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Abstract

We study the ability of a social media platform with a political agenda to influence

voting outcomes. Our benchmark is Condorcet’s jury theorem, which states that the

likelihood of a correct decision under majority voting increases with the number of voters.

We show how information manipulation by a social media platform can overturn the jury

theorem, thereby undermining democracy. We also show that sometimes the platform can

do so only by providing information that is biased in the opposite direction of its preferred

outcome. Finally, we compare manipulation of voting outcomes through social media to

manipulation through traditional media.
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1 Introduction

In early theories of voting (Hotelling, 1929; Downs, 1957), voters are fully informed and vote

based on their given preferences. In subsequent expositions, however, voters do not know

which policies or competing political candidates merit their support. They are then susceptible

to influence by political advertising (Hillman and Ursprung, 1988; Grossman and Helpman,

2001; Prat, 2002) and by competing endorsements of policies and candidates (Grossman and

Helpman, 1999; Lichter, 2017) through mass media.

Voters can also be influenced by social media. Rather than competition between media

institutions, network externalities create natural monopolies for users of social media. In ad-

dition, rather than being exposed to the same, public information, users of social media face

private persuasion through algorithms that select and order the information available to them.

Facebook’s News Feed algorithm, for example, determines personally, for each user, the posts

are visible and the order in which they appear (Facebook, 2022). Users of social media can also

be influenced by censorship or by delays in access to information. Twitter, for example, places

warning labels on tweets and sometimes blocks information dissemination by locking accounts

(Twitter, 2022b,a).

In this paper, we study the ability of a monopoly social media platform with a political

agenda to influence users’ views through such selective transmission of information. In our

model voters may have outside information and preferences that are independent of the social

media platform’s agenda; however, voters are not perfectly informed, and so do not know with

certainty which candidate or policy to support. To what extent can the social media platform

exploit this incomplete information?

Our beginning is Condorcet’s jury theorem (1785), which shows the merit of majority voting.

In the setting of the theorem, voters face a choice between two alternatives, A and B. One

alternative is objectively better for all voters, but voters do not know a priori which is the

preferred alternative. Each voter has limited information, expressed in probabilities, indicating

which alternative is better. The jury theorem states that the better alternative is more likely

to be chosen when the decision is made by majority voting than when a single individual makes

the decision. As the number of voters increases, the likelihood of the decision under majority
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voting being correct approaches certainty. The theorem therefore vindicates democracy.

We ask, in an extension of the theorem: Does a group of voters who obtain information

through a social media platform that has a political agenda also necessarily successfully make

the correct decision by majority voting? Or, can information manipulation by social media

undermine the merit of majority voting?

We undertake our study and derive our results within the Bayesian persuasion framework

(see Kamenica, 2019, for a survey). The media platform commits to how it will manipulate

information, a commitment that in practice is implemented through the algorithms used by

media platforms to select and order the information that individuals obtain. Individuals are

aware of the manipulation and make correct inferences using Bayes’ rule based on the informa-

tion available. We show that information manipulation can lead majority voting to result in the

choice of the alternative sought by the social media platform rather than the alternative that

is preferable for voters. Contrary to Condorcet’s jury theorem, the consequence of information

manipulation can be that a single individual is more likely to choose the socially preferred

alternative than a group that decides by majority voting, even when individuals are aware of

and account for the platform’s information manipulation. Democracy is thus undermined.

In the remaining parts of the introduction we demonstrate our main results using exam-

ples, and then briefly describe our general model and results. Section 2 discusses the related

literature. In Section 3 we formally present our model, and then, in Section 4, we describe our

results. Various extensions are presented in Section 5, followed by a conclusion in Section 6.

1.1 Illustrative Example

Before we proceed to the formal model we provide an illustrative example. We begin with

Condorcet’s jury theorem, proceed to the basic logic of Bayesian persuasion, and then show

how social-media persuasion can overturn the conclusion of the theorem.

Condorcet’s Jury Theorem There are two alternatives, A and B, one of which is “better” or

socially preferred. Voters are a priori unsure about which of A and B is better, but they do have

some limited prior information supporting one of the alternatives. Suppose that, independently

for each voter, this prior information has accuracy 55%—namely, there is a 55% chance of it
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being correct. Specifically, if a voter has information indicating that one of the alternatives

(say, A) is better, then this voter believes there is a 55% chance that A is, in fact, better (and

a 45% chance that B is better).

Thus, if each voter chooses the alternative that is more-likely to be better based on this

prior information, then she has a 55% chance of choosing the socially preferred alternative.

Rather than a single voter deciding between A and B, suppose that the decision is made by

majority voting. Condorcet’s jury theorem states that, with sufficiently many voters, if each

voter votes for the alternative that is more-likely to be better based on her own information,

then the correct alternative is chosen with near certainty (due to the Law of Large Numbers).

Bayesian Persuasion We now introduce an information designer (the social media platform)

that can send voters additional information in the form of a state-dependent message. The

designer is interested in ensuring that alternative A is chosen, regardless of which alternative

is socially better. Suppose the designer can send one of two messages—either “A is better” or

“B is better”. The designer has to choose a rule that determines which message to send as a

function of the true socially-better alternative. Importantly, we assume (à la Kamenica and

Gentzkow, 2011) that the voters know the designer’s rule. The simple rule of always sending “A

is better” is useless because the voters are aware that this signal is non-informative. A designer

who wants to influence voters to vote for A would instead have to be more subtle.

Consider the following messaging scheme: if A is better, the designer always sends the

message “A is better”; if B is better, the designer sends the message “B is better” with probability

30%, and the “incorrect” message “A is better” with the remaining 70% probability. What can

voters infer from the designer’s message? Observe first that if a voter obtains message “B is

better” from the designer, then this voter can be certain that B is, in fact, better.

By contrast, if a voter obtains message “A is better”, then the voter cannot be certain about

which alternative is better, since this message is sent both when A is actually better but also

sometimes when B is better. The exact inference that a voter can make upon obtaining message

“A is better” depends on this voter’s prior information—whether it supports A or B—and is

calculated by Bayes’ rule. A simple calculation shows that a voter whose prior information

supported A (i.e., she has a prior belief that A is better with probability 55%), updates her
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posterior belief that A is better to 64%:

P [A|“A is better”] =
P [A ∩ “A is better”]

P [“A is better”]
=

100%× 55%

100%× 55% + 70%× 45%
≈ 64%.

Similarly, a voter whose prior supported B updates her posterior belief that A is better to 54%:

P [A|“A is better”] =
P [A ∩ “A is better”]

P [“A is better”]
=

100%× 45%

100%× 45% + 70%× 55%
≈ 54%.

Persuasion Overturns Condorcet We now consider the effect of the designer’s message on

voting outcomes, and show that the consequence is to overturn the necessity of the conclusion

of Condorcet’s jury theorem. Consider first a single voter who makes the decision based on

which alternative is more likely to be better. Recall from the previous section that if this voter

obtained message “B is better” from the designer, then the voter is certain that B is better,

and will choose alternative B. If the voter obtained message “A is better”, however, then her

belief about the likelihood of A being better is either 64% or 54%, depending on her initial

information. Importantly, however, in both cases A is more likely to be better, and so in both

cases the voter will choose A upon obtaining this message.

How likely is this voter to choose the alternative that is actually better? Recall that if A

is actually better, then the designer always sends message “A is better”, and the voter makes

the correct choice and votes for A. However, if B is actually better, then the designer sends

message “B is better” only with probability 30%. If this happens, then the voter is certain that

B is better and makes the correct choice, B. However, with the remaining 70% probability, the

designer sends message “A is better”, after which the voter chooses the incorrect alternative, A.

Thus, if B is actually better, the voter makes the correct choice with probability 30% and the

incorrect choice with probability 70%.

