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Abstract 

Given the increase in the importance of measuring the degree and source of resilience after great shocks, resilience has 

garnered researchers’ attention. However, there is no generally agreed-upon measurement for resilience; the existing 

approach holds few industrial assessments for resilience. This study provides a structural sensitivity index to measure 

the industrial sources of regional employment resilience and applies it to the Japanese economy between 1980 and 

2012. It presents a novel formula that quantifies the sources of regional resilience by within-sector and structural 

change effects and extracts how unevenly different local industries contribute to regional resilience. Exploring the in-

dustrial and quantitative aspects of employment resilience chronally and geographically reveals that Japanese prefec-

tures gradually became resilient after the 1990s, increasing the regional heterogeneity. Moreover, the structural change 

effect has constantly hurt the regional resilience, offsetting some favourable within-sector effects. Finally, the increasing 

regional heterogeneity behind improvements in resilience accompanies industrial unevenness from different time ho-

rizons, but the overall relationship between industrial unevenness and resilience is not unique from a different spatial 

perspective. 
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1 INTRODUCTION 

Over the past few decades, many countries have experienced adverse economic shocks. Japan is no exception; 

its economy has been stagnating since the 1990s through several crises. Crises ask how resilient the economy is. Par-

ticularly, given the global financial crisis and the current COVID-19 pandemic, the concept of resilience has garnered 

much researcher attention.  

As resilience is essentially multifaceted (Briguglio et al., 2009), the concept has been stretched to various disci-

plines in human and social sciences , engineering, and urban planning (Modica & Reggiani, 2015; Fröhlich & Hassink, 

2018). Moreover, the evolutionary economic perspective has explored how an economic unit can withstand or absorb a 

shock and recover therefrom or develop a new development trajectory. It considers economic resilience an ensemble of 

resistance, recoverability, reorganisation, and reorientation after an adverse shock (Simmie & Martin, 2010; Martin et 

al., 2016; Martin & Sunley, 2020).1 Hence, the fundamental question for regional economic resilience is ‘why do some 

regions manage to overcome short-term or long-term economic adversity to maintain a high quality of life for regional 

residents while others fail?’ (Christopherson et al., 2010, p. 2). Many researchers have explored the concept, measure-

ment, and application of regional resilience via state-of-the-art empirical analyses (Bristow & Healy, 2020). 

This study empirically analyses the regional employment resilience in Japan. Unlike prior studies, this study 

presents a novel formula for sensitivity index to simultaneously measure the spatial and industrial sources of regional 

resilience. It focuses on the regional employment from different industries’ performance, of which it measures the resil-

ience over recession and recovery phases. The main unit of analysis is 47 regional (prefectural) economies and their 

 

1 Resilience after an adverse shock is classified via three representative conceptions: engineering, ecological, and evolu-

tionary conceptions. The engineering concept captures the resilience of an economic unit as a bounce-back to a prior 

equilibrium. The ecological resilience focuses on the ability of unit to absorb shock within an existing system. Evolu-

tionary (or adaptive) resilience defines the capacity to bounce forward and adapt via structural changes of different 

units (Boschma, 2015; Bristow & Healy, 2020; Evenhuis, 2020). 
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employment resilience over different business cycles. Thus, the study employs the Regional-Level Japan Industrial 

Productivity Database 2017 (R-JIP database 2017) compiled by the Research Institute of Economy, Trade and Industry. 

Hence, the study reveals chronal and regional characteristics of employment resilience in Japan and its industrial driv-

ing force, evolutionary property, and unevenness. 

Prior studies identify the factors that principally influence regional economic resilience. As Martin and Sunley 

(2020) note, they focus on industrial structure (Groot et al., 2011; Brown & Greenbaum, 2017; Gardiner et al., 2013; 

Martin et al., 2016; 2018; Martin & Gardiner, 2021), labour market conditions (Fingleton et al., 2012; Faggian et al., 

2018; Cappelli et al., 2021), financial arrangement, and governance arrangements. The role of an economic agent also 

matters for resistance to and recovery from shock (Bristow & Healy, 2014).  

This study investigates regional employment resilience and its industrial structural sources, on which there are 

affluent empirical studies centred around the US and European countries. For instance, by estimating the sensitivity of 

sectoral GDP reaction to shocks in some EU countries, Groot et al. (2011) find that countries and regions with highly 

sensitive industries underwent a stronger growth decline in 2009. Brown and Greenbaum (2017) studied employ-

ment resilience in Ohio counties between 1977 and 2011 via regression analyses. They show that industrial diversifi-

cation restrains the unemployment rate, but concentration raises it during national or local employment shocks. 

Meanwhile, Martin et al. (2018) use the decomposition technique to measure regional resilience, revealing that relative 

to between-sector contributions, within-sector improvements are dominant over the UK’s city productivity growth 

rate. Using a similar technique, Martin et al. (2016) show that the regional competitiveness effect is relatively large for 

the UK’s regional employment resilience, and most regions in the UK undergo a negative industrial structural effect 

over different cycles. Martin and Gardiner (2021) review the controversy on which regions with industrial competi-

tiveness, specialisation, diversification, or related variety are more resilient. Applying these concepts to the UK cities, 

they show that city-specific competitiveness matters for resilience. 
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These studies commonly highlight that different sectoral compositions of the economy are concerned with re-

gional resilience for the US and European countries. Despite this recognition, it is not obvious how different industry 

performance and structural change quantitatively contribute to regional resilience. Indeed, industrial contributions to 

regional resilience can be quite mixed, as per this study. Evidently, prior studies have not explored this fact. 

This study presents three contributions to the existing literature. First, it builds a structural sensitivity index to 

quantitatively measure the industrial sources of regional resilience. The sensitivity index is originally given by Martin 

(2012) and has been modified to correctly measure regional resilience (Lagravinese, 2015; Giannakis & Bruggeman, 

2017). It determines the regional resilience by comparing the change in an aggregate economic variable (e.g. value-

added, employment rate, and productivity) of a regional economic unit with that of a benchmark unit. However, a re-

gional economy naturally comprises different industries, and accordingly, industrial performance is crucial to building a 

resilient economy. However, the sensitivity index ignores this simple fact, and, consequently, the sources of regional re-

silience are packed in a black box. The structural sensitivity index can simultaneously measure regional resilience and 

its industrial sources. Unpacking the black box of the regional resilience, this study links three aspects of resilience: re-

sistance (i.e. the degree of enduring over the general recession phase), recoverability (i.e. the degree of recovery over 

the general recovery phase) and an evolutionary dimension of reorganisation (i.e. continuous change in industrial 

structure over business cycles) in a regional economy. This study decomposes the sources of resilience into within-

sector and structural change effects to measure resistance and recoverability. The new formula can generically be ap-

plied to other databases employed in this study. 

Second, this study explicitly extracts the unevenness behind regional resilience quantitatively. Some industries 

support resilience, but others do not. The sensitivity index per se cannot precisely measure how different industries 

contribute to regional resilience for these cases, as it is defined at the aggregate level. Moreover, although regional stud-

ies have revealed regional differences in economic resilience or volatility in other ways (e.g. Duran & Fratesi, 2020, for 
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Italian regions; Ringwood et al., 2020, for the US county), they have not specified where the differences come from. 

Therefore, this study relates the sources and unevenness of industrial contributions. By disaggregating the sensitivity 

index into industry levels, the approach also quantifies the unevenness of industrial contributions to regional resilience. 

This idea is inspired by Harberger’s (1998) sunrise-sunset diagram, which classified the different total factor productiv-

ity (TFP) growth patterns. The application provides useful graphical and summary statistics to consider the industrial 

sources and unevenness of regional resilience. It helps consider the resilience of regional employment and its uneven 

source. 

