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Abstract   

The neoclassical growth model has emphasised the importance of technology shocks, which supposedly 
affect macroeconomic variables’ heterogeneously in a small open economy like Sierra Leone. Using a 
Bayesian DSGE methodology for a non-linear model, we found that investment-specific technological 
shock partly explains business cycle fluctuations in Sierra Leone. Moreover, the analysis indicates that 
technology shock on output, capital, and consumption is more persistent than that of interest rate. The key 
implication is that technological innovation is crucial for long-term steady-state growth in Sierra Leone. 
The results also partly confirm the neoclassical growth model prediction – that is, in the long run, 
productivity growth is driven only by technological progress. The model specified for this research is 
largely inward-looking, with a minimal role for the Bank of Sierra Leone to influence investment in 
technology-related investment directly. Despite this limitation and more so given the fact that the DSGE 
modelling concept is quite a new venture at the BSL, thoughts have been given to enhance the model’s 
future capabilities to incorporate both the monetary bloc and external blocs to fully assess the impact of 
technological shock’s transmission in the entire economy in future research. 
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Response, Sierra Leone. 
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1.0 Introduction 

The basic DSGE model introduces several (specific) assumptions about the capital accumulation 
process. For instance, it is assumed that savings transform directly into physical capital through 
the investment process at no cost. Additionally, the capital accumulation equation assumes that 
physical capital remains homogenous over time and just new capital assets are added to the 
existing capital stock through investment. However, in practice, technological progress changes 
the characteristics of physical capital as technology is embodied in capital assets. When new 
capital assets are incorporated into the economy through the investment process, these assets have 
different characteristics to those already in existence – an indication that they are not homogenous 
over time as different vintages of capital can exist. For example, a computer produced in 1990 
can be perceived as obsolete in terms of its features when compared to a computer produced in 
2020. Thus, the cost of incorporating an additional computer into the production process may be 
the same over time, but its productivity is much higher - the implication being, that it would be 
equivalent to having more capital units because computer production in the year 2020 
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incorporates modern technological progress. This is the so-called Investment-Specific 

Technological Change (ISTC). Recall that the neoclassical growth model predicts in the long run, 
productivity growth is driven only by technological growth. Traditionally, the concept used in 
economics for technological progress is associated with the increase in Total Factor Productivity, 

which affects all of the factors of production. Because of that, it is called neutral technological or 
total factor productivity. However, there is also specific technological progress associated with 
capital inputs, which depends on the investment process, and occurs when new vintages of capital 
assets are incorporated into the capital stock.  

In this context, it is appropriate to posit that Sierra Leone is still a pre-industrial economy, with a 
need to absorb a lot of modern technologies. Essentially, the adoption of modern technologies has 
occurred in all facets of the economy – notable highlights include agriculture, fishing, services 
sector, construction, banking, etc. Therefore, there is a need to determine the impacts of 
technological shock on the Sierra Leonean economy. This means adopting and also extending the 
analysis of the theoretical foundation of the DSGE model developed by Schmitt-Grohe and Uribe 
(2004). This is to enable us to capture the impact of the technological shock on output, capital 
stock, consumption, and interest rate in Sierra Leone. Our primary motivation therefore for this 
study, has stemmed from the need to assess the effect of the technological shock on key 
macroeconomic variables stated above, using a Bayesian non-linear DSGE model approach. We 
believe that this will inform policymakers on the appropriate response to the ongoing 
technological transformation. This is particularly important in a context wherein the government 
has an ambitious target of transforming Sierra Leone into a middle-income country, where 
technology will need to play a significant role. Therefore, it will be quite instructive and 
informative for the fiscal and monetary policy authorities to understand the impact of these 
technologies and the response of selected macroeconomic variables with a model that accounts 
for international trade and agencies intervention (notably the BSL and Ministry of Finance) to be 
utilised for future studies. 

To achieve this objective, we have employed non-linear Bayesian DSGE due to its ability to 
incorporate initial values that account for the peculiarities of the Sierra Leone economy, and for 
which data alone may seem inadequate. Relative to the Maximum Likelihood DSGE approach, 
the Bayesian DSGE model can provide more efficient estimations of the model parameters, as 
well as consistent estimates of the observed technological shock that drives economic 
development, which is imperative for policymaking (Smet and Wouters, 2007).  

Following Kydland and Prescott’s (1982) study, many researchers have resorted to calibrating 
dynamic stochastic general equilibrium (DSGE) models, with the incorporation of the formal use 
of econometric methods to parameterise model outcomes in a bid to study their quantitative 
implications. To build our case, we have decided to measure the contribution of both neutral and 
investment-specific technology shock to movements in gross national income and consumption 
as a percentage of Gross Domestic Product. We also compared our answers obtained with the 
calibration and likelihood-based estimation of a neoclassical stochastic growth model. The key 
parameter in the analysis is the technological shock and its pass-through effects on gross capital 
formation. To make our empirical analysis as transparent as possible, we have deliberately chosen 
a fairly closed-economy, but quite simple DSGE model, rather than a more sophisticated 
specification. Our model allows us to focus on a single parameter – the application of 
technological shock, which seems quite challenging to measure, while at the same time crucial 
for the quantitative result. The difficulty in determining the technological shock is in part caused 
by the stylised nature of our choice of the theoretical model. 

Our paper differs from others in distinct ways. To the best of our knowledge, no study on the 
Sierra Leone economy has employed the DSGE Bayesian DSGE framework to provide empirical 
results on the impacts of technological shock and the response of output, capital stock, 
consumption, and interest rate. The study will undoubtedly contribute significantly to a niche 



 

 

body of literature, particularly in the area of technological shock and its impact on the macro-
economy of Sierra Leone. The use of a non-linear Bayesian DSGE model is a step forward in 
supporting effective policy formulation and implementation by authorities at the BSL and 
Ministries of Finance and Development. Therefore, the remaining sections of the paper are 
planned as follows: Section 2 presents a generalized literature review (historically profiling 
emerging development from non-structured to complex structured models), while Section 3 
describes the basic structure of the DSGE model. Section 4 explains the methodology and data 
used for the estimation of the DSGE model. Section 5 analyses the empirical results and 
conclusion, with some thoughtful insights for future expansion considered necessary in supporting 
effective policy formulation at the BSL 

 

2.0 Literature Review (including Evolutionary Discourse) 

 
While taking cognisance of the scantiness of literature on DSGE study to address the peculiarities 
of the Sierra Leone economy, we believe that the few studies that have been pursued will certainly 
lend support to the effort in expanding knowledge exploration for future work. Most importantly, 
the relevance of (macro)economic modelling to support effective policy formulation at the Bank 
of Sierra Leone (BSL) is now taking centre stage with the provision of the revised BSL of 2019, 
which so far has incorporated both price and financial stability as the core mandates (BSL, 2019). 
While it is a well-known fact that models, in general, are not full proof of problem solvers, their 
development is considered very vital in approximating reality within an economic system. As 
emphasised by Mordi, Adebiyi, Adenuga, Abeng, Adeboye, Adamgbe, and Evbuomwan (2013), 
models can be construed as a form of art, which sits within a scientific platform in explaining the 
inter-linkages (as presented by existing data outputs) that exists within an economic system. The 
thrust of such a process is to support existing fundamentals of economic theory that explain 
concepts around causation or shock emanating from data manipulation or some form of 
exogenous abnormalities.  
 
