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ABSTRACT 

Day-of-the-week persistence and seasonality of electricity prices in Spain, spanning 

01/01/2006 to 04/11/2021, are investigated by employing updated fractional persistence 

frameworks in nonlinear settings. The results show marginal higher persistence in electricity 

prices during the working days (Tuesday, Wednesday, Thursday and Friday), compared to 

weekend days. In all cases, electricity prices are mean-reverting with long-range dependence 

properties. Results also show that the monthly electricity price series contain no seasonal effect.   

Keywords: Electricity prices; Fractional persistence; Unit root; Day-of-the-week effect; 

seasonality; Spain. 
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I. Introduction 

In this paper, we investigate the day-of-the-week price persistence and seasonality in Spanish 

energy prices using an updated fractional persistence framework. We employ two recent 

nonlinear approaches, i.e. nonlinear I(d) frameworks recently proposed. The first is the Cuestas 

and Gil-Alana (2016) [CG2016] nonlinear I(d) method which is based on Chebyshev 

polynomial in time, while the second is the Gil-Alana and Yaya (2021) [GY2021] method that 

relies on Fourier-form nonlinearity, a mimic of Enders and Lee (2012), in the fractional 

persistence framework. These two nonlinear functions allow for the smooth modelling of 

structural breaks in the time series. Bai and Perron (2003) multiple break test considers a 

maximum of five instantaneous breaks to be detected and in reality, breaks could be more than 

five in a given long time series, so, this test is restrictive, and in reality, some breaks are 

smoothly changing with time. Enders and Lee (2012) have found that a model with 

https://www.sciencedirect.com/science/article/pii/S1059056020300836#!
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trigonometric function could have more power than the Bai-Perron break test in this sense in 

modelling as many multiple breaks in a smooth fashion. 

Fractional persistence allows for a given time series (i.e. energy price in this case) to be 

checked for the possibility of mean reversion or non-mean reversion. Another subset of the 

mean reversion case is long memory where a certain real value d lies in the interval i.e.,

0 0.5d  , where future values closely depend on the past lagged values since the 

autocorrelation function of the time series decay exponentially slowly, unlike the case of 

Autoregressive Moving Average (ARMA) process. Thus, this is the case of stationary mean 

reversion. Generally, mean reversion implies d lying in the range 0 1d  , including both 

stationary and nonstationary ranges. Thus, once the external shock is triggered to the time series 

process, there is the tendency for the series to revert to its mean level after a short time. The 

case of non-mean reversion is (1 2d  ), where it is unlikely for the series to revert to its 

mean level, even with as strong government and regulator policies, and if at all, it will take a 

very long time. These are the appealing properties of the fractional persistence framework, 

which makes it distinguishable among classical unit root tests in the literature. Meanwhile, the 

Dickey-Fuller-likes unit root test has been found to lack powers in the presence of fractional 

unit root alternatives (Lee and Schmidt, 1996).  

Energy pricing and its distribution, as it affects households and businesses is one of the 

major global discussions. The present work is gingered by the alarmingly rising electricity 

prices in Spain since July 2021 due to the global gas crisis. Findings here will therefore guide 

regulators and the government on the price dynamics of electricity in Spain.  

 

  

II. Nonlinear Fractional I(d) frameworks 

Following Granger and Joyeux (1980) and Hosking (1981), we define fractional integration in 

time series as, 
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( )1
d

t t
L x − =       (1) 

where L is the lag operator, i.e., Lqyt = yt-q, d is the fractional integration parameter operating 

on the differencing operator ( )1
d

L−  on the time series t
y  to produce a stable/stationary series 

t
  that has the properties of white noise. In some cases of highly autocorrelated series, oce can 

consider the possibility of Autoregressive [AR(1)] error disturbance, i.e. 

 1 1t t t
v   −= +       (2) 

where 1  is the AR(1) parameter for 1t
 −  which is the first lag of t

 , and t
v  is some noise 

process. Much recently, the applicability of the operator d (1) has gone beyond unit root testing 

of time series to testing persistence of series in terms of mean or non-mean reversions. By 

extending the above to using the deterministic term of a linear trend with constant,   and 

intercept,  , one obtains the Robinson (1994) fractional persistence modelling framework, 

, (1 ) , 1, 2, ...,d

t t t t
y t x L x t  = + + − = =               (3)  

which is estimated using the Ordinary Least Square (OLS) estimation method, i.e, 
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
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,         j = 2j/T,  

and * implies that the sums are taken over all frequencies that are bounded in the spectrum,  

with periodogram I(j) for t
  and =̂ *

2arg min ( )
T
 


.  

