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Abstract

This paper features a statistical analysis of the independence of the core Fama/French
factors; SMB and HML, using daily data, of the factor return series, for the USA,
Developed Markets and Japan, using a sample taken from the data-sets that are
available on French’s website. The various series and their inter-relationships
are analysed using rolling OLS regressions, so as to explore their independence
and issues related to their endogeneity. The OLS analysis incorporates Ramsey’s
RESET tests of functional form misspecification. The empirical results suggest
that these factors, when combined in OLS regression analysis, as suggested by
Fama and French (2018), and generally in the empirical asset pricing litera-
ture featuring time-series tests, are frequently not independent, and thus likely
to suffer from endogeneity. The rolling regression analysis suggests significant
and time-varying relationships between the core factors and rejects their inde-
pendence for long periods of time within the samples. A significant non-linear
relationship exists between some of the series, as indicated by the exployment of
squared terms, which are frequently significant. The empirical results suggest
that using these factors in linear regression analysis, such as suggested by Fama
and French (2018), as a method of screening factor relevance, is likely to be
problematic, in that the estimated standard errors are likely to be sensitive to
the non-independence of factors. This is also likely to be a potential problem for
asset pricing tests that use the popular time-series approach, as first suggested
by Fama and Macbeth (1973).
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1. Introduction

In a fundamental paper, Fama and French (1993, p3), stated that: “there are
three stock-market factors: an overall market factor and factors related to firm
size and book-to-market equity”. French generously provides estimates of these
original factors, and more recently suggested additions, on his personal website
(see http://mba.tuck.dartmouth.edu/pages/faculty /ken.french /Data_ Library /f-
f factors.html). The original 1993 paper triggered the development of a virtual
global industry in the testing for the effects of various factors on various port-
folios selected from global markets.

Cochrane (2011, p.1047), in a Presidential Address to the American Finance
Association, observed that: “we also thought that the cross-section of expected
returns came from the CAPM. Now we have a zoo of new factors.” Harvey, Liu,
and Zhu (2015) list 316 anomalies proposed as potential factors in asset-pricing
models, and comment that there are others that do not make their list.

Fama and French (2018) propose a method for screening competing factors,
and explain that previous approaches can be described under two main headings.
The left-hand-side (LHS) approach judges competing models on the intercepts
(unexplained average returns) left in time series regressions to explain excess
returns on sets of LHS portfolios. A drawback is that different sets of LHS
portfolios can lead to different intercepts and, therefore, to different inferences.

An alternative right-hand-side (RHS) approach uses spanning regressions
to judge whether individual factors contribute to the explanation of average
returns provided by a model. Each candidate factor is regressed on the model’s
other factors. If the intercept in a spanning regression is non-zero, the factor
adds to the model’s explanation of average returns in that sample period. Fama
and French (2018) note that the GRS statistic of Gibbons, Ross, and Shanken
(GRS 1989), hereafter GRS, produces a test of whether multiple factors add to
a base model’s explanatory power.

The GRS test test is based on the strong assumptions of linearity, indepen-
dence and a Gaussian distribution. GRS on the assumption that there is a given
riskless rate of interest, Ry, for each time period. Excess returns are computed
by subtracting Ry, from the total rates of return. GRS consider the following
multivariate linear regression:

Tit = Qip + ﬁip’i:pt + & Vi=1,... , N, (1)

where 7;; = excess return on asset i in period ¢, 7,; = excess return on the
portfolio whose efficiency is being tested, and é;; = disturbance term for asset i
in period ¢. The disturbances are assumed to be jointly normally distributed in
each period, with mean zero and nonsingular covariance matrix ), conditional
on the excess returns for portfolio p. They also assume independence of the
disturbances over time. In order that ) be non-singular, 7,; and the N left-
hand-side assets must be linearly independent.

GRS suggest that if a particular portfolio is mean-variance efficient, (that is
it minimizes variance for a given level of expected return), then the following
first-order condition must be satisfied for the given N assets:



E(Fy) = BipE(fpt)- (2)
GRS combine the first-order condition in (2) with the distributional assumption

suggested by (1), and obtain the following parametric restriction, which they
state in the form of a null hypothesis:

H, ai =0, Yi=1,..., N. (3)

The GRS test is based on a null hypothesis that the intercept in the above
regression, as shown in expressions (1) and (2), is zero. There are several as-
sumptions required for this test to be valid, namely linearity, independence, and
Gaussian distributions.

Fama and French (2018) adopt a test proposed by Barillas and Shanken
(2016). Barillas and Shanken (2016) assume that the factors of competing mod-
els are among the LHS returns that each model is supposed to explain. Formally,
let R be the target set of non-factor LHS excess returns, f; the factors of model
i, and F'y; the union of the factors of model i’s competitors. In the BS approach,
the set of LHS returns for model 4, IT;, combines R and F;, with linearly de-
pendent components deleted. Competing models are assessed on the maximum
(max) squared Sharpe ratio for the intercepts from time series regressions of
LHS returns on a model’s factors.

Define a; as the vector of intercepts from regressions of II; on f;, and >,
as the residual covariance matrix. The maximum squared Sharpe ratio for the
intercepts is given by:

Sh2a; = a;Zi_l al, (4)
and the superior model is judged to be the one with the smallest Sh2a;.
Gibbons et al. (1989) show that aiz;l a’, is the difference between the max
squared Sharpe ratio constructed from f; and II; together, and the max for f;
individually:

Sh%a; = ShTL, f; — Sh2 f;. (5)

Fama and French (2018) suggest that since II; includes the factors of all model
1’s competitors, the union of II; and f;, which they call II, does not depend on
i. This means that equation (5) can be simplified to:

Sh2a; = Sh2IL; f; — Sh2 f; (6)
Fama and French (2018) assume that R is the target set of non-factor LHS excess
returns, and that the best model is the one which produces the highest Sh?f.
They suggest that there is bias when comparing non-nested models, and conduct
a bootstrap simulation of in - and out - of - sample results to compensate. What
Fama and French (2018) do not mention is a potential problem with endogeneity
of the RHS variables that is integral to their suggested metric.
Fama and French (2020) advance and refine their argument by comparing
the cross-section regression approach of Fama and MacBeth (1973) to construct



cross-section factors corresponding to the time-series factors of Fama and French
(2015). They suggest that time-series models that use only cross-section factors
provide better descriptions of average returns than time-series models that use
time-series factors.

Fama and French (2020) suggest that Fama and Macbeth (1973) cross-
section regressions are a type of factor model, and write the cross-section re-
gression of stock returns for month ¢, R;;, ¢ = 1,....,n, on observed values
of size (MCy;—1),the book-to-market ratio (BM;;_1), operating profitability
(OP;;—1),and the rate of growth of assets INV;;_1).

Ryt = Ry +RyotMCit 1+ Rpye BMig 1+ RopiOPi 1+ Rinvi I NVig_1 +eg.

(7)
They suggest that the slope estimates in Equation (1) are portfolio returns that,
as indicated by the notation, can be interpreted as being factors.

Fama (1976, ch. 9) shows that the slope for each variable in an Fama Mac-
beth (1973) cross-section regression is the return on a portfolio of the left-hand-
side (LHS) assets with weights for the assets that set the month t —1 portfolio
value of that variable to one and zero out other explanatory variables. The
intercept in an Fama Macbeth (1973) cross-section regression (R.; in (1)) is the
month ¢ return on a standard portfolio of the LHS assets with weights that sum
to one and zero out each explanatory variable.