The third contribution is empirical. The study examines the Japanese economy and considers the long-term 

evolution of its regional resilience. Despite many studies exploring resilience in European or the US economies, with 

frequent natural disasters in Japan attracting researchers’ attention to its regional resilience, the subject remains lim-

ited. For instance, Aldrich (2012) compares Tokyo’s 1923 and Kobe’s 1995 earthquakes and shows that social com-

munity networks are vital to recovery. Fraser (2021) explores the role of social capital at a municipality level and 

community resilience after disasters. Using the sensitivity index, Oliva and Lazzeretti (2018) contrast employment re-

silience differences between strong major prefectures and weak rural ones after major earthquakes between 2003 and 

2008. Todo et al. (2015) econometrically reveal that supply chain networks outside of an affected area contribute to the 

early recovery of production in seven Tohoku prefectures after the Great East Japan earthquake in 2011. These studies 

revealed how particular regions reacted to a specific disaster in Japan. However, a natural disaster is not the only seri-

ous adverse shock. The Japanese economy has long been affected by various short-term shocks, such as the bubble 

burst, the financial crisis in the late 1990s, and the global financial crisis of 2008. Therefore, it is pertinent to analyse the 

regional resilience in Japan regarding a sequence of shock and recovery processes. Generally, many studies assess resil-

ience to only one shock, such as the global financial crisis, as Bristow and Hearly (2020) note. However, one shock alone 

may not drastically change a regional economic resilience, and a longer-run perspective matters, as the regional econ-
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omy is a product of the history wherein its reaction to shock may have shaped its resilience to subsequent shocks. Mar-

tin and Sunley (2020, p. 32) summarise that ‘the features and structures built up by a region’s past development influ-

ence its resilience, and its resilience to shocks will impact back on that development path, either reinforcing it or pro-

moting change.’ Hence, the long-run focus of this study can highlight the differences and evolving nature of regional 

resilience and its relationship with industrial structure.  

The rest of the study is organised as follows: Section 2 explains the issues of the sensitivity index and presents 

the structural sensitivity index. Section 3 applies this index to identify industrial sources and the unevenness of regional 

resilience in Japan. Section 4 concludes the study. 

 

2 FORMULAS FOR MEASURING INDUSTRIAL SOURCES AND UNEVENNESS FOR RE-

GIONAL RESILIENCE  

2.1 Sensitivity index revisited 

Martin (2012) proposed the sensitivity index to measure the UK’s regional resistance to and recovery from the 

early 1980s recession regarding employment. It is defined by the ratio of growth rates or elasticity for economic varia-

bles, such as employment or value-added in a region to that in the country (i.e. benchmark). The original sensitivity 

index 𝛽𝛽1,𝑟𝑟 of a region 𝑟𝑟 is given by 

𝛽𝛽1,𝑟𝑟 =
𝑔𝑔𝑟𝑟𝑔𝑔𝑁𝑁 , (1) 

where 𝑔𝑔𝑟𝑟 is the growth rate in an economic variable in region 𝑟𝑟, while 𝑔𝑔𝑁𝑁 is that in the country from the onset of a neg-

ative shock to its end. The index 𝛽𝛽1,𝑟𝑟 greater than unity over a recession period indicates that the region 𝑟𝑟 shows a low 

resistance (or more vulnerability) to a recessionary shock. Conversely, if the index is less than unity, it has a high re-

sistance. Martin’s sensitivity index is also applied to measure recoverability. Namely, if the index is over unity for a re-

gion over the recovery process, it has a high recoverability and vice-versa. 
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Equation (1) implicitly supposes that the growth rates of region and country move in the same direction over 

the recession and recovery process. However, they can naturally move in opposite directions. When the national econ-

omy records a negative growth rate but a regional economy realises a positive growth rate (i.e. 𝑔𝑔𝑁𝑁 < 0, and 𝑔𝑔𝑟𝑟 > 0) 

over a recession, Equation (1) presents a wrong message that the regional resistance is low because the value is less 

than unity.  

Thus, to avoid such a wrong determination, Lagravinese (2015) and Giannakis and Bruggeman (2017) pro-

vide the following sensitivity index: 

𝛽𝛽2,𝑟𝑟 =
1

|𝑔𝑔𝑁𝑁|
(𝑔𝑔𝑟𝑟 − 𝑔𝑔𝑁𝑁). (2) 

The sensitivity index 𝛽𝛽2,𝑟𝑟 is principally computed by the difference between the region and national growth 

rates, scaled by the absolute value of the national growth rate. The sign of the index identifies the resistance and recov-

erability. When the index is positive over a recession, its impact is less for the region than for the national economy, and 

the regional economy is regarded as high resistance. Conversely, when it is negative, its impact is harder for the region 

than for the national economy, and the regional economy is regarded as low resistance. When it is applied to the recov-

ery process, the positive (negative) value indicates that the regional economy grows faster (slower) than the national 

economy, and the regional economy has a high recoverability. Unlike Martin’s original index, Equation (2) is robust to 

the cases where regional and benchmark growth rates record different signs, and it has widely been employed to iden-

tify regional resilience.2 

 

2 For example, using output growth rates, Tan et al. (2020) measured the economic resilience of resource-based cities 

during the Asian and global financial crises. Based on Equations (1) and (2), Lagravinese (2015) studies the resistance 

and recoverability of the Italian regional labour market over different business cycles from 1970 to 2007, finding that 

there is a positive correlation between average resistance and recoverability. Giannakis and Bruggeman (2017) em-

ploys Equation (2) to measure the regional employment resilience for EU-28 with the benchmark of EU and county and 

reveals heterogenous geography of the employment resilience on the impact of the global financial crisis. Moreover, 
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Although simple and useful, these sensitivity indices have some problems in measuring regional resilience. 

First and crucially, they ignore that regional and national economy comprises different industries. Consequently, they 

cannot measure the industrial sources of regional resilience. The sensitivity indices leave much to consider regarding 

the industrial structure and its different performances in regional and national economies. Second and accordingly, 

these indices cannot identify the impact of structural changes on regional economic resilience. Given that the sensitivi-

ty indices simply compare the magnitude of aggregate economic changes to evaluate resilience, the effect of change in 

industrial compositions is ignored. Moreover, regional resilience is established via contrasted contributions of different 

industries and structural changes. The simple sensitivity indices overlook uneven contributions and various structural 

changes behind different regions. Hence, to address such remaining issues, this study presents a structural sensitivity 

index. 

2.2 Structural sensitivity index 

The structural sensitivity index, denoted by 𝛽𝛽𝑟𝑟, emphasises the role of industrial compositions in an economy. 

The study employs the following equation to derive the index: 

𝛽𝛽𝑟𝑟 = 𝑔𝑔𝑟𝑟 − 𝑔𝑔𝑁𝑁 , (3) 

which is identical to Equation (2) except that it is not scaled by the absolute value of the national (benchmark) growth 

rate. It can be scaled with it to consider the economic resilience elasticity, but the equation suffices to measure the types 

and degrees of resilience. The essence of the structural sensitivity index is that regional and benchmark growth rates 

 

sensitivity index is modified by level variables to address this issue. For example, Faggian et al. (2018) present 

𝛽𝛽𝑟𝑟 =
𝐸𝐸𝑟𝑟,𝑡𝑡/𝐸𝐸𝑟𝑟,𝑡𝑡−1𝐸𝐸𝑁𝑁,𝑡𝑡/𝐸𝐸𝑁𝑁,𝑡𝑡−1, 

where 𝐸𝐸𝑟𝑟,𝑡𝑡/𝐸𝐸𝑟𝑟,𝑡𝑡−1 is the ratio of a regional economic variable between time 𝑡𝑡 and 𝑡𝑡 − 1, and 𝐸𝐸𝑁𝑁,𝑡𝑡/𝐸𝐸𝑁𝑁,𝑡𝑡−1 is that of the 

national variable. Thus, if the value is over unity, the region is more resistant than the national (benchmark) economy. 