Therefore, the importance of this section to the study is to help the authors set out the platform on 
which the empirical output is to be guided, which is built on the application of the existing body 
of literature on DSGE modelling to assess the impact of the technological shock on the Sierra 
Leone economy. On this note, we are very much guided in providing a brief narrative of the 
categorization of models (typically non-structural and structural) and their (historical) evolution 
to the present vogue of DSGE models. Generally speaking, models are usually constructed to 
enable predictions that guide effective policy outcomes - to say the least, the use of non-structural 
or typically referred to as simple linear (difference) equations like ARMA/ARIMA, B(VAR), and 
ARDL makes use of time-series data to support short term predictions of a given phenomenon 
(see works produced by Warburton and Jackson, 2020; Barrie, 2020; Jackson, Tamuke and Jabbie, 
2019; Tamuke, Jackson and Sillah, 2018; Bangura, Caulker and Pessima, 2012). Given the 
inherent downside of serial correlation and the lack of structural determinants that typically exist 
with non-structural models, it is difficult for non-structural to be used to support long-term 
predictions (Mordi et al, 2013). Such limitations inherent in the use of non-structural models have 
however resulted in the development of a more structural form of macroeconomic models as 
explored in the 1970s (Diebold, 1998) - historically, these types of models could be traced back 
to 1936, with the construction of the Dutch model by Tinbergen (Mordi et al, 2013).  
   
Progression into the construction of macro-econometrics models has given way to establishing 
inter-linkages between variables to assess outcomes that are relevant to support policy decision-
making in institutions like central banks across the world. As technically explained, by 
Jayawickrama (2007) the concept is seen as a set of stochastic equations that explained 
relationships in behaviours of economic agents or variables. The construction of macro-



 

 

econometric models varies in complexity depending on their purpose or use - in the case of central 
banks, they are mostly utilized to support effective (monetary) policy formulation, which is also 
generally linked along the line of economic theory and intuition. Although macro-econometric 
models have brought in the advantage of utilising multiple equations, decisions relating to 
(ir)rational choices of variables that are included in an equation can render them not-so-suitable 
as explained by Lucas (1976).  
 
The shortfall inherent in the use of macro-econometric models has made it more explorative for 
pursued efforts to be devoted to developing the Real Business Cycle (RBC) model (Kydland and 
Prescott, 1982). This is seen as the emergence of structural model development given its inherent 
characteristics of economic agents’ ability to make decisions that are built on expectation patterns. 
As resonated on the background of this study, the RBC model is intuitively factored with the 
inclusion of randomised technological shock, which is the backbone on which DSGE theoretically 
emerged. On a more critical note, such types of models are also limited in their flexible use of 
prices. - implying that changes afforded to the interest rate can also be affected by an almost 
proportional level of inflationary pressures, thereby making it almost impossible for the interest 
rate to be changed (Mordi et al, 2013: 7). Contrary to the thinking of the Keynesian thought about 
(economic) recession and its link with the under-utilisation of resources, the RBC model had 
carved its impetus on the assumption that fluctuations in business cycles could be associated with 
optimal responses to shock, while an effort to use policies to stabilise situations can also end up 
being counterproductive.  
 
The stride to construct structural models perceived as suitable for addressing the vagaries of 
macroeconomic problems inherent with economic agents’ behavioural patterns has also given rise 
to the development of the New Keynesian Model (NKM). This is considered to be a cross-road 
between the RBC and which then emerged into becoming the DSGE model. In this situation, we 
assume imperfection and rigidity in the economic system. This, therefore, makes it possible for 
NKM to factor in monopolistic completion that is backed by real and nominal rigidities, and 
together with varied forms of shocks akin to sticky prices, wage, and price indexation (Calvin, 
1983; Christiano, Eichenbaum and Evans, 2005) – this brings the importance of monetary 
stabilisation policies to the fore, and mostly championed through the interest rate channel.  
 
After the emergence of NKM, both the Computable General Equilibrium (CGE) and Dynamic 
Stochastic General Equilibrium (DSGE) models were developed to address limitations inherent 
in earlier models constructed. Despite the relevance/usefulness of the CGE, which mostly 
incorporates multi-sectoral components and features for input-output analysis (Valadkhanai, 
2004), the DSGE model was seen as an advancement in assessing shortfall in New Keynesian 
thinking by incorporating supply-side components in the structure (Mordi et al, 2013). The model 
has made it possible to address structural changes, which can be accounted for by the structural 
linkages of equations amongst agents - typically including households, firms, government, central 
bank, and other entities within an economic system. DSGE model has become very useful in 
central banks for the deliberation of policy outcomes, particularly in predicting economic 
fluctuations (Coletti and Murchison, 2002). The application of DSGE modelling has become very 
widespread, particularly with its inherent complexity of incorporating monetary policy 
transmission channels, with the added feature of linking empirical outcomes from IS/LM models 
as illustrated by Adebiyi and Mordi (2011). The usefulness and application of DSGE models have 
been very well captured by authors like Torres (2015), and thereafter summarised by Jackson 
(2018). 
 
The highlight of DSGE applications, and particularly that which is concerned with the 
implications of technological shock is highly reflected in empirical outputs around the world. A 
notable case of this is cited by Christofzik et al (2021) in their study as applied to the German 
economy, which has experienced a slowdown in economic performance despite the high level of 



 

 

digitisation efforts to transform the economy. The paper utilised three empirical reasons for the 
said development – in the first place, the use of quarterly adjusted Total Factor Productivity (TFP) 
for the German economy proved that a slowdown in the United States of America (USA) 
productivity growth level from the middle of the 2000s seems to have made very little impact on 
Germany’s productivity. Secondly, the decision to shift into the services industry could also be 
cited for a share weak level of aggregate productivity advances. This transformation process is 
associated with a strong labour market performance. Thirdly, it was proven that technological 
progress in the area of Information and Communication Technology (ICT) in Germany seems to 
stimulate some level of slow growth rate in employment. 
 