Rather than a single voter deciding between A and B, suppose that the decision is made

by majority voting in a large population. If A is actually better then, as above, every voter

obtains message “A is better” and votes for A. If B is actually better, however, then on average

30% of voters obtain message “B is better” and vote for B, whereas on average 70% of voters

obtain message “A is better” and vote for A. In this case, by the Law of Large Numbers, if there

are sufficiently many voters then with very high probability a majority votes for A, although
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A is the incorrect alternative. Thus, if B is better, majority voting never leads to the correct

alternative being chosen. Note that this is worse than a single voter making the decision, as

then there was a 30% chance that B is chosen when it is better.

In this example we have illustrated how additional information provided by a self-interested

designer can overturn the conclusion of Condorcet’s jury theorem. When there is no designer,

a large group deciding by majority rule is more likely to make the correct decision than a single

voter deciding alone. With additional information from a designer, however, the conclusion is

reversed: A single voter makes the correct decision with probability 30% if B is better, but

majority voting never leads to the correct decision with when B is better (and in both cases

the correct decision is made when A is better).

Negatively Biased Signals and the Limits of Persuasion We now expand on the ex-

ample above in order to answer two questions. First, what are the properties of the messaging

scheme used by the designer to overturn an election? In particular, is it necessarily biased

towards the outcome desired by the designer? And second, can the designer always overturn

the election, or are there limits to persuasion?

We begin with the first question. Observe that in the messaging scheme described above the

designer sends the message “A is better” more often than the message “B is better”. This scheme

is thus biased towards A. In the example above, this particular scheme is not unique, and there

are other messaging schemes—some of which are biased towards B rather than A—that also

allow the designer to overturn the election. We now describe such a scheme.

Suppose that, if A is better, the designer sends the message “A is better” with probability

53%, and the message “B is better” with probability 47%. If B is better, the designer sends

the message “B is better” with probability 57% and the message “A is better” with probability

43%. Notice that the designer is more likely to lie in favor of B—to send message “B is better”

when A is actually better (47%)—than to lie in favor of A—to send message “A is better” when

B is actually better (43%). This messaging scheme is thus biased towards B.

What is the effect of this scheme? Consider first a voter whose prior information supported

A, so that this voter initially believes A to be better with probability 55%. If this voter now

obtains message “B is better” from the designer, the voter updates the probability of A being
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correct by conditioning on the obtained message. The new belief is:

P [A|“B is better” ] =
P [A ∩ “B is better” ]

P [“B is better” ]
=

47%× 55%

47%× 55% + 57%× 45%
≈ 50.2%.

Thus, a voter who initially believed A to be better with probability 55%, updates this belief

to 50.2% upon obtaining message “B is better” from the designer. Critically, this updated belief

is above 50%, and so the voter still believes that A is more likely to be the better alternative.

Similarly, if this same voter obtained message “A is better” instead of “B is better”, the updated

belief would be even higher (around 60%).

Consider now a voter whose prior information supported B, so that this voter initially

believes B to be better with probability 55% (and A to be better with probability 45%). If this

voter now obtains message “A is better” from the designer, the voter updates the probability

of A being correct by conditioning on the obtained message. The new belief is:

P [A|“A is better”] =
P [A ∩ “A is better”]

P [“A is better”]
=

53%× 45%

53%× 45% + 43%× 55%
≈ 50.2%.

Thus, a voter who initially believed A to be better with probability 45%, updates this belief

to 50.2% upon obtaining message “A is better” from the designer. Critically, this updated belief

is also above 50%, and so the voter now believes A is more likely to be the better alternative.

In fact, the only voters who vote for B are those whose prior information supported B, and

who then additionally obtained message “B is better” from the designer. All other voters end

up with a belief indicating that A is more likely to be better, and who then vote for A.

The final step is to determine the fraction of voters for A. If A is the better alternative, then

only 45% of voters’ initial information supports B, and of those, only 47% obtain message “B is

better”. Thus, on average only 45%×47% = 21% of voters vote for B, and the rest for A. With

high probability, then, the majority vote for A. Similarly, if B is the better alternative, then

55% of voters’ initial information supports B, and of those, 57% obtain message “B is better”.

Thus, on average 55% × 57% = 31% of voters vote for B. Again, this implies that with high

probability, the majority vote for A. Thus, regardless of which of A or B is actually better, the

designer’s messaging scheme leads to alternative A always being elected.
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The example just described shows that the designer can overturn the election with a mes-

saging scheme biased towards B—that is, towards the opposite alternative of the one preferred

by the designer. In the previous section we showed that the election can also be overturned

with a scheme biased towards A. So which will the designer use?

In Section 4 we characterize the biases of the schemes that can be used to overturn the

election, and how they are related to the accuracy of voters’ prior information. In particular,

in Corollary 1 we show that, if this accuracy is between 1/2 and 2/3, then the designer can use

both classes of schemes to overturn the election. However, we also show that if the accuracy is

between 2/3 and
√
2/2, then only schemes that are biased towards B can overturn the election.

That is, in this case, the only way for the designer to overturn the election is to design a

messaging scheme that is more likely to give incorrect information supporting B.

Finally, Corollary 1 also points to the limits of persuasion. The corollary states that if the

voters’ prior information has accuracy greater than
√
2/2 then there is no messaging scheme that

allows the designer to overturn the election. The intuition is the following. In order to overturn

the election, the designer needs to convince enough voters whose initial information supported

B to switch to A. But the more accurate the voters’ prior information, the more difficult it is

to convince them to switch. At the extreme, if voters’ prior information is perfectly accurate,

and so they know with certainty which of the alternatives is actually better, then clearly no

additional information from the designer could ever shift any of their beliefs. In Corollary 1 we

show that even with less extreme accuracies, if the accuracies are above
√
2/2 then there is no

messaging scheme that allows the designer to convince a majority of the voters to vote for A.

1.2 A General Model

Our general model, of which the above example is a special case, shows how in more encompass-

ing circumstances the designer is able to sway the vote towards his desired outcome. As in the

example, in some cases, the preferred outcome of the designer is chosen with probability one.

In other cases, the designer is unable to exert any influence at all. The ability of the designer

to influence outcomes depends both on the extent to which users are exogenously informed and

on the heterogeneity in the accuracy levels of users’ exogenous information.

We begin with a setting in which some voters are uninformed, whereas others are exoge-
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nously informed with the same accuracy. We show that, as long as this accuracy is not too

high, the social media platform can completely sway the outcome of the vote. Interestingly, we

also show that, in this case, the designer can sway the outcome of the vote with an unbiased

signal. We also show that, in some cases, the designer can only sway the outcome with a signal

biased towards B—that is, one that sends message “B is better” more often than the message

“A is better”. Finally, we show that when users’ exogenous signal accuracy is high, the designer

can no longer affect the outcome.

Next, we extend the model to a scenario in which there are two kinds of voters corresponding

to two levels of exogenous-signal accuracy. Here we show that if both accuracies are sufficiently

low, the designer can determine the outcome of the vote with probability one; if both accura-

cies are sufficiently high, the designer cannot exert any influence; and if accuracies are in an

intermediate range, then whether or not the designer has influence depends on both the specific

accuracies of information and the fractions of users of each kind. We show that, in this last

case, there is a nonmonotonicity wherein the designer can determine the outcome if most users

are of one kind and if most users are of the other kind, but not when there is a substantial

fraction of each kind. There is also a nonmonotonicity wherein the designer can determine the

outcome of the vote when the two accuracies are sufficiently close or sufficiently far, but not

in between. Finally, we provide conditions under which the designer can control the outcome

of the vote only with a signal that is biased towards A and only with a signal that is biased

towards B.

2 Related Literature

A literature on social media and transmission of information to voters through the lens of

Bayesian persuasion and information design has focused on studying the extent to which a

holder of information can manipulate others by selective disclosure of information (Kamenica

and Gentzkow, 2011). In the terminology of this literature, we study a setting of private

Bayesian persuasion with multiple, informed receivers. We also restrict our designer to condi-

tionally independent signals.