Oliva and Lazzeretti (2018) employ this index to measure the employment resistance of major Japanese prefectures 

after the major earthquakes. 
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are the sum of different industry contributions. Given that this approach directly uses realised values only, it does not 

require a counterfactual or expected value, which largely depends on statistical inference to measure the regional resil-

ience.  

Denote 𝑔𝑔𝑖𝑖,𝑟𝑟 and  𝑔𝑔𝑖𝑖,𝑁𝑁 as the growth rates of an economic variable in an industry 𝑖𝑖 of a region 𝑟𝑟 and that of the 

national economy 𝑁𝑁, respectively. These growth rates are standardised by the average annual rates over a business cy-

cle phase. Moreover, let 𝜔𝜔𝑖𝑖,𝑟𝑟 and 𝜔𝜔𝑖𝑖,𝑁𝑁 be the shares of the economic variable in the industry 𝑖𝑖 of the regional and na-

tional economies, respectively. These shares are defined at the benchmark year to calculate the contributions. The re-

gional growth rate for the variable can then be decomposed into 𝑔𝑔𝑟𝑟 = ∑ 𝑔𝑔𝑖𝑖,𝑟𝑟𝑖𝑖 ∙ 𝜔𝜔𝑖𝑖,𝑟𝑟, and, by the same token, the nation-

al growth rate is 𝑔𝑔𝑁𝑁 = ∑ 𝑔𝑔𝑖𝑖,𝑁𝑁𝑖𝑖 ∙ 𝜔𝜔𝑖𝑖,𝑁𝑁. Substituting these disaggregated expressions into Equation (3) yields 

𝛽𝛽𝑟𝑟 = �𝑔𝑔𝑖𝑖,𝑟𝑟 ⋅ 𝜔𝜔𝑖𝑖,𝑟𝑟𝑖𝑖 −�𝑔𝑔𝑖𝑖,𝑁𝑁𝑖𝑖 ∙ 𝜔𝜔𝑖𝑖,𝑁𝑁 = ��𝑔𝑔𝑖𝑖,𝑟𝑟 ⋅ 𝜔𝜔𝑖𝑖,𝑟𝑟 − 𝑔𝑔𝑖𝑖,𝑁𝑁 ⋅ 𝜔𝜔𝑖𝑖,𝑁𝑁�𝑖𝑖 , (4) 

where the terms in the parenthesis can further be arranged as  

𝑔𝑔𝑖𝑖,𝑟𝑟 ⋅ 𝜔𝜔𝑖𝑖,𝑟𝑟 − 𝑔𝑔𝑖𝑖,𝑁𝑁 ⋅ 𝜔𝜔𝑖𝑖,𝑁𝑁 ≡ �𝑔𝑔𝑖𝑖,𝑟𝑟 − 𝑔𝑔𝑖𝑖,𝑁𝑁�𝜔𝜔𝑖𝑖,𝑟𝑟 + �𝜔𝜔𝑖𝑖,𝑟𝑟 −𝜔𝜔𝑖𝑖,𝑁𝑁�𝑔𝑔𝑖𝑖,𝑁𝑁. (5) 

Hence, the structural sensitivity index is 

𝛽𝛽𝑟𝑟 = ��𝑔𝑔𝑖𝑖,𝑟𝑟 − 𝑔𝑔𝑖𝑖,𝑁𝑁�𝜔𝜔𝑖𝑖,𝑟𝑟 +��𝜔𝜔𝑖𝑖,𝑟𝑟 −𝜔𝜔𝑖𝑖,𝑁𝑁�𝑔𝑔𝑖𝑖,𝑁𝑁𝑖𝑖𝑖𝑖 , (6) 

which identifies the two sources of sensitivity and, accordingly, regional resilience. The first is the sum-product of dif-

ferences between regional and national growth rates (𝑔𝑔𝑖𝑖,𝑟𝑟 − 𝑔𝑔𝑖𝑖,𝑁𝑁) and regional share (𝜔𝜔𝑖𝑖,𝑟𝑟) of each industry. If the 

growth rate of an industry 𝑖𝑖 of a region 𝑟𝑟 is higher (lower) than the country level, it positively (negatively) contributes 

to the regional resilience. These effects are proportionally enhanced by the share of the economic variable in the indus-

try 𝑖𝑖 of the regional economy 𝑟𝑟. Given that these dynamics work in the same industry, they are termed the ‘within sec-

tor effect’.  

The second is the sum-product of differences between regional and national shares (𝜔𝜔𝑖𝑖,𝑟𝑟 −𝜔𝜔𝑖𝑖,𝑁𝑁) and na-
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tional growth rate (𝑔𝑔𝑖𝑖,𝑁𝑁) of each industry. If the share of an industry 𝑖𝑖 in a region 𝑟𝑟 is larger than that at the national 

level (i.e. 𝜔𝜔𝑖𝑖,𝑟𝑟 > 𝜔𝜔𝑖𝑖,𝑁𝑁), then a higher (lower) growth of the industry at the national level raises (lowers) the regional 

resilience. However, if that share is lower than the national level (i.e. 𝜔𝜔𝑖𝑖,𝑟𝑟 < 𝜔𝜔𝑖𝑖,𝑁𝑁), then a higher (lower) growth of the 

industry at the national level lowers (raises) the regional resilience. Thus, the industrial composition and macroeco-

nomic trend matter for the second effect. Importantly, given that 𝜔𝜔𝑖𝑖,𝑟𝑟 and 𝜔𝜔𝑖𝑖,𝑁𝑁 reflect the degree of regional and na-

tional concentration of an industry 𝑖𝑖, its ratio 
𝜔𝜔𝑖𝑖,𝑟𝑟𝜔𝜔𝑖𝑖,𝑁𝑁 is the so-called location quotient measuring the relative degree of re-

gional specialisation in industry 𝑖𝑖. In the formula, if their difference is positive and larger, the region 𝑟𝑟 can be said to be 

specialised in industry 𝑖𝑖. When the specialisation goes with a pro-trend of industrial growth at the national level, it posi-

tively contributes to regional resilience by raising regional contribution over national contribution. Conversely, if the 

specialisation exhibits an anti-trend, it negatively contributes to regional resilience. Thus, how specialisation affects 

regional resilience depends on the macroeconomic trend of each industry. 3 Given that these dynamics originate in the 

structural aspect (i.e. the industrial composition) of regional and national economies, they are termed the ‘structural 

change effect’. 

The structural sensitivity index identifies within-sector and structural change effects as the sources of resili-

ence for a region, the sum of which is the ‘total effect’. Summing the total effect at a regional level measures the sensitiv-

ity index of that region. 4 Unlike the bounce-back approach, the index does not a priori suppose any single equilibrium 

 

3 Dauth and Suedekum (2016) reveal that some regions in German grow at a higher pace even though the regional 

economy is strongly based on nationally declining industries. Urso et al. (2019) find that the global financial crisis pro-

moted a change in industry composition of inner areas in Italy, though their local industry composition does not accord 

with the nationally booming sectors. 