Moving into more emerging economies in the European bloc like Croatia, Palic´ (2018) 
empirically tests the amenability of monetary policy shock with a calibrated DSGE model that 
supposedly incorporates financial frictions with that of monetary policy disturbances in Croatia 
using the Vector Autoregression (VAR) model. Upon calibration of the DSGE model, the VAR 
model was then used to estimate outcomes for the Croatian economy – this provided a 
comparative analysis of impulse response functions of the identified DSGE and that of the VAR 
model. The outcome shows that for both models, monetary policy shock has an earlier (positive) 
impact on the interest rate, but a negative early impact on house prices and the output gap. The 
conclusion from the study revealed that monetary policy shock imitates the impact of monetary 
shock with the use of the DSGE model incorporating financial frictions (highly influenced by 
technological change). 
 
In the African continent, for example, Alimi and Chakroun (2022) analysed the effects of nominal 
wage rigidity on inflation persistence and unemployment using a Bayesian DSGE model for a 
small open economy like Tunisia. The findings show that interest rates seem to be highly 
influenced by wage policy, which is linked with technological change. There is also an indication 
to unearth the rigidity of nominal wage on unemployment. The study also proved the power of 
monetary policy tightening, which has the power of slowing down economic activities and its 
ultimate negative outcome on the level of unemployment. In conclusion, the study proved that 
policy action is needed to deal with nominal wage rigidities as a way of allowing a better means 
of executing monetary policy transmission. 
 
Notwithstanding the positive developments that DSGE modelling has brought to mainstream 
economics with its inherent theoretical foundations, it has also come under great criticism by 
authors like Sims (2006) for being atheoretical and lacking other features that make it inapplicable 
in a variety of contexts. However, the novelty to address its usefulness with technology shock and 
its applicability to a small open economy like Sierra Leone has warranted the need to explore 
literature that lends support to the continued applicability of the model. 
 

3.0 Methodology 

This section derives from a neoclassical growth model the long-run identifying assumptions 
exploited in the empirical analysis. The model is deliberately stripped down to make the 
discussion as transparent as possible. Some short-run implications of the model are also discussed 
to motivate the analyses and to assess the plausibility of the empirical findings. 
 
The usual way to consider a technological change in DSGE models is to assume the existence of 
a shock that affects the aggregate production function of the economy. This is the so-called Total 
Factor Productivity (TFP)2 shock or neutral technology change. However, another source of 
technological change is derived from the technical and performance characteristics of assets that 
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do not remain constant over time. In general, capital assets have embodied better technical and 
performance characteristics over time. This is especially true in the case of equipment (transport, 
telecommunications, machinery, etc. This implies the existence of different vintages of capital 
assets, with different productivity. 
 
The neoclassical model generally predicts that long-run productivity growth can only be driven 
by technological progress. Technology in turn can be differentiated into neutral progress and 
investment-specific progress. Whilst the first is associated with multi-factor productivity, the 
second is the amount of technology that can be acquired by using one unit of a particular asset. In 
reality, the amount of technology that can be transferred to productivity widely differs among the 
different capital assets. 
 
Greenwood, Hercowittz and Huffman (2000) were the first to develop a DSGE model with 
specific technological progress in the capital accumulation function as an exogenous stochastic 
process associated with the investment. One way to introduce Investment-specific Technological 
Change in a DSGE model is to define the capital accumulation process as follows: 
 𝐾𝑡 = (1 − 𝛿)𝐾𝑡 + 𝑍𝑡𝐼𝑡               (1) 
 
Where 𝛿  in Eq. 1 is the physical capital depreciation rate and 𝑍𝑡 represents technological progress 
specific to the investment. Following Greenwood et al. (1997), 𝑍𝑡 determines the amount of 
capital that can be purchased with a production unit, which also represents the current state of 
technology needed to produce capital. The standard neoclassical model would invariably imply 
that 𝑍𝑡 = 1  for all t – this simply means the amount of capital that can be purchased with a final 
production unit is constant over time. However, in reality, the relative price of capital falls broadly 
implying that over time, we can buy a larger amount of capital with the same amount of final 
production. Thus, the higher the value of 𝑍𝑡, the greater the amount of capital that can be 
incorporated into the economy with an investment unit, thereby reflecting the fact that the quality 
of capital has increased. An increase in 𝑍𝑡 can be associated with a positive technology shock, 
which reduces the slope of transforming the investment into a consumer good (i.e., a reduction in 
the average cost of producing consumption goods). To obtain a measure of technological progress 
specific to investment, it is necessary to have prices of capital assets adjusted for quality. This is 
what is called hedonic price, i.e., the price of a particular capital asset whose quality remains 
constant over time (see Gordon, 1990; Cummins and Violante, 2002). 
 

3.1 Model Specification  

Here, we present a very simple version of the DSGE model with specific technological change 
investment. The model blocs (Household and Firm) incorporate two shocks: aggregate 
productivity, which measures the neutral technological change, and specific productivity, which 
measures technological change associated with the new capital assets. Two changes are 
introduced in the (basic) model – firstly, the capital accumulation (equation) that accounts for 
changes in the quality of new vintages of capital through the investment process, and secondly, a 
defined stochastic process for investment-specific shock. 
3.2 Household 

The economy is inhibited by an infinitely lived-representative household that has time-separable 
preferences in terms of final goods consumed {𝐶𝑡𝑡=0∞ }, and leisure{1 − 𝐿𝑡}} max             𝑡=0 ∞ 

preferences represented by the following utility functions (Calvo, 1983):  ∑ 𝛽𝑡∞𝑡=0 [𝛾𝑙𝑜𝑔𝐶𝑡 + (1 − 𝛾)log (1 − 𝐿𝑡]          (2) 
 
Where 𝛽 in equation (2) is a discount factor and 𝛾𝜖(0,1) is the elasticity of substitution between 
consumption and leisure. Budget constraints faced by the consumer imply that consumption and 
saving 𝑆𝑡 cannot exceed the sum of labour and (rental) capital income: 𝐶𝑡 + 𝑆𝑡 = 𝑊𝑡𝐿𝑡 + 𝑅𝑡𝐾𝑡           (3) 



 

 