They further suggest that when the cross-section regression in Equation(1)
is stacked across ¢, it becomes an asset pricing model that can be used in time-
series applications. In this perspective, it is natural to move R.; to the left side
of the equation so LHS returns are in excess of R,;. This is shown in equation

(8):

Riy—R,. = RMCy_1+RpymiBMii—1+RopiOPy—1+RinyviINVy_1+ei. (8)

Equation (8) is a four-factor model in which four factors used to explain
asset returns in excess of R,;. They use Equation (8) as a time-series model
(model, not regression) to describe average returns for a wide range of left-hand-
side assets, and they compare the performance of (8) in this task to that of the
model of FF (2015) that uses time-series factors. This approach can be written
as:

Rit_th = ai+bi(Rmt—th)—FSiSMBt-‘rhiHMLt+TiRMWt+CiCMAt+eit.
(9)
Equation (9) represents a five factor model.

Ry, is the risk-free rate (one-month U.S. Treasury bill rate observed at the
beginning of month t), and R,,; is the value-weight (VW) stock market re-
turn for month ¢. The remaining four factors are differences between returns
on diversified portfolios of small and big stocks (SM B;), high and low BM
stocks(H M L), stocks with robust and weak profitability (RMW,), and stocks



of low and high investment firms (CM A;), conservative minus aggressive). The
intercept a; is the pricing error for LHS asset 4 in the time-series regression (9).
The average across ¢ of the residual e;; in model (8) is the pricing error for asset
i.

Fama and French (2020) point out that there are important differences be-
tween Equations (8) and (9). In the time-series regression (9) the factors are
prespecified. In equation (9), a least squares time-series regression optimizes an
asset’s factor loadings on the prespecified factors, subject to the constraint that
the factor loadings are constant and assuming the disturbances in (9) are inde-
pendent and identically distributed (iid) across time. In short, the time-series
regression (9) optimizes loadings on factors that are not themselves optimized.

In this paper I concentrate on the time-series approach to asset pricing tests,
as featured in equation (9). I limit my attention to the SMB and HML factors,
given that there are more extensive data sets featuring these two ’original’ fac-
tors on French’s website. T apply simple tests of endogeneity, contemporaneously
and with lags, by examining the independence of factors in sets of daily data,
taken from Kenneth French’s website, featuring the Fama/French estimates of
the excess return on the market portfolio, and estimates of SMB and HML. 1
also explore whether the factors are statistically related in a linear fashion.

The paper is divided into four section sections, this introduction is followed
by section 2, which introduces the data and statistical and econometric methods
employed, section 3 presents the results and section four concludes.

2. Research Methods

Allen and McAleer (2018), suggest that the method proposed for ’choosing
factors’, by Fama and French (2018), is likely to suffer from an endogeneity
problem and recommend the use of instrumental variables to address this is-
sue. The presence of endogeneity in the regressors causes OLS estimators to be
biased and inconsistent. Endogeneity may be the result of measurement error,
reverse casualty/simultaneity, omitted variable or unobserved variables, omit-
ted selection, and lagged dependent variables. These are the main reasons why
the R.H.S. regressor and the error term may be correlated. Wu (1973) discusses
issues related to the problem of endogeneity, and Hausman (1978) discusses
various specification tests and the use of instruments to address the problem.

Anatolyev and Mikusheva (2022) further explore the problems associated
with estimating risk premia in unconditional linear factor pricing models. They
suggest that, typically, the data used in the empirical literature are characterized
by weakness of some pricing factors, strong cross-sectional dependence in the
errors, and (moderately) high cross-sectional dimensionality. They posit that
the conventional two-pass estimation procedure delivers inconsistent estimates
of the risk premia and propose a new estimation procedure based on sample-
splitting instrumental variables regression.

The previous section mentioned the two-pass estimation procedure, Fama
and MacBeth (1973) in which the first pass regression estimates risk exposures



(betas) for each asset, and then, at the second pass, those estimates are used as
regressors to estimate the risk premia. It was also mentioned that asymptotic
justification of this procedure, frequently relies on assumptions that often do not
hold up in realistic circumstances. The empirical analysis in this paper provides
evidence of the violation of these assumptions in the Fama French data sets, as
made available on French’s website.

Anatolyev and Mikusheva (2022) note that two types of violations of the ide-
alistic setting have been noted in previous literature and, as the first, they men-
tion the problem of weak (but priced) observed factors. Kan and Zhang (1999)
examine circumstances where a factor is useless, defined as being independent
of all the asset returns, and provide theoretical results and simulation evidence
that the second-pass cross-sectional regression tends to find the beta risk of the
useless factor priced more often than it should. Raponi et al. (2020) remarked
that risk exposures (or betas) to some observed factors tend to be small to such
an extent that their estimation errors are of the same order of magnitude as
the betas themselves and report that firm characteristics are found to explain a
much larger proportion of variation in estimated expected returns than betas.

The second issue, according to Anatolyev and Mikusheva (2022), is the prob-
lem related to strong cross-sectional dependence in error terms, which in many
cases can be modeled as a factor structure with an unaccounted or non-included
factor, as suggested by Kleibergen (2009) and Kleibergen and Zhan (2015). Ana-
tolyev and Mikusheva (2022) demonstrate that within a dimension-asymptotic
framework the presence of small betas leads to a failure of the classical two-pass
procedure, while in addition, the presence of missing factors exacerbates the
problem.

Onatski (2015), provides asymptotic approximations to the squared error of
the least squares estimator of the common component in large approximate fac-
tor models with a possibly misspecified number of factors. The approximations
are derived under both strong and weak factors asymptotics assuming that the
cross-sectional and temporal dimensions of the data are comparable. He em-
ploys simulations and obtains results that suggest that the consistency under
the weak factors asymptotics requires either no cross-sectional or no temporal
correlation in the idiosyncratic terms. The assessment of the relationship be-
tween the base factors is the focus of attention in this paper. In the next section
I explore the behaviour of these using factor data taken directly from French’s
website.

3. Endogeneity tests on Fama-French 3 factors

3.1. Some preliminaries

The factor data sets used feature daily three factor Fama/French return se-

ries, for the USA, Developed Markets and Japan, taken from Ken French’s web-

site. (See: https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html).
The Fama/French factors are constructed using the 6 value-weight portfolios

formed on size and book-to-market.
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SMB (Small Minus Big) is the average return on the three small portfolios
minus the average return on the three big portfolios.

SMB = 1/3 (Small Value + Small Neutral + Small Growth) - 1/3 (Big Value
+ Big Neutral + Big Growth).

HML (High Minus Low) is the average return on the two value portfolios
minus the average return on the two growth portfolios.

HML = 1/2 (Small Value + Big Value) - 1/2 (Small Growth + Big Growth).

Rm-Rf, the excess return on the market, value-weight return of all CRSP
firms incorporated in the USA and listed on the NYSE, AMEX, or NASDAQ
that have a CRSP share code of 10 or 11 at the beginning of month t, good
shares and price data at the beginning of t, and good return data for t minus
the one-month Treasury bill rate (from Ibbotson Associates).

The daily US data sets run from 1926-07-01 to 2022-04-29 and feature a
total of 25,230 observations. Descriptive statistics for the daily US factor series
are shown in Table 1, whilst plots of the US daily series are provided in Figure
1. The US daily excess return for the market has a mean of 0.03, a standard
deviation of 1.08, is negatively skewed and displays excess kurtosis 0f 16.79. The
market factor SMB has a mean of of 0.004, has a standard deviation of 0.62,
is positively skewed, and has excess kurtosis of 15.8. The factor HML has a
mean of 0.015, a standard deviation of 0.62, is positively skewed and has excess
kurtosis of 15.8. Finally the US riskfree rate has a mean of 0.01, a standard
deviation of 0.01, is positively skewed and has excess kurtosis of 1.41.