A result that Condorcet’s jury theorem can be overturned has been derived based on costly
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acquisition of information (Mukhopadhaya, 2003; Koriyama and Szentes, 2009). We retain

the assumption of the theorem that individuals incur no cost in acquiring information. On

the contrary, we describe information as imposed upon individuals through the social media

platform without individuals actually seeking information.1

A substantial literature conjoins an information designer with strategic voting, with con-

clusions relying critically on the interplay between the two (see next paragraph for details). In

contrast, we view voters as personally optimally voting for the outcome that they believe is

better or as voting “sincerely”. This allows us to focus on and cleanly characterize the direct

effects of persuasion on voting outcomes. Strategic voting, in contrast, requires the assumption

that voters believe that their vote can be pivotal (or decisive) in determining the outcome

of a voting.2 A concession to realism is that voters in usual two-party elections for political

representatives know that the likelihood of their one vote being decisive is essentially zero. We

assume that voters vote sincerely based on their information and do not regard themselves as

possibly decisive or pivotal.3 We suppose that voters enjoy an expressive benefit to voting for

the correct alternative, and that all voters vote with no expectation that their vote will be

pivotal in determining an election outcome.

Austen-Smith and Banks (1996) study strategic voting in the context of Condorcet’s jury

theorem; they describe strategic voters conditioning their behavior on being pivotal in an elec-

tion, and show that it may no longer be personally optimal to vote sincerely. Feddersen and

Pesendorfer (1998) show that under general voting rules, such strategic voting may lead to a

failure of information aggregation, but Feddersen and Pesendorfer (1997) show that, nonethe-

less, the jury theorem holds: the probability that the outcome of the vote under majority voting

is correct approaches certainty as the number of voters increases. Heese and Lauermann (2021)

start with the general strategic voting framework of Feddersen and Pesendorfer (1997), and

add an information designer. They show that, under strategic voting, the designer can provide

1For scenarios with costly voting, see Sun et al. (2019), who study the effects of public persuasion and cheap
talk on voter turnout and Chan et al. (2019), who study the impact of costly voting on uninformed voters.

2See, for example, Pons and Tricaud (2018) and Spenkuch (2018) and the references therein for the empirical
literature on strategic voting. Although much of the literature detects some amount of strategic voting, in most
instances the large majority of voters are not strategic.

3A paradox of voting is present (Downs, 1957) if voters have a negligible probability of being pivotal; what
reason does the voter have to vote? A benefit imputed to voting is expressive utility (Hillman, 2010). The act
of voting is used to express an identity or sense of belonging. In this context, voting is rational.
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additional information in a way that leads to any preferred outcome with high probability.

Taneva (2019) studies a symmetric two-voter game; her main result is that, in this setting,

it is never optimal for the designer to commit to a conditionally independent signal. More

generally, Arieli and Babichenko (2019) study a general framework for private persuasion, and

characterize optimal solutions under submodularity assumptions on designer’s utility. In our

setting the utility function is neither supermodular nor submodular, so these results do not

apply. Finally, Kerman et al. (2020) focus on persuading uninformed voters through correlated

signals that induce sincere rather than strategic voting in equilibrium.

Other literature has studied public persuasion, where the designer commits to a signal and

all voters observe the same realization, as opposed to private persuasion through social me-

dia where each voter obtains a personally distinct information realization. Public Bayesian

persuasion is an appropriate model for traditional media such as newspapers and television.

Private persuasion is appropriate for social media, which can use personal information garnered

from individuals’ attributes and communications to design selective information directed at an

individual. The literature includes Alonso and Câmara (2016), who study public persuasion of

heterogeneous voters. Wang (2013) compares public signals to private, conditionally indepen-

dent signals, and shows that the former is more informative (and hence worse for the designer)

than the latter. Gitmez and Molavi (2022) also study public persuasion, with a focus on the

interplay between the bias of the signal and voters’ polarization. While less related to our work

in terms of focus and results, the model of Gitmez and Molavi (2022) is similar to ours in that

there is a continuum of voters and each votes sincerely.

A sizable literature has studied bias in traditional and social media, both theoretically

and empirically (see Gentzkow et al., 2015; Puglisi and Snyder Jr, 2015; Strömberg, 2015, for

a variety of surveys). Much of this literature focuses on the informational effects of media

bias, as well as its welfare implications. To the best of our knowledge, our insight that the

manipulator’s optimal bias is in the opposite direction of the intended outcome is novel.4

Last, in other related literature, Denter et al. (2021) study media bias when those it targets

also have exogenous information, and share this information via a social network. They study

4We are aware of only one Bayesian persuasion model with negatively biased signals, Berman et al. (2021),
in which such signals are used by duopolistic sellers in order to soften price competition.
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the effects of the network’s connectivity when voters suffer from correlation neglect on the

optimal bias of media. Sun et al. (2019) study the effects of public persuasion and cheap talk

on turnout in a model with costly voting. Relatedly, Levy (2021) perform a field experiment

to study the effects of social media (specifically, Facebook) on user’s political leanings.

3 Model

There are two policies (or candidates) denoted A and B, and a continuum of voters who must

decide between them. There are two, equally likely states of the world, Θ = {θA, θB}, such

that the better policy is A in state θA and B in state θB. Each voter receives a symmetric

binary signal about the state of the world. Signal realizations are either a or b, and a signal of

accuracy q is one where

P [a|θA] = P [b|θB] = q.

We allow heterogeneity in the signal accuracies. Specifically, we assume that a λ-fraction (where

λ ∈ (0, 1)) of the population has low signal accuracy qℓ ∈ [0.5, 1), and the rest have high signal

accuracy qh ∈ [qℓ, 1]. We say that the population is homogeneous if qℓ = qh, and that it is

heterogeneous otherwise.5

In addition to the voters, there is an information designer. The designer can send the

voters additional informative signals that depend on the state of the world. Unlike the voters,

however, the designer wants to maximize the probability that policy A is chosen, regardless of

the state. In particular, the designer’s utility is 1 whenever A is chosen, and 0 otherwise. In

order to influence the voters, the designer chooses a binary signal s—a probabilistic function

from the state to a pair {a, b}—and sends each voter a conditionally independent realization

of s. We interpret this signal as having been sent through a social media platform that is

controlled by the information designer. As in the Bayesian persuasion framework (Kamenica

and Gentzkow, 2011), we assume that the designer commits to s prior to learning the true state

of the world. In addition, and without loss of generality, assume that the signal s is such that

P [θA|a] ≥ P [θA|b]. If this were not the case, one could simply switch the meaning of the two

5In Section 5 we allow more general distributions over signal accuracies and extend some of our results to
this setup.
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signal realizations.

Remark 3.1. The assumption that the designer’s signal is binary is without loss of gener-

ality, given that the set of actions per voter is binary. This follows from familiar ideas from

information design, but is stated and proved formally in Lemma 2 of Appendix B.

Define the bias of the designer’s signal as the weighted difference in the sizes of the “lies” in

the two directions, namely,

bias(s) = 2 · (P [s(θB) = a] · P [θB]− P [s(θA) = b] · P [θA]) = P [s(θB) = a]− P [s(θA) = b] ,

where the expression after the first equality presents the definition for a general prior, and the

expression after the latter equality relies on having a uniform prior. Thus, under the uniform

prior, symmetric signals in which P [a|θA] = P [b|θB] are unbiased—that is, they have bias 0.

Positive biases correspond to signals that are more likely to yield the signal a, and negative

biases to those that are more likely to yield the signal b. Observe that for the canonical example

of Bayesian persuasion, in which a prosecutor seeks to convince a judge that a defendant is guilty

(which corresponds to state θA), the optimal signal is one with positive bias (Kamenica, 2019).

We note that this definition of bias is an instance of the definition of Gentzkow et al. (2015)

for media bias, under the assumption that the fully informative signal in which P [s(θA) = a] =

P [s(θB) = b] = 1 has bias 0.