4 The formula can also be regarded as an application of the shift-share analysis for regional economic growth, of which 

the economic geography has long been recognised as useful. For instance, Knudsen (2000), Nazara and Hewings 

(2004), Giannakis and Bruggeman (2017), and Martin and Gardiner (2021) present several shift-share formulas for 

regional growth rate decompositions, whereas Ray et al. (2012) and Gardiner et al. (2013) extend this formula to the 
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or return to it after a shock. It allows for different trajectories of each unit’s behaviour under consideration as the eco-

logical conception does. The most important advantage of the index is that the structural change effect sheds light on 

an evolutionary aspect of resilience in the sense of how resilience is associated with structural changes in regional and 

national economies (Evenhuis, 2020).  

2.3 Measuring industrial unevenness behind resilience 

The disaggregate approach is also helpful to understand the industrial unevenness of resilience in each region. 

Equation (6) can be rearranged as follows: 

𝛽𝛽𝑟𝑟 = ���𝑔𝑔𝑖𝑖,𝑟𝑟 − 𝑔𝑔𝑖𝑖,𝑁𝑁�𝜔𝜔𝑖𝑖,𝑟𝑟 + �𝜔𝜔𝑖𝑖,𝑟𝑟 −𝜔𝜔𝑖𝑖,𝑁𝑁�𝑔𝑔𝑖𝑖,𝑁𝑁𝜔𝜔𝑖𝑖,𝑟𝑟 �𝜔𝜔𝑖𝑖,𝑟𝑟,𝑖𝑖 (7) 

where the terms in the curly bracket represent the total effect per regional industrial share. Equation (7) can graphical-

ly be described as Harberger’s (1998) sunrise-sunset diagram to measure how regional resilience is industrially even 

or uneven.  

The diagram for a region is depicted by taking the share of each industry’s economic variable on the horizon-

tal axis in descending order for the total effect per regional industrial share. The vertical axis measures the cumulative 

contributions of the total effect. It gives useful summary statistics and characterises the regional resilience as ‘yeast’ 

and ‘mushroom’ types. The yeast type resilience means that most industries broadly contribute to regional resilience, 

whereas the mushroom one reflects that only a limited number of industries contribute to it.5 

Using the Harberger diagram, Figure 1 illustrates contrasted configurations of sensitivity index for Fukushi-

ma (Panel A) and Okinawa (Panel B) over the recession in the 14th cycle (2008 to 2009). The former (latter) was the 

 

multi-factor partitioning model. However, as these formulas specify the regional growth by subtracting different growth 

rates, they do not consider the role of industrial compositions or structural changes in sectoral shares.  

5  The terms are metaphors. Harberger (1998) considers the yeast type when most sectors expand evenly and mush-

room type when growth unevenly stems from different sectors. For a graphical illustration of Harberger’s diagram and 

its TFP growth pattern application, see Harberger (1998) and Inklaar and Timmer (2007). 
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least (most) resistant. The red solid line with dot plots presents the cumulative industrial contributions to the sensitivi-

ty index. The slope of each plot depends on the total effect per regional industrial share, and the cumulative share of 

industries with a positive total effect per regional industrial share indicates the pervasiveness of regional resilience. 

Meanwhile, the black solid line shows the cumulative average contribution to regional resilience, computed via 

∑ 𝛽𝛽𝑟𝑟 ⋅ 𝜔𝜔𝑖𝑖,𝑟𝑟𝑖𝑖 . Each term is a hypothetical contribution by each industry when it realises the average sensitivity. Thus, the 

distance between the cumulative (red) and average (black) contributions creates the surface of the Harberger diagram. 

If most industries in a region equally contribute to the sensitivity index, then the distance between the two lines is 

short, and the surface is small. Conversely, if each industry differently contributes to the regional sensitivity index, the 

distance is long and the surface is large. By dividing this area by the total area beneath the diagram, the study can 

measure the industrial unevenness of regional resilience.6 It is zero when all industries have equal sensitivity; however, 

when industrial contributions diverge, this value is close to unity. If the value is close to unity, the resilience is concen-

trated among a few industries, which Harberger (1998) termed mushroom-type, whereas if the value is close to zero, 

the resilience formation is more industrially broad-based (i.e. yeast-type). Note that these classifications are not abso-

lute but are relative. 

[Insert Figure 1 here] 

Figure 1 shows that resilience stems from different industries in the regions. In Fukushima, 12.68% (87.32%) 

of employment positively (negatively) contributes to resistance. Thus, the pervasiveness of regional resilience is low. 

Consequently, the sensitivity index takes a negative value; thus, Fukushima is low resistant. The industrial unevenness 

of regional resilience from the diagram is 0.4302 for Fukushima. Relative to the national average of 0.6952 for this pe-

riod, Fukushima can be characterised as ‘yeast-type’ low resistant. However, 67.96% (32.04%) of employment positive-

 

6 This method is also applicable for negative sensitivity index like Fukushima’s case in Figure 1’s panel (A), because the 

surface made by the red and black lines is symmetric with regard to the black line. 
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ly (negatively) contributes to resistance in Okinawa. Thus, the pervasiveness of regional resilience is high. The sensitivi-

ty index takes a positive value, and Okinawa is highly resistant for this period. Further, most industries almost positively 

contribute to the regional resistance, and the industrial unevenness of regional resilience is 0.4269. From the national 

average, Okinawa is ‘yeast-type’ high resistant. 

 

3 REGIONAL EMPLOYMENT RESILIENCE IN JAPAN  

3.1 Regional-Level Japan Industrial Productivity Database 2017 and Business cycles 

in Japan 

The study employs the R-JIP 2017 database to analyse the industrial sources of regional resilience and its une-

venness over time. It contains 23 different industries comprising 13 manufacturing and 10 non-manufacturing sectors 

for 47 regions (prefectures) in Japan over the 1970–2012 period (calendar year). Three principal reasons for using this 

database are as follows. First, the R-JIP database is most suitable for this study as it simultaneously covers regional and 

time dimensions to analyse the regional economic performance for a long period. Second, given that the industrial clas-

sification in the R-JIP database is much wider than conventional ones, such as agriculture, manufacturing, and service, it 

allows for identifying the industrial origin of regional resilience in detail. Third, the R-JIP 2021 database is the latest, 

covering the 1994–2018 period but does not include the data to calculate the number of workers. It includes total man-

hour labour, which is the product of the number of workers and annual hours worked. Using the man-hour labour vari-

able, the research outcome is largely affected by the working hours. However, the R-JIP 2017 database directly contains 

the number of workers, suitable to measure employment resilience.7 

 

7  For details on the R-JIP database and the original data employed in this study, see 

https://www.rieti.go.jp/en/database/R-JIP2017/index.html. Additionally, Tokunaga (2018) is a comprehensive study 

for the regional productivity and price differences using the R-JIP database. It also explains the characteristics of this 

database. However, resilience is not the scope of the studies included in this volume. 
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 Value-added and (un)employment have been frequently employed to measure regional economic resilience; 

this study considers regional employment. Regional employment is measured by the ‘number of employed persons 

(persons)’ in the labour input account of the R-JIP database. Relative to the value-added, it has merits in measurement 

when analysing from a time-series perspective because employment data does not have to be deflated by some price 

indices, avoiding challenges associated with inflation or deflation (Cellini & Cuccia, 2019). Naturally, employment is rel-

evant for the regional economic resilience because labour is essential to producing the value-added and the associated 

income. Further, the wage income reception determines the living standard of local people. 

 The study alternatively employs prefecture (prefectural) and region (regional) to analyse the regional resili-

ence below unless some particular attention is necessary. By applying the structural sensitivity index to this database, 

the study explores how employment in 47 prefectures reacted to recession and recovery processes. According to The 

Reference Dates of the Business Cycle by the Cabinet Office, the Japanese economy has undergone 16 business cycles 

since the 1950s, of which this study analyses the regional resilience from the peak of the 9th cycle to that of the 15th cy-

cle. Table 1 briefly shows an overview of the period examined in this study. 