 The linear I(d) framework of Robinson (1994) is extended to the nonlinear I(d) 

framework in Cuestas and Gil-Alana (2016) by using the function ( )f t  which depends on 

unknown parameters ( ) 1, 2,...,
i

i m =  in the I(d) framework, 

( ) ( )

( )0 ,

1

1

                 ,     1,2,...,  1,...,

d

t t

m

i i T t

i

L y f t

t t i m

 

  
=

− = + +

 +  + = =
  (6) 

where 0  is the constant and i
  are the parameters of the mth order expansion of the Chebyshev 

polynomial  

  ( ) ( ), 2 cos 0.5 ,     1,2,..., 1,...,
i T

t i t T t i m = − = =                         (7) 

and 3.142 = . Then, in the absence of nonlinearity, the I(d) model in (6) is expressed with 

only a constant, if 1m = , the model becomes a linear I(d) model of Robinson (1994) with a 

linear trend. For 1m  , the model becomes nonlinear such that the higher the order of m , the 

higher the nonlinearity. We can re-express the model in (7), for a truncation order of m = 3. 

For simplicity of OLS estimation, (y7) in (6) is expressed as, 

* * * * *1 cos1 cos2 cos3
t t t

y = − − − −       (8) 
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where * (1 ) ,od

t t
y L y= −  *1 (1 ) 1 ,od

t t
L= −  ( )*cos1 (1 ) 2 cos 0.5od

L t T= − −   , 

( )*cos 2 (1 ) 2 cos 2 0.5od
L t T= − −    and ( )*cos3 (1 ) 2 cos 3 0.5od

L t T= − −   .  

As a follow-up to Cuestas and Gil-Alana (2016) method, Gil-Alana and Yaya (2021) 

considered using flexible Fourier fractional (FFF) form 

( ) ( ) ( )sin 2 cos 2
n n

k k k k

k k

f t j t T j t T   = +   in the I(d) structure in (6) to mimic the 

nonlinearity induced by function ( )f t , where n is the optimal FFF value, k
n j= ; k a particular 

frequency which could be fractional or unit; k
  and k

  determine the amplitude and 

displacement of the sine/cosine in the Fourier function. Thus, the nonlinear I(d) is, 

( ) ( ) ( )1 sin 2 cos 2    
n n

d

t k k k k t

k k

L y j t T j t T      
− = + + + 

 
              (9) 

Empirically, (9) can be re-expressed as, 

     * * * *

, ,1 sin cos
n n

t t t k k t k k t

k k

y   = − − −  ,                                         (10) 

where ( ) ( )0*

,sin 1 sin 2
d

k t k
L j t T= − , ( ) ( )0*

,cos 1 cos 2
d

k t k
L j t T= −  with 

*

t
y  and 

*1
t  defined  

in (7) above.  

 

III. Data and Results 

Daily historical spot prices of electricity for Spain, spanning 01/01/2006 to 04/11/2021, 

covering a total of 5788 data points, are obtained from the website of Iberian Energy Market 

Operator/ Operador del Mercado Ibérico de la Energía-Polo Portugués (OMIP) at 

https://www.omip.pt/en/electricity.  Plots of daily and monthly electricity prices are given in 

Figure 1. For daily prices, there are fluctuations over time and occasional price swings that are 

pronounced to both up and down prices. Between 2006 and June 2021, prices hover between 

https://www.omip.pt/en/electricity
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50 and 150 euro/MWh while prices started increasing astronomically in the middle of 20211. 

The average monthly pricing is superimposed on the daily price, and the essence of this is to 

check for possible monthly seasonal movement. By looking at the plot, the monthly seasonality 

is not observed.  

Figure 1: Plot of electricity prices in Spain based on daily energy auctions 
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 Table 1 presents the results of persistence using nonlinear smooth trend functions by 

employing the Chebyshev polynomial in time and Fourier function. In the case of the 

Chebyshev polynomial, the nonlinear trigonometric parameters, cos1, cos2 and cos3 are not 

significant, while in the case of Fourier function, the trigonometric parameter sink is only 

significant with the optimal Fourier frequency k = 0.46. For both the Chebyshev polynomial 

and Fourier function, fractional persistence values are 0.6739 and 0.6702, respectively, under 

white noise disturbance and each estimate with an upper CI bound of about 0.69. To check for 

the possible interference of unchecked serial correlations in the model residuals which could 

bias our results, we allow for an AR(1) error disturbance instead of the white noise error 

 
1 https://www.euronews.com/2021/10/28/why-europe-s-energy-prices-are-soaring-and-could-get-much-

worse\ 

https://www.euronews.com/2021/10/28/why-europe-s-energy-prices-are-soaring-and-could-get-much-worse
https://www.euronews.com/2021/10/28/why-europe-s-energy-prices-are-soaring-and-could-get-much-worse
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disturbance, with the specification given in (2). The results for both nonlinear I(d) are then re-

presented in the lower panel of Table 1. In this case, cos2 parameter in the Chebyshev function 

is found to be significant, while sink parameter in the Fourier function is also significant. For 

both nonlinear functions, the AR(1) parameter estimates are low, around 0.20, but this is 

significant at 5% level. The persistence values estimated for both nonlinear I(d) models are 

found to be lower compared to the corresponding values under the white noise error 

disturbances. These values are found to be 0.5601 and 0.5548, respectively, which is quite 

around 0.5 implying mean reversion with long-range dependence characteristics in the 

electricity prices. 