A strategy σi of voter i is a function from signals (both the original signal and the designer’s

signal) to a distribution over two actions—a vote for A or a vote for B. The outcome of the

vote is then determined by the majority, with ties decided in favor of A.6 We assume that

voting is sincere: each voter votes according to their own information, which includes the prior

and the two signals. Sincere voting can either directly reflect the voters’ preferences (namely,

each voter obtains utility 1 if she votes for the better policy), or it can correspond to voters who

care for the selected outcome (i.e., each voter obtains utility 1 if the better policy is chosen),

yet when voting they do not take into account the strategic effects of pivotality.7

6Tie-breaking in favor of A is assumed for simplicity only—the results are nearly identical for other tie-
breaking rules; see Remark 4.1.

7The probability of being pivotal is decreasing in the population size (for finite populations), and it is equal
to zero in our continuum-population model.
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Thus, each voter votes for A if her posterior on state θA is above 1/2 and votes for B if her

posterior is below 1/2. As is standard in the Bayesian persuasion literature, we assume voters

vote for A, the outcome preferred by the designer, when their posterior is exactly 1/2; however,

the exact tie-breaking rule is unimportant for our results.

Observe that if the designer sends an uninformative signal and either qℓ > 0.5 or λ < 0.5 <

qh, then A is chosen in state θA and B in state θB. (In the complimentary case where either

qh = 0.5 or qℓ = 0.5 < λ, outcome A is chosen in both states of the world, due to our tie-breaking

rule.) Furthermore, due to the population being a continuum and signals being private and

conditionally independent, the outcome of the vote is deterministic, conditional on the state

of the world. This means that it is either the case that the designer cannot manipulate the

election’s outcome (in which case A is still chosen only in state θA, regardless of the designer’s

signal), or that he can perfectly manipulate the election’s outcome, such that A is chosen in

both states. In the latter case, we say that a designer’s signal s is optimal if it induces the

choice of policy A in both states. Note that there might be multiple optimal signals.

4 Results

4.1 Preliminaries

Suppose a voter’s belief that the state is θA is equal to 1/2. Then any additional signal

s : Θ 7→ {a, b} induces a pair of posteriors (α, β), where α = P [θA|a] and β = P [θA|b]. The

signal is uninformative if α = β = 0.5. If the signal is informative we can assume without

loss of generality that 0 ≤ β < 1
2
< α ≤ 1, and in this case there exists a (unique) signal that

induces these posteriors. Thus, we can identify any informative signal with the pair of posterior

distributions it induces when starting with prior 1
2
.8 For any α < 1

2
< β, the exact mapping

can be derived as follows: First, since the expected prior is equal to the posterior, we have

αpa + β(1− pa) =
1

2
⇒ pa =

1
2
− β

α− β
, pb =

α− 1
2

α− β
,

8Representing signals as distributions over posteriors is standard in Bayesian persuasion (Kamenica, 2019).
Representing them as posteriors starting with a prior of 1

2
is common in the literature on social learning (see,

e.g., Acemoglu et al., 2011; Arieli et al., 2020, 2021).
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where pa = P [a] and pb = P [b] = 1− pa. Next, we have that

P [s(θA) = a] = P [a|θA] =
P [θA|a] pa
P [θA]

=
αpa
1/2

=
α− 2αβ

α− β
⇒ P [b|θA] =

2αβ − β

α− β
.

Similarly,

P [s(θB) = a] = P [a|θB] =
P [θB|a] pa

1/2
=

1− 2β − α + 2αβ

α− β
⇒ P [b|θB] =

2α + β − 1− 2αβ

α− β
.

Furthermore, this analysis implies that the bias of the signal (α, β) is:

bias(α, β) = P [s(θB) = a]− P [s(θA) = b] =
1− β − α

α− β
. (1)

Next, we have the following lemma, which allows us to focus in our analysis on a small set

of 2× 3 signals, such that, if the election is manipulable, one of these signals must be optimal

(and any other optimal signal has weakly higher values of α and β).

Lemma 1. Suppose that signal (α′, β′) is optimal. Then the signal (α, β) is also optimal, where

α = max
{

q ∈ {qℓ, qh} : q ≤ α′
}

and β = max
{

q ∈ {0, 1− qh, 1− qℓ} : q ≤ β′
}

.

The intuition for Lemma 1 is that for any signal, slightly decreasing either α or β increases

the probability of the A-favorable realization a, and that if α /∈ {qℓ, qh} and β /∈ {0, 1−qh, 1−qℓ},
then this slight decrease has no effect on the behavior of any voter conditional on her signals.

See Appendix A for the proof. Table 1 summarizes the key properties of these 2 × 3 optimal

signals (which are derived from straightforward calculations). Note that the share of voters who

vote for policy A in state θA is always larger than in state θB, and, thus, a signal is optimal if

and only if it induces at least half of the agents to vote for policy A in state θB.

Remark 4.1. The tie-breaking rule has no significant impact on our results. In particular,

if one assumes the opposite, B-favorable tie-breaking rules (namely, each agent votes for B

when indifferent, and B is chosen if supported by exactly half of the voters), then the only

minor effect on our results will be that the optimal signals will be perturbed by a small ε > 0.

Formally, if the designer can manipulate the elections, then there would be an optimal signal

of the form (1
2
+ ε, β + ε) or (α + ε, β + ε), with α ∈ {qℓ, qh} and β ∈ {0, 1− qh, 1− qℓ}, for a
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Table 1: Key Properties of the 2× 3 Signals of Lemma 1

(α, β) P [s(θB) = b] Bias How voters vote Share of B voters in θB

(qℓ, 0) 2− 1
qℓ

1−qℓ
qℓ

> 0 qh: Vote A iff a AND a

qℓ: Follow designer’s signal

1− (1−qℓ)(1−qh+λqh)
qℓ

(decreases in λ)

(qh, 0) 2− 1
qh

1−qh
qh

> 0 Follow designer’s signal 2qh−1
qh

(independent of λ)

(qℓ, 1− qℓ) qℓ 0 qh: Follow original signal

qℓ: Vote A iff a OR a

qh − λ (qh − q2ℓ )

(decreases in λ)

(qℓ, 1− qh)
qh(2qℓ−1)
qh+qℓ−1

qh−qℓ
qℓ+qh−1

> 0 qh: Follow original signal

qℓ: Follow designer’s signal

λ qh(2qℓ−1)
qh+qℓ−1

+ (1− λ) qh

(decreases in λ)

(qh, 1− qℓ)
qℓ(2qh−1)
qh+qℓ−1

− qh−qℓ
qℓ+qh−1

< 0 Vote A iff a OR a (λqℓ + (1− λ) qh)
qℓ(2qh−1)
qh+qℓ−1

(decreases in λ)

(qh, 1− qh) qh 0 qh: Vote A iff a OR a

qℓ: Follow designer’s signal

q2h + λqh (1− qh)

(increases in λ)

sufficiently small ε > 0.

4.2 Partially Uninformed Populations (qℓ =
1
2)

In this section we focus on the case in which the low-accuracy signal is uninformative (i.e.,

qℓ =
1
2
). That is, we assume that a share λ of the population is uninformed, and the remaining

agents obtain each a private signal with accuracy qh. An interesting special case, discussed

towards the end of the section, is that of homogeneous populations, in which all voters have

the same signal accuracy (formally, λ = 0).

Our first observation is that if the signal accuracy qh is below some threshold, denoted by

qNI(λ), then policy A is always chosen, even without any manipulation by the designer.9

Claim 1. Policy A is chosen in both states with an uninformative designer’s signal iff

qh ≤ qNI(λ) ≡
1

2(1− λ)
.