[Insert Table 1 here] 

Based on this reference date, suppose a shock hits the Japanese economy at the peak of a cycle, leading to a 

recession phase. The degree of resistance in each region is measured for this period. Suppose the recovery process 

starts at the trough of the cycle; thus, this study investigates the degree of recoverability in each region. Notably, alt-

hough the turning points for recession and recovery are determined by month and year, the study approximates these 

points based on the annual data because of the data limitation. However, the overall change in employment at the na-

tionwide level seems to roughly follow the turning points, as in Figure 2. 

[Insert Figure 2 here] 

Figure 2 shows the time series of the number of employed persons in each prefecture according to the Japa-
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nese areas. Each panel includes the nationwide (Total) variables as a reference, and the black and red vertical lines in-

dicate the trough and peak years, respectively. Accordingly, first, as the nationwide series reflects, the overall trend of 

employment increases until the end of the 1990s and decreases ever since. Naturally, the overall trend is affected by 

factors other than the growth cycles. For example, the Japanese labour force population began to fall as early as 1995. 

Although the study considers the resilience affected by business cycles, the overall trend may also be affected.8 Second, 

the employment trend varies per area. For instance, the prefectures located in the Kanto area perform better than na-

tionwide, as the series in Panel (B) shows, whereas those located in the Chugoku and Shikoku areas perform worse 

than those in Panels (E) and (F). Third, it also varies among different prefectures even within the same area. For in-

stance, in the Chubu area, some series are higher than nationwide (e.g. Aichi), but others are not (e.g. Niigata), generat-

ing the Crocodile’s mouth (or K-shape) dynamics, as in Panel (C). Kinki and Kyushu and Okinawa areas (Panels D and G, 

respectively) show a similar evolution, where the change in employment generates an increasing gap. 

Against these heterogenous regional employment dynamics, with an emphasis on its industrial foundations, 

this study identifies how different types of regional resilience are shaped. It calculates the sensitivity index based on 

Equation (6) for recession and recovery phases. From the signs of the index, the study characterises the resilience of 

each region in the following ways: 

 If the value of the sensitivity index for a region is negative over the recession phase, it is considered low resistance; 

if the value is positive, it is high resistance. Similarly, if the value of the sensitivity index for a region is negative over 

the recovery phase, it is considered low recoverability; if the value is positive, it is high recoverability. Thus, the 

study can obtain four types of regional resilience: high resistance and high recoverability, high resistance or low 

recoverability, low resistance and high recoverability, and low resistance and low recoverability.  

 

8 The sensitivity index takes the nationwide dynamics as a benchmark in measuring resilience. Therefore, the approach 

can control for common trends as overall fall in labour force and depopulation to some extent. 
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 Alternatively, for a region throughout a cycle, the study defines the region with high resistance and high recovera-

bility as the most resilient. Conversely, the study defines the region with low resistance and low recoverability as 

the least resilient. The other two cases (i.e. high or low resistance and low or high recoverability) are labelled as 

moderate resilient.  

3.2 Evolving regional resilience in Japan: Overview 

The maps in Figure 3 show the geographical configuration of regional employment resilience over the different 

cycles between 1980 and 2012. It classifies each prefecture into four types of resilience based on the structural sensitiv-

ity index (Equation 6) for recession and recovery periods. The number in the parentheses in the legend of each map 

indicates the frequency of resilience type.  

[Insert Figure 3 here] 

The maps show that between 1980 and 1985, 11 prefectures with high resistance and high recoverability con-

centrate around the three biggest prefectures of Tokyo, Nagoya, and Osaka. The high resilient areas can mostly be found 

in the Kanto area, while some of the Chubu areas follow low resistance and high recoverability. Consequently, 31 prefec-

tures are in low resistance and low recoverability modes. From 1985 to 1991, the overall configuration does not change 

drastically. The resilient prefectures can be observed in the three biggest prefectures and their neighbouring areas, 

while 30 prefectures remain with low resistance and low recoverability.  

From 1991 to 2008 after the bubble burst, the regional resilience gradually began to be geographically di-

verse. During these periods, the number of low resistance and low recoverability prefectures decreased by 4 or 5, 

whereas that of the moderate resilience regions increased by as much. Although the number of each resilience type was 

relatively stable during these periods, the spatial distribution is more divergent, except for the Shikoku area. Indeed, the 

geographical configuration of resilience is the most diverse between 2008 and 2012, which includes the post-global-

financial-crisis (2008) and the Great East Japan earthquake (2011) periods. Precisely, the number of the least resilient 
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prefecture particularly decreased to 19, and that of the moderate resilient increased by as much, comprising nine pre-

fectures with high resistance and low recoverability and 11 prefectures with low resistance and high recoverability. The 

rest of the eight prefectures were the most resilient. 

The regional resilience was low particularly in the rural areas along the Sea of Japan coast and Shikoku until 

the late 1990s. However, it became somewhat resilient since then, increasing regional heterogeneity. Thus, resilience is 

not a static equilibrium but a dynamic process. How then does regional resilience evolve from one type to another? By 

calculating a transitional probability matrix, which shows the probability of transition from one state to another over 

two different cycles, the study investigates the dynamic nature of resilience.  

[Insert Table 2 here] 

From the transitional probability matrix for resilience states in Table 2, two salient points emerge. First, based 

on the two highest probabilities, the Japanese prefectures have a persistent character for the most and least resilient 

states. For instance, once a region initially undergoes a period of being in the least resilient state, it remains in the same 

state with a probability of 78.99% in the next cycle. If a region experiences being the most resilient state, it may enjoy the 

same state in the next cycle with a probability of 64.29%. The probability of remaining in the least resilient state over 

two cycles is higher than that of being in the most resilient one. Indeed, the least resilient state also has the character of 

attracting different states the most. Regardless of the initial state, the Japanese regions may undergo a period of being in 

the least resilient state in the next cycles with a probability of 53.62%. Meanwhile, high resilience is the second most at-

tracting state with a probability of 22.55%. 

Second, although resilience evolves, it is not so drastic from one cycle to another. Rather, it is a gradual process. 

For example, if a least resilient region changes its state, it is more likely to be in a moderate resilience state in the next 

cycle; the probability is 17.39%. However, the probability that the least resilient region becomes the most resilient is on-

ly 3.62%. Similarly, if a most resilient region changes its state, it is also more likely to be in a moderate resilient state in 
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the next cycle, with a probability of 28.57%. It is only by 7.14% of probability that a high resilient region changes into a 

least resilient state in the next cycle. Thus, the probability that the least or the most resilient region drastically trans-

forms to be in the opposite state is generally low. Comprehensively, moderate resilient states attain the most or least re-

silience with almost equal probability (i.e. 29.27% to the former and 31.71% to the latter).9  

In summary, the Japanese regional resilience has a particular persistence in the least resilient state first and the 

most resilient one second. Additionally, if it is to change, the process is not so radical as to quickly experience the least 

resilient state after a most resilient one or vice versa. Rather, it is a gradual process, as the least or most resilient state 

becomes a moderate resilient one. 

3.3 Industrial sources of regional resilience 

Based on Equation (6), the study examines the chronal configuration of resilience (i.e. over cycles) first and in-

vestigates its geographical configuration (i.e. across prefectures). The sample has 47 prefectures wherein each includes 

23 industries, for which the study considers the regional resilience over different cycles. It straightforwardly considers 

the overall characteristics in mean value. 

