Bourioune, Tahar and Chiad, Faycal (2022): Estimation de l’IPC par les modèles non paramétriques : cas de l’Algérie. Published in: Revue Recherches et études en Développement , Vol. 9, No. 1 (June 2022): pp. 652-665.
Preview |
PDF
MPRA_paper_113783.pdf Download (1MB) | Preview |
Abstract
This work focuses on the estimation of the relative consumer price index in June 2022 in Algeria by different non-parametric models. The purpose of this work is to compare these different models from a performance point of view. The results reveal that the GRNN and RBFN models perform better.
Item Type: | MPRA Paper |
---|---|
Original Title: | Estimation de l’IPC par les modèles non paramétriques : cas de l’Algérie |
English Title: | CPI estimation by non parametric models: case of Algeria |
Language: | French |
Keywords: | IPC, GRNN, RBFN |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C13 - Estimation: General E - Macroeconomics and Monetary Economics > E3 - Prices, Business Fluctuations, and Cycles > E31 - Price Level ; Inflation ; Deflation P - Economic Systems > P4 - Other Economic Systems > P44 - National Income, Product, and Expenditure ; Money ; Inflation |
Item ID: | 113783 |
Depositing User: | faycal chiad |
Date Deposited: | 16 Jul 2022 16:28 |
Last Modified: | 16 Jul 2022 16:28 |
References: | Binner, J. (2006). Forecasting Euro inflation. applied economics 665-680. Binner, J., Tino, P., Tepper, J., & Anderson, R. (2009). Does money matter in forecasting inflation? Research Division, Federal Reserve Bank of St Louis, Working Paper . Box, G. &. (1976). Time Series Analysis, forecasty and control. Prentice Hall, Englewood Cliffs. Cuauhtémoc, L. (2015). Predictive accuracy comparison between neural networks and statistical regression for development effort of software projects. Applied Soft Computing V7 pp.434-449. Duzgun, R. (2010). GRNN for inflation forecasting. International Journal of Research of Finance and Enonomics , 51. Fa Long, L. (2011). Digital Front-End in wireless communication and broadcasting circuits an signal processing . Combridge University Press. Henri, C. (2007). Forecast thailand's rice export:statistical technique vs ANN. Computers & Industrial Engineering , 53, 4, 610-627. Howlet, R. &. (2001). Radial Basis Functions Networks 2: nex advances in design . Physica-Verlag. Ljung, L. (1987). System Identification theory for user . Prentice Hall, Englewood Cliffs. McNelis, P. &. (2004). Forecasting inflation with thick models and neural network. Working Paper Series , 352. Mehri, M. (2013). A comparison of NN models, FL and MLR for prediction of hatchability. RCSDA, Zabol University,Iran . Moshiri, S. &. (2000). nn versus econometrics models in forecasting inflation. Journal of forecasting , 19,201-207. Moshiri, S. (1997). Forecasting inflation using econometrics and ann models. Canada: thesis, Manitoba university. Nakamura, E. (2005). Inflation forecast using neural network. Economics Letters , PP.373-378. Neves, L. (2008). Forecasts inflation and NARMAX models. VII encontro brasileiro de finanças, , (p. Forecasts inflation and NARMAX models ). Norgaard, M. (2003). Neural network modeling and control of dynamic system:a practionner . Springer . ONS. (2020, Mai). Indice des Prix à la Consommation 2010_2019. Collections Statistiques N° 216/ 2020 Série E : Statistiques Economiques N° 103 , pp. 33-43. ONS. (2021, octobre). indices des prix à la consommation. collections statistiques , p. 7. Poo, J. R. (2003). Computer-aided introduction to econometrics. Springer. Refenes A.N., Z. A. (1994). stock performance using neural network a comparative study with regression models. Neural Network , vol 7, nr 2 pp.375-388. Specht, D. (1991). A Genera Neural Network,. IEEE Transactions on Neural Network , Vol 2 NR 6 Stock, J. &. (1999). forecasting inflation. Journal of monetary economics, , 44, 293-335. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/113783 |