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1. Introduction 

 

As known (Inuiguchi & Ramik, 2000), the Fuzzy Linear Programming (FLP) 
technique is required when ambiguity and/or vagueness exist in the coefficients of 
the objective function and/or in constraints, as well as in the right hand side 
parameters. For instance, expressions like the interest rate is “about 3%” are 
ambiguous, while expressions like the inflation is “substantially larger than 4” are 
vague since they are not sharp enough.  It is also known that the stochastic variables 
represent randomness or chance of events.  
 
Inuiguchi & Ramik (2000) and recently (Van Hop, 2007), have reviewed some papers 
that treated fuziness in constraints, in objective function, or in both. Inuiguchi & 
Ramik model fuzziness with possibility and necessity measures. They argue that 
solving a FLP problem can be easier than a Stochastic Programming (SP) problem. 
Van Hop (2007) also argued that the use of superiority and inferiority measures can 
convert effectively a FLP (or a Stochastic LP) into a deterministic one. Van Hop 
illustrates the effectiveness of the proposed method with some numerical examples 
and argues that it is superior to the complex method suggested by Luhandjula (1996).  
 
In this short paper we present a simple financial example in order to evaluate the 
effectiveness of various de-fuzzification methods.  
 
 
2. A two-factor example 
 
 
In finance, Grinblatt & Titman (1998), pure factor portfolios are defined as portfolios 
with a sensitivity of one to one of its factors, and zero to the remaining factors. Let us 
consider the following two-factor model from Grinblatt & Titman, with the interest 

rate (r) and inflation rate (π) being the two factors.  
 
An investment fund has a given portfolio Z, consisting of Swaps, Bonds and Stocks. 
The returns from these assets (in percentage units) are 1, 5 and 7 respectively. 
Moreover, these returns are risky, not in the common sense of their variance, but 
rather in terms of two macroeconomic factors, the interest rate and the rate of 
inflation. For instance, positive or negative deviations from the equilibrium interest 
and/or the inflation rates lead to lower or higher returns. Assume that the beta-

values of r- and π−factors are estimated to be -2.5 and -4.5 respectively. The fund 
manager must therefore design a proper hedge portfolio against inflation and 
interest rate, i.e. he must eliminate its sensitivity to both factors. Assume that the 
fund has (1), a capital of € 100,000 to invest, and (2), does not want to invest its own 
capital.  
 
The fund is consulted by its investment bank to re-balancing the portfolio, by buying 
or selling the same three financial securities Swaps, Bonds and Stocks.  
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We will assume first that all beta-values in these securities are deterministic. Later we 
will alter this assumption and treat the beta-values and other parameters as chance 
and fuzzy values.  
 
 
2. A conventional LP model  
 
 
As known, in standard conventional LP models all parameters are deterministic. 
 
(a) Deterministic parameters 

 
(i) Enter into a five-year interest rate Swap (S) contract. Assume that the 

number of swap contract is costless and its future value has the following 

factor equation: S = 5 – 5r – 3π.  
(ii) Enter the 30-year government Bonds (B) market. The investment is per 1 

million € and has the following factor equation: B = 10 - 5r – 1π.  
(iii) Enter the stock market, or some Stock (K) index. The investment is also per 

1 million € and has the following factor equation: K = 0 + 1r + 1π.  
 

 

Notice first that in order to neutralize the beta of r which is -2.5 and the beta of π 
which is -4.5, we need to turn these values into +2.5 and +4.5 respectively, so that the 
new portfolio will be interest and inflation risk-free.  
 
Let X1 = the number of contracts in S; X2 = millions of € in B; X3 = millions of € in S. 
 
A simple LP formulation1 is the following: 
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Notice that the three financial variables are free. Negative values are allowed if the 
fund sells financial securities (called “short” in finance), and positive if it purchases.  
 

The solutions are: (1) X1 = -2.80, X2 = 1.90, X3 = -2.0, r = 0, π = 0, Max = 0; 

                                                 
1 Notice that in constraints, the sign of r and π is the same as the right hand side parameters. The 
solution is unaffected though, even if their sign is opposite to that of the right hand side parameters. 
Notice also that only strict equality interest rate and inflation constraints give a solution, given the 
unbounded financial variables. Inequalities in these two constraints lead to unbounded solution. The 

solution remained also unchanged if the objective function was simplified to Max - 2.5r – 4.5π. 
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(2) X1 = -2.75, X2 = 1.875, X3 = -1.875, r = 0, π = 0, Max = -6.5. 
 
We can check that this new portfolio is interest and inflation risk-free.  
 