Figure 4 shows the mean values of the sensitivity index over different phases of business cycles, presenting its 

decomposition into the within-sector and structural change effects. The following characteristics emerge. First, the 

mean value of the sensitivity index is generally negative, but its degree nearly varies per decade. It was particularly low 

during the cycles in the 1980s. Consequently, most Japanese prefectures were least resilient in such periods, as in Fig-

ure 2. The value of the sensitivity index gradually began to rise from the beginning of the 1990s, reflecting that some 

prefectures withstood or recovered from overall shocks. From Figure 2, the number of the low resistance and low re-

 

9 The probability for the transition of moderate resilience can be obtained by summarising the number of observations. 

The number of total observation for the moderate resilience at the initial cycle is 41, of which the most resilience case in 

the next cycle is 12, whilst the least resilience case is 13. Thus, the probability for the former (latter) is 12/41 (13/41). 
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covery prefectures decreased from 1991 to 2008, whereas that of the moderate resilient ones increased as much. While 

recording lower values over the recession to 2002 and 2009, the sensitivity index was higher in the 2000s than in the 

1980s, showing that fewer prefectures underwent the least resilient state.  

[Insert Figure 4 here] 

Second, regarding decomposition, the within-sector effect differs, whereas the structural change effect is con-

stantly negative. From 1983 to 1991, both effects negatively impacted the sensitivity index. By contrast, the within-

sector effect generally had a positive impact from 1993, except for the recession by the global financial crisis. The posi-

tive within-sector effect is driven by the mechanism that the growth rate of an industry of a region is higher than that of 

the country level, which improves the regional resilience.  

Meanwhile, Figure 5 shows the mean values for each prefecture’s sensitivity index throughout all cycles and 

its decomposition in ascending order for the sensitivity index. On average, the sensitivity index is below zero in most 

prefectures. Only 14 prefectures (i.e. prefectures rightward Shizuoka) enjoy positive sensitivity on average, of which 

only four prefectures (i.e. prefectures rightward Kanagawa) exclusively enjoyed positive impacts of these effects. How-

ever, the rest of the 33 prefectures recorded a negative sensitivity index. No less than 24 prefectures exclusively under-

went negative impacts of both effects, and the rest of the nine prefectures experienced mixed impacts of positive and 

negative effects.  

[Insert Figure 5 here] 

Figures 4 and 5 show that the structural change effect negatively affects the sensitivity index in all periods and 

most prefectures. Whether the structural change effect in an industry in a region is positive or negative depends on the 

combination of regional specialisation and its macroeconomic trend (i.e. 
𝜔𝜔𝑖𝑖,𝑟𝑟𝜔𝜔𝑖𝑖,𝑁𝑁 ≷ 1 and 𝑔𝑔𝑖𝑖,𝑁𝑁 ≷ 0). In the formula, this 

effect is negative when an industry’s share of a region is smaller than that of a country, and the industry grows at a fast-

er pace at the country level, termed as the ‘pro-trend negative’ pattern. It is also negative when an industry’s share of a 
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region is larger than that of a country but the industry is shrinking at the country level, termed as the ‘anti-trend nega-

tive’ pattern. Similarly, the opposite mechanisms generate a positive structural change effect through ‘pro-trend posi-

tive’ and ‘anti-trend positive’ patterns. Thus, the evolutionary perspective highlights the effects of reorganisation 

through continuous structural changes over business cycles (Simmie & Martin, 2010; Martin et al., 2016; Martin & Sun-

ley, 2020). Such an evolutionary dimension can also be observed through the lens of decomposition. 

Table 3 shows the frequency of the causes for the structural change effect for each phrase. The frequency of 

negative impacts (i.e. pro- or anti-trend negative patterns) was dominant from 1983 to 1991, being more than 50%. 

However, the anti-trend negative pattern began to exceed 30% in the late 1990s, whereas the pro-trend negative pat-

tern began to decrease. That is, the negative structural change effect is induced by the regional industries declining at a 

macroeconomic level. Simultaneously, the frequency of positive causes became slightly more dominant until 2008, 

principally led by the anti-trend positive pattern. However, the pro-trend positive pattern has decreased and stagnated 

over time, although it was high until the beginning of the 1990s. Only a few regional industries match the overall indus-

trial growth trend. Generally, even if the frequency of positive structural change patterns increases, it follows from Fig-

ure 2 that their contributions are not large enough to create an overall positive effect.  

[Insert Table 3 here] 

The transitional probability matrix (Table 4) is useful to explore the evolution of structural change patterns, 

by which two features emerge. First, the diagonal observation in Table 4 shows that each pattern has a persistent char-

acter. For instance, when the regional industry initially experiences an anti-trend negative pattern, it realises the same 

pattern in the following cycle with a probability of 81.93%. The pro-trend positive pattern is the least persistent, but 

once it is realised the same pattern follows with a probability of 56.74%.  

[Insert Table 4 here] 

Second, when the pattern transforms, it is basically because of changes in industrial growth patterns at the 
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national level rather than those in the relative degree of regional industrial specialisation. For example, pro-trend nega-

tive patterns are realised by having a relatively lower share of the regional industry, whose macroeconomic growth rate 

is rising. Thus, if structural change largely occurs and the region has a relatively higher share of that industry (i.e. from 

𝜔𝜔𝑖𝑖,𝑟𝑟 < 𝜔𝜔𝑖𝑖,𝑁𝑁 to 𝜔𝜔𝑖𝑖,𝑟𝑟 > 𝜔𝜔𝑖𝑖,𝑁𝑁), it should become an anti-trend negative or a pro-trend positive pattern depending on the 

overall trend of industrial growth. However, either type is hardly realised in the next phase because, as the probability 

indicates, the former (latter) is 1.27% (2.13%). Instead, given the existing industrial share, an anti-trend positive pat-

tern is more likely to happen with a probability of 35.43%. These characteristics also apply to other patterns. Thus, if 

the pattern of structural change effect transforms, it is more dependent on the industrial growth pattern at the national 

level than the change in the relative degree of regional industrial specialisation. The anatomy of the structural change 

effect shows that the regional structural change does not occur so drastically.  

In summary, the gradual dispersion in regional resilience observed in Figure 2 accompanies the following 

properties. First, the mean value of the sensitivity index was particularly low until the beginning of the 1990s but grad-

ually rose since then; some of the Japanese regions moderately attained regional employment resilience. Second, when 

the sensitivity index is decomposed, the structural change effect has constantly had a negative impact. The effect de-

pends on the direction of the industrial growth pattern at the national level. The within-sector effect began to have a 

positive impact on the sensitivity index in the 1990s, but its impact is not large enough to offset the negative structural 

change effect, which is also true for most prefectures. No less than 24 prefectures underwent negative impacts of effects 

exclusively, whereas only four prefectures enjoyed positive impacts of these effects. Consequently, throughout the cycles, 

the sensitivity index has been generally negative. 

3.4 Industrial unevenness of regional resilience 

Even if a region shows a positive sensitivity index, some industries may negatively contribute to it. Based on the 

Harberger diagram, this study measures the pervasiveness and unevenness of industrial contributions to regional resil-
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ience. The former is calculated by the industrial shares of which the total effect is positive, while the latter is given by 

the relative area of the Harberger diagram. 

Figure 6 shows the time series of pervasiveness for regional resilience in mean values. The mean values of 

pervasiveness remained in the 30% values in the 1980s. These values were lower than in the following periods, imply-

ing that the prevalence of least resilience in the 1980s was because of the low pervasiveness. Meanwhile, the dispersion 

of regional resilience from the 1990s accompanies an increase in pervasiveness. The mean values have been over 40% 

on average between 1993 and 2009. More industries had a positive total effect on the regional resilience behind the 

expansion of moderate resilience during these periods. 

