

# Forecasting using Fuzzy Time Series

Chellai, Fatih

Department of Basic Education, Ferhat Abbas University

19 July 2022

Online at https://mpra.ub.uni-muenchen.de/113848/ MPRA Paper No. 113848, posted 23 Jul 2022 12:48 UTC

# Forecasting using Fuzzy Time Series

Fatih CHELLAI

Department of Basic Education, Ferhat Abbas University Sétif, Algeria.

Corresponding author: CHELLAI Fatih, fatih.chellai@univ-setif.dz; chellai.fatih@yahoo.com

"The human brain works as a binary computer and can only analyze the exact information-based zeros and ones (or black and white). Our heart is more like a chemical computer that uses fuzzy logic to analyze information that can't be easily defined in zeros and ones." **Naveen Jain** 

## Preface

This chapter is a very short introduction to Fuzzy Time Series (FTS) models. The aim is to present an overview of the concepts of fuzzy Logic, fuzzy set theory and fuzzy time series framework. Accordingly, the chapter has a full application dimension of the FTS models as a main vocation. The R program was used to fit and forecast the principal FTS models, where real datasets of road traffic accident in Algeria have been used. This chapter is organized as follows; first section presents the concept of fuzzy logic, second section is devoted to Fuzzy Time Series, where we defining fuzzy set, and universe of discourse. Third section summarizes the main models of fuzzy time series, precisely; we presented the (Song & Chissom, 1993) model, the (Chen, 1996) model, the Heuristic (Huarng, 2001) model, the (Abbasov & Mamedova, 2003) model, the (Chen & Hsu, 2004) model and the (Singh, 2008) model. Fourth section is a case application of these models on number of accidents in Algeria; the "AnalyzeTS" package of the R program was used to demonstrate the steps of estimation and forecasting.

# 1. Fuzzy Logic

Fuzzy logic (FL) is a multi-valued logic where the truth values of variables - instead of being true or false - are reels between 0 and 1. In this sense, it extends classical Boolean logic with partial truth values. The FL method imitates the way of decision making in a human which consider all the possibilities between digital values True and False. The fuzzy logic is considered as a support of decision making. As depicted by (Asli et al, 2017) "Both degrees of truth and probabilities range between 0 and 1 and hence may seem similar at first, but fuzzy logic uses degrees of truth as a mathematical model of vagueness, while probability is a mathematical model of ignorance".

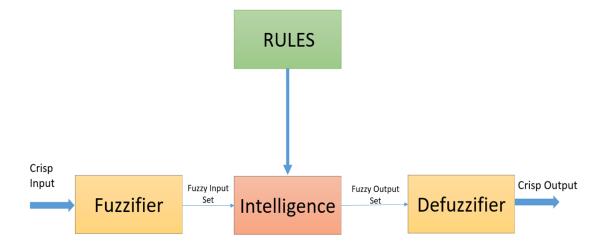



Fig.1: Fuzzy Logic Structure.

The diagram of a fuzzy system is shown in Figure 1. The system has as input a precise value  $(x_t)$ , the latter is fuzzified (transformed into degree of membership in the input fuzzy set, see Definition (1) below; then it is transmitted to the fuzzy inference engine. Using the fuzzy IF-THEN rules stored in the rule base, the inference engine produces a fuzzy value that will be defuzzified giving the result to be usable. Partitioning the crisp dataset (Figure 1), the identification of fuzzy logical relationships and the defuzzification play a very important role on the forecasting performance of the model, see (Bose & Kalyani, 2019).

In this context, the most well-known system used in fuzzy logic and is the Mamdani system, see (Mamdani, 1974). Briefly, the system uses the following steps: *first*, fuzzify all input values into fuzzy membership functions (Fuzzify in Fig.1), *second*, execute all applicable rules in the rulebase to compute the fuzzy output functions, *third*, De-fuzzify the fuzzy output functions to get "crisp" output values.

### 2. Fuzzy Time Series

In this section, we are trying to present fundamental concepts of fuzzy time series. For this purpose, the content is mainly based on the works conducted by (Chen, 1996; Chen & Hsu, 2004; Huarng, 2001). The main difference between the fuzzy time series and classical time series is that the values of the former are fuzzy sets while the values of the latter are real numbers.

#### 2.1. Fuzzy sets and Universe of Discourse

We put  $\Omega$  the universe of discourse that contains n elements as  $\Omega = \{u_1, u_2, ..., u_n\}$ , and we define a fuzzy set  $\mathcal{M}$  of U as:

$$\mathcal{M} = \left\{ \frac{u_{\mathcal{M}}(u_1)}{u_1}, \frac{u_{\mathcal{M}}(u_2)}{u_2}, \dots, \frac{u_{\mathcal{M}}(u_n)}{u_n} \right\}$$

With:  $u_{\mathcal{M}}(u_i)$  is the membership function of  $\Omega$ , taking values in the interval [0, 1], where  $1 \leq i \leq n$ . In relation with the universe of discourse  $\Omega$  (or the reference set), each element  $u_i$  has three possible situations,

- 1)  $u_i$  is called **not included** in the fuzzy set if (no member);
- 2)  $u_i$  *fully included* if (full member);
- 3) *u<sub>i</sub> partially included* if (fuzzy member)

In mathematics, fuzzy sets (or *uncertain sets*) are sets whose elements have degrees of membership. Fuzzy sets were introduced independently by Lotfi A. Zadeh in 1965 as an extension of the classical notion of set. Fuzzy relations, which are now used throughout fuzzy mathematics and have applications in several areas are special cases of L-relations when L is the unit interval [0, 1].




Fig2. Lotfi A. Zadeh (4 February 1921 – 6 September 2017), was mathematician, computer scientist, electrical engineer, artificial intelligence researcher, and professor of computer science at the University of California, Berkeley

#### 2.2. Fuzzy Time Series

Mathematically, we have subset,  $\mathcal{H}_t$ , (t = 1, 2, ...) of real numbers be the universe of discourse by which we define a fuzzy sets  $m_i(t)$  are defined. If  $\mathcal{M}(t)$  is a collection of :  $m_1(t), m_2(t), ...,$  then,  $\mathcal{M}(t)$  is called a Fuzzy time series (FTS) defined on  $\mathcal{H}_t$ . As cited by (Chen, 1996), fuzzy time series is a new concept in statistical modeling process which can be used to deal with forecasting problems in which historical data are linguistic values.