9If one changes the tie-breaking rule to favor policy B, then under the same condition on λ, the designer
can perfectly manipulate the election’s outcome by sending the signal ( 1

2
+ ε, 1 − qh) for a sufficiently small

0 < ε ≪ 1. This signal is almost-uninformative in the sense that with an arbitrarily high probability of 1−O(ε)
the agents get the realization a, which only slightly increases the likelihood of state θA, and which is sufficient
to make the uninformed voters to strictly prefer policy A.
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Proof. In either state, uninformed voters always vote for A, and informed voters vote for A if

they receive signal a. In state θA, the latter make up a qh > 1/2 share, and so overall a majority

of voters always votes for A. In state θB, voters for A consist of the λ-fraction of uninformed

voters and the (1− λ) · (1− qh)-fraction of informed voters who receive signal b. Thus, at least

half of the voters vote for policy A in state θB if and only if λ + (1− λ) · (1− qh) ≥ 1
2
⇔ λ ≥

1− 1
2qh

⇔ qh ≤ 1
2(1−λ)

.

It is straightforward to verify that qNI(λ) is increasing in λ, that qNI(25%) = 2
3
, and that

qNI(50%) = 1. This is illustrated by the solid (red) curve in Figure 4.2. In what follows we

focus on the more interesting case in which qh is above this threshold—namely, the case in

which policy B is chosen in state θB unless the designer manipulates the outcome.

In order to state our result, we define q : [0, 1) ⇒ [0.5, 1] as follows:

q(λ) =
−λ+

√
λ2 + 2− 2λ

2− 2λ
.

It is straightforward to verify the following, illustrated by the dashed (blue) line in Figure 4.2:

Fact 1. q(λ) is decreasing in λ, q(0) =
√
2
2

, and q(25%) = 2
3
= qNI(25%).

Our first result shows that the designer can manipulate the election’s outcome iff qh ≤ q(λ),

and that manipulation (when possible) can be implemented by an unbiased signal. Moreover,

for values of precision in the interval (2
3
, q(λ) (values above the horizontal dotted (black) line

in Figure 4.2), all optimal signals have non-positive biases.

Proposition 1. Suppose that qℓ =
1
2

and qh > qNI(λ).

1. If qh > q(λ) then the designer cannot manipulate the election’s result.

2. If qh ≤ q(λ) then the designer can manipulate the election’s outcome, and can do so by

using the unbiased signal (qh, 1− qh).

3. If qh ∈ (2
3
, q(λ)] then all optimal signals have non-positive biases.

An interesting feature of the optimal signals is that they have non-positive bias (bullets

2 and 3 of Proposition 1). Observe that this is the opposite direction of bias relative to the
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Figure 1: Illustration of Proposition 1 (qℓ = 0.5)

standard application of Bayesian persuasion (Kamenica and Gentzkow, 2011), in which the

bias is positive (i.e., in favor of A, the designer-optimal outcome). The intuition underlying

the contrast between the standard application and our setup is the following. A voter who is

informed and obtains signal a is prepared to vote for A, whereas a voter who is informed and

obtains signal b is prepared to vote for B. The designer would like to convince the latter to

also vote for A, while at the same time not causing the former to switch. The way to do this

is to choose a signal for which realization a is stronger than realization b, so that voters with

realizations (b, a) switch to A but voters with realizations (a, b) do not switch to B. Of course,

since a is stronger than b, it must be the case that b is realized with higher probability, or, in

other words, that the signal has non-positive bias. We now prove Proposition 1.

Proof. Claim 1 and the inequality qh > qNI(λ) imply that policy A is not chosen in state θB

if the signal is uninformative. Due to this we can focus on informative signals. Thus, Lemma

1 implies that if the designer can manipulate the election, then either (qh, 0) or (qh, 1 − qh)

are optimal. Signal (qh, 0) induces all voters to vote according to the designer’s signal s (and

to ignore the original signal). The probability of signal s being in favor of A in state θB is
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Pr(s(θB) = a) = 1−2β−α+2αβ
α−β

= 1−qh
qh

, which is weakly larger than 50% iff qh ≤ 2
3
.

Signal (qh, 1−qh) induces informed (resp., uninformed) agents to vote for A if either of their

two signals (resp., the designer’s signal) is in favor of A, which has probability of 1− q2h (resp.,

1− qh) in state θB. Thus, the share of voters who vote for policy A in state θB is at least 50%

iff λ · (1− qh) + (1− λ) · (1− q2h) ≥ 50% ⇔ q ≤ q(λ). Combining these observartions with Fact

1 implies bullets (1) and (2) of the proposition.

The argument for bullet (3) is the following. Due to Lemma 1, if 2
3
< qh ≤

√
2
2

, then any

optimal signal (α, β) must satisfy α ≥ qh and β ≥ 1− qh. In this case, the numerator in (1),

namely, 1− (α+β), is non-positive. Since the denominator is always positive, this implies that

the bias is non-positive.

An interesting special case is a homogeneous population in which all agents have the same

signal quality (i.e., λ = 0). Applying Proposition 1 yields the following characterization of

election manipulation in homogeneous populations.

Corollary 1 (Homogeneous populations). Suppose that λ = 0.

1. If qh >
√
2
2

then the designer cannot manipulate the election’s result.

2. If qh ≤
√
2
2

then the designer can manipulate the election’s outcome, and can do so by

using the unbiased signal (qh, 1− qh).

3. If qh ∈ (2
3
,
√
2
2
] then all optimal signals have non-positive biases.

4.3 General Binary Signals
(

1
2 < qℓ < qh, λ ∈ [0, 1]

)

In this section we return to the general binary model in which the low-accuracy signal is

informative (qℓ > 1/2). We prove two results: first, a characterization of conditions under

which the designer can manipulate the election; and second, an identification of conditions

under which optimal signals have positive or negative biases.

In order to state our first result we define λ : (1
2
,
√
2
2
)] → [0, 1] as follows: λ(qh) =

0.5−q2
h

qh(1−qh)
.

We will show in the proof of Proposition 2 below that λ(qh) is the highest share of λ for which

the signal (qh, 1− qh) induces a majority of the voters to vote for A in state θB for all values of

qℓ ≤ qh. Observe that:
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Fact 2. The function λ(qh) is decreasing, λ(2
3
) = 25%, and λ(

√
2
2
) = 0.

Proposition 2.

1. If
√
2
2

< qℓ, then the designer cannot manipulate the election.

2. If qℓ <
√
2
2

< qh, then the designer can manipulate the election iff λ is sufficiently large.

3. If 2
3
< qh ≤

√
2
2

, then the designer can manipulate the elections iff either (1) λ ≤ λ(qh),

or (2) λ is sufficiently large.

4. If qh ≤ 2
3
, then the designer can manipulate the elections for any qℓ and λ.

Proof.

1. Corollary 1 implies that for each q >
√
2
2

all signals induce less than 50% of agents with

signal accuracy q to vote for policy A in state θB. This implies that if qℓ >
√
2
2
, then a

majority of the voters support policy B in state θB (i.e., the designer cannot manipulate

the elections).

2. This is implied by the observation that when
√
2
2

< qh both signals (qh, 0) and (qh, 1− qh)

cannot manipulate the elections, while the share of agents who support policy A in state

θB is increasing in λ (and is greater than than 50% for sufficiently high λ) for each of

the other optimal signals of Lemma 1 (see Table 1). Signal (qh, 0) cannot manipulate the

elections because the induced share of B supporters in state θB is 2qh−1
qh

, which is larger

than 50% iff qh >
√
2
2

. Signal (qh, 1− qh) induces a share q2h + λqh(1− qh) of the voters to

vote for policy B in state θB (see Table 1). This share is smaller than 50% iff λ ≤ λ(qh)

because q2h+λqh(1− qh) ≤ 0.5 ⇔ λ ≤ 0.5−q2
h

qh(1−qh)
≡ λ(qh). As observed in Fact 2, λ(

√
2
2
) = 0,

which implies that signal (qh, 1− qh) cannot manipulate the elections if qh >
√
2
2
.