 
Where 𝑊𝑡 in equation (3) is the wage and 𝑅𝑡 is the rental price of capital. To keep things simple, 
we assume that savings are transformed into an investment at no cost; 𝐼𝑡 = 𝑆𝑡.    
The key point of the model is that capital holdings evolve according to: 𝑘𝑡+1 + (1 − 𝛿)𝐾𝑡 + 𝑍𝑡𝐼𝑡           (4) 
 
Where 𝛿 in Eq. 4 is the depreciation rate of physical capital, while 𝑍𝑡 determines the amount of 
capital that can be purchased by one unit of output – signifying a representation of the current 
state of technology for producing capital. Therefore, investment can be defined as illustrated in 
equation (5):  𝐼𝑡 = 𝐾𝑡−(1−𝛿)𝐾𝑡  𝑍𝑡                      (5) 

 
The budget constraint as shown in equation (6) can be written as: 

 𝐶𝑡 + 𝐾𝑡+1 𝑍𝑡 = 𝑊𝑡𝐿𝑡 + 𝑅𝑡𝐾𝑡 + (1−𝛿)𝐾𝑡 𝑍𝑡            (6) 

The Langrangian problem to be solved is based on 𝐶𝑡, 𝐿𝑡  𝑎𝑛𝑑 𝐼𝑡 to maximise budget constraints 
as shown represented in equation (7) below: max𝐶𝑡,   𝐼𝑡,   𝐿𝑡   𝑙 = ∑ 𝛾𝑙𝑜𝑔𝐶𝑡 + (1 − γ)log (1 − 𝐿𝑡)  𝛽𝑡∞𝑡=0 [−𝜆𝑡(𝐶𝑡 + 𝐾𝑡+1 𝑍𝑡 − 𝑅𝑡𝐾𝑡 − (1−𝛿)𝐾𝑡 𝐾𝑡  ] Eq. 7 

The first-order conditions for the households are represented in equations (8), (9) and (10) as 
follows: 𝑑𝐿𝑑𝐶𝑡 : 𝛾𝐶𝑡−1 − 𝜆𝑡 = 0           (8)  

 𝑑𝐿𝑑𝐿𝑡 : − 1−𝛾1−𝐿𝑡 + 𝜆𝑡𝑊𝑡 = 0            (9) 

 𝑑𝐿𝑑𝐾𝑡 : 𝛽𝜆𝑡𝑡 𝑧𝑡−1𝑧𝑡 [𝑍𝑡𝑅𝑡 + 1 − 𝛿] − 𝛽𝑡−1𝜆𝑡−1 = 0              (10) 

 
By combining equations (8) and (9), we obtain equation (11), which represents a condition that 
equates the marginal rate of substitution between consumption and leisure to the opportunity cost 
of one additional unit of leisure. 1−𝛾𝛾 . 𝐶𝑡1−𝐿𝑡 = 𝑊𝑡            (11) 

 
On the other hand, combining Eq. 8 with Eq. 10 eventually results in the derivation of equation 
(12). 1𝛽 . 𝐶𝑡𝐶𝑡−1 = 𝑍𝑡−1𝑍𝑡 |𝑍𝑡𝑅𝑡 + 1 − 𝛿|           (12) 

 
This implies an equilibrium condition that equates the marginal consumption rates to the rate of 
return on investment, which now depends on the investment-specific technological change. 
 
3.3 The Firm 

The problem of the firm is to find optimal values for the utilisation of labour and capital. The 
production of the final output (Y) requires the services of L and K. The firm rent capital and 
employ labour to maximise profit at period t, taking factor prices as given.  The technology is 
given by a constant return to scale Cobb-Douglas production function as given herein equation 
(13) 𝑌𝑡 = 𝐴𝑡𝐾𝑡∝𝐿𝑡1−∝           (13) 
 
Where 𝐴𝑡 is a measure of total factor or sector-neutral productivity, and 0 ≤ ∝ ≤ 1. The static 
maximisation for the firm is represented in equation (14): 



 

 

max𝐾𝑡,𝐿𝑡 𝜋𝑡 = 𝐴𝑡𝐾𝑡∝𝐿𝑡1−∝ − 𝑅𝑡𝐾𝑡 − 𝑊𝑡𝐿𝑡           (14) 

The first-order conditions for the firm’s profit maximisation are represented in equations (15) and 
(16). 𝑑𝜋𝑡𝑑𝐾𝑡 : 𝑅𝑡 − 𝛼𝑡𝐴𝑡𝐾𝑡∝−1𝐿𝑡1−∝ = 0           (15) 

 𝑑𝜋𝑡𝑑𝐿𝑡 : 𝑊𝑡 − (1 − 𝛼)𝐴𝑡𝐾𝑡∝−1𝐿𝑡1−∝ = 0          (16) 

From the above, the first-order conditions for profit maximisation equilibrium prices for 
production inputs are specified in equations (17) and (18): 𝑅𝑡 = 𝛼𝑡𝐴𝑡𝐾𝑡∝−1𝐿𝑡1−∝              (17) 
 𝑊𝑡 = (1 − 𝛼)𝐴𝑡𝐾𝑡∝−1𝐿𝑡1−∝         (18) 
 
3.4 Equilibrium Of The Model 

The equilibrium of our model economy is obtained by combining the first-order conditions for 
the “average representative household with that of the representative firm”, thereby resulting in 
the output of equations (19) and (20) as indicated below: 1−𝜙𝜙 . 𝐶𝑡1−𝐿𝑡 = (1 − 𝛼) 𝐶𝑡𝐿𝑡              (19) 

 1𝛽 . 𝐶𝑡𝐶𝑡−1 = 𝑍𝑡−1𝑍𝑡 [𝑍𝑡𝛼 𝑌𝑡𝐾𝑡 + 1 − 𝛿]             (20) 

To close the model, the feasibility constraint of the economy must be defined as shown in equation  
 𝐶𝑡 + 𝐼𝑡 = 𝑌𝑡.           (21) 
 
A more formal definition of the equilibrium condition can be defined as a sequence of 
consumption, leisure, and private investment for the consumers – typically represented as {𝐶𝑡,1 − 𝐿𝑡, 𝐼𝑡,𝑡=0∞ } for consumption, {𝐾𝑡, 𝐿𝑡𝑡=0∞ }   labour utilisation of the firm, and {𝑍𝑡𝑡=0∞ }   for the 

state of technology in the production of each capital asset. This also takes cognisance of a given 
sequence of prices{𝑊𝑡, 𝑅𝑡𝑡=0∞ } that involve: (i) the optimised condition of the consumer; (ii) the 
first-order condition of the firm hold; and (iii) the feasibility constraint of the economy holds.  
 