In literature according to time scale, we have two kinds of fuzzy time series (**FTS**) models: time variant and time invariant (Song & Chissom,1993). Accordingly,  $\mathcal{M}(t)$  is called a time-invariant fuzzy time series If :  $\forall t, i : R(t, t - i)$  is independent of t, where R(t, t - i) is the fuzzy relationship between F(t - i) and F(t), if not  $\mathcal{M}(t)$  is a time-variant fuzzy time series model, for this category, we found a few number of studies, see (Liu et al, 2010; Jiang et al, 2017)

Another decomposition of FTS models is when varying the values of i in R(t, t - i); (i.e.):  $\mathcal{M}(t)$  depends on :  $\mathcal{M}(t-1), \mathcal{M}(t-2), ..., \mathcal{M}(t-i)$ ,

| $\begin{cases} if \ i = 1, \\ if \ i > 1, \end{cases}$ | we have a first order FTS model |
|--------------------------------------------------------|---------------------------------|
| if i > 1,                                              | we have a high order FTS model  |

In this chapter, especially for the fuzzy time series part, we are focused mainly only on applications. For theoretical advanced, the references cited here are sufficient to give the reader a full overview of Fuzzy logic theory in general and FTS in particular.

## 3. Main models of FTS

The aim through this section is to present a short description of the well-know models of fuzzy time series. Specifically, the models proposed by (Song & Chissom, 1993), the (Chen, 1996) model, the Heuristic (Huarng, 2001) model, the (Abbasov & Mamedova, 2003) model, the (Chen & Hsu, 2004) model and the (Singh, 2008) model

#### 3.1. The (Song & Chissom, 1993) model

The method presented by (Song & Chissom, 1993) uses the following model for forecasting university enrollments:

$$A_i = A_{i-1} \circ R$$

Where  $A_{i-1}$  is the observation of period i - 1 represented by a fuzzy set, and  $A_i$  is the forecasted observation of period i represented by a fuzzy set, and "  $\circ$ " is the max-min composition operator, and R is a fuzzy relation indicating fuzzy relationships between fuzzy time series. As limitation of this method, (Chen, 1996) indicated that the forecasted method presented by (Song & Chissom, 1993) requires a large amount of computations to derive the fuzzy relation R, and the max-min composition operations of this method will take a large amount of computation time when the fuzzy relation R of is very big.

## 3.2. The (Chen, 1996) model

The new method proposed by (Chen, 1996) was essentially a modification of the (Song & Chissom, 1993) method. In his article (Chen, 1996) indicated that the proposed methods is more efficient than the one presented in (Song & Chissom, 1993); according to him, the optimality of his method is due to the fact that it uses simplified arithmetic operations rather than the complicated max-min composition operations presented in the equation cited in the (Song & Chissom, 1993) model.

The dataset used by (Chen, 1996) to illustrate the forecasting steps of the new method was the historical enrollments of the University of Alabama. Firstly, we define  $D_{min}$  and  $D_{max}$  be the minimum value and the maximum value of known historical data. Based on  $D_{min}$  and

 $D_{max}$  we define the universe of discourse U as define  $[D_{min} - D_1, D_{max} + D_2]$  where  $D_1$  and  $D_2$  are two proper positive numbers. Hereafter, we cite the steps of this algorithm,

- (1) Step 1: Partition the universe of discourse  $U = [D_{min} D_1, D_{max} + D_2]$  into even lengthy and equal length intervals  $u_1, u_2, ..., u_m$ .
- (2) Step 2: Define fuzzy sets  $A_1, A_2, \ldots, A_k$  on the universe of discourse U as follows:

$$\begin{array}{l} A_1 = a_{11}/\mu_1 + a_{12}/\mu_2 + \ldots + a_{1m}/\mu_m \,, \\ A_2 = a_{21}/\mu_1 + a_{22}/\mu_2 + \ldots + a_{2m}/\mu_m \,, \\ \vdots \\ A_k = a_{k1}/\mu_1 + a_{k2}/\mu_2 + \ldots + a_{km}/\mu_m \,, \end{array}$$
 Where  $a_{ij} \in [0,1], 1 \le i \le k$ , and  $1 \le j \le m$ 

- (3) *Step 3:* Divide the derived fuzzy logical relationships into groups based on the current states of the enrollments of fuzzy logical relationships.
- (4) *Step 4:* Calculate the forecasted outputs, where the calculations are carried out by respecting some principles cited by (Chen, 1996).

#### 3.3. The Heuristic (Huarng, 2001) model

In fact, the Heuristic model (or approach) proposed by (Huarng, 2001) was not a new model, but it was just an improvement in terms of estimating optimal length of intervals in defining the fuzzy sets. For this purpose, (Huarng, 2001) suggested two approaches to determine the length of the intervals; the first approach was called *"Algorithm for distribution-based length"*, the second approach was called *"Algorithm for average-based length"*. The empirical results showed that the proposed approaches were more effective an accurate (in term of forecasting) than the other unreason methods as that followed by (Song & Chissom, 1993) and many other researchers after.

#### 3.4. The (Abbasov & Mamedova, 2003) model

This method was developed by to forecast the pattern of population dynamic, as showed in the original article, the steps to be followed in forecasting are summarize hereafter,

- Definition of universal set U containing the interval between the least and greatest variations in total population.
- **2.** Division of the universal set U into equal-length intervals containing variation values corresponding to different population growth rates.

- 3. The qualitative description of variation values of total population as a linguistic variable, that's to say, determining the respective values of linguistic variable or the set of fuzzy sets F(t).
- 4. Fuzzifying the input data or the conversion of numerical values into fuzzy values. This operation enables us to reflect the corresponding numerical/qualitative values of qualitative representations of population growth rates in the value of membership function.
- 5. Selection of parameter W>1, corresponding to the time period prior to the concerned year, calculation of fuzzy relationships matrix Pw(τ) and forecasting of population growth in the next year.
- 6. Defuzzifying the obtained results or conversion of fuzzy values into qualitative values.