The initial portfolio had a value V = X1 + 5X2 + 7X3 - 2.5r - 4.5π, with all assets 
already included in portfolio, i.e. X1, X2, X3 > 0. For instance, if the fund had 4 units 

of S, 2 units of B and 1 unit of S, i.e. X1 = 4, X2 = 2, X3 = 1, and r = 4, π = 2, the value is 

V = 2. The same portfolio with r = 6 and π = 4 has a V = -12. Thus, it is very risky to 
changes in the interest and inflation rates. 
 
Let us check case (2). The portfolio that hedges the initial one, has the following 

value: V´ = (5 – 5r – 3π)(−2.75) + (10 - 5r – 1π)(1.875) + (1r + 1π)(−1.875) = 5 + 2.5r + 

4.5π . Thus, the fund’s new portfolio has a value of Fnew = V + V´= (X1 + 5X2 + 7X3 - 

2.5r - 4.5π) + (5 + 2.5r + 4.5π) = -2.75 +5(1.875) +7(-1.875) + 5 = – 6.5 + 5 = – 1.5, which 
is interest- and inflation- risk free value.  
 
 
3. Chance-Constrained Programming (CCP) 
 

 
In CCP the parameters of the constraints are random variables and the constraints 
are valid with a minimum probability.  
 
(b1) Chance left-hand side parameters and constraints 

 
Let us now change the deterministic left-hand side parameters and make them 
expected values, independent and normally distributed random variables with the 
means and variances below. On the other hand, while the beta-values of the initial 
portfolio remain -2.5 and -4.5 in the objective function as before, the right-hand side 
parameters of the interest rate and inflation do not hedge perfectly. The right-hand 
side parameters are crispy numbers different from -2.5 and -4.5. This might be due to 
the fact that the left-hand side parameters are not deterministic now.  
 

{ } α−≥−≤−++ 15.1rxaxaxaP 313212111  

{ } απ −≥−≤−++ 15.3xaxaxaP 323222121  
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For instance, the implication of the first constraint is that the probability of the 
expected value beta parameters (and r as well), being at most -1.5, is at least 95%. A 
similar interpretation is for the inflation rate constraint. 
 
The first stochastic constraint is now formulated as: 
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F is the cumulative density function of the standard normal distribution. If F(Kα) is 

the standard normal value such that F(Kα) = 1 - α, then the above constraint reduces 
to: 
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And finally, given 05.0=α , the constraint is simplified to: 
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Similarly, the second constraint is simplified to: 
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(b2) Chance right-hand side parameters and constraints 

 
In this case we assume that only the right-hand side parameters are normally 
distributed with the following means and variances: 
 

{ } 10.0brx1x5x5P 1321 ≥≤−−+  

{ } 10.0bx1x1x3P 2321 ≥≤−−+ π  
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For instance, the first constraint (interest rate) implies that the probability of the 
crispy parameters, being at most -3.5, is at least 10%. A similarly interpretation is for 
the inflation constraint.  
 
The first stochastic constraint is now formulated as:  
 

10.0
4.1

5.3)()rx1x5x5(
P 321 ≥

⎭
⎬
⎫

⎩
⎨
⎧ −−−−+

 

 
This stochastic constraint reduces to the following deterministic one: 
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and similarly for the inflation constraint: ( ) 6.1285.15.5xxx3 321 +−≤−−+ π . 

 
Notice that, precisely as in the deterministic model previously, we keep the sign of r 

and π and the sign of the right hand side parameters the same. The CCP model2 is as 
follows: 
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Notice that the unbounded financial variables are now bounded in order to obtain a 
solution. As bounds, we used the highest absolute values found from the 
deterministic model. 
 

The solutions are: (1) X1 = -1.7658, X2 = -2.70, X3 = 2.80, r = 0, π = 0, Max = 4.33; 

 (2) X1 = -1.7812, X2 = -2.80, X3 = 2.80, r = 0, π = 0, Max = 3.82 
 
The solutions were efficient too, but close to their bounds. 
 
            
4. A Possibilistic LP (PLP) model 

 
 
Let us now make our left-hand side beta parameters ambiguous. 
 
(c) Symmetric triangular fuzzy beta-values 

 
The ambiguity of estimated beta values can be restricted by a symmetric triangular 

fuzzy number, determined by a center c

ia  and a spread
iaw , represented 

as:
ia

c

ii w,A α= .For instance, the beta-estimate of r in Swaps can be restricted by a 

fuzzy number
11A with the following membership function: 

                                                 
2 We changed all signs in constraints by multiplying all variables by -1. The problem is in fact 
nonlinear and can be solved, using for instance Lingo, or it can be converted to a separable LP. 
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1,0max)x(

11Aμ . Thus, the center is 5 (again all values are multiplied by -1), its 

upper value is 8 and its lower value is 2. Similar fuzzy numbers exist Bonds and 

Stocks and for π as well. 
 