3.5 The Bayesian DSGE Model 

We now turn to the search for exploring the importance of technological shock for movements in 
the specified macroeconomic variables using formal econometric methods. We use ‘Bayesian 

estimation techniques’3, partly because of their efficient outcome in modern econometric 
estimation and also based on personal taste and the researchers’ expert knowledge. We 
commenced by selecting the observables and the model specifications to be estimated and then 
followed by a description of how we calibrated the priors for typical DSGE model parameters.  

3.6 Model Estimation Procedure 

To solve the model, we assume the following: K to be an indeterministic (endogenous) state 
variable (rooted in theory). Thus, the equation for K is specified without a shock. We also note 
that only exogenous state variables are subject to shocks. Y is observed, while both C and R are 
unobserved. This assumption is required to satisfy the condition that the number of exogenous 
state variables is equal to the number of observed control variables. In other words, we must have 
exactly as many exogenous state variables (and thus, as many shocks) as the number of observed 
control variables. The competitive equilibrium of the model is given by a set of 5 equations that 

                                                           

3 A detailed review of the Bayesian estimation of DSGE models can be found in Schorfheide (2007). 



 

 

derives the dynamics of the seven endogenous macroeconomic variables {𝑌𝑡, 𝐶𝑡 , 𝐾𝑡, 𝑅𝑡 , 𝑁𝑡 , 𝐼𝑡, 𝑃𝑡  } 
plus the two technology variables (𝐴𝑡 𝑎𝑛𝑑 𝑍𝑡), which is assumed to follow an AR (1) process. 
This set of equations is defined as follows:  1 = 𝛽𝐸𝑡 {(𝐶𝑡+1𝐶𝑡 )−1 (1 + 𝑅𝑡+1 − 𝛿)}   (Consumption)     (22) 

Equation (22) defines a relationship between consumption growth (𝐶𝑡+1𝐶𝑡 ) and the interest 

rate(𝑅𝑡+1).  𝑌𝑡 = 𝑍𝑡𝐾𝑡𝛼   (Production function)       (23) 
Equation (23) is a production function for output(𝑌𝑡), productivity (𝑍𝑡) and capital(𝐾𝑡).  𝑅𝑡 = 𝛼 𝑌𝑡𝐾𝑡  (Interest rate/Capital demand)      (24) 

Equation (24) is a model for the interest rate.  𝐾𝑡+1 = 𝑌𝑡 − 𝐶𝑡 + (1 − 𝛿)𝐾𝑡   (Capital Accumulation)    (25) 
Equation (25) is the equation for capital accumulation - capital in the next period (𝐾𝑡+1) is equal 
to under-appreciated capital in this period (1 −  𝛿)𝐾𝑡 plus unconsumed output(𝑌𝑡 − 𝐶𝑡). ln(𝑍𝑡+1) = 𝜌ln(𝑍𝑡) + 𝑒𝑡+1   (State Variable)    (26) 
Equation (26) is a law of motion for productivity(𝑍𝑡).  
The state variables are the current-period capital stock and the level of productivity, (Kt, Zt ). The 
control variables are consumption, interest rate, and output (Ct, Rt, Yt).  
 

3.7 Prior and Posterior Calibration  
To perform the Bayesian estimation of the model, we need to specify priors for the parameters. 
Parameters in a DSGE model typically have economic interpretation. We use those interpretations 
to specify informative priors. The model has four structural parameters( 𝛽,  𝛼, 𝛿, 𝜌) and one 
standard deviation parameter (σe). The parameters of the beta distributions were chosen to put the 
weight of prior mass on theoretically appropriate values. The parameter 𝛽 is a discount factor in 
the consumption equation. It must lie between 0 and 1, and is probably in the higher end of the 
range. We use a prior beta distribution with parameters (0.90, 0.99). These parameters are 
consistent with a prior mean of 0.95. The parameter 𝛼 is a production parameter in the output 
equation – based on literature, it usually lies between 0 and 1, and is generally in the lower end 
of the range for small pre-industrial economies, where national productivity is very low. Based 
on this presupposed theoretical grounding, we use an Alpha density distribution with parameters 
(0.3, 0.4). The parameters are consistent with the prior mean of 0.35.  The parameter 𝛿 is a 
depreciation parameter in the capital accumulation equation. It commonly lies between 0 and 1, 
mostly in the lower end of this distribution. Economic theory indicates that this will be negative. 
This is so because capital depreciation is high in small developing economies since maintenance 
appears to be minimal. Therefore, we use a Beta distribution with parameters (0.03, 0.05). The 
parameters here are also consistent with the prior mean of 0.04.   

Finally, for the autoregressive parameter, the parameter 𝜌 is perceived as persistent in the 
productivity equation. It normally lies between 0 and 1 and it is at the higher end of this density 
distribution. Therefore, we use a Rho distribution, with parameters (0.66, 0.99). This is also 
consistent with the prior mean of 0.8.  The model has two technology shocks, namely neutral or 
total factor productivity technological change and investment-specific technological change. 
However, since both perturbations represent technological change, alternatively it can be assumed 
that there may be some level of relationship existing between them. Note that these are parameters 
defining the stochastic process for investment-specific technological shock and are exactly equal 
to the process for a neutral shock - see Pakko, 2005, Rodriguez and Torres, 2010. Our prior 
choices for all parameters are driven by the aforementioned theoretical considerations. Given that 
all four parameters are plausibly restricted to the unit interval, a beta distribution is chosen for all 
four priors. The parameters of the beta distribution were chosen to confirm the weight of prior 
mass on theoretically appropriate values. 



 

 

 

3.8 Data: Description & Sources  

A crucial step in the estimation process is the choice of observables 𝑌 that enter the likelihood 
function (𝑌 ∣𝜃). Since the goal is to determine the contribution of a technological shock to the 
variation in the key macroeconomic variables, we have decided to follow the tradition in 
econometrics. For the estimation processes of our DSGE model, we have employed quarterly data 
spanning 2006Q1 to 2020Q4. Variables used for the study include the observed growth rate of 
real GDP (y), Interest rate spread [lending rate minus deposit rate, expressed in %age term] - (r) 
unobserved, the growth rate of consumption (c) unobserved, the growth rate of hours worked/ 
GNI Growth (Annual %) (n). Data utilized for this study were sourced from the World Bank - 
World Development Indicators (WDI) for Sierra Leone. 