## 3.5. The (Chen & Hsu, 2004) model

First, the proposed method defines the universe of discourse and partitions the universe of discourse into some even and equal length intervals. Then, it gets the statistical distributions of the historical enrollment data in each interval and re-divided each interval. Then, it defines linguistic values represented by fuzzy sets based on the re-divided intervals and fuzzify the historical enrollments to get fuzzified enrollments. Then, it establishes fuzzy logical relationships based on the fuzzified enrollments. Finally, it uses a set of rules to determine whether the trend of the forecasting goes up or down and to forecast the enrollments. Assume that we want to forecast the enrollment of year n, then the "difference of differences" of the enrollments between years n-1 and n-2 and between years n-2 and n-3 = (the enrollment of year n-1 - the enrollment of year n-2) - (the enrollment of year n-2) - the enrollment of year n-3)

## 3.6. The (Singh, 2008) model

This model was proposed by (Singh, 2008) to cope up with the situation of high uncertainty having large fluctuations in the consecutive values of historical time series. Briefly, the steps to fit and forecast time series with this method are described as follows,

(1) Define the Universe of discourse, U based on the range of available historical time series data, by rule: U = [Dmin - D1, Dmax + D2] where D1 and D2 are two proper positive numbers.

(2) Partition the Universe of discourse U into equal length of intervals:  $u_1, u_2, ..., u_m$ . The number of intervals will be in accordance with the number of linguistic variables (fuzzy sets)  $A_1, A_2, ..., A_m$  to be considered.

(3) Construct the fuzzy sets  $A_i$  in accordance with the intervals in Step 2 and apply the triangular membership rule to each interval in each fuzzy set so constructed.

(4) Fuzzify the historical data and establish the fuzzy logical relationships by the rule: If  $A_i$  is the fuzzy production of year n and  $A_j$  is the fuzzify production of year n + 1, then the fuzzy logical relation is denoted as  $A_i \rightarrow A_j$ . Here  $A_i$  is called current state and  $A_j$  is next state.

(5) Rules for forecasting.

#### 3.7. Accuracy comparison criterion

As in classical (no-fuzzy time series), the performance and forecast accuracy of the fuzzy time series models is measured and evaluated in terms of the well-known accuracy statistics: ME – Mean Error, RMSE – Root Mean Squared Error, MAE – Mean Absolute Error, MPE – Mean Percentage Error, MAPE – Mean Absolute Percentage Error. However, the default criterion that we used through this chapter was the Root Mean Square Errors (RMSE). The formula of RMSE is defined as:

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (\hat{y}_i - y_i)^2}{n}} \quad ; \quad U = \frac{\sqrt{\sum_{t=1}^{n-1} \left(\frac{\hat{y}_{i+1} - y_i}{y_i}\right)^2}}{\sqrt{\sum_{t=1}^{n-1} \left(\frac{y_{i+1} - y_i}{y_i}\right)^2}}$$

With:  $\hat{y}_i$ : are predicted values, and  $y_i$ : observed values. Sometimes, for Fuzzy Time Series models, we can deal with the Theil's U statistics; this statistic takes equals 1 under the naïve forecasting method. If U is less than one, this indicate greater forecasting accuracy of the proposed model than the naïve forecasts, and U can be greater than one, which indicate the opposite of the second case.

## 4. Application Estimation and Prediction for Fuzzy models With R program

In this section, we aim to show in as simple way the steps to fit and forecast dynamic of variables using the FTS models with the R programs. For this purpose, a time series of number of road traffic accidents in Algeria over the period (2016 to 2021) was used. In the R

program, the first step is to load the necessary packages to fit any model you want to work with. In our case, main packages that work with time series framework are gathered by (Hyndman & Killick, 2022) in one link, and the user can simply execute this command to install all the core packages.

#### ctv::install.views("TimeSeries", coreOnly = TRUE)

And the command in R program "fuzzy.ts1" is to estimate the (Chen, 1996) model, the Heuristic (Huarng, 2001) model, the (Abbasov & Mamedova, 2003) model, the (Chen & Hsu, 2004) model and the (Singh, 2008),

fuzzy.ts1(ts, n = 5, D1 = 0, D2 = 0, type = c("Chen", "Singh", "Heuristic", "Chen-Hsu"), bin = NULL, trace = FALSE, plot = FALSE, grid = FALSE)

We can rewrite the explanation of each element in this command as it was indicated in the tutorial of the "AnalyzeTS" package developed by (Tran et al, 2016)

| ts      | The name of the univariate time series                                      |
|---------|-----------------------------------------------------------------------------|
| n       | Number of fuzzy set.                                                        |
| D1 , D2 | Two proper positive numbers (see the definitions of the models above)       |
| type    | Type of the model                                                           |
| trace   | It is recommended to let trace=TRUE to print all of calculation results out |
|         | to screen                                                                   |

## 4.1. Application of FTS models to forecast the number of Road Traffic Accident in Algeria

In this application, we want to model and forecast the trajectories of the number of roads traffic accident in Algeria. The dataset is provided by the DNSR (Délégation Nationale de la Surété Routière). The dataset was used previously by (Chellai, 2022) to fit hybrid models, and we suggest readers to read this study for more detail and information about the data structure and forecasting results. Hereafter, we put the figure showed the trajectories of number of accidents over the period (2015.2020)

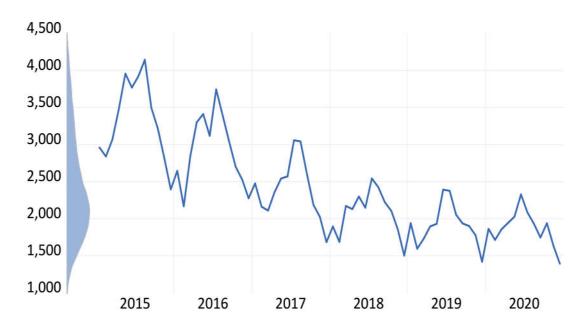



Fig3. Evolution of number of accidents over the period (2015-2020) in Algeria

Over the study period we can see a decreasing in number of accidents, there is a seasonality component in the time series where the months of summer (especially June and July) recorded the higher number of accidents. As indicated above, we want to go forward to fit the Fuzzy Time Series on this dataset, and in the end we will do a comparison amongst the FTS models.

#### Step 1: Determination of Universe of Discourse

We define the universe of discourse  $\Omega$  as an interval containing all observations.  $\Omega = [Min(y_t) - d_1; Max(y_t) + d_2]$ . For the "number of accidents" dataset, the smallest number ever recorded was 1398 accidents, so  $Min(y_t) = 1398$  and the maximum monthly number of accidents over the study period was 4146 accidents, so  $Max(y_t) = 4146$ . As cited above, the values of  $d_1$  and  $d_2$  are arbitrarily selected, .we put,  $d_1 = 18$  and  $d_2 = 14$ . Thus, the universe of discourse of the dataset would be defined as:  $\Omega = [1380, 4160]$ .

