -22.536*** -0.442*** -0.477 -0.890*** -1.213***

(1.860) (0.037) (0.330) (0.166) (0.350)
Human capital 5.993** 0.187*** 1.028*** 1.942*** 0.921*

(2.327) (0.047) (0.255) (0.262) (0.484)
R-squared 0.852 0.864 0.746 0.829 0.099
Observations 1091 1091 254 654 1091
Panel B: 30-year lag
Heterogeneity in education -17.946*** -0.333*** -0.797*** -0.787*** -0.723***

(1.882) (0.039) (0.274) (0.158) (0.276)
Human capital 2.083 0.165*** 0.864*** 1.893*** 1.092**

(2.632) (0.057) (0.291) (0.283) (0.475)
R-squared 0.798 0.788 0.716 0.818 0.089
Observations 817 817 234 587 817
Country-level controls Yes Yes Yes Yes Yes
Year fixed effect Yes Yes Yes Yes Yes

Notes: *** p < 0.01, ** p < 0.05, * p < 0.1. Standard errors in parentheses are clustered
by country. The dependent variables correspond to the share of population with schooling
and log of average years of education respectively in the first two columns. The dependent
variables correspond to log of the number of researchers in R&D (per million people) and
log of the number of patent applications respectively in the columns 3-4. The dependent
variable is log of GDP per capita in the last column. In all columns, we control year fixed
effects. Country-level controls include log population, log GDP per capita, trade share to
GDP, gross capital formation share to GDP and government expenditure share to GDP.
All independent variables are lagged 20 years in panel A and lagged 30 years in panel B.
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