 

3.9 Convergence Diagnostic 

We checked for the convergence diagnostic of the model to determine whether there is 
convergence in the Markov Chain Monte Carlo (MCMC) simulation. MCMC simulation 
convergence indicates reliable parameter estimates (Fernandez-Villaverde and Guerron-
Quintana, 2021: 237-238). This then resulted in us graphing the behaviour of individual 
parameters, as well as generating the effective sample size (ESS) summary statistics. To ensure 
there is convergence efficiency, the trace plot should not exhibit a time trend and must be mean-
reverting, with an exhibit of constant variance and decaying autocorrelation. The density of the 
chain should not vary throughout the MCMC sample. Also, the constant of the density distribution 
can be assessed by examining both the 1-half and 2-half density plots and must be symmetrical 
or worse, differentials should be minimal. Significant differences in the density may invariably 
imply no convergence in the chain.  
 
Attainment of low-level efficiency for the estimated non-linear DSGE model could also indicate 
convergence problems in the iteration processes. If such is the case, the recommendation is to 
estimate the model with block options - implying an imposition of restrictions/blocks on selected 
parameters to adjust for the observed high autocorrelation, which invariably may enhance the 
efficiency of the MCMC sampling. However, to properly identify the parameters (both structural 
and blocked state), an algorithm for the density functions command will need to be written for all 
the parameters and immediately followed by a graphing of the diagnostic outputs to display 
comparison. The structural parameters with the best performance should be restricted/blocked 
and followed by a re-estimation of the model. Simply put, identified parameters for the restricted 
/ block options must be informed by the behaviour of the density functions.  
 
 

4.0 Results and Discussion 

4.1 Model Estimation without Block Options  

The output header below repeats the prior specification and reminds us that we are fitting a DSGE 
model. The model summary as referenced in Table 1 reports the prior and likelihood 
specifications, including the default inverse-gamma before the standard deviation of the shock. 
The output header reports the burn-in length and MCMC sample size and information about the 
efficiency of the Metropolis-Hastings sampler.  

 

 



 

 

Table 1. Bayesian first-order DSGE model without block options 
Bayesian first-order DSGE 
Random-walk Metropolis–Ha 
 
Sample: 2006q1 thru 2020q 
 
 
Log marginal-likelihood = 

Model stings sampling 4 
 
 
 
 
 
-191.77231 

MCMC iterations  = 12,500  
Burn-in =  2,500 MCMC sample size = 
10,000 Number of obs   = 60 
Acceptance rate = .1515 Efficiency: 
min  = .02826 
Avg  = .03733 
max = .04717 

  
 Mean 

 
Std. dev. 

 
MCSE 

 
Median 

Equal-tailed  
95% cred.  interval 

beta .9494578 .0221166 .001316 .952777 .8932913 .9819287 

delta .0397577 .0062944 .000362 .0397073 .0291956 .0528338 
alpha .3403352 .0475408 .0024 .3394153 .2528225 .4430147 
rhoz .7879269 .0365272 .00179 .7890018 .7093168 .855767 

sd(e.z) 5.324392 .4913897 .022624 5.269096 4.51084 6.433976 
 

Source: STATA Output 
 

The overall acceptance rate is 0.15% - acceptance rates that are too low indicate that a large 
portion of the proposed MCMC iterations was rejected so that regions of high posterior 
probability were not sufficiently explored. Whilst sampling efficiencies are between 0.028 and 
0.047, efficiency is linked to the autocorrelation of the MCMC draws, with higher efficiency 
indicating lower autocorrelation. The posterior mean for {beta} is 0.95, seemingly identical to its 
prior mean of 0.95. The posterior mean for {delta} is 0.039, almost identical to its prior mean of 
0.04. The posterior mean for {alpha} is 0.34, near to its prior mean of 0.35. 

The posterior mean for {rhoz} is 0.78 and proved different from its prior mean of 0.80. Overall, 
most of the parameters show little updating, indicating that the likelihood is uninformative along 
several dimensions of the model’s parameter space. The posterior results for {beta}, {delta}, and 
{alpha} are mainly driven by the prior. However, the posterior for {rhoz} shows significant 
updating, as such, we check the posterior diagnostics to determine which parameters need to be 
restricted/blocked.  

 

4.2 Posterior Diagnostics and Plots 

We begin by investigating effective sample sizes for each parameter in the estimated Bayesian 
model. Concerning Table 2, the effective sample size for the discount factor {beta} is somewhat 
low relative to the other parameters, which indicates that blocking/restriction may improve 
sampling efficiency. Because {rhoz} was the only internal parameter to receive substantial 
updating, we look at its full set of posterior diagnostic plots as shown below.  All the parameters 
have more than 1% sampling efficiency, indicating good mixing. However, standard deviation 
has an efficiency of less than 1% - low efficiency implies that it takes longer for the MCMC chain 
to explore the posterior distribution. 

Table 2. Efficiency Summary Statistics without block options 
Efficiency summaries MC sample size = 10,000 
 Efficiency: min = .02826 
 Avg = .03733 
 Max = .04717 
 ESS Corr. time Efficiency 
beta 282.63 35.38 0.0283 
delta 302.97 33.01 0.0303 
alpha 392.50 25.48 0.0392 
rhoz 416.51 24.01 0.0417 
sd(e.z) 471.74 21.20 0.0472 

 



 

 

Source: STATA Output 

From Figure 1, all four parameters show that Autocorrelations tail off or decay at a moderate 
pace. The trace plot shows reasonable mixing, while the density plot shows that the first and 
second-half densities do not substantially differ, but are not symmetrical from the full-sample 
density.  

 
 

 

 

 

 

Figure 1. Post Estimation Diagnostics plots for the parameters in the without block options 

model 

Source: STATA Output 

Next, we generate prior–posterior plots for all four parameters as shown below: The posterior 
distribution of [beta] as shown in Figure 2 above is almost identical to its prior, indicating that the 
data provide little information along this dimension of the model. The posterior density of {alpha} 
differs from its prior density. This situation indicates a flat likelihood along the {alpha} 
dimension. The posterior distribution of {delta} is identical to its prior, indicating that the data 
provide little information along this dimension of the model. By contrast, the posterior density of 
{rhoz} differs from its prior density. The posterior mean has fallen to a value of less than 0.8. 

 

 

 
 

 



 

 

  
Figure 2. Prior-posterior plot for the model without block options 

Source: STATA Output 

The above posterior-prior plots in Figure 2 indicate the need for blocking/restricting the 
informative priors. Moreover, the low acceptance rate from the estimated model is also an 
indication of a convergence problem. Finally, the visual plots of autocorrelations of the 
parameters show that the pace of decay is slow and there is a need for increasing the Markov 
Chain Monte Carlo (MCMC) sample size or blocking the parameters of the informative priors 
and re-estimating the model with the so-called blocked options. 