#### Step 2: Definition of Fuzzy Sets

The challenge in working with FTS is how to determine the number of fuzzy sets of the universe of discourse. The universe of discourse:  $\Omega = [1380, 4160]$  is divided into equal sub-intervals according to the well known formula in statistics,  $k = 1 + 3.32 * \log(T)$ ; With, k: number of sub-intervals desired and T: number of observations, T = 72 observations, so,  $k = 1 + 3.32 * \log(72) \approx 15$ .

Table 1: Fuzzy Sets

| id | set | dow      | up       | mid      | num |
|----|-----|----------|----------|----------|-----|
| 1  | A1  | 1380     | 1565.333 | 1472.667 | 3   |
| 2  | A2  | 1565.333 | 1750.667 | 1658     | 7   |
| 3  | A3  | 1750.667 | 1936     | 1843.333 | 9   |
| 4  | A4  | 1936     | 2121.333 | 2028.667 | 10  |
| 5  | A5  | 2121.333 | 2306.667 | 2214     | 9   |
| 6  | A6  | 2306.667 | 2492     | 2399.333 | 7   |
| 7  | A7  | 2492     | 2677.333 | 2584.667 | 6   |
| 8  | A8  | 2677.333 | 2862.667 | 2770     | 4   |
| 9  | A9  | 2862.667 | 3048     | 2955.333 | 3   |
| 10 | A10 | 3048     | 3233.333 | 3140.667 | 4   |
| 11 | A11 | 3233.333 | 3418.667 | 3326     | 3   |
| 12 | A12 | 3418.667 | 3604     | 3511.333 | 2   |
| 13 | A13 | 3604     | 3789.333 | 3696.667 | 2   |
| 14 | A14 | 3789.333 | 3974.667 | 3882     | 2   |
| 15 | A15 | 3974.667 | 4160     | 4067.333 | 1   |

Source: Author calculation based on R outputs

To estimate the (Chen, 1996), (Singh, 2008), (Huarng, 2001) and (Chen & Hsu, 2004) models, the command below is used in R. as showed we select in "type" the appropriate model.

fuzzy.ts1(accident, n = 15, D1 = 18, D2 = 14, type = c("Chen", "Singh", "Heuristic", "Chen-Hsu"), bin = NULL, trace = TRUE, plot = TRUE, grid = TRUE)

According to these sub-intervals and the function of membership- see Definition (1) - , we define the fuzzy sets  $\mathcal{M}_i, i: 1, 2, ..., 15$ , as:

*Note1:* in R package, to fit the (Chen & Hsu, 2004) model, we have some specific commands as below, first, we execute the command

A= fuzzy.ts1(accident,n=15,type="Chen-Hsu", plot=1) # here you can change the name of time series and the number of fuzzy set.

Then, we execute the second command as:

Finally, we execute the final command to obtain the estimation of the model as

Chen-Hsu= fuzzy.ts1(accident,type="Chen-Hsu",bin=b,plot=1,trace=1)

Step3. Fuzzification of original time series (number of accidents)

This step consist in transforming the original time series to fuzzy series, this was indicated in definition (1),  $u_i$  are the sub-intervals, while numbers in nominator of fuzzy sets  $m_i$  denote membership degrees of  $u_i$  to  $m_i$ , taking values in the interval [0,1]. The results for this application is summarize in appendix for each observation (2015-Feb to 2020-Dec)

#### Step4: Definition of fuzzy logic relationships

In this step, fuzzy logical relationships are defined between the fuzzyfied data, and then, fuzzy relationship groups are formed.

| "A1->A3,A4"          | "A2->A1,A2,A3,A4,A5" | "A3->A2,A3,A4,A6" |  |
|----------------------|----------------------|-------------------|--|
| "A4->A2,A3,A4,A6"    | "A5->A4,A5,A6,A7,A8" | "A6->A4,A5,A6,A7" |  |
| "A7->A5,A6,A7,A10"   | "A8->A6,A7,A10,A11"  | "A9->A7,A8"       |  |
| "A10->A8,A9,A12,A13" | "A11->A9,A10,A11"    | "A12->A10,A14"    |  |
| "A13->A11,A14"       | "A14->A13,A15"       | "A15->A12"        |  |

Table 2: Fuzzy relationships of the 15 fuzzy sets

Source: Author calculates using R

Before to summarize the estimates of each model, the implementation of the (Abbasov & Mamedova, 2010) has some specific feature and commands in R, we put two of these commands as notes, the first one is about the principal command to fit and estimate the models,

**Note2:** When we fit the (Abbasov & Mamedova, 2010) model in R package, there is as specific command different from those in "fuzzy.ts1"

The second command in this model allows estimating (using simulation) the best or the optimal C value. Specifically, this estimation is based on some criterion of accuracy (of forecasting), such as: to "ME", "MAE", "MPE", "MAPE", "MSE" (as default), or "RMSE".

#### Note3: working with the (Abbasov & Mamedova, 2004) model

In R program, the command below is used

GDOC(accident, n = 15, w = 7, D1 = 18, D2 = 14, error = 1e-06, k = 500, r = 13, CEF = "MSE", type = "Abbasov-Mamedova", show.complete = TRUE)

However, the formula proposed by (Abbasov & Mamedova, 2004) was,

$$\mu_{A_i}(\mu_i) = \frac{1}{1 + \left[C \cdot \left(U - \mu_m^i\right)\right]^2}$$

According to the authors of this method," *C* is chosen in such a way that it ensures the conversion of definite quantitative values into fuzzy values or their belonging to the interval"

#### Step5: Forecasting and Select best Fuzzy Time series Models

Figure4 illustrates the actual and forecasted values of number of accidents using four fuzzy time series models. In the same point, Table 3 summarizes the accuracy measures of forecasting of these models. Based on accuracy measures, it's seems that the Singh model outperforms the other models.