 

Table 1: Results based on nonlinear I(d) frameworks 

In bold are significant parameters at a 5% level of significance for one-sided t-test, while values of t-statistic are 

in parenthesis.  

a. White noise error disturbance 

Chebyshev polynomial in time Fourier function 

d  0.6739  

(0.6519, 0.6960) 
 

d  0.6702  

(0.6484, 0.6920) 
 

c  4.3549 

(0.202) 

c  55.6407 

(2.91) 

    
cos1  1.9496 

(0.159) 
sin

k  -71.3371 

(-2.68) 

    
cos 2  10.7374 

(1.24) 
cos

k  -20.7772 

(-1.21) 

    
cos 3  3.5145 

(0.522) 

k  0.46 

b. AR(1) error disturbance 

Chebyshev polynomial in time Fourier function 

d  0.5601  

(0.5327, 0.5875) 
 

d    0.5548  

(0.5236, 0.5822) 
 

c  5.4170 

(0.500) 

c  35.5051 

(11.2) 

    
cos1  -1.1613 

(-0.182) 
  sin

k  -49.4753 

(-3.56) 
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cos 2  11.7063 

(2.39) 
cos

k  -10.6573  

(-1.26) 

    
cos 3  -2.3742 

(-0.598) 

k 0.50 

    

AR(1) 0.2084 

(11.0) 

AR(1) 0.2118 

(39.7) 

 

 The analysis is extended by obtaining the day-of-the-week series persistence using the 

two nonlinear I(d) frameworks, and the results, as presented in Table 2 are only reported for 

the case of AR(1) error disturbance. In the upper panel of the results table for the case of 

Chebyshev polynomial I(d), it is found that none of the nonlinear parameters for the days-of-

the-week series (i.e. Monday – Friday) is significant while for Wednesday, Saturday and 

Sunday series, nonlinear parameters are significant. The AR(1) parameters are significant for 

Wednesday, Saturday and Sunday series. The persistence estimates for the seven series are 

0.65 (Monday), 0.73 (Tuesday), 0.78 (Wednesday), Friday (0.77), -0.30 (Saturday) and -0.39 

(Sunday). By looking at the results in the lower panel of the table for the Fourier function, with 

optimal Fourier frequency k recorded in the last column of the table, the significance of Fourier 

form parameters (sine and cosine) are observed. Thus, the results in Table 2 confirm the 

nonlinear nature of day-of-the-week in Spanish electricity prices. The persistence results, 

though, all in mean reverting ranges, are in the interval 0.62-0.77. The persistence on Monday, 

Saturday and Sunday are 0.64, 0.69 and 0.64, respectively while others (Tuesday - Friday) are 

in the range of 0.71-0.77.  

Table 2: Results of persistence for each day of the week with Chebyshev polynomial in time 

In bold are significant parameters at a 5% level of significance for one-sided t-test, while values of t-statistic are 

in parenthesis.  

Chebyshev polynomial in time 

Day d  AR(1) c  cos1  cos 2  cos 3  

Monday 0.6563 

(0.5716, 0.7410) 

0.0180 

(0.299) 

18.8074 

(0.884) 

-1.4340 

(-0.123) 

8.2163 

(0.996) 

-1.5559 

(-0.243) 
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Tuesday 0.7307 

(0.6535, 0.8079) 

-1.24 

(0.217) 

24.4815 

(0.867) 

-2.7505 

(-0.180) 

8.4563 

(0.833) 

-2.5285 

(-0.331) 

Wednesday 0.7833 

(0.7114, 0.8552) 

-0.1832 

(-3.77) 

25.6113 

(0.710) 

-5.3899 

(-0.280) 

8.2595 

(0.684) 

-3.3157 

(-0.373) 

Thursday --- --- --- --- --- --- 

Friday 0.7784 

(0.6990, 0.8578) 

-0.0560 

(-1.07) 

28.4877 

(0.456) 

-2.9122 

(-0.144) 

8.6224 

(0.670) 

-3.2657 

(-0.346) 

Saturday -0.3093 

(-0.3644, -0.2542) 

0.9919 

(0.158.0) 

6.0728 

(1.01) 