4.3 Estimating Model with Block Options 

The re-estimated model as shown in Table 3 placed three parameters into their own blocks: 
{delta}, {rhoz}, and {sd(e.z)}. Blocking/restriction improves efficiency at the cost of longer run 
time. The significant variation between the prior and posterior plots of some of the estimated 
parameters and the relatively low estimated Efficiency Summary Statistics (ESS) necessitated the 
estimation of the model with block parameters. 

Table 3. Bayesian First-Order DSGE Model with block options 

Bayesian first-First order DSGE m-
walk Metropolis–Ha 
 
Sample: 2006q1 thru 2020q 
 
 
 
Log Marginal-likelihood = 

model 
stings sampling 4 
 
 
 
 
 
-191.69913 

MCMC iterations = 12,50  
Burn-in =  2,50 
 MCMC sample size = 10,00  
Number of obs   = 60 
Acceptance rate = .386  

Efficiency:                                                      min  =   .0882 

                                              avg =     .177 

                                              max =     .255 

 Mean Std. dev. MCSE Median Equal-tailed 
95% cred interval 

beta .9502194 .0214217 .000629 .9538787 .9000438 .982186 

delta .0401786 .006066 .00012 .0399732 .0286841 .052781 
alpha .3444854 .0455994 .001535 .3429863 .2572353 .436150 
rhoz .7900874 .0378697 .000773 .7920865 .7128953 .85940 
sd(e.z) 5.342249 .5069394 .011693 5.295409 4.462074 6.46708 

 

Source: STATA OUTPUT 

The overall acceptance rate has increased to 0.39%, which shows significant portions of the 
proposed MCMC iterations were accepted – implying that regions of high posterior probability 
were sufficiently explored. Moreover, the sampling efficiencies have improved and now lie 
between 0.09 and 0.26, which also indicates higher efficiency indicating lower autocorrelation of 
the MCMC draws. The posterior mean for {beta} is now exactly 0.95, identical to its prior mean 
of 0.95. The posterior mean for {delta} is now 0.040, identical to its prior mean of 0.04. The 
posterior mean for {alpha} remains at 0.34, which is near its prior mean of 0.35. The posterior 
mean for {rhoz} has 0.79, significantly closer to its prior mean of 0.80. In the blocked option 



 

 

model, almost all the parameters show little updating, indicating that the likelihood is 
uninformative along several dimensions of the model’s parameter space. 

4.4 Posterior Diagnostics and Plots 

In the re-estimated model with block options (a reference to Table 4), all the parameters have 
sampling efficiencies of more than 1%, indicating good mixing. This also implies that it is quicker 
for the MCMC chain to explore the posterior distribution. 
 

Table 4. Efficiency Summary Statistics with block options 
Efficiency summaries MC MC sample size = 10,000 

 Efficiency:         min = .08826 

                              avg = .1776 

                              Max = .2558 

 ESS Corr. time  Efficiency 
beta 1161.03 8.61 0.1161 

delta 2557.85 3.91 0.2558 

alpha 882.57 11.33 0.0883 

rhoz 2397.15 4.17 0.2397 

sd(e.z) 1879.51 5.32 0.1880 
 

Source: STATA Output 

The re-estimated model with block options for all four parameters in Figure 3 shows that 
Autocorrelations decays more quickly, and the trace plot shows good mixing and mean reversion, 
whilst the density plots show that the first- and second-half densities do not substantially differ 
from the full-sample density.  

 
 

 
 

 
 

Figure 3. Post Estimation Diagnostics plots for the parameters in the block option model 

Source: STATA Output 

After adjusting for autocorrelations and remedying the identified convergence problems, we 
thereafter proceeded to account for impulse response functions, which shows the impact of the 
state variable technological shock and the response of model variables – specifically output, 
capital stock, consumption, and interest rate.  



 

 

 

4.5 Impulse Response Functions 

Each panel in Figure 4 displays the response of one model variable to the impulse of technological 
shock. Each step is one quarter, implying four steps equating to one year after the shock. In the 
top-left panel, consumption crises follow a mostly flat trajectory for the first eight periods after 
the shock and then fall to return to their steady-state. In the top-left panel, the capital stock (k) 
does not move in the first period but rises afterwards in a hump-shaped pattern. In the top-right 
panel, the interest rate (r) rises on impact, remains elevated for the first four periods, and then dips 
below its steady-state value in the fifth period - it then returns to its steady-state from below. In 
the bottom-left panel, output y rises on impact and then declines monotonically back to its steady-
state. For a numerical impulse response function, see the result output in the Appendix. 

Figure 4 above also indicates the individual and combined impulse response of different variables 
to a positive investment-specific technological shock. As observed, this type of technological 
shock generates dynamic responses of the relevant variables differently relative to an aggregate 
productivity shock. 

  
 

Figure 4. Impulse response function output 

Source: STATA Output 

The response of consumption (c) is positive, but its initial values are lower than at subsequent 
peak periods. This model indicates that in Sierra Leone, the technological shock has a positive 
relationship with consumption since surprise advances in technology imply higher employment, 
and by extension higher income and consumption. 

Capital stock (k) does not move in the first period but rises afterwards in a hump-shaped pattern. 
While k is also positively related to the shock, it does not move in the initial period due to the 
rigidities involved in acquiring new capital. The intuition is that in Sierra Leone, positive 
technological shock makes it profitable to invest in new capital, as its productivity is higher than 
the productivity of the installed capital stock. This is what causes a rise in investment, which is 
accumulated into capital stock. The investment-specific technological shock causes investment 
units to be cheaper than consumer units. This provokes an inter-temporal substitution effect 
between consumption and saving and an intra-temporal effect between consumption and leisure.  

The relationship between interest rate and the shock is mixed. The interest rate (r) rises on impact, 
remains elevated for the first four periods, and then dips below its steady-state value - it then 
returns to its steady-state from below. Increases in income and consumption are inflationary (at 
least in the short run) and therefore, raising the level of interest rate above its steady-state is not 



 

 

unexpected. However, this policy action is usually short-lived as a prolonged high-interest rate 
may exert a drag on long-run growth. Interest rates, which reflect the dynamics of marginal 
productivity of production factors, show different behaviour. The interest rate or cost of acquiring 
new capital rises on the impact of technological shock, but the response is negative afterwards. 
This indicates that in Sierra Leone, interest rates spread grows with the impact of a positive 
technological shock. The practical intuition behind this is that firms in Sierra Leone save less and 
borrow more to acquire new technologies. The increased borrowing drags the lending rates 
upwards and the savings rate in the reverse direction. However, (with the inclusion of a monetary 
institution bloc in the model), Sierra Leone may intervene in the long run coupled with firms’ 
investment returns arising from the acquired funds that were used to finance technological 
upgrades - and as such, this may reduce the interest spread in long-run steady-state from below 
optimal.    