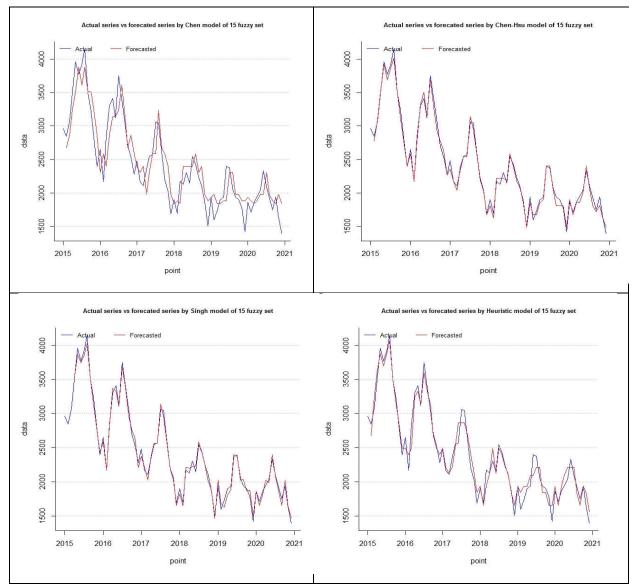



Fig4. Actual values and forecasted values of the time series by the four FTS models

The Sing model recorded the lowest values of the accuracy measures (ME, MAE...), the second optimal model that fit better the dataset was the (Chen & Hsu, 2004) model, except the Mean Errors (ME) and Mean Percentage Errors (MPE) indicators, we see that these two models have almost the level of accuracy.

| Models                      | ME     | MAE    | MPE    | MAPE  | MSE      | RMSE   | U     |
|-----------------------------|--------|--------|--------|-------|----------|--------|-------|
| Chen,(1996)                 | -33.61 | 222.31 | -3.043 | 9.69  | 71584.26 | 267.55 | 0.879 |
| Heuristic Huarng,<br>(2001) | -8.037 | 109.36 | -0.98  | 4.95  | 18231.37 | 135.02 | 0.444 |
| Abbasov –<br>Manedova(2010) | -28.82 | 261.50 | -2.013 | 11.18 | 94860.76 | 307.99 | 1.003 |
| Chen & Hsu,                 |        |        |        |       |          |        |       |
| (2004)                      | 21.49  | 54.80  | 0.843  | 2.38  | 4423.37  | 66.51  | 0.218 |
| Singh,(2008)                | 9.02   | 54.29  | 0.246  | 2.42  | 3974.37  | 63.04  | 0.205 |

 Table 3:
 Select optimal fuzzy time series models

**Source:** Own calculates using R program

# Conclusions

This chapter is a practical guide that can help you to understand the idea of the Fuzzy Time Series. Furthermore, it is a pure practical guide to fit the FTS models with R program. We hope it would be beneficial for students, researchers and even professionals in this area of research. As a limitation of this approach is that require higher subjectivity, particularly during the fuzzifcation process: number of fuzzy sets, lengths of fuzzy sets.

# Appendix

| Table the change fuzzy | of original time series |
|------------------------|-------------------------|
|------------------------|-------------------------|