[Insert Figure 6 here] 

Figure 7 shows the unevenness of resilience in mean values. It was relatively low during the 1980s, reflecting 

that the overall regional resilience is close to a yeast-type. As noted, the sensitivity index and pervasiveness were also 

low during this period. Meanwhile, the unevenness rose during the 1990s when the regional resilience started to geo-

graphically disperse and the pervasiveness of industrial contributions also expanded. Although the unevenness tempo-

rally decreased towards 2008, it remained higher than in the 1980s and the average.  

[Insert Figure 7 here] 

Therefore, the Japanese low regional resilience until the 1990s was broad-based, backed by both low perva-

siveness and unevenness. Accordingly, it can be characterised as yeast-type low resilience. Moreover, the gradual dis-

persion in regional resilience after the 1990s accompanies the overall rise in unevenness and overall pervasiveness, 

generally higher than average. Hence, the type of resilience during these periods can be characterised as somewhat 

mushroom-type resilience. 

The pervasiveness and unevenness can also be observed from the regional perspective. Figure 8 shows the 

mean values of the pervasiveness over different prefectures in ascending order, with the average value over them. 
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There is a considerable gap between the bottom and top prefectures regarding the pervasiveness. For instance, the 

mean value of the total prefectures is 39.7%, whereas those of Yamaguchi and Saitama are 14.9% and 86.6%, respec-

tively. The gap ratio between the top and bottom is approximately 5.80. Additionally, taking the two highest and lowest 

mean values of pervasiveness, for instance, Yamaguchi and Kochi prefectures have never experienced the most resili-

ence state over time, whereas the Saitama and Chiba prefectures have never undergone the least resilience state, as in 

Figure 2. Thus, establishing industrial structures that generate pervasiveness supports regional resilience.  

[Insert Figure 8 here] 

Figure 9 presents the mean values for the unevenness from a regional perspective in ascending order with 

the average value over them. Relative to the pervasiveness, the gap ratio for unevenness between the bottom and top 

prefectures is twice at best and therefore small. For instance, the mean value of all prefectures is 0.6578 whereas those 

of Saitama (the most even) and Tochigi (the most uneven) are 0.4154 and 0.8424, respectively. Notably, the pervasive-

ness of Saitama is the highest, whereas that of Tochigi takes approximately over 50%; thus, the industrial contributions 

are mixed. 

[Insert Figure 9 here] 

Comparing the sensitivity index (Figure 5), pervasiveness (Figure 8), and unevenness (Figure 9) to the chang-

es in resilient states (Figure 2) presents an intriguing fact on the type of regional resilience. As noted, Yamaguchi and 

Kochi prefectures have never experienced the most resilient state. These prefectures underwent the two lowest perva-

siveness. However, Saitama and Chiba prefectures have never gone through the least resilient state. They attained the 

two highest pervasiveness. These four prefectures also realised the least unevenness. Interestingly, there are two yeast-

type prefectures for the formation of regional resilience: yeast-type low and high resilience prefectures. Moreover, the 

prefectures realising high values of unevenness include Tochigi, Gunma, and Gifu. The pervasiveness of these prefec-

tures is close to 50%, their sensitivity index is relatively close to zero, and they tend to change their states of resilience 
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frequently. These examples suggest that prefectures with close-to-zero sensitivity index or frequently changing resilient 

states mostly follow the mushroom-type resilience. 

Indeed, these characteristics can be generalised to the overall configuration of regional resilience in Japan. 

Figure 10 plots the relationship between unevenness and sensitivity index by pooling all prefectures’ data over all peri-

ods. The plots are separately shown per the sign of sensitivity index to see how high or low the type of resilience is as-

sociated with unevenness.  

[Insert Figure 10 here] 

Based on these plots, the relationship between sensitivity index and unevenness is non-linear, and there are 

yeast-type low resilience prefectures, yeast-type high resilience prefectures, and mushroom types for both resilience 

prefectures. It clearly shows that for the negative sign (i.e., low resistance or low recovery) resilience is positively relat-

ed to unevenness, while it is negatively related to unevenness for the positive sign (i.e. high resistance or high recovery). 

For instance, the left side panel shows that the unevenness is small for large negative sensitivity values. It reflects that 

some of the low resistance and low recovery prefectures are realised by the fact that broad industries evenly and nega-

tively contribute to the sensitivity index. Simultaneously, the right-side panel shows that some of the high resistance 

and high recovery prefectures, although fewer than the low cases, are also realised by the fact that broad industries 

evenly and positively contribute to the sensitivity index. Thus, yeast-type high and low resilience prefectures exist, 

where positive or negative industrial contributions are balanced. Additionally, Figure 10 shows that the unevenness 

increases as the sensitivity index approaches zero from the positive and negative sides. These areas are most dense, 

mirroring that industrial contributions to regional resilience are mostly blended. The disaggregate approach reveals 

that when the sign is close to zero, regardless of the sign, the industrial contributions to the regional resilience are 

mixed, shaping the mushroom-type resilience. These patterns are the most uneven where positive and negative indus-

trial contributions almost offset each other within a region.  
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4 CONCLUSION 

This study builds a structural sensitivity index, applying it to the employment resilience in the Japanese region-

al economy over the business cycles from the 1980s. By decomposing the sensitivity index into within-sector and struc-

tural change effects, this study’s formula sheds new light on the role of industrial sources in regional resilience. It 

measures the sources and types of regional resilience and how it is unbalanced from an industrial structure perspective. 

The key findings are as follows.  

First, employment resilience varies chronally and geographically. The least resilient state was the most preva-

lent in Japan until the beginning of the 1990s; however, it became somewhat resilient since then, increasing the region-

al diversity. Namely, some regions are resistant and recoverability to a certain shock but the others are not. Additionally, 

regional resilience persists in the least and most resilient states. When it is to change, the process is not as radical as 

experiencing a least resilient state after a most resilient state or vice versa. Rather, it is a gradual process from the least 

or most resilient state to a moderate state in the subsequent cycle. Thus, resilience is not a static phenomenon but 

gradually evolves in Japan.  

Second, the structural change effect has constantly negatively impacted regional resilience, whereas the within-

sector effect had a positive impact on the sensitivity index from the 1990s. Given that the latter is not large enough to 

offset the negative impact of the former, the sensitivity index has been negative. The negative structural change effect 

since the 1990s is principally associated with a high share of anti-trend negative patterns; thus, regional resilience is 

restrained by a relatively higher share of regional industries whose overall growth is declining. Even when its effect is 

positive, it is supported by an anti-trend positive pattern. Pro-trend positive patterns by which regional resilience is 

enhanced through a high share of regional industries with a rising overall growth are very few. Hence, regional indus-

trial compositions do not fit well with the overall macroeconomic industrial growth. 
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Finally, the study extracted the industrial unevenness behind regional resilience. From different time horizons, 

the Japanese regional resilience until the 1990s is characterised by yeast-type low resilience, as sensitivity, pervasive-

ness, and unevenness were historically low. Meanwhile, apart from a temporal up and down between 2002 and 2008, 

there is an increasing regional heterogeneity behind improvements in resilience after the 1990s. During these periods, 

the sensitivity index increased within a negative range, whereas pervasiveness and unevenness increased and were 

higher than the average value. Thus, these periods were mushroom types. Moreover, from the regional perspective, the 

overall relationship between unevenness and resilience is not unique, with both high and low yeast-type resilience pre-

fectures and mushroom-type resilience. Some of the high and low resilient prefectures experienced yeast-type patterns, 

where most industries positively (negatively) contribute to the sensitivity in the former (latter). The mushroom type 

resilience is mostly found when the sensitivity index is close to zero; thus, many prefectures’ resilience comprises in-

dustries with contrasted performers.  