3. Part (1) is implied by the observation that the designer’s signal (qh, 1− qh) induces a

share q2h + λqh(1 − qh) to vote for policy B in state θB, and that this share is less than

50% if λ ≤ λ(qh). Part (2) is implied by the fact that signal (qh, 0) (resp., (qh, 1 − qh))

does not manipulate the elections when qh > 2
3

(resp., λ > λ(qh)), and that the share of

supporters of policy A in state θB is increasing in λ for each of the other four signals of

Lemma 1.
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4. Observe (Table 1) that the designer’s signal (qh, 0) induces a share of 2qh−1
qh

of the agents

to vote for B in state θB (for all values of qℓ ≤ qh), and that this share is smaller than

50% iff qh ≤ 2
3
.

Our results are illustrated in Figure 2. Bullet (3) of Proposition 2 implies an interesting

non-monotonicity in λ: When qh is in the interval
(

2
3
,
√
2
2

)

, then the elections are manipulable

if either the share of agents with low accuracy is sufficiently small (namely, λ ≤ λ) or if it is

sufficiently large, but the elections cannot be manipulated if this share is intermediate. The

intuition for this non-monotonicity is as follows. Our designer is constrained by the fact that

he must choose the same signal distribution to all agents. When λ is either very low or very

high, the designer can tune this distribution to the large majority of agents by sending an

unbiased signal with the “right” level of accuracy (i.e., a level that induces most voters to vote

A if either of their signals is in favor of A). By contrast, when λ is close to 50%, the designer

has a trade-off, and must send a “versatile” signal that can handle both groups of agents (and is

not optimally “tailored” to either group), and this limits his ability to manipulate the elections.

Moreover, one can show that the ability to manipulate the elections is also non-monotonic in

qℓ. Specifically, for each qh, the interval of λ-s for which the elections cannot be manipulated is

non-monotone in qℓ: the interval is small (and it might even disappear) when qℓ is either small

(close to 50%) or large (close to qh), while it is largest when qℓ is intermediate. The intuition

for the non-monotonicity in qℓ is as follows. When qℓ is low, it is easy to manipulate the low-

accuracy agents. The designer can send a positively biased signal that with high probability

sends a “weak-pro-A” realization, which manipulates most low-accuracy agents (and a sufficient

number of high-accuracy agents). When qℓ is close to qh, the designer can exploit the relative

homogeneity of the population by sending the negatively biased signal (qh, 1−qℓ), which induces

both types of agents to vote for A if either of their signals is “pro-A”. In contrast, when qℓ has

an intermediate value the designer has neither of these two benefits, and thus his ability to

manipulate the elections is limited.

Recall that in the special case of qℓ = 0.5 (partially informed agents), manipulation, when

possible, could always be implemented by an unbiased signal (and in some cases only by signals

with non-positive biases). In what follows, we show that this is no longer the case in the general

setup (with qℓ > 0.5). Specifically, we characterize both setups in which manipulation can only
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Figure 2: Outcome Manipulation for qh = 70% and Various Values of qℓ (values between 50%
and 70% in steps of 1%) and λ (values between 0 and 100% in steps of 5%)

be implemented by positively biased signals (in which the signal a is sent more often than

b), and setups in which manipulation can only be implemented by negatively biased signals.

Specifically, Proposition 3 below shows that the direction of the bias is uniquely determined

(for an interior interval of λ-s) in the following setups:

1. All optimal signals must have a positive bias if qh > 2
3

and qℓ is sufficiently low.

2. All optimal signal must have a negative bias if qh ∈ (2
3
,
√
2
2
) and qℓ is sufficiently high.

Observe that in the second case, the manipulation is implemented by signals with the oppo-

site direction of bias relative to the standard applications of Bayesian persuasion (see, e.g.,

Kamenica, 2019).The intuition for this is that the optimal negatively biased signal (qh, 1− qℓ)

exploits the (modest) heterogeneity of the population: the relatively infrequent signal a is suf-

ficiently informative to induce both types of agents to vote A regardless of their exogenous

signal, while the more frequently used signal b is sufficiently weakly-informative, such that it
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does not change the voting of any agent who got exogenous signal in favor of policy A.

Proposition 3.

1. For any qh > 2
3

there is a q ∈ (0.5, qh) such that, if qℓ ∈ (0.5, q), then there is an interior

open interval of λ-s for which all optimal signals have positive biases.

2. For any qh ∈
(

2
3
,
√
2
2

)

there is a q ∈ (0.5, qh), such that, if qℓ ∈ (q, qh), then there is an

interior open interval of λ-s for which all optimal signals have negative biases.

Proof. Fix qh > 2
3
. Proposition 2 and Fact 2 imply that the signals (qh, 0) and (qh, 1 − qh) are

not optimal if λ > 0.25− ϵ for a sufficiently small ϵ > 0.

1. The limit of the share of B voters in state θB when qℓ converges to 0.5 (see Table 1)

is equal to qh(1 − λ) for the positively biased signals (qℓ, 0) and (qℓ, 1 − qh), while it

is strictly higher for the remaining two signals: it is equal to qh(1 − λ) + 1
4

for signal

(qℓ, 1 − qℓ), and it is equal to qh(1 − λ) + λ
2

for signal (qh, 1 − qℓ). This implies that for

sufficiently small qℓ-s, if λ is slightly above 1− 1
2qh

, then only the positively biased signals

(qℓ, 0) and (qℓ, 1 − qh) are optimal in the set of six signals of Lemma 1. By Lemma 1,

this implies that the only potentially optimal signals are (α′, β′) ∈ [qℓ, qh)× [0, 1− qh) or

(α′, β′) ∈ [qℓ, qh) × [1 − qh, 1 − qℓ). Note that the former are all positively biased. The

latter, however, may be either positively or negatively biased.

We now show that only the positively biased signals (α′, β′) ∈ [qℓ, qh) × [1 − qh, 1 − qℓ)

are potentially optimal. Fix some (α′, β′) ∈ [qℓ, qh)× [1− qh, 1− qℓ), and define q′ℓ and q′h

so that (α′, β′) = (q′ℓ, 1− q′h). Observe that this signal is positively biased if q′ℓ < q′h, and

negatively biased if the inequality is flipped. Under this signal, the fraction of voters for

B in state θB is

P [B|θB] = λ
q′h(2q

′
ℓ − 1)

q′h + q′ℓ − 1
+ (1− λ) qh.

Now, if the signal is negatively biased, and so q′ℓ ≥ q′h, then 2q′ℓ−1 ≥ q′h+q′ℓ−1, and so the

first term of P [B|θB] is bounded below by λq′h ≥ λ/2. The total fraction of voters for B is

then at least qh(1−λ)+λ/2, the same as for signal (qh, 1−qℓ). But just like that signal, if

λ is slightly above 1− 1
2qh

then a negatively biased signal (α′, β′) ∈ [qℓ, qh)× [1−qh, 1−qℓ)

is also not optimal.
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2. Assume qh ∈ (2
3
,
√
2
2
). The limit of the share of B voters in state θB when qℓ converges to

qh (see Table 1) for each of the other four signals is equal to:

(a) Signal (qℓ, 0): The limit is equal to 1− (1−qh)(1−(1−λ)qh)
qh

, which is increasing in qh and

decreasing in λ. When substituting qh = 2
3

and λ = 1, the expression is equal 50%,

which implies that it is larger than 50% for each qh > 2
3

and each λ.

(b) Signal (qℓ, 1− qℓ): The limit is equal to qh (1− λ(1− qh)), which is increasing in qh

and decreasing in λ. When substituting qh = 2
3

and λ = 2
3
, the expression is equal

14
27

> 50%, which implies that the limit is larger than 50% for each qh > 2
3

and each

λ < 2
3
.

(c) Signal (qℓ, 1− qh): The limit is equal to qh > 2
3
, which implies that the limit is larger

than 50% for each qh > 2
3

and each λ.

(d) Signal (qh, 1− qℓ): The limit is equal to q2h, which is smaller than 50% for all values

of λ because qh <
√
2
2
.