The Japanese daily 3 factor sample runs from 02/07/1990 up to 29/04/2022
comprising 8305 observations and descriptive statistics of the Japanese daily
series are provided in Table 2. The excess Japanese daily market return is only
0.006, but it must be borne in mind that the Japanese 'great recession’ started
in 1990, triggered by a collapse in stock and land prices. Its standard deviation
was 1.35, with positive skewness and excess kurtosis of 5.37.

The Japanese SMB factor had a mean of -0.004, a standard deviation of
0.66, negative skewness and excess kurtosis of 7.95. The Japanese HML factor
had a mean of 0.013, a standard deviation of 0.58, positive skewness, and excess
kurtosis of 5.21. The Japanese daily RF had a mean of 0.009, a standard
deviation of 0.008, positive skewness, and negative excess kurtosis. Plots of the
Japanese daily series are provided in Figure 2. It is apparent in Figure 2 that
there were relatively infrequent changes in daily interest rates in Japan within
this period and they remained at ’low’ levels.

A further daily series for developed markets, ex the USA, was taken from
French’s website. This data set includes the following countries: Austria, Bel-
gium, Canada, Switzerland, Germany, Denmark, Spain, Finland, France, Great
Britain, Greece, Hong Kong, Ireland, Italy, Japan, Netherlands, Norway , New
Zealand, Portugal , Sweden, and Singapore. This series features 8261 obser-
vations drawn from 02/07/1990 to 28/02/2022. Descriptive statistics for this
series are shown in Table 3.

The website provides a description of how the factors are constructed. It
states that all returns are in U.S. dollars, include dividends and capital gains,
and are not continuously compounded. The market is the return on a region’s
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Table 1: Descriptive statistics Basic US Daily Factor Series 1926-07-
01--2022-04-29

Summary Statistics, using the observations 1926-07-01-2022-04-29
for the variable MktRF (25230 valid observations)

Mean Median Minimum Maximum

0.030188  0.060000 —17.440 15.760

Std. Dev. C.V. Skewness  Ex. kurtosis
1.0780 35.711 —0.16535 16.792

5% perc.  95% perc. 1Q Range Missing obs.
—1.5800 1.4900 0.90000 0

Summary Statistics, using the observations 1926-07-01-2022-04-29
for the variable SMB (25230 valid observations)

Mean Median Minimum Maximum
0.0044744 0.010000 —11.670 8.1800

Std. Dev. C.V. Skewness  Ex. kurtosis
0.59132 132.15 —0.70261 21.394

5% perc. 95% perc.  IQ Range Missing obs.
—0.83000 0.81000 0.52000 0

Summary Statistics, using the observations 1926-07-01-2022-04-29
for the variable HML (25230 valid observations)

Mean Median Minimum Maximum

0.015196  0.010000 —6.0200 9.0400

Std. Dev. C.V. Skewness  Ex. kurtosis
0.61989  40.792 0.71858  15.809

5% perc.  95% perc. IQ Range Missing obs.
—0.83000 0.88000 0.51000 0

Summary Statistics, using the observations 1926-07-01-2022-04-29
for the variable RF (25230 valid observations)

Mean Median Minimum Maximum

0.012113  0.010000  —0.0030000 0.061000

Std. Dev. C.V. Skewness Ex. kurtosis
0.011923  0.98428 1.1674 1.4173

5% perc.  95% perc. I1Q Range  Missing obs.
0.00000 0.034000 0.019000 0
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Figure 1: Time Series Plots US Daily Series
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Table 2: Descriptive statistics Basic Japanese Daily Factor Series
1990-07-02--2022-04-29

Summary Statistics, using the observations 1990-07-02—-2022-04-29
for the variable MktRF (8305 valid observations)
Mean Median Minimum Maximum

0.0060205 0.010000  —10.850 13.020

Std. Dev. C.V. Skewness  Ex. kurtosis
1.3544 224.96 0.11221 5.3683

5% perc. 95% perc.  1Q Range Missing obs.
—2.1270 2.0970 1.4350 0

Summary Statistics, using the observations 1990-07-02—2022-04-29
for the variable SMB (8305 valid observations)

Mean Median Minimum Maximum

—0.0040638 0.00000  —9.1800 4.6000

Std. Dev. C.V. Skewness Ex. kurtosis
0.66291 163.12 —0.63929  7.9480

5% perc.  95% perc. IQ Range Missing obs.
—1.0600 0.98000 0.70000 0

Summary Statistics, using the observations 1990-07-02—2022-04-29
for the variable HML (8305 valid observations)

Mean Median Minimum Maximum

0.013002  0.00000 —4.8800 4.5700

Std. Dev. C.V. Skewness  Ex. kurtosis
0.57601 44.303 0.21467  5.2102

5% perc.  95% perc. IQ Range Missing obs.
—0.89000 0.96000 0.52000 0

Summary Statistics, using the observations 1990-07-02—2022-04-29
for the variable RF (8305 valid observations)

Mean Median Minimum Maximum
0.0092414 0.010000 0.00000 0.030000
Std. Dev. C.V. Skewness Ex. kurtosis
0.0087874 0.95087 0.31075 —1.2618

5% perc.  95% perc. 1Q Range Missing obs.
0.00000 0.020000 0.020000 0
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Figure 2: Time Series Plots Japanese Daily Series
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Table 3: Descriptive statistics Developed Markets Daily Factor Series
1990-07-02--2022-04-29

Summary Statistics, using the observations 1990-07-02—-2022-02-28
for the variable MktRF (8261 valid observations)

Mean Median Minimum Maximum
0.024009 0.050000 —9.6200 9.2000

Std. Dev. C.V. Skewness  Ex. kurtosis
0.90747  37.797 —0.43616  10.596

5% perc.  95% perc. IQ Range Missing obs.
—1.4000 1.2900 0.84000 0

Summary Statistics, using the observations 1990-07-02—-2022-02-28
for the variable SMB (8261 valid observations)

Mean Median Minimum Maximum

—0.0031001 0.010000  —5.3800 2.3700

Std. Dev. C.V. Skewness Ex. kurtosis
0.42678 137.67 —0.87842 R.6114

5% perc. 95% perc. IQ Range Missing obs.
—0.66000 0.62000 0.45000 0

Summary Statistics, using the observations 1990-07-02—2022-02-28
for the variable HML (8261 valid observations)

Mean Median Minimum Maximum

0.010836  0.00000 —3.1000 4.1600

Std. Dev. C.V. Skewness  Ex. kurtosis
0.41856 38.625 0.44092 8.0936

5% perc.  95% perc. IQ Range Missing obs.
—0.60000 0.63000 0.36000 0

Summary Statistics, using the observations 1990-07-02—-2022-02-28
for the variable RF (8261 valid observations)

Mean Median Minimum Maximum
0.0092906 0.010000 0.00000 0.030000
Std. Dev. C.V. Skewness Ex. kurtosis
0.0087848 0.94555 0.30208 —1.2639

5% perc.  95% perc. IQ Range Missing obs.
0.00000 0.020000 0.020000 0
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Figure 3: Time Series Plots Developed Markets Daily Series
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value-weight market portfolio minus the U.S. one month T-bill rate. The
SMB and HML factors, are constructed by sorting stocks in a region into two
market cap and three book-to-market equity (B/M) groups at the end of each
June. Big stocks are those in the top 90% of June market cap for the region, and
small stocks are those in the bottom 10%. The B/M breakpoints for a region
are the 30th and 70th percentiles of B/M for the big stocks of the region.