-2.5571 

(-0.444) 

13.5251 

(2.45) 

-1.0626 

(-0.195) 

Sunday -0.3911 

(-0.4474, -0.3348) 

0.9872 

(124.0) 

2.1566 

(0.853) 

-2.8419 

(-0.853) 

8.1349 

(2.29) 

-1.9550 

(-0.581) 

Fourier function 

Day d  AR(1) c  sin
k  cos

k  k  

Monday 0.6414 

(0.5567, 0.7260) 

0.0254 

(0.421) 

96.5035 

(2.87) 

-90.5852 

(-2.30) 

-62.3713 

(-2.28) 

0.34 

Tuesday 0.7165 

(0.6395, 0.7935) 

-0.0574 

(-1.09) 

74.6100 

(2.57) 

-86.3709 

(-2.35) 

-36.3699 

(-1.59) 

0.42 

Wednesday 0.7687 

(0.6964, 0.8410) 

-0.1760 

(-3.60) 

115.468 

(2.59) 

-115.820 

(-2.13) 

-79.8170 

(-2.20) 

0.36 

Thursday 0.7713 

(0.6966, 0.8459) 

-0.1235 

(-2.49) 

133.444 

(2.68) 

-128.972 

(-2.17) 

-93.7717 

(-2.27) 

0.35 

Friday 0.7649 

(0.6857, 0.8441) 

-0.0484 

(-0.922) 

77.1158 

(2.19) 

-95.1085 

(-2.23) 

-34.8309 

(-1.24) 

0.44 

Saturday 0.6902 

(0.6119, 0.7684) 

-0.0339 

(-0.627) 

69.6715 

(2.09) 

-75.1435 

(-1.78) 

-54.8357 

(-2.00) 

0.37 

Sunday 0.6282 

(0.5506, 0.7058) 

-0.0668 

(-1.21) 

30.1621 

(1.75) 

-43.4384 

(-2.08) 

-4.5923 

(-0.336) 

0.51 

 

To probe further for possible monthly seasonality, the monthly dataset is estimated by 

employing a seasonal AR model in the nonlinear I(d) frameworks. Thus, we re-specify (2)  as, 

12 12t t t
v   −= +                  (11) 

where 12  is the seasonal AR parameter in the case of monthly time series, and 12t
 −  is the lag 

12 of the resulting fractionally differenced series. Thus, 12  determines the monthly seasonal 

autoregression between the previous 12th observations (i.e 12t
 − ) and the current observations, 

t
 . The model in (11) is then analyzed with (8) and (10) to obtain results for the Chebyshev 

polynomial and Fourier function, respectively. The results of the Chebyshev polynomial 



 

2 

 

reported in the upper panel of the results table indicated non-significance of seasonal AR 

parameter with a very low coefficient (0.0816). Meanwhile, the fractional persistence estimate 

is computed as 0.9323 which is quite higher than that obtained for the case of daily pricing. 

Similar results are obtained in the case of the Fourier function presented in the last panel of 

Table 3, where the non-significance of the seasonal AR parameter with nonlinearity detected 

as cos
k  is found to be significant at the 5% level. 

 

Table 3: Results based on Seasonal AR(1) models 

a. Nonlinear Chebyshev polynomial with Seasonal AR 

d  0.9323 

(-0.5395, 2.4041) 
 

1.24 0.216 

c  -0.4151 -0.000 1.000 

cos1  -0.0632 -0.0922 0.927 

cos 2  -0.0028 -0.0041 0.997 

cos 3  0.1038 0.149 0.882 

Seasonal AR 0.0816 0.166 0.868 

b. Nonlinear/Fourier function with Seasonal AR 

d  0.9118 

(0.7824, 1.0412) 
 

13.8 0.000 

c  34296.5 2.50 0.013 

sin
k  0.0582 0.050 0.960 

cos
k  -34238.0 -2.42 0.016 

k  0.41   

Seasonal AR 0.0923 0.723 0.470 

 

 

IV. Concluding remarks  

Energy pricing and its distribution, as it affects households and businesses is one of the major 

global discussions. The present work is gingered by the alarmingly rising electricity prices in 

Spain since July 2021 due to the global gas crisis, thus the finding in the work guide regulators 

and the government to know the price dynamics of electricity in Spain. We employed updated 

fractional persistence frameworks in nonlinear settings in investigating day-of-the-week affect 

persistence and seasonality in the pricing from 01.01.2006 to 04.11.2021. Results obtained 
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indicated mean reversion in prices across all days of the week and there is a fair increase in 

persistence during the working days (Tuesday, Wednesday, Thursday and Friday) compared to 

weekend days. No evidence of seasonality is found in the monthly price series. It is hoped that 

the results obtained here will guide in making energy usage policy in Spain.    
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