This implies that when qℓ is sufficiently close to qh and λ ∈ (0.25, 2
3
), then the unique

optimal signal in the set of six signals of Lemma 1 is (qh, 1 − qℓ), which implies that all

optimal signals are negatively biased due to Lemma 1.

5 Extensions

5.1 Continuous Signal Accuracies

In this section we extend our model to a general distribution over signal accuracies (and not just

binary). Specifically, we consider here a variant of our model in which the exogenous signal’s

accuracy is continuous, and is distributed according to density f with a support supp(f) in

[0.5, 1]. We note that the closely related extension of the model to a setup with a finite (but

greater than 2) number of signal accuracies is analogous (and is omitted for brevity).

Our result here is an extension of Proposition 2 to this general setup, showing that the

election is manipulable if all agents have accuracies of at most 2
3
, and that it is non-manipulable

if all agents have accuracies of at least
√
2
2

. Formally,
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Proposition 4.

1. If supp(f) ⊆
[√

2
2
, 1
]

, then the designer cannot manipulate the election.

2. If supp(f) ⊆
[

1
2
, 2
3

]

, then the designer can manipulate the election.

Proof.

1. Corollary 1 implies that for each q >
√
2
2

all signals induce less than 50% of agents with

signal accuracy q to vote for policy A in state θB. This implies that when supp(f) ⊆
[√

2
2
, 1
]

, a majority of the voters support policy B in state θB irrespective of the exact

distribution of signal accuracies (i.e., the designer cannot manipulate the elections).

2. Let qh = supq∈Q q. Observe (Table 1) that the designer’s signal (qh, 0) induces a share of

2qh−1
qh

of the agents to vote for B in state θB (for all values of q ≤ qh), and that this share

is smaller than 50% iff qh ≤ 2
3
.

5.2 Targeted Information

In our main analysis, we required the designer to design one signal for all voters. What if the

designer can differentiate between voters based on their signal accuracies, and can thus design

different signals for different voters?

Suppose that the designer can distinguish between the two types of voters, qℓ and qh.

Furthermore, suppose she can commit to two different signals, sh and sℓ, where the former

targets qh voters and the latter targets qℓ voters. Observe first that Proposition 2 applies: if

qℓ < qh ≤ 2/3 then the (qh, 0) signal is optimal regardless of the type of voter, and so the

designer can manipulate the election, whereas if qh > qℓ >
√
2/2 then the designer cannot

manipulate the election. The proof is the same as that of the proposition.

However, targeted signals differ in the intermediate case. Note that for either i ∈ {ℓ, h}, the

signal that leads to the maximal fraction of qi voters to vote for A is one of (qi, 0) or (qi, 1− qi),

by (the proof of) Lemma 1. Both signals lead to a majority of voters for A in state θA. In

state θB, however, (qi, 0) leads to P [A|θB] = 1−qi
qi

, whereas (qi, 1− qi) leads to P [A|θB] = 1− q2i

(see Table 1). For qi ∈ [1/2,
√
5−1
2

) the former is larger, whereas for qi ∈ (
√
5−1
2

, 1) the latter is
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larger. Overall, the designer can manipulate the election if and only if

λ ·max

{

1− qℓ
qℓ

, 1− q2ℓ

}

+ (1− λ) ·max

{

1− qh
qh

, 1− q2h

}

≥ 1

2
.

Observe that, in contrast with Proposition 2, there is no non-monotonicity here: the left-hand-

side of the inequality decreases with qℓ and with λ.

This last necessary and sufficient condition on the designer’s ability to manipulate the

election extends in a straightforward manner to the variant with a continuous distribution of

signal accuracies from Section 5.1 above. In this case, the designer can manipulate the election

if and only if
∫ 1

1/2

max

{

1− q

q
, 1− q2

}

· f(q)dq ≥ 1

2
.

5.3 Strongly Targeted Information

What if the designer has even more finely grained information about voters, such that she

knows not only each voter’s signal accuracy but also the realization of this exogenous signal?

In this case, the designer can provide a strongly targeted signal, in which voters with different

signal accuracies and different realizations get different signals.

For a given signal accuracy q, a voter with realization a has interim belief q about the

probability the state is A, whereas a voter with realization b has interim belief 1− q about this

probability. If the designer knows these realizations, she faces a standard Bayesian persuasion

problem relative to each one of these kinds voters. In order to maximize the probability that

such voters vote for A, the designer should supply the former voter with no additional signal,

and the latter voter with additional signal (q, 0). The latter signal here is the optimal signal

from the standard Bayesian persuasion setting (Kamenica and Gentzkow, 2011), supplied to

a voter who has belief 1 − q and is will to vote for A once the belief is above 1/2. Given

these signals, the former voter will always vote for A, whereas the latter will vote for A with

probability 1−q
q

in state θB. In state θB, the total fraction of voters with accuracy q who vote

for A is thus

(1− q) · 1 + q · 1− q

q
= 2(1− q).

For a homogeneous population in which all agents have accuracy q, the designer can ma-
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nipulate the elections iff 2(1− q) ≥ 1
2
⇔ q ≤ 3

4
. When there are two signals accuracies, qℓ and

qh, the designer can then manipulate the election if and only if

2λ · (1− qℓ) + 2(1− λ) · (1− qh) ≥
1

2
.

When there is a continuous distribution of signal accuracies, as in Section 5.1 above, the

designer can manipulate the election if and only if

2

∫ 1

1/2

(1− q)f(q)dq ≥ 1

2
.

5.4 Social Media vs. Traditional Media

Our analysis and results lead to a straightforward comparison of the effects of social media

(through private persuasion) and traditional media (through public persuasion). For the latter,

suppose that instead of each voter obtaining a conditionally independent realization of the

designer’s signal, all voters obtain the same realization. Is such a public signal better or worse

for the designer?

Observe that with a public signal, the designer can never manipulate the election with

probability 1. However, she can always at least slightly increase the probability that voters

vote for A (with a positively biased signal as in Kamenica and Gentzkow, 2011). Thus, the

answer to whether this is better than private persuasion depends on whether or not the designer

can manipulate the election in the latter case. If she can, then private persuasion by social

media is better. If she cannot, then public persuasion by traditional media is better.

6 Conclusion

In portraying private beliefs that contradict public information, Kuran (1997) describes a gov-

ernment monopoly on information under autocracy. Monopoly on information also arises under

democracy when, because of network externalities, a social media platform caters to designated

users seeking to maintain contact with one another. In this paper we showed that manipulation

through personalized private information in social media can influence beliefs. This, in turn,
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may invalidate the conclusion of Condorcet’s jury theorem, a theorem that captures the ben-

efits of majority voting. In particular, information manipulation through private persuasion

can result in a majority voting for an information designer’s preferred policy rather than for

a socially preferred alternative. This compromise of Condorcet’s jury theorem undermines the

merits of democracy.

From the perspective of theory, we focused on the direct effect of informational persuasion on

voting outcomes by dispensing with the assumption, prominent in the literature on information

design, that voters regard themselves as possibly pivotal. Instead, we viewed voting as sincere,

and accounted for the paradox of voting by assuming that voters derive direct utility from

expressing themselves through voting. Our general model covers a range of circumstances that

differ in the extent to which users are exogenously informed and in the amount of heterogeneity

in the accuracy levels of users’ exogenous information. In all these circumstances we provided

tight characterizations of when Condorcet’s jury theorem can be overturned.

Our analysis and results provide a comparison between information manipulation by private

persuasion through social media and by public persuasion through traditional media. Under

public persuasion, the designer can always slightly increase the probability that voters choose

the designer’s preferred outcome, but can never determine the outcome with probability one.

Under private persuasion, in contrast, our results show that the designer either completely

determines the outcome, or has no effect at all, depending on the circumstances. In the former

case, a designer with a political agenda would thus prefer control of social media to information

manipulation through traditional media, whereas in the latter case, the designer’s preference

would be reversed.