The mean return on the daily excess return in the developed markets, (Mk-
tRF) is 0.024, its standard deviation is 0.91, the skewness is -0.44 and the excess
kurtosis is 10.60. The factor SMB has a mean value of -0.003, its standard de-
viation is 0.43, the skewness is -0.88, and the excess kurtosis is 8.61. Plots of
the daily series for developed markets are shown in Figure 3.

3.2. Regression Analysis

I set up simple tests of the independence of the base factors using biviariate
regressions to explore the relationships between them, and applied rolling re-
gressions using a 250 day window, or roughly one year’s worth of daily data, to
explore the time varying relationships between them. For each of the three data
sets, the USA, Japan and developed markets, SM B and HM L were regressed
on the excess market return Ry — Rp (MktRF), plus SM B and HM L were
regressed on one another. A key assumption in asset pricing tests is that these
market factors are independent. The results shown in Figures 4 to 6 reveal that,
more often than not, this is not the case.

3.2.1. US Results

The first panel ot Figure 4 plots the results of regressing SM B and HM L on
the market factor Ry; — R, in the US market using a 250 day window from July
1926 all the way up to the end of April 2022. The estimated slope coefficient
is plotted in green, two standard deviations above and below the estimate, are
plotted as ’lo’ in brown and ’hi’ in blue, representing the confidence limits of
two standard errors.

The key factor in the interpretation of the graphs is whether the error bands
overlap 0 in the middle of the diagrams. If They are above or below it, with no
overlaps, then the slope coefficient is significantly positive or negative, as the
case may be.

The results of these regressions, for SM B and R); — Rp, shown in the first
panel of Figure 4, reveal a significant negative relationship between SM B and
Ry — Rp, from 1926 up to about 1928, when the relationship becomes briefly
insignificant in the case of the US daily series, before returning to a significant
negative relationship from 1929 to about 1935. After a period of indeterminacy,
the relationship then switches to being significantly positive, for a period from
around 1935 to 1948. From around 1950 to 1965 the relationship is significantly
negative again, apart from a brief period of indeterminacy in the early 1960s.
The relationship continues to oscillate, and is significantly negative for most of
the 70’s, 80’s and 90’s, before switching sign in the early 2000’s and remaining
significantly positive for the the bulk of the remaining time period. This does
not support the assumption that this pair of factors is independent.
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Figure 4: Rolling Regressions US US Daily Factor Series 1926-07-01-
-2022-04-29 (250 day window)
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Table 4: OLS Regression Analysis USA SMB regressed on MktRF

OLS, using observations 1926-07-01-2022-04-29 (7" = 25230)
Dependent variable: SMB

Coefficient Std. Error t-ratio  p-value
const 0.00710378  0.00367700 1.932  0.0534
MktRF —0.0870982  0.00340954 —25.55  0.0000
Mean dependent var 0.004474 S.D. dependent var  0.591316
Sum squared resid 8598.997 S.E. of regression 0.583825
R? 0.025215  Adjusted R? 0.025176
F(1,25228) 652.5702 P-value(F) 4.0e-142 RESET
Log-likelihood —22221.18 Akaike criterion 44446.37
Schwarz criterion 44462.64 Hannan—Quinn 44451.63
p —0.013377  Durbin-Watson 2.026724
test for specification —
Null hypothesis: specification is adequate
Test statistic: F(2,25226) = 107.129
with p-value = P(F(2,25226) > 107.129) = 4.6874e-47
OLS, using observations 1926-07-01-2022-04-29 (T = 25230)
Dependent variable: SMB
Coefficient Std. Error t-ratio  p-value
const 0.0164715  0.00376539 4.374 0.0000
MktRF —0.0880447  0.00340251  —25.88  0.0000
sq_ MktRF —0.00802988 0.000728390 —11.02  0.0000
Mean dependent var 0.004474 S.D. dependent var 0.591316
Sum squared resid 8557.770  S.E. of regression 0.582435
R? 0.029888  Adjusted R? 0.029811
F(2,25227) 388.6099 P-value(F) 6.0e-167
Log-likelihood —22160.56  Akaike criterion 44327.11
Schwarz criterion 44351.52 Hannan—Quinn 44335.01
p —0.021036  Durbin—Watson 2.042031
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Table 5: OLS Regression Analysis USA HML regressed on MktRF

OLS, using observations 1926-07-01-2022-04-29 (7" = 25230)
Dependent variable: HML

Coefficient

const 0.0122841
MktRF  0.0964636
Mean dependent var
Sum squared resid
RQ

F(1,25228)
Log-likelihood
Schwarz criterion

p

test for specification —

Std. Error

0.00384887

0.00356890
0.015196
9421.639
0.028143
730.5624

—23373.73
46767.74
0.086478

t-ratio p-value

3.192 0.0014
27.03  0.0000
S.D. dependent var
S.E. of regression
Adjusted R?
P-value(F)

Akaike criterion
Hannan—Quinn
Durbin-Watson

Null hypothesis: specification is adequate
Test statistic: F'(2,25226) = 88.8704
with p-value — P(F(2,25226) > 88.8704) — 3.46258¢-39

0.619886
0.611113
0.028105
1.2e-158
46751.47
46756.73
1.826962

RESET

OLS, using observations 1926-07-01-2022-04-29 (T = 25230)
Dependent variable: HML

const
MktRF

sq_MktRF 0.00768570 0.000762737
0.015196
9383.871
0.032039
417.5045
—23323.06
46676.53
0.084612

Mean dependent var
Sum squared resid

R2
F(2,25227)
Log-likelihood

Schwarz criterion

p

Coefficient

0.00331795
0.0973695

Std. Error t-ratio
0.00394294 0.8415
0.00356295 27.33

10.08

S.E. of regression
Adjusted R?
P-value(F)
Akaike criterion
Hannan—Quinn
Durbin-Watson

S.D. dependent var

p-value

0.4001

0.0000

0.0000
0.619886
0.609899
0.031963
4.1e-179
46652.12
46660.02
1.830706
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Table 6: OLS Regression Analysis USA HML regressed on SMB

OLS, using observations 1926-07-01-2022-04-29 (7" = 25230)

Coefficient
const 0.0155291

Dependent variable: HML

Std. Error  t-ratio  p-value
0.00389294 3.989 0.0001

SMB  —0.0743954 0.00658347 —11.30  0.0000

Mean dependent var
Sum squared resid
RQ

F(1,25228)
Log-likelihood
Schwarz criterion

p

test for specification —

0.015196 S.D. dependent var
9645.651 S.E. of regression
0.005036  Adjusted R?
127.6975 P-value(F)

—23670.16 Akaike criterion

47360.59 Hannan—Quinn
0.087324 Durbin-Watson

Null hypothesis: specification is adequate
Test statistic: F(2,25226) = 82.9036
with p-value = P(F(2,25226) > 82.9036) = 1.29788¢-36

0.619886
0.618336
0.004997
1.54e29 RESET
47344.32
47349.59
1.825308

OLS, using observations 1926-07-01-2022-04-29 (T = 25230)

Dependent variable: HML

Coefficient
const 0.00691708
SMB —0.0644351

sq_SMB 0.0245021

Mean dependent var 0.015196

Std. Error  ¢-ratio

0.00396923 1.743
0.00663656  —9.709
0.00232153  10.55

Sum squared resid 9603.247 S.E. of regression
R? 0.009410 Adjusted R?
F(2,25227) 119.8249  P-value(F)

Log-likelihood

Schwarz criterion

p

—23614.58 Akaike criterion
47259.57 Hannan—Quinn
0.086148 Durbin—Watson

p-value

0.0814
0.0000
0.0000

S.D. dependent var  0.619886

0.616987
0.009332
1.61e-52
47235.16
47243.06
1.827663
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The middle panel of Figure 4 depicts the relations between HM L and RM —
RF, in the case of the US daily series, and shows a similar varying pattern.
From 1926 to about 1955, the relationship is significantly positive apart from
a brief period of indeterminacy, and a brief period of a negative relationship in
1929-30. From around 2005 onwards, the relationship between the two series
oscillates between significant positive and significant relationships, changing sign
five times.