| Obs                                   |                              |                             |                             | Estima                      | ted Mem                     | bership I                   | Function                    | for each                    | observa                     | tions (20                    | 15-Feb, 2                    | 020-Dec)                     |                              |                              |                                |
|---------------------------------------|------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|--------------------------------|
| [2]<br>"A[201<br>5                    | {(0.800<br>021333<br>191/u1) | (0.8561<br>511821<br>20/u2) | (0.9071<br>995126<br>52/u3) | (0.9498<br>545914<br>57/u4) | (0.9808<br>574968<br>14/u5) | (0.9975<br>425859<br>82/u6) | (0.9983<br>678139<br>42/u7) | (0.9832<br>549228<br>50/u8) | (0.9536<br>073327<br>84/u9) | (0.9119<br>984698<br>36/u10) | (0.8616<br>526313<br>07/u11) | (0.8058<br>979343<br>03/u12) | (0.7477<br>377039<br>98/u13) | (0.6896<br>043747<br>28/u14) | (0.63328<br>4040872<br>/u15)}" |
| Feb]=<br>[3]<br>"A[201<br>5           | {(0.579<br>997868<br>327/u1) | (0.6333<br>247329<br>94/u2) | (0.6896<br>469151<br>47/u3) | (0.7477<br>810041<br>14/u4) | (0.8059<br>404321<br>85/u5) | (0.8616<br>922962<br>08/u6) | (0.9120<br>329163<br>13/u7) | (0.9536<br>340729<br>63/u8) | (0.9832<br>717409<br>91/u9) | (0.9983<br>731830<br>67/u10) | (0.9975<br>359963<br>10/u11) | (0.9808<br>395724<br>96/u12) | (0.9498<br>269481<br>26/u13) | (0.9071<br>644135<br>07/u14) | (0.85611<br>1120126<br>/u15)}" |
| Mar]=<br>[4]<br>"A[201<br>5           | {(0.482<br>822153<br>166/u1) | (0.5283<br>077850<br>99/u2) | (0.5777<br>875266<br>93/u3) | (0.6309<br>673522<br>63/u4) | (0.6871<br>812771<br>63/u5) | (0.7452<br>696980<br>78/u6) | (0.8034<br>734557<br>44/u7) | (0.8593<br>869004<br>94/u8) | (0.9100<br>271440<br>97/u9) | (0.9520<br>722986<br>01/u10) | (0.9822<br>830613<br>86/u11) | (0.9980<br>472329<br>82/u12) | (0.9979<br>037092<br>21/u13) | (0.9818<br>661015<br>25/u14) | (0.95141<br>9624903<br>/u15)}" |
| Apr]=<br>[5]<br>"A[201<br>5           | {(0.456<br>122976<br>361/u1) | (0.4990<br>509024<br>98/u2) | (0.5460<br>184253<br>00/u3) | (0.5969<br>078545<br>56/u4) | (0.6513<br>024887<br>19/u5) | (0.7083<br>691447<br>71/u6) | (0.7667<br>384047<br>84/u7) | (0.8244<br>143720<br>98/u8) | (0.8787<br>634088<br>95/u9) | (0.9266<br>404677<br>33/u10) | (0.9646<br>962742<br>05/u11) | (0.9898<br>557721<br>73/u12) | (0.9998<br>753211<br>02/u13) | (0.9938<br>133034<br>85/u14) | (0.97224<br>2728291<br>/u15)}" |
| May]=<br>[6]<br>"A[201<br>5           | {(0.842<br>133534<br>417/u1) | (0.8947<br>902012<br>70/u2) | (0.9399<br>161474<br>69/u3) | (0.9741<br>907756<br>86/u4) | (0.9947<br>424974<br>25/u5) | (0.9996<br>984898<br>24/u6) | (0.9885<br>897748<br>07/u7) | (0.9624<br>581180<br>33/u8) | (0.9236<br>215007<br>34/u9) | (0.8751<br>916077<br>65/u10) | (0.8205<br>173379<br>86/u11) | (0.7627<br>162021<br>93/u12) | (0.7043<br>801035<br>39/u13) | (0.6474<br>602294<br>47/u14) | (0.59328<br>5620121<br>/u15)}" |
| Jun]=<br>[7]<br>"A[201<br>5 Jul]=     | {(0.624<br>776121<br>455/u1) | (0.6806<br>944125<br>83/u2) | (0.7386<br>469805<br>20/u3) | (0.7969<br>464913<br>71/u4) | (0.8532<br>597281<br>91/u5) | (0.9046<br>607024<br>75/u6) | (0.9478<br>479632<br>78/u7) | (0.9795<br>468175<br>62/u8) | (0.9970<br>457655<br>82/u9) | (0.9987<br>318757<br>36/u10) | (0.9844<br>452821<br>63/u11) | (0.9555<br>157224<br>17/u12) | (0.9144<br>662850<br>88/u13) | (0.8645<br>008884<br>95/u14) | (0.80895<br>4412750<br>/u15)}" |
| [8]<br>"A[201<br>5<br>Aug]=           | {(0.584<br>592662<br>467/u1) | (0.6382<br>197610<br>31/u2) | (0.6947<br>590024<br>79/u3) | (0.7529<br>770900<br>72/u4) | (0.8110<br>304751<br>27/u5) | (0.8664<br>302959<br>45/u6) | (0.9161<br>313050<br>64/u7) | (0.9567<br>947376<br>28/u8) | (0.9852<br>314581<br>65/u9) | (0.9989<br>534952<br>08/u10) | (0.9966<br>817573<br>91/u11) | (0.9786<br>315911<br>67/u12) | (0.9464<br>635769<br>66/u13) | (0.9029<br>195279<br>92/u14) | (0.85128<br>3979471<br>/u15)}" |
| [9]<br>"A[201<br>5<br>Sep]=           | {(0.999<br>269732<br>569/u1) | (0.9864<br>730767<br>18/u2) | (0.9588<br>481293<br>49/u3) | (0.9188<br>240503<br>08/u4) | (0.8695<br>642419<br>67/u5) | (0.8144<br>125385<br>23/u6) | (0.7564<br>407596<br>03/u7) | (0.6981<br>747094<br>93/u8) | (0.6414<br>961039<br>42/u9) | (0.5876<br>719583<br>08/u10) | (0.5374<br>531510<br>82/u11) | (0.4911<br>955680<br>42/u12) | (0.4489<br>751636<br>79/u13) | (0.4106<br>836206<br>28/u14) | (0.37610<br>1299668<br>/u15)}" |
| [10]<br>"A[201<br>5<br>Oct]=          | {(0.895<br>302276<br>436/u1) | (0.9403<br>325077<br>80/u2) | (0.9744<br>783840<br>52/u3) | (0.9948<br>759368<br>09/u4) | (0.9996<br>652221<br>13/u5) | (0.9883<br>929707<br>81/u6) | (0.9621<br>159274<br>24/u7) | (0.9231<br>630612<br>91/u8) | (0.8746<br>513368<br>87/u9) | (0.8199<br>294000<br>51/u10) | (0.7621<br>104939<br>95/u11) | (0.7037<br>801924<br>17/u12) | (0.6468<br>829612<br>08/u13) | (0.5927<br>418019<br>49/u14) | (0.54215<br>2422863<br>/u15)}" |
| [11]<br>"A[201<br>5                   | {(0.952<br>640311<br>477/u1) | (0.9826<br>441363<br>79/u2) | (0.9981<br>686654<br>94/u3) | (0.9977<br>739784<br>49/u4) | (0.9814<br>975058<br>82/u5) | (0.9508<br>454717<br>72/u6) | (0.9084<br>600074<br>74/u7) | (0.8575<br>915612<br>99/u8) | (0.8015<br>565665<br>65/u9) | (0.7433<br>214788<br>89/u10) | (0.6852<br>707205<br>49/u11) | (0.6291<br>422511<br>73/u12) | (0.5760<br>773418<br>39/u13) | (0.5267<br>276322<br>64/u14) | (0.48137<br>6783556<br>/u15)}" |
| Nov]=<br>[12]<br>"A[201<br>5          | {(0.962<br>287193<br>969/u1) | (0.9884<br>915757<br>93/u2) | (0.9996<br>820733<br>31/u3) | (0.9948<br>094281<br>65/u4) | (0.9743<br>347653<br>87/u5) | (0.9401<br>244740<br>05/u6) | (0.8950<br>463400<br>74/u7) | (0.8424<br>200622<br>33/u8) | (0.7854<br>991076<br>47/u9) | (0.7271<br>037213<br>40/u10) | (0.6694<br>393550<br>50/u11) | (0.6140<br>699434<br>90/u12) | (0.5619<br>888623<br>48/u13) | (0.5137<br>335332<br>28/u14) | (0.46950<br>6021827<br>/u15)}" |
| Dec]=<br>[13]<br>"A[201<br>6          | {(0.567<br>514085<br>909/u1) | (0.6199<br>887817<br>98/u2) | (0.6756<br>674454<br>17/u3) | (0.7334<br>993878<br>69/u4) | (0.7918<br>526032<br>26/u5) | (0.8484<br>506491<br>24/u6) | (0.9004<br>137139<br>89/u7) | (0.9444<br>598575<br>04/u8) | (0.9772<br>917265<br>39/u9) | (0.9961<br>254692<br>67/u10) | (0.9992<br>332982<br>82/u11) | (0.9863<br>207298<br>52/u12) | (0.9585<br>938323<br>16/u13) | (0.9184<br>892163<br>99/u14) | (0.86917<br>3609751<br>/u15)}" |
| Jan]=<br>[14]<br>"A[201<br>6          | {(0.980<br>243645<br>679/u1) | (0.9973<br>136260<br>43/u2) | (0.9985<br>454244<br>27/u3) | (0.9838<br>222359<br>41/u4) | (0.9545<br>127976<br>25/u5) | (0.9131<br>669533<br>87/u6) | (0.8629<br>995758<br>19/u7) | (0.8073<br>421308<br>05/u8) | (0.7492<br>099275<br>38/u9) | (0.6910<br>513179<br>53/u10) | (0.6346<br>685042<br>94/u11) | (0.5812<br>585319<br>18/u12) | (0.5315<br>168135<br>96/u13) | (0.4857<br>587177<br>86/u14) | (0.44403<br>2697638<br>/u15)}" |
| Feb]=<br>[15]<br>"A[201<br>6          | {(0.374<br>647194<br>580/u1) | (0.4090<br>709670<br>67/u2) | (0.4471<br>925197<br>70/u3) | (0.4892<br>350861<br>55/u4) | (0.5353<br>133102<br>35/u5) | (0.5853<br>612846<br>04/u6) | (0.6390<br>378831<br>94/u7) | (0.6956<br>123727<br>87/u8) | (0.7538<br>430611<br>43/u9) | (0.8118<br>768702<br>37/u10) | (0.8672<br>156737<br>36/u11) | (0.9168<br>074934<br>75/u12) | (0.9573<br>121482<br>99/u13) | (0.9855<br>467499<br>47/u14) | (0.99903<br>7858829<br>/u15)}" |