Output (y) shows a positive relationship with the shock as expected. Surprise advances in 
technology stimulate economic activities and thus raise the level of output (y). In summary, 
Investment-specific technological shock generates an inter-temporal substitution between 
“investment and consumption”, as well as “consumption and leisure”, and when put together may 
result in an upward response in the level of output. 

5.0 Conclusion  

The result shows that investment-specific technological shock partly explains business cycle 
fluctuations in Sierra Leone. Since these results are based on a procedure that abstracts from 
orthogonal transitory technology shock, the findings may be viewed as representing a lower 
bound on the overall contribution of technology shock to business cycles. Therefore, the results 
strongly suggest that technology shock, or more generally, shocks to the efficiency of producing 
goods are important for understanding business cycles in Sierra Leone. We, therefore, identify 
the following as implications of the findings: 
 The impact of technology shock on output, capital stock, and consumption is more persistent 

than that of interest rate on the Sierra Leone economy.  
 Advances in technology can be used to stimulate long-term growth - in other words, 

technological innovation is crucial for long-term growth in Sierra Leone.  
 Monetary policy authority (the BSL to speak) and the entire financial system have a role to 

play in stabilising the aftermath of high income and consumption catalysed through means of 
technology shock – with an expansion of the model blocs. 

 The research partly confirms the prediction of neoclassical growth theory for Sierra Leone – 
typically proving that long-run productivity growth is driven (mainly) by technological 
progress.  

It is worth noting that this study is built on the neoclassical growth theory, which postulates 
technological change as a driving force for long-term growth. The model in its current state is 
somehow endogenously focused, with minimal scope for external influence and the monetary 
authority’s influence to utilise its mandate of influencing changes in policy rates needed to induce 
investments through savings or technology-induced means. Despite this limitation and the 
emerging focus of DSGE modelling as a tool to support effective policy formulation at the BSL, 
thoughts have been given to enhancing the model’s future capabilities to incorporate both the 
monetary and external blocs to fully assess transmission impact of technological shock on the 
entire economy. 
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Appendix. Impulse Response Function Numerical Results 

Step (1) 
irf 

(1) 
Lower 

(1) 
Upper 

(2) 
irf 

(2) 
Lower 

(2) 
Upper 

(3) 
irf 

(3) 
Lower 

(3) 
Upper 

(4) 
irf 

(4) 
Lower 

(4) 
Upper 

0 1.61123 1.0034 2.38143 0 0 0 5.34225 4.46207 6.46708 5.34225 4.46207 6.46708 
1 1.9173 1.20029 2.8327 1.06818 .654142 1.65555 3.51588 2.69283 4.48811 4.58406 3.71185 5.62899 
2 2.10113 1.32234 3.08388 1.8118 1.14008 2.70884 2.14739 1.2002 3.17469 3.95919 3.04684 5.02997 
3 2.19453 1.39675 3.19756 2.31081 1.49223 3.35999 1.12945 .122059 2.19461 3.44027 2.50288 4.57523 
4 2.22177 1.42774 3.22953 2.62642 1.72728 3.72273 .379671 -.615644 1.42751 3.00609 2.06166 4.16092 
5 2.20129 1.42652 3.18972 2.80545 1.86731 3.90263 -.165269 -1.09773 .824751 2.64019 1.71996 3.78814 
6 2.14712 1.39903 3.10957 2.88371 1.93738 3.97539 -.554052 -1.37571 .350498 2.32965 1.45532 3.45763 
7 2.06987 1.35349 3.00161 2.8885 1.96062 3.97048 -.824143 -1.52548 -.013201 2.06436 1.24501 3.17171 
8 1.97751 1.29531 2.88421 2.84066 1.94583 3.89864 -1.00438 -1.61349 -.296773 1.83629 1.07778 2.90645 
9 1.87602 1.22761 2.76452 2.756 1.89267 3.79243 -1.11694 -1.65344 -.512021 1.63906 .940819 2.6606 
10 1.76984 1.14839 2.62575 2.64647 1.82002 3.67712 -1.17892 -1.64605 -.668188 1.46756 .819851 2.445 
11 1.66222 1.06691 2.4976 2.52109 1.72058 3.53147 -1.20341 -1.62555 -.769673 1.31768 .72189 2.24364 
12 1.55551 .986983 2.3672 2.38659 1.61736 3.38814 -1.2005 -1.60003 -.815814 1.18609 .635554 2.06026 
13 1.4514 .900354 2.2409 2.24795 1.50054 3.23501 -1.1779 -1.56048 -.82887 1.07005 .559058 1.8903 
14 1.35102 .817217 2.11987 2.10881 1.37837 3.08302 -1.14148 -1.51974 -.808928 .967335 .49337 1.74011 
15 1.25513 .735188 2.00018 1.97181 1.25714 2.94016 -1.09572 -1.47513 -.764123 .876089 .440296 1.60554 
16 1.16419 .662969 1.88654 1.83879 1.13224 2.79224 -1.04402 -1.42451 -.711181 .794772 .386854 1.48136 
17 1.07843 .589854 1.78031 1.711 1.01505 2.6516 -.988907 -1.37413 -.651135 .722093 .340778 1.36742 
18 .997943 .523009 1.68397 1.58925 .908713 2.51074 -.932286 -1.3221 -.588357 .656963 .300196 1.26175 
19 .922676 .465151 1.58234 1.474 .811938 2.37255 -.875546 -1.27297 -.526833 .598459 .265335 1.16622 
20 .852508 .409318 1.48982 1.36549 .720082 2.24341 -.819696 -1.22126 -.468067 .545793 .231988 1.07829 
Posterior means reported. 
95% equal-tailed credible lower and upper bounds reported. 
irfname = tkdsge_wb_irf, impulse = z, and response = c. 
irfname = tkdsge_wb_irf, impulse = z, and response = k. 
irfname = tkdsge_wb_irf, impulse = z, and response = r. 
irfname = tkdsge_wb_irf, impulse = z, and response = y. 
 
Source: STATA Output 
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