The last panel of Figure 4 shows the relationship between SM B and HM L
in the US daily series. This relationship is very variable and it oscillates be-
tween being significantly positive and significantly negative over most of the
period, before becoming significantly negative or indeterminate from the 1990’s
onwards.

These results suggest the the US daily factors are not typically independent
and furthermore, that they are likely to suffer from an endogeneity problem if
they are used as explanatory variables in time series regressions.

I next explored the relations between the US factors across the entire time-
period period using OLS regression. I examined whether the factors followed
a linear relationship. The factors were regressed pairwise on each other, then
RESET tests, Ramsey (1969), were applied to the regression equations to test
whether a non-linear specification was merited.

The results of these regressions are presented in Tables 4, 5 and 6, and all
support the existence of a significant non-linear relationship between the three
factors in the sample period. The problems that can follow are examined by
Andrews and Mikusheva (2016), who explore the issues related to the problems
encountered by conventional tests for composite hypotheses based on linearity
in minimum distance models and demonstrate that they can be unreliable when
the relationship between the structural and reduced-form parameters is highly
nonlinear.

3.2.2. Japanese Results

The rolling regression results using a 250 day window for the three Japanese
daily factor series are presented in Figures 5. The results for SMB regressed
on MktRF are particularly striking in Figure 5, where it can be seen that for
the bulk of the entire period, there is a significant negative relationship between
these two factors.

The results for HMP regressed on MktRF are also notable, but in this case,
the relationship is significantly negative for most of the period from 1990 until
around 2008, then it switches sign and becomes significantly positive for several
small intervals, before switching back to being significantly negative for several
years from around 2017.

The final diagram in Figure 5 shows the relationship between HML and
SMB in Japan. This relationship is significantly positive for several periods up
to 2003, from which time it switches sign and becomes significantly negative for
the bulk of the remaining period.

Tables 7, 8 and 9 shows the results of regressions across the whole of the
Japanese sample period which parallel those just reported for the US market
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Figure 5: Rolling Regressions Japan 250 Day Window
SMB on MktRF
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Table 7: Regression of SMB on MktRF Japanese daily sample.
OLS, using observations 1990-07-02-2022-04-29 (T = 8305)
Dependent variable: SMB
Coefficient Std. Error t-ratio p-value
const —0.00292297 0.00670732  —0.4358 0.6630
MktRF  —0.189495 0.00495251 —38.26 0.0000
Mean dependent var  —0.004064 S.D. dependent var  0.662905
Sum squared resid 3102.157 S.E. of regression 0.611244
R? 0.149893  Adjusted R? 0.149791
F(1,8303) 1464.008 P-value(F) 3.7e-295 RESET
Log-likelihood —7695.069 Akaike criterion 15394.14
Schwarz criterion 15408.19 Hannan—Quinn 15398.94
p 0.153232 Durbin—Watson 1.693437

test for specification —

Null hypothesis: specification is adequate
Test statistic: F(2,8301) = 62.2617
with p-value = P(F(2,8301) > 62.2617) = 1.44842e-27

OLS, using observations 1990-07-02-2022-04-29 (T = 8305)

Dependent variable: SMB

Coefficient ~ Std. Error  t-ratio
const 0.0225161  0.00710295 3.170
MktRF —0.187219  0.00492602 —38.01
sq_MktRF —0.0138768 0.00133978 —10.36
Mean dependent var  —0.004064 S.D. dependent var

Sum squared resid

R2
F(2,8302)
Log-likelihood

Schwarz criterion

p

3062.583
0.160738
795.0131
—7641.754
15310.58
0.151223

S.E. of regression
Adjusted R?
P-value(F)
Akaike criterion
Hannan—Quinn
Durbin-Watson

p-value

0.0015

0.0000

0.0000
0.662905
0.607369
0.160536
0.000000
15289.51
15296.71
1.697460
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Table 8: Regression of SMB on MktRF Japanese daily sample.

OLS, using observations 1990-07-02—-2022-04-29 (T = 8305)

Dependent variable: HML

Coefficient  Std. Error  t-ratio  p-value
const 0.0133648 0.00625727 2.136 0.0327
MktRF  —0.0602943 0.00462021 —13.05  0.0000
Mean dependent var 0.013002 S.D. dependent var
Sum squared resid 2699.822 S.E. of regression
R? 0.020099  Adjusted R?
F(1,8303) 170.3061 P-value(F)
Log-likelihood —7118.238 Akaike criterion
Schwarz criterion 14254.52 Hannan—Quinn
p 0.130228 Durbin-Watson

test for specification —

Null hypothesis: specification is adequate
Test statistic: F'(2,8301) = 7.07425
with p-value = P(F(2,8301) > 7.07425) = 0.000851738

0.576014
0.570230
0.019981
1.52e-38
14240.48
14245.27
1.739543

RESET

OLS, using observations 1990-07-02-2022-04-29 (T = 8305)

Dependent variable: HML

Coefficient Std. Error t-ratio p-value
const 0.00586076  0.00666478 0.8794 0.3792
MktRF —0.0609657  0.00462214 —13.19 0.0000
sq_MktRF 0.00409339 0.00125713 3.256  0.0011
Mean dependent var 0.013002 S.D. dependent var 0.576014
Sum squared resid 2696.379 S.E. of regression 0.569901
R? 0.021349  Adjusted R? 0.021113
F(2,8302) 90.55275 P-value(F) 1.25e-39
Log-likelihood —7112.938 Akaike criterion 14231.88
Schwarz criterion 14252.95 Hannan—Quinn 14239.08
p 0.130306 Durbin—Watson 1.739387
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Table 9: Regression of HML on SMB Japanese daily sample.

OLS, using observations 1990-07-02-2022-04-29 (T = 8305)
Dependent variable: HML

Coefficient  Std. Error t-ratio  p-value
const 0.0124149 0.00623323 1.992 0.0464
SMB  —0.144431  0.00940329 —15.36  0.0000
Mean dependent var 0.013002 S.D. dependent var  0.576014

Sum squared resid 2679.078 S.E. of regression 0.568035
R? 0.027628  Adjusted R? 0.027511
F(1,8303) 235.9164 P-value(F) 1.61e-52 RESET
Log-likelihood —7086.208 Akaike criterion 14176.42
Schwarz criterion 14190.46 Hannan—Quinn 14181.22
p 0.136472  Durbin—-Watson 1.727056

test for specification —
Null hypothesis: specification is adequate
Test statistic: F(2,8301) = 1.41518
with p-value = P(F(2,8301) > 1.41518) = 0.24294

factors, and test whether the relationship between factors is linear. The
results in Table 7 show that the relationship between SMB and MktRF is non-
linear. Similarly, Table 8 reports the relationship between HML and MktRF
is also non-linear. However, Table 9 demonstrates that there is no evidence of
non-linearity in the relationship between HML and SMB in the Japanese daily
series.