| Mar]=<br>[16]<br>"A[201<br>6          | {(0.460<br>691101<br>527/u1) | (0.5040<br>664019<br>57/u2) | (0.5514<br>797035<br>32/u3) | (0.6027<br>854276<br>58/u4) | (0.6575<br>266560<br>15/u5) | (0.7148<br>163797<br>83/u6) | (0.7732<br>191200<br>25/u7) | (0.8306<br>667201<br>06/u8) | (0.8844<br>594730<br>44/u9) | (0.9314<br>110159<br>39/u10) | (0.9681<br>763437<br>16/u11) | (0.9917<br>451879<br>90/u12) | (0.9999<br>986388<br>90/u13) | (0.9921<br>587609<br>58/u14) | (0.96896<br>4955757<br>/u15)}" |
| Apr]=<br>[17]<br>"A[201<br>6          | {(0.650<br>516453<br>215/u1) | (0.7075<br>536395<br>88/u2) | (0.7659<br>168858<br>05/u3) | (0.8236<br>194368<br>14/u4) | (0.8780<br>361359<br>10/u5) | (0.9260<br>274450<br>19/u6) | (0.9642<br>439807<br>73/u7) | (0.9896<br>029836<br>52/u8) | (0.9998<br>454361<br>15/u9) | (0.9940<br>091718<br>83/u10) | (0.9726<br>459946<br>25/u11) | (0.9376<br>960478<br>24/u12) | (0.8920<br>701873<br>88/u13) | (0.8390<br>976474<br>79/u14) | (0.78201<br>4418415<br>/u15)}" |
| May]=<br>[18]<br>"A[201<br>6          | {(0.903<br>951314<br>925/u1) | (0.9472<br>847319<br>36/u2) | (0.9791<br>755206<br>11/u3) | (0.9968<br>997205<br>13/u4) | (0.9988<br>248925<br>02/u5) | (0.9847<br>685185<br>77/u6) | (0.9560<br>397123<br>13/u7) | (0.9151<br>473124<br>06/u8) | (0.8652<br>892929<br>52/u9) | (0.8098<br>021905<br>09/u10) | (0.7517<br>213912<br>44/u11) | (0.6935<br>222904<br>37/u12) | (0.6370<br>346349<br>18/u13) | (0.5834<br>795888<br>13/u14) | (0.53357<br>1614242<br>/u15)}" |
| Jun]=<br>[19]<br>"A[201<br>6 Jul]=    | {(0.391<br>018951<br>423/u1) | (0.4272<br>167103<br>45/u2) | (0.4672<br>312004<br>95/u3) | (0.5112<br>402157<br>13/u4) | (0.5592<br>805848<br>55/u5) | (0.6111<br>651558<br>04/u6) | (0.6663<br>776419<br>00/u7) | (0.7239<br>524182<br>27/u8) | (0.7823<br>587973<br>26/u9) | (0.8394<br>264493<br>43/u10) | (0.8923<br>653141<br>20/u11) | (0.9379<br>376172<br>66/u12) | (0.9728<br>149825<br>61/u13) | (0.9940<br>907171<br>99/u14) | (0.99983<br>1893819<br>/u15)}" |
| [20]<br>"A[201<br>6<br>Aug]=          | {(0.932<br>537384<br>768/u1) | (0.9689<br>873561<br>78/u2) | (0.9921<br>704248<br>93/u3) | (0.9999<br>984788<br>91/u4) | (0.9917<br>332193<br>21/u5) | (0.9681<br>536808<br>34/u6) | (0.9313<br>796241<br>05/u7) | (0.8844<br>217727<br>83/u8) | (0.8306<br>251806<br>83/u9) | (0.7731<br>759484<br>09/u10) | (0.7147<br>733479<br>80/u11) | (0.6574<br>850539<br>63/u12) | (0.6027<br>461011<br>91/u13) | (0.5514<br>431346<br>79/u14) | (0.50403<br>2799752<br>/u15)}" |
| [21]<br>"A[201<br>6<br>Sep]=          | {(0.933<br>004549<br>855/u1) | (0.9693<br>224845<br>85/u2) | (0.9923<br>443664<br>29/u3) | (0.9999<br>950122<br>47/u4) | (0.9915<br>526752<br>09/u5) | (0.9678<br>128657<br>60/u6) | (0.9309<br>080760<br>34/u7) | (0.8838<br>558210<br>19/u8) | (0.8300<br>018526<br>84/u9) | (0.7725<br>283155<br>89/u10) | (0.7141<br>279481<br>19/u11) | (0.6568<br>611940<br>82/u12) | (0.6021<br>564325<br>80/u13) | (0.5508<br>948595<br>62/u14) | (0.50352<br>9033303<br>/u15)}" |
| [22]<br>"A[201<br>6<br>Oct]=          | {(0.925<br>865800<br>848/u1) | (0.9641<br>245309<br>13/u2) | (0.9895<br>359595<br>85/u3) | (0.9998<br>370387<br>82/u4) | (0.9940<br>602020<br>15/u5) | (0.9727<br>516682<br>87/u6) | (0.9378<br>470727<br>78/u7) | (0.8922<br>546717<br>89/u8) | (0.8393<br>031654<br>13/u9) | (0.7822<br>296604<br>88/u10) | (0.7238<br>229659<br>60/u11) | (0.6662<br>519672<br>59/u12) | (0.6110<br>459903<br>93/u13) | (0.5591<br>695272<br>33/u14) | (0.51113<br>8003494<br>/u15)}" |
| [23]<br>"A[201<br>6<br>Nov]=          | {(0.832<br>243740<br>563/u1) | (0.8858<br>892992<br>20/u2) | (0.9325<br>997469<br>18/u3) | (0.9690<br>321350<br>85/u4) | (0.9921<br>937273<br>33/u5) | (0.9999<br>981322<br>25/u6) | (0.9917<br>092566<br>21/u7) | (0.9681<br>083332<br>58/u8) | (0.9313<br>168236<br>57/u9) | (0.8843<br>463610<br>48/u10) | (0.8305<br>420959<br>05/u11) | (0.7730<br>896036<br>98/u12) | (0.7146<br>872862<br>94/u13) | (0.6574<br>018541<br>26/u14) | (0.60266<br>7453962<br>/u15)}" |
| [24]<br>"A[201<br>6<br>Dec]=          | {(0.881<br>317754<br>846/u1) | (0.9287<br>865799<br>92/u2) | (0.9662<br>706844<br>66/u3) | (0.9907<br>230793<br>38/u4) | (0.9999<br>551120<br>15/u5) | (0.9930<br>979680<br>18/u6) | (0.9707<br>992129<br>00/u7) | (0.9350<br>755973<br>55/u8) | (0.8888<br>814714<br>47/u9) | (0.8355<br>541426<br>31/u10) | (0.7783<br>096373<br>98/u11) | (0.7198<br>984257<br>87/u12) | (0.6624<br>455513<br>45/u13) | (0.6074<br>392317<br>33/u14) | (0.55580<br>9869105<br>/u15)}" |
| [25]<br>"A[201<br>7<br>Jan]=          | {(0.596<br>205461<br>864/u1) | (0.6505<br>578100<br>60/u2) | (0.7075<br>965541<br>54/u3) | (0.7659<br>601266<br>91/u4) | (0.8236<br>612915<br>65/u5) | (0.8780<br>744451<br>04/u6) | (0.9260<br>597577<br>57/u7) | (0.9642<br>678495<br>01/u8) | (0.9896<br>163634<br>40/u9) | (0.9998<br>470889<br>40/u10) | (0.9939<br>989401<br>38/u11) | (0.9726<br>248374<br>21/u12) | (0.9376<br>658252<br>24/u13) | (0.8920<br>332784<br>43/u14) | (0.83905<br>6537196<br>/u15)}" |
| [26]<br>"A[201<br>7<br>Feb]=          | {(0.913<br>885873<br>491/u1) | (0.9550<br>682324<br>14/u2) | (0.9841<br>679902<br>58/u3) | (0.9986<br>500370<br>85/u4) | (0.9971<br>671577<br>93/u5) | (0.9798<br>599573<br>47/u6) | (0.9483<br>247226<br>83/u7) | (0.9052<br>622669<br>26/u8) | (0.8539<br>437002<br>07/u9) | (0.7976<br>730063<br>25/u10) | (0.7393<br>826372<br>35/u11) | (0.6814<br>138922<br>45/u12) | (0.6254<br>620492<br>30/u13) | (0.5726<br>316836<br>84/u14) | (0.52354<br>5845872<br>/u15)}" |
| Feb]=<br>[27]<br>"A[201<br>7<br>Mar]= | {(0.756<br>094422<br>855/u1) | (0.8140<br>747599<br>53/u2) | (0.8692<br>517618<br>46/u3) | (0.9185<br>562236<br>56/u4) | (0.9586<br>447462<br>83/u5) | (0.9863<br>512646<br>44/u6) | (0.9992<br>406559<br>30/u7) | (0.9961<br>089494<br>16/u8) | (0.9772<br>528873<br>85/u9) | (0.9444<br>021622<br>18/u10) | (0.9003<br>418048<br>62/u11) | (0.8483<br>695133<br>06/u12) | (0.7917<br>668737<br>45/u13) | (0.7334<br>129081<br>44/u14) | (0.67558<br>3102024<br>/u15)}" |
| [28]<br>"A[201<br>7                   | {(0.570<br>331535<br>641/u1) | (0.6230<br>031153<br>70/u2) | (0.6788<br>337688<br>64/u3) | (0.7367<br>432332<br>01/u4) | (0.7950<br>646900<br>01/u5) | (0.8514<br>858761<br>09/u6) | (0.9030<br>976891<br>93/u7) | (0.9466<br>055317<br>26/u8) | (0.9787<br>258398<br>71/u9) | (0.9967<br>198602<br>80/u10) | (0.9989<br>318521<br>59/u11) | (0.9851<br>521275<br>58/u12) | (0.9566<br>649638<br>91/u13) | (0.9159<br>619476<br>79/u14) | (0.86623<br>3756850<br>/u15)}" |
| Apr]=<br>[29]<br>"A[201<br>7<br>Movi= | {(0.606<br>806671<br>389/u1) | (0.6617<br>774504<br>50/u2) | (0.7192<br>088558<br>74/u3) | (0.7776<br>198592<br>16/u4) | (0.8348<br>931293<br>79/u5) | (0.8882<br>850121<br>20/u6) | (0.9345<br>833513<br>03/u7) | (0.9704<br>495680<br>40/u8) | (0.9929<br>214749<br>40/u9) | (0.9999<br>682665<br>62/u10) | (0.9909<br>246267<br>15/u11) | (0.9666<br>419084<br>25/u12) | (0.9292<br>954585<br>20/u13) | (0.8819<br>253552<br>31/u14) | (0.82787<br>9263975<br>/u15)}" |
| May]=                                 |                              |                             |                             |                             |                             |                             |                             |                             |                             |                              |                              |                              |                              |                              |                                |