Assume that the symmetric triangular fuzzy beta values are the following: 
 

3,5A11 = , 2,5A12 = , 2.0,1A13 −−= , 5.1,3A21 = , 4.0,1A22 = , 5.0,1A23 −−=  

 
Of course one can make the right-hand side parameters ambiguous as well, 
depending upon the possibilistic beta values in the left hand sides. We assume that 
the certainty degrees of interest rate constraint being at most -3.5 and of inflation 
constraint being at most -5.5 are not less than 90%. We also assume that the 
possibility degrees of interest rate constraint being at least -1.5 and of inflation 
constraint being at least -3.5 is not less than 80%.  
 

Inuiguchi & Ramik, (2000) used possibility and/or necessity measures to de-fuzzify a 
fuzzy LP.  
 
The possibility measures measure to what extent it is possible that the possibilistic 

beta values, restricted by the possibility distribution μΑ,  are at least or at most some 
certain values.  
 

Given two fuzzy sets, A and B, and a possibility distribution μΑ of a possibilistic 

variable α, the possibility measure is defined as: 
 

))x(),x(min(sup)B( BA
r

A μμΠ = .  

 
If ]g,(B −∞= , i.e. B is a crisp (non-fuzzy) set of real numbers not larger than g, the 

possibility index is defined as: 
 

( ) ( ]( ) { }gx)x(supg,gaPos AA ≤=∞−=≤ μΠ  

 
If [ )∞+= ,gB , the possibility index is defined as: 

 
( ) [ )( ) { }gr)x(sup,ggaPos AA ≥=∞+=≥ μΠ  

 
The necessity measures measure to what extent it is certain that the possibilistic beta 

values, restricted by the possibility distribution μΑ, are at least or at most some 
certain values.  
 
The necessity measures and the necessity index are similarly defined as: 
 

))x(),x(1max(inf)B(N BA
r

A μμ−=  
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Inuiguchi & Ramik (2000) show that the classical portfolio model can be regarded as 
a PLP problem with independent possibilistic variables and that is equivalent to a 
Stochastic LP problem with unknown correlation coefficients between normal 
random variables. We will now follow Inuiguchi & Ramik and formulate the 
necessity and possibility constraints.  
 
Given the symmetric triangular fuzzy beta-values, the PLP model is: 
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Notice that the three financial variables are unbounded.  
 

The solutions are: (1) X1 = -1.401, X2 = 0.928, X3 = -0.828, r = 0, π = 0, Max = -2.56  

 (2) X1 = -1.4644, X2 = 0.9744, X3 = -0.9744, r = 0, π = 0, Max = -3.41 
 

 
5. Van Hop’s  FLP model 

 
 
Let us now make our left-and right-hand side parameters fuzzy. 
 
(d) Fuzzy parameters 

 
Assume the following symmetric triangular type, fuzzy random parameters.  
 
The interest rate fuzzy parameters are: 
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Similarly, the inflation rate fuzzy parameters are: 
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In order to be consistent with the symmetric triangular fuzzy beta-values in (c) 
above, we keep the same spreads. Thus, we have the following fuzzy numbers:  
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−====== μμμμμμ  
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are exactly equal to the deterministic (crisp) values. In addition, the right-hand side 
fuzzy numbers are restricted by the following membership functions: 
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Van Hop (2007) formulated a FLP model, using superiority and inferiority measures. 
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Following Van Hop, the corresponding LP model is: 
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The interest rate constraints: 11 b
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~ ≥−  are linearised as: 
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The inflation constraints: 22 b
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~ ≥− π are similarly linearised as: 
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In addition we have the non-negativity bounds, 2,1j,0
inf

1j
inf

1j
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2j
sup

1j =≥=== λλλλ  

 
The third constraint, the unbounded financial variables and the non-negativity 
bounds of interest rate and inflation remain unchanged as in the deterministic model. 
 

The solutions are: (1) X1 = 1.4190, X2 = --1.4714, x3 = 1.5714, r = 0, π = 0  

 (2) X1 = 1.4333, X2 = -1.50, X3 = 1.50, r = 0, π = 0  
 
As we can see, Van Hop’s formulation leads to an optimal solution as well, despite 
the fact that no bounds are required in the financial assets.  
 
 
Conclusions 
 
 
Apart from the CLP that requires upper and lower bounds in the financial assets, 
when short selling is allowed, both the possibility and necessity constraints in the 
PLP model and the superiority and inferiority constraints in Van Hop’s FLP model 
lead to efficient and optimal solutions. Both these methods are strong candidates to 
the complex model suggested more than a decade ago by Luhandjula (1996).  
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