Hence, this study exclusively identified the industrial sources of employment resilience and their unevenness 

over time and region, which is the most important contribution to the existing literature. However, the study scope also 

has some limitations. Although the analysis sheds light on resilient regional employment, it does not answer why it is 

resilient. For example, prior studies explore the features of the labour market to identify the determinants of resilience 

and present skilled human capital as critical to enhancing adaptation and resilience (Kitsos & Bishop, 2016; Giannakis 

& Bruggeman, 2017; Cappelli et al., 2021). Based on the classification in this study, future studies can employ an econ-

ometric analysis to specify the determinants of resilience. 

Additionally, this study focused on regional resilience regarding employment. Employment resistance and re-

covery are essential elements of regional resilience, but they are not exhaustive. Other variables such as value-added, 

labour productivity, and the unemployment rate may show different aspects of regional resilience. Even if a region is 

resilient in one variable, it may not so in other variables as resilience is multifaceted. Hence, further research and com-
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parison with the results in this study are necessary to understand regional resilience more precisely in Japan. 

Finally, an empirical analysis with higher frequency dates is preferable. The R-JIP 2017 database is the most 

suitable, as it simultaneously covers regional and chronal dimensions to analyse the long-run regional employment 

performance. However, the data frequency is annual and, consequently, cannot help investigating the regional and in-

dustrial performances with lead and lag between different months. Although the study approximates the turning 

points for recession and recovery based on the annual data, it is more desirable to relate them to monthly points on 

which the Japanese business cycles are determined. This limitation is not the problem of the approach but of the nature 

of available data. Considering increasing research contributions to the regional resilience analyses in European and 

north-American countries and the economic shocks from the COVID-19 pandemic, Japan also needs nowcasting-like 

regional data. Of course, the analyses can be appropriately applied to a more frequent dataset. Moreover, it applies to 

revisiting regional resilience in other countries as far as the dataset has a similar structure to the R-JIP database. 
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Tables and Figures 
TABLE 1 Business cycles and main short-term shocks in Japan 

Business cycles Trough Peak Main short-term shocks  

9th–10th: 1980–1985 1983, Feb. 1985, Jun. Sudden yen appreciation 

10th–11th: 1985–1991 1986, Nov. 1991, Feb. Bubble burst 

11th–12th: 1991–1997 1993, Oct. 1997, May. Financial crisis 

12th–13th: 1997–2000 1999, Jun. 2000, Nov. IT bubble burst 

13th–14th: 2000–2008 2002, Jun. 2008, Feb. Global financial crisis 

14th–15th: 2008–2012 2009, Mar. 2012, Mar. Post-great earthquake 

Source: The Reference dates of business cycle by the Cabinet Office 
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TABLE 2 Transitional probability matrix for resilience states 

 
Next phase 

H-Resis./H-Recov. H-Resis./L-Recov. L-Resis./H-Recov. L-Resis./L-Recov. 

Initial phase 

H-Resis./H-Recov. 64.29% 10.71% 17.86% 7.14% 

H-Resis./L-Recov. 16.67% 11.11% 16.67% 55.56% 

L-Resis./H-Recov. 39.13% 17.39% 30.43% 13.04% 

L-Resis./L-Recov. 3.62% 10.87% 6.52% 78.99% 

 total 22.55% 11.49% 12.34% 53.62% 
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TABLE 3 Frequency of causes for structural change effect 

Year (Phase)  Pro-trend negative  Anti-trend negative 
 

Pro-trend positive  Anti-trend positive 

1983 (9th trough)  41.44%  16.93%  19.43%  22.20% 

1985 (10th peak)  38.48%  19.70%  18.04%  23.77% 

1986 (10th trough)  28.95%  23.31%  14.52%  33.21% 

1991 (11th peak)  49.49%  8.97%  28.77%  12.77% 

1993 (11th trough)  28.12%  20.63%  19.70%  31.54% 

1997 (12th peak)  16.56%  31.82%  9.53%  42.09% 

1999 (12th trough)  8.70%  37.37%  4.35%  49.58% 

2000 (13th peak)  16.74%  32.01%  9.34%  41.91% 

2002 (13th trough)  6.66%  39.59%  2.04%  51.71% 

2008 (14th peak)  18.87%  35.43%  7.22%  38.48% 

2009 (14th trough)  15.45%  37.84%  6.29%  40.43% 

2012 (15th peak)   21.46%  31.64%  13.32%  33.58% 

Total  24.24%  27.94%  12.71%  35.11% 

Note: Pro-trend negative counts the number of regional industry with 𝑔𝑔𝑖𝑖,𝑁𝑁 > 0 and  𝜔𝜔𝑖𝑖,𝑟𝑟 < 𝜔𝜔𝑖𝑖,𝑁𝑁, Anti-trend negative counts the number with 𝑔𝑔𝑖𝑖,𝑁𝑁 < 0 and  𝜔𝜔𝑖𝑖,𝑟𝑟 > 𝜔𝜔𝑖𝑖,𝑁𝑁, 

Pro-trend positive counts the number with 𝑔𝑔𝑖𝑖,𝑁𝑁 > 0 and  𝜔𝜔𝑖𝑖,𝑟𝑟 > 𝜔𝜔𝑖𝑖,𝑁𝑁,  and Anti-trend positive counts the number with 𝑔𝑔𝑖𝑖,𝑁𝑁 < 0 and  𝜔𝜔𝑖𝑖,𝑟𝑟 < 𝜔𝜔𝑖𝑖,𝑁𝑁. 
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TABLE 4 Transitional probability matrix for causes of structural change effects  

 
Next phase 

Pro-trend negative Anti-trend negative Pro-trend positive Anti-trend positive 

Initial phase 

Pro-trend negative 61.17% 1.27% 2.13% 35.43% 

Anti-trend negative 0.40% 81.93% 15.54% 2.13% 

Pro-trend positive 1.86% 40.27% 56.74% 1.13% 

Anti-trend positive 20.85% 2.60% 0.31% 76.23% 

 total 22.68% 28.94% 12.10% 36.28% 
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FIGURE 1 Harberger diagram examples for Fukushima and Okinawa (Recession in 14th cycle) 

 

 

 

 

 

 

-0.014

-0.012

-0.010

-0.008

-0.006

-0.004

-0.002

0.000

0.002

0.004

0% 20% 40% 60% 80% 100%

(A) Fukushima

Cumulative contribution to resilience Average contribution to resilience

0.000

0.005

0.010

0.015

0.020

0.025

0% 20% 40% 60% 80% 100%

(B) Okinawa

Cumulative contribution to resilience Average contribution to resilience



35 

 

   
 

   
 

   
 

 
FIGURE 2 Index for the number of employed persons (1980=1) 
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FIGURE 3 Geographical configuration and evolution of regional resilience 

Note: H-Resis. and H-Recov. represents high resistance and high recoverability, respectively, while L-Resis. and L-Recov. represents low resistance and low recovera-

bility, respectively. The number in the parentheses in the legend of each map indicates the frequency of resilience type 
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FIGURE 4 Mean values of sensitivity index and its decomposition from the time perspective 
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FIGURE 6 Mean values of pervasiveness for resilience 
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FIGURE 7 Mean values of unevenness for resilience 
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FIGURE 10 Mean values of unevenness and sensitivity index 

Note: The left panel is for the negative sensitivity index, whereas the right panel is for the positive sensitivity index. The blue circle indicates recession and the red 

square, recovery. 
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