3.2.8. Regression Analysis Developed Markets

Figure 6 displays the results of the rolling regressions analysis in developed
markets between the daily factor return series using a 250 day window. The
first diagram in Figure 6 shows that for almost the entire period, there is a
significant negative relationship between SMB and MktRF in these developed
markets. The relationship between HML and MktRF is more variable. It is
predominantly negative until around 2003, then its has several small periods
featuring a positive relationship, it becomes significantly negative again around
2017, and then switches back to being significantly positive around 2020. The
relationship between HML and SMB in developed markets is less consistent. It
starts the sample period significantly positive, becomes insigificant around 1993,
switches back to being signicantly positive around 1997, remains so apart from
a brief switch up to 2006, and then becomes significantly negative all the way
up to 2016, and then becomes insignificant.

Tables 10, 11 and 12 report regression results that examine the linearity
of the relationship between the three factors in the daily sample for developed
markets. The results for SMB and HML, when regressed on MktRF, support
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the hypothesis of a non-linear relationship. However, there is no evidence of a
non-linear relationship between HML and SMB.

Figure 6: Rolling Regressions Developed Markets 250 day window
SMB regressed on MktRF

T
lo ——
hi ——
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Tro
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Table 10: Regression of SMB on MktRF Developed Markets daily

sample.
OLS, using observations 1990-07-02-2022-02-28 (T = 8261)
Dependent variable: SMB
Coefficient Std. Error t-ratio p-value
const 0.00252491 0.00407316 0.6199 0.5353
MktRF  —0.234286 0.00448720 —52.21 0.0000
Mean dependent var  —0.003100 S.D. dependent var 0.426784
Sum squared resid 1131.149 S.E. of regression 0.370081
R? 0.248164 Adjusted R? 0.248073
F(1,8259) 2726.106 P-value(F) 0.000000 RESET
Log-likelihood —3509.130  Akaike criterion 7022.260
Schwarz criterion 7036.299 Hannan—Quinn 7027.058
p 0.102398 Durbin—Watson 1.794546
test for specification —
Null hypothesis: specification is adequate
Test statistic: F'(2,8257) = 82.2727
with p-value = P(F'(2,8257) > 82.2727) = 4.17624e-36
OLS, using observations 1990-07-02-2022-02-28 (7' = 8261)
Dependent variable: SMB
Coefficient  Std. Error t-ratio  p-value
const 0.0159800 0.00420357 3.802 0.0001
MktRF —0.239908  0.00447757 —53.58  0.0000
sq_ MktRF —0.0161657 0.00139271 —11.61  0.0000
Mean dependent var  —0.003100 S.D. dependent var  0.426784
Sum squared resid 1112.991 S.E. of regression 0.367120
R? 0.260233  Adjusted R? 0.260054
F(2,8258) 1452.489  P-value(F) 0.000000
Log-likelihood —3442.284  Akaike criterion 6890.568
Schwarz criterion 6911.626 Hannan—Quinn 6897.765
p 0.084062 Durbin—Watson 1.831197
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Table 11: Regression of HML on MktRF Developed Markets daily

OLS, using observations 1990-07-02-2022-02-28 (7' = 8261)

sample.
Coefficient
const 0.0116734
MktRF —0.0348597

Mean dependent var
Sum squared resid
R2

F(1,8259)
Log-likelihood
Schwarz criterion

p

test for specification —

Dependent variable: HML

Std. Error  t¢-ratio  p-value
0.00459382 2.541 0.0111
0.00506077 —6.888 0.0000
0.010836 S.D. dependent var

1438.811
0.005712
47.44751
—4502.858
9023.754
0.216750

S.E. of regression
Adjusted R?
P-value(F)
Akaike criterion
Hannan—Quinn
Durbin—Watson

Null hypothesis: specification is adequate
Test statistic: F'(2,8257) = 32.7717
with p-value = P(F'(2,8257) > 32.7717) = 6.66196e-15

0.418558
0.417386
0.005592
6.06e-12
9009.716
9014.513
1.566026

RESET

OLS, using observations 1990-07-02-2022-02-28 (7' = 8261)

const
MktRF
sq_MktRF

Mean dependent var
Sum squared resid

R2

F(2,8258)
Log-likelihood
Schwarz criterion

p

Dependent variable: HML

Coefficient

0.0158364
—0.0365991

—0.00500166 0.00158254
0.010836
1437.073
0.006913
28.74402

—4497.865
9022.787
0.215910

Std. Error  t-ratio
0.00477653 3.315
0.00508787 —7.193

-3.161

S.E. of regression
Adjusted R?
P-value(F)
Akaike criterion
Hannan—Quinn
Durbin-Watson

S.D. dependent var

p-value

0.0009

0.0000

0.0016
0.418558
0.417159
0.006673
3.63e-13
9001.729
9008.925
1.567701
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Table 12: Regression of HML on SMB Developed Markets daily sam-
ple.

OLS, using observations 1990-07-02-2022-02-28 (7' = 8261)
Dependent variable: HML

Coefficient Std. Error  t-ratio  p-value
const 0.0108193  0.00460543 2.349  0.0188

SMB  —0.00552954 0.0107914  —0.5124 0.6084
Mean dependent var 0.010836 S.D. dependent var  0.418558

Sum squared resid 1447.031 S.E. of regression 0.418577
R? 0.000032  Adjusted R? -0.000089
F(1,8259) 0.262557 P-value(F) 0.608382
Log-likelihood —4526.388  Akaike criterion 9056.776
Schwarz criterion 9070.815 Hannan—Quinn 9061.574
p 0.218349 Durbin—Watson 1.562827

RESET test for specification —

Null hypothesis: specification is adequate
Test statistic: F(2,8257) = 1.13528
with p-value = P(F'(2,8257) > 1.13528) = 0.321383
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3.8. Time Series Tests

Engle, et al (1983) drew attention to the issues related to the fact that precise
definitions of "exogeneity" are elusive and their direct implications for concept
for inference, given that a certain variable is "exogenous" or not, on any given
definition. They proposed definitions for weak and strong exogeneity in terms
of the distributions of observable variables. They suggested that essentially, a
variable z; , in a model is defined to be weakly exogenous for estimating a set of
parameters A , if inference on \ conditional on z; , involves no loss of information.
Heuristically, given that the joint density of random variables (y;, 2;) always can
be written as the product of y; conditional on z;, times the marginal of z;, the
weak exogeneity of z;, entails that the precise specification of the latter density
is irrelevant to the analysis, and, in particular that all parameters which appear
in this marginal density are nuisance parameters.

If in addition to being weakly exogenous, z; , is not Granger-caused in the
sense of Granger (1969), by any of the endogenous variables in the system, then
z, is defined to be strongly exogenous.

The results in this subsection, in Tables 13 to 15 report Granger causality
tests of the three factors for the US daily series, when a lagged value of a second
factor is added to the auto-regression on lags of the factor in question; thus
constituting a test of strong exogenity. The results show that all three factors
reject the hypothesis of strict exogeneity, as their Adjusted R squares increase
when one lag of a further factor is included, but the effect is most pronounced
in the SMB case, when a lagged value of the MktRF factor is added to the
estimation.

Tables 16 to 18 show the results of a similar analysis for Japan. All the cases
of the factors taken pairwise show evidence of Granger causality and reject the
null hypothesis of strong exogeneity. Finally, Tables 19 to 21 report the results
of strong exogeneity tests for the developed markets, and in all 3 pairs of cases,
reject the null hypothesis of strong exogeneity.

4. Conclusion

The results in the paper suggest that there is a significant potential issue
of endogeneity between the three base Fama-French factors, when asset pricing
tests are conducted in a time series context, as set out in section 1 of the
paper in equation (9). These daily sample series for the USA, Japan, and
developed markets, show significant relationships between the factors, when
they are explored using rolling regression analysis and a 250 day window. For
the bulk of the time, there is a statistically significant relationship between the
factors. This is further compounded by the fact that the sign of this relationship
frequently switches.