A Appendix: Proof of Lemma 1

Fix any optimal (α′, β′), and note that, under this signal,

P [a|θB] = 1− 2α′ + β′ − 1− 2α′β′

α′ − β′
=

(α′ − 1)(2β′ − 1)

α′ − β′
.
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Observe that this probability is decreasing in α′ and β′, and so lowering either of these leads

to a higher probability of realization a in state θB.

Suppose now that α′ /∈ {qℓ, qh}. First, observe that α′ cannot lie in the interval [1/2, qℓ).

This is because, if it did, then when a voter obtains exogenous signal b, neither the pair (b, a)

nor the pair (b, b) will cause the voter to vote A. This means that voters always vote B on

signal b. However, in state θB the signal b is more likely than a, and so a majority will always

vote for B in this state. But this implies that (α′, β′) is not optimal, a contradiction.

Suppose next that α′ ∈ (qℓ, qh). In this case, switching to signal (α, β′), with α = qℓ does

not affect the behavior of any voter: Voters with signals (a, b) and (b, b) still make the same

inferences, whereas voters with signals (a, a) still vote for A, qℓ voters with signals (b, a) still

vote for A, and qh voters with signals (b, a) still vote for B. Similarly, if α′ ∈ (qh, 1), then

switching to signal (α, β′), with α = qh does not affect the behavior of any voter. In all cases,

however, lowering α′ to α increases the probability of signal a, and hence a weakly greater

fraction of voters votes for A. This implies that (α, β′) is optimal.

Finally, suppose β′ /∈ {0, 1 − qh, 1 − qℓ}. If β′ ∈ (0, 1 − qh) (resp., β′ ∈ (1 − qh, 1 − qℓ) or

β′ ∈ (1− qℓ, 1)) then lowering β′ to β = 0 (resp., β = 1− qh or β = 1− qℓ) does not affect the

behavior of any voter. In all cases, however, lowering β′ to β increases the probability of signal

a, and hence a weakly larger share of voters votes for A. This implies that (α, β) is optimal.

B Appendix: Binary Signals are Optimal

In this section we show that the restriction of the designer’s signal to a binary one is without loss

of generality. Kamenica and Gentzkow (2011) show that, in the standard Bayesian persuasion

setting with a single, uninformed receiver, it is without loss of generality to restrict the designer

to a straightforward signal—one where each signal realization corresponds to a distinct action,

these realizations are interpreted by the receiver as recommendations, and the receiver optimally

follows the recommendation.

When there are different types of receivers (in our case, ones with different exogenous-signal

accuracies) who have different information (in our case, different realizations of the exogenous

signal), the argument of Kamenica and Gentzkow (2011) does not directly apply. This is because
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different receivers would optimally take different actions even given the same signal realization,

and so these realizations cannot be interpreted as recommendations. For a simple example

consider homogeneous voters with signal accuracy q ∈ (0.5, 1), and where the designer’s signal

is (0.5+ε, 0.5−ε) for small ε > 0. In this case each voter votes according to their own exogenous

information, and not according to the sender’s “recommended” action a or b.

However, an extended argument does show that binary signals are sufficient. Consider the

general model of Section 4.3. Then:

Lemma 2. If there exists an optimal signal, then there exists an optimal binary signal.

Proof. In our model there are four different types of voters, distinguished by their signal ac-

curacies (qℓ or qh) and the realization of their exogenous signal (a or b). We note that our

argument works for any finite, arbitrarily large number of voters’ types.

Now, suppose there exists an optimal signal. We first argue that there also exists an optimal

signal with a finite number of realizations. This follows from the argument of Kamenica and

Gentzkow (2011), which implies that there exists an optimal signal in which there are at most

16 realizations, as follows: Each realization of the signal is a recommendation to vote either

for A or for B for each of the four different types of voters. There are 24 such four-tuples of

recommendations, hence 16 signal realizations.

Next, let s be an optimal designer signal with the minimal number of signal realizations,

and suppose towards a contradiction that s is not binary. Let n > 2 be the number of its signal

realizations, and denote these realizations by supp(s) = {r1, . . . , rn}. By Lemma 3 below, the

signal s is equal to a distribution over two signals, s1 and s2, with the following four properties:

(1) s ≡ ηs1+(1−η)s2 with η ∈ (0, 1), (2) |supp(s1)| , |supp(s2)| < n, (3) |supp(s1) ∩ supp(s2)| ≤
1, and (4) if ri ∈ supp(s1) ∩ supp(s2) then P [θB|s1 = ri] = P [θB|s2 = ri].

Now, s is optimal if and only if the probability it induces a random voter to vote for A in

state θB is at least 1/2. Since s is a mixture of s1 and s2 (and the unique shared realization

induces the same posterior), either s1 or s2 must also be optimal. For otherwise, if in state θB

a random voter has probability less than 1/2 of voting for A under each of s1 and s2, then this

must also be the case under s. However, s1 and s2 have fewer realizations than s, contradicting

the assumption that s is an optimal signal with the minimal number of realizations.
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Lemma 3. Fix a non-binary signal s with n > 2 signal realizations, and denote those realiza-

tions by supp(s) = {r1, . . . , rn}. Then there exist signals s1, s2 with the following properties:

1. s ≡ ηs1 + (1− η)s2, where η ∈ (0, 1),

2. |supp(s1)| , |supp(s2)| < n.

3. |supp(s1) ∩ supp(s2)| ≤ 1, and

4. if ri ∈ supp(s1) ∩ supp(s2) then P [θB|s1 = ri] = P [θB|s2 = ri].

Proof. Denote by (α1, . . . , αn) the posteriors induced by the n signal realizations of s on state θA,

starting with prior 1/2. This is simply the generalization of the (α, β) notation for binary signals

to signals with more than two realizations. Suppose ri is the signal realization associated with

posterior αi, and denote by pi = P [s = ri] (the unconditional probability of this realization).

If signal s is non-informative, then the result is immediate (as each si can be a non-

informative signal with a single realization). Otherwise, there must be at least one αi above

1/2 and at least one αj below 1/2. Without loss of generality, assume that α1 > . . . > αn, and

note that α1 > 1/2 and αn < 1/2.

Consider the binary signal s1 = (α1, αn) with supp(s1) = {r1, rn}. For this signal, let

pa = P [s1 = r1] =
1
2
− αn

α1 − αn

and pb = P [s1 = rn] =
α1 − 1

2

α1 − αn

,

where the respective probabilities are computed as in Section 4.1.

We now consider three cases. First, if pa
pb

= p1
pn

, then let η = p1+ pn, and let s2 be the signal

whose realizations are {r2, . . . , rn−1}, and where P [s2(θ) = ri] = P [s(θ) = ri] /(1− η) for each

i ∈ {2, . . . , n− 1} and θ ∈ {θA, θB}. Observe that s2 yields posterior beliefs (α2, . . . , αn−1). It

is straightforward to verify that these satisfy the claim of the lemma.

Second, suppose pa
pb

< p1
pn

. In this case, let η = pa
pb
pn + pn, and let s2 be the signal whose re-

alizations are {r1, r2, . . . , rn−1}, where P [s2(θ) = ri] = P [s(θ) = ri] /(1−η) for each for each i ∈
{2, . . . , n−1} and θ ∈ {θA, θB}, and where P [s2(θ) = r1] = (P [s(θ) = r1]− ηP [s1(θ) = r1]) /(1−
η) for each θ ∈ {θA, θB}. Observe that s2 yields posterior beliefs (α1, α2, . . . , αn−1). Again, it

is straightforward to verify that these satisfy the claim of the lemma. In particular, the only
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shared realization r1 induces the same posterior belief under both signals: P [θA|s1 = r1] =

P [θA|s2 = r1].

Finally, suppose pa
pb

> p1
pn

. This case is analogous to the second case, except that η = p1+
pb
pa
p1,

rn replaces r1 in supp(s2), the signal s2 yields beliefs (α2, . . . , αn−1, αn), and s1 and s2 share

the realization rn.
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