Tests of the linearity of the relationship between SMB, HML, and the excess
return on the market MktRF, uniformly reject the null of a linear relationship.
This is not the case in the relationship between SMB and HML.

Further analyses in a time-series context and tests of Granger causality be-
tween the factors reject the Engle et al. (1983) concept of ’strong exogeneity’.
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The results suggest that caution should be oberved in the application of time
series asset pricing tests to avoid potential pitfalls outlined by Anatolyev and
Mikusheva (2022), Andrews and Mikusheva (2016), Mikusheva and Sun (2022),
and Onatski (2015). Allen and McAleer (2018) point out that the issue of po-
tential endogeneity undermines the approach suggesting for choosing factors by
Fama and French (2018). Perhaps they support the alternative interpetation of
factor models, suggested by Fama and French (2020), as set out in equation (7)
in section 1 of this paper?



Table 13: Granger Causality tests US Daily Data

SMB and MktRF

OLS, using observations 1926-07-02-2022-04-29 (T' = 25229)
Dependent variable: SMB

Coefficient Std. Error  t-ratio  p-value
const 0.00470680 0.00371835 1.266  0.2056
SMB 1 —0.0501871  0.00628828 —7.981 0.0000
Mean dependent var 0.004484 S.D. dependent var 0.591326
Sum squared resid 8799.154 S.E. of regression 0.590592
R? 0.002519  Adjusted R? 0.002479
F(1,25227) 63.69711 P-value(F) 1.51e-15
Log-likelihood —22511.06  Akaike criterion 45026.12
Schwarz criterion 45042.39 Hannan—Quinn 45031.39
p 0.000343 Durbin’s h 1.117031
OLS, using observations 1926-07-02-2022-04-29 (T' = 25229)
Dependent variable: SMB
Coefficient Std. Error t-ratio p-value
const 8.90393e-005  0.00358890 0.02481 0.9802
MktRF 1 0.146063 0.00337094  43.33 0.0000
SMB 1 —0.00794355 0.00614453 —1.293 0.1961
Mean dependent var 0.004484 S.D. dependent var 0.591326
Sum squared resid 8189.627 S.E. of regression 0.569781
R? 0.071615 Adjusted R? 0.071542
F(2,25226) 972.9617 P-value(F) 0.000000
Log-likelihood —21605.50  Akaike criterion 43217.00
Schwarz criterion 43241.41 Hannan—Quinn 43224.90
p —0.009459 Durbin’s h —6.895978
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Table 14: Granger Causality tests US Daily Data

HML and MktRF

OLS, using observations 1926-07-02-2022-04-29 (T' = 25229)

Dependent variable: HML

Coeflicient ~ Std. Error  t¢-ratio p-value

const 0.0139421  0.00389037  3.584 0.0003

HML 1 0.0834228 0.00627417 13.30  0.0000
Mean dependent var 0.015208 S.D. dependent var 0.619896
Sum squared resid 9626.923 S.E. of regression 0.617747
R? 0.006959  Adjusted R? 0.006920
F(1,25227) 176.7901 P-value(F) 3.32e-40
Log-likelihood —23645.21  Akaike criterion 47294.41
Schwarz criterion 47310.68 Hannan—Quinn 47299.68
p —0.001393 Durbin’s h —2.671962

OLS, using observations 1926-07-02-2022-04-29 (T' = 25229)

Dependent variable: HML

Coefficient  Std. Error t-ratio p-value

const 0.0137208  0.00389118  3.526 0.0004

MktRF 1 0.00854229 0.00366008  2.334 0.0196

HML 1 0.0809287  0.00636397 12.72  0.0000
Mean dependent var 0.015208 S.D. dependent var  0.619896
Sum squared resid 9624.844 S.E. of regression 0.617693
R? 0.007174  Adjusted R? 0.007095
F(2,25226) 91.13418 P-value(F) 3.66e—40
Log-likelihood —23642.48 Akaike criterion 47290.96
Schwarz criterion 47315.37 Hannan—Quinn 47298.86
p —0.001632 Durbin’s A NA
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Table 15: Granger Causality tests US Daily Data

HML and SMB

OLS, using observations 1926-07-02-2022-04-29 (T = 25229)

Dependent variable: HML

Coeflicient ~ Std. Error  t¢-ratio p-value

const 0.0139421  0.00389037  3.584 0.0003

HML 1 0.0834228 0.00627417 13.30  0.0000
Mean dependent var 0.015208 S.D. dependent var 0.619896
Sum squared resid 9626.923 S.E. of regression 0.617747
R? 0.006959  Adjusted R? 0.006920
F(1,25227) 176.7901 P-value(F) 3.32e—40
Log-likelihood —23645.21  Akaike criterion 47294.41
Schwarz criterion 47310.68 Hannan—Quinn 47299.68
p —0.001393 Durbin’s h —2.671962

OLS, using observations 1926-07-02-2022-04-29 (T' = 25229)

Dependent variable: HML

Coefficient Std. Error  t-ratio
const 0.0139930  0.00389046 3.597
SMB 1 —0.00930734 0.00659393 —1.412
HML 1 0.0827923  0.00628992  13.16
Mean dependent var 0.015208 S.D. dependent var

Sum squared resid
R2

F(2,25226)
Log-likelihood
Schwarz criterion

p

9626.162
0.007038
89.39467
—23644.21
47318.83
—0.001395

S.E. of regression
Adjusted R?
P-value(F)
Akaike criterion
Hannan—Quinn
Durbin’s i

p-value

0.0003

0.1581

0.0000
0.619896
0.617735
0.006959
2.06e-39
47294.42
47302.32
—5.133830
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Table 16: Granger Causali
SMB and MktRF

ty tests Japanese Daily Data

OLS, using observations 1990-07-03-2022-04-29 (7' = 8304)

Dependent variable: SMB

Coefficient Std. Error  t-ratio  p-value

const —0.00389581 0.00726533 —0.5362 0.5918

SMB 1 0.0527169  0.0109596 4.810  0.0000
Mean dependent var —0.004110 S.D. dependent var 0.662932
Sum squared resid 3638.850 S.E. of regression 0.662050
R? 0.002779  Adjusted R? 0.002659
F(1,8302) 23.13709 P-value(F) 1.54e-06
Log-likelihood —8357.176  Akaike criterion 16718.35
Schwarz criterion 16732.40 Hannan—Quinn 16723.15
p 0.001714 Durbin’s h 3.074560

OLS, using observations 1990-07-03-2022-04-29 (7' = 8304)

Dependent variable: SMB

Coeflicient Std. Error  t-ratio
const —0.00431043 0.00695825 —0.6195
MktRF 1 0.152595 0.00557209  27.39
SMB 1 0.173422 0.0113842 15.23
Mean dependent var —0.004110 S.D. dependent var

Sum squared resid
RQ

F(2,8301)
Log-likelihood
Schwarz criterion

p

3337.333
0.085409
387.5957
—7998.046
16023.17
—0.025249

S.E. of regression
Adjusted R?
P-value(F)
Akaike criterion
Hannan—Quinn
Durbin’s h

p-value

0.5356

0.0000

0.0000
0.662932
0.634066
0.085189
1.2e-161
16002.09
16009.29
NA

33



Table 17: Granger Causality tests Japanese Daily Data

HML and MktRF

OLS, using observations 1990-07-03-2022-04-29 (T = 8304)

Dependent variable: HML

Coeflicient ~ Std. Error  t¢-ratio p-value

const 0.0111871  0.00626102  1.787 0.0740

HML 1 0.140140 0.0108668  12.90  0.0000
Mean dependent var 0.013009 S.D. dependent var 0.576048
Sum squared resid 2701.086 S.E. of regression 0.570398
R? 0.019639  Adjusted R? 0.019521
F(1,8302) 166.3110  P-value(F) 1.09e-37
Log-likelihood —7119.823  Akaike criterion 14243.65
Schwarz criterion 14257.69 Hannan—Quinn 14248.45
P 0.001886 Durbin’s h 1.233569

OLS, using observations 1990-07-03-2022-04-29 (7' = 8304)
Dependent variable: HML

Coefficient  Std. Error  t-ratio  p-value

const 0.0114026  0.00625395 1.823 0.0683

MktRF 1 —0.0209856 0.00466340 —4.500 0.0000

HML 1 0.133144  0.0109650 12.14  0.0000
Mean dependent var 0.013009 S.D. dependent var 0.576048
Sum squared resid 2694.512 S.E. of regression 0.569738
R? 0.022025 Adjusted R? 0.021789
F(2,8301) 93.47362 P-value(F) 7.17e-41
Log-likelihood —7109.706  Akaike criterion 14225.41
Schwarz criterion 14246.49 Hannan—Quinn 14232.61
0 0.002701 Durbin’s A 6.142548
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Table 18: Granger Causality tests Japanese Daily Data

HML and SMB

OLS, using observations 1990-07-03-2022-04-29 (T = 8304)

Dependent variable: HML

Coeflicient ~ Std. Error  t¢-ratio p-value

const 0.0111871  0.00626102  1.787 0.0740

HML 1 0.140140 0.0108668  12.90  0.0000
Mean dependent var 0.013009 S.D. dependent var 0.576048
Sum squared resid 2701.086 S.E. of regression 0.570398
R? 0.019639  Adjusted R? 0.019521
F(1,8302) 166.3110  P-value(F) 1.09e-37
Log-likelihood —7119.823  Akaike criterion 14243.65
Schwarz criterion 14257.69 Hannan—Quinn 14248.45
P 0.001886 Durbin’s h 1.233569

OLS, using observations 1990-07-03-2022-04-29 (7' = 8304)
Dependent variable: HML

Coefficient  Std. Error  t-ratio  p-value

const 0.0114026  0.00625395 1.823 0.0683

MktRF 1 —0.0209856 0.00466340 —4.500 0.0000

HML 1 0.133144  0.0109650 12.14  0.0000
Mean dependent var 0.013009 S.D. dependent var 0.576048
Sum squared resid 2694.512 S.E. of regression 0.569738
R? 0.022025 Adjusted R? 0.021789
F(2,8301) 93.47362 P-value(F) 7.17e-41
Log-likelihood —7109.706  Akaike criterion 14225.41
Schwarz criterion 14246.49 Hannan—Quinn 14232.61
0 0.002701 Durbin’s A 6.142548
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Table 19: Granger Causality tests Developed Markets Daily Data

SMB and MktRF

OLS, using observations 1990-07-03-2022-04-29 (T' = 8304)

Dependent variable: SMB

Coefficient Std. Error  t-ratio  p-value

const —0.00117414 0.00575189 —0.2041 0.8383

SMB 1 -—0.0261558  0.0109714  —2.384  0.0171
Mean dependent var —0.001144 S.D. dependent var 0.524295
Sum squared resid 2280.808 S.E. of regression 0.524147
R? 0.000684  Adjusted R? 0.000564
F(1,8302) 5.683438 P-value(F) 0.017148
Log-likelihood —6417.620 Akaike criterion 12839.24
Schwarz criterion 12853.29 Hannan—Quinn 12844.04
P —0.002194 Durbin’s A —9.582817

OLS, using observations 1990-07-03-2022-04-29 (7' = 8304)

Dependent variable: SMB

Coeflicient Std. Error  t-ratio
const —0.00302319 0.00564993 —0.5351
MktRF 1 0.129226 0.00738302  17.50
SMB 1 0.120656 0.0136549 8.836
Mean dependent var —0.001144 S.D. dependent var

Sum squared resid
RQ

F(2,8301)
Log-likelihood
Schwarz criterion

p

2199.628
0.036253
156.1260
—6267.145
12561.36
—0.012961

S.E. of regression
Adjusted R?
P-value(F)
Akaike criterion
Hannan—Quinn
Durbin’s h

p-value

0.5926

0.0000

0.0000
0.524295
0.514765
0.036020
2.75e—67
12540.29
12547.49
NA
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Table 20: Granger Causality tests Developed Markets Daily Data

HML and MktRF

OLS, using observations 1990-07-03-2022-04-29 (T' = 8304)

Dependent variable: HML

Coeflicient ~ Std. Error  t¢-ratio p-value

const 0.0114264  0.00390141  2.929 0.0034

HML 1 0.242362 0.0106473  22.76  0.0000
Mean dependent var 0.015075 S.D. dependent var 0.366116
Sum squared resid 1047.560 S.E. of regression 0.355221
R? 0.058745 Adjusted R? 0.058632
F(1,8302) 518.1430 P-value(F) 2.6e-111
Log-likelihood —3187.089  Akaike criterion 6378.177
Schwarz criterion 6392.226 Hannan—Quinn 6382.977
P 0.006376 Durbin’s h 2.400031

OLS, using observations 1990-07-03-2022-04-29 (7' = 8304)

Dependent variable: HML

Coeflicient Std. Error  t-ratio
const 0.0115709  0.00390129 2.966
MktRF 1 —0.00824968 0.00402405 —2.050
HML 1 0.241321 0.0106574 22.64
Mean dependent var 0.015075 S.D. dependent var

Sum squared resid
RQ

F(2,8301)
Log-likelihood
Schwarz criterion

p

1047.030
0.059222
261.2729
—3184.987
6397.047
0.006825

S.E. of regression
Adjusted R?
P-value(F)
Akaike criterion
Hannan—Quinn
Durbin’s h

p-value

0.0030

0.0404

0.0000
0.366116
0.355152
0.058995
9.1e-111
6375.974
6383.173
2.608833
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Table 21: Granger Causality tests Developed Markets Daily

HML and SMB

OLS, using observations 1990-07-03-2022-04-29 (T' = 8304)

Dependent variable: HML

Coeflicient ~ Std. Error  t¢-ratio p-value

const 0.0114264  0.00390141  2.929 0.0034

HML 1 0.242362 0.0106473  22.76  0.0000
Mean dependent var 0.015075 S.D. dependent var 0.366116
Sum squared resid 1047.560 S.E. of regression 0.355221
R? 0.058745 Adjusted R? 0.058632
F(1,8302) 518.1430 P-value(F) 2.6e-111
Log-likelihood —3187.089  Akaike criterion 6378.177
Schwarz criterion 6392.226 Hannan—Quinn 6382.977
P 0.006376 Durbin’s h 2.400031

OLS, using observations 1990-07-03-2022-04-29 (7' = 8304)

Dependent variable: HML

Coefficient ~ Std. Error t-ratio p-value

const 0.0114107  0.00389965  2.926 0.0034

SMB 1 0.0217697  0.00746027  2.918 0.0035

HML 1 0.245070 0.0106829  22.94  0.0000
Mean dependent var 0.015075 S.D. dependent var  0.366116
Sum squared resid 1046.486 S.E. of regression 0.355060
R? 0.059710  Adjusted R? 0.059483
F(2,8301) 263.5637 P-value(F) 1.1e-111
Log-likelihood —3182.832  Akaike criterion 6371.663
Schwarz criterion 6392.737 Hannan—Quinn 6378.863
1) 0.005872 Durbin’s h 2.339282
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