| [30]<br>"A[201<br>7            | {(0.701<br>724576<br>486/u1)            | (0.7600<br>334235<br>33/u2)           | (0.8179<br>111453<br>59/u3)           | (0.8727<br>939571<br>47/u4)           | (0.9215<br>834842<br>80/u5)           | (0.9609<br>323339<br>62/u6)           | (0.9877<br>059049<br>78/u7)           | (0.9995<br>379635<br>76/u8)           | (0.9953<br>206118<br>40/u9)           | (0.9754<br>531749<br>79/u10)            | (0.9417<br>511027<br>36/u11)            | (0.8970<br>517774<br>36/u12)            | (0.8446<br>673417<br>27/u13)            | (0.7878<br>623750<br>34/u14)            | (0.72947<br>9521605<br>/u15)}"            |
|--------------------------------|-----------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------------------|
| Jun]=<br>[31]<br>"A[201        | {(0.448<br>915617                       | (0.4911<br>300898                     | (0.5373<br>816963                     | (0.5875<br>948199                     | (0.6414<br>140706                     | (0.6980<br>892454                     | (0.7563<br>541761                     | (0.8143<br>281029                     | (0.8694<br>861411                     | (0.9187<br>571240                       | (0.9587<br>973245                       | (0.9864<br>426727                       | (0.9992<br>625165                       | (0.9960<br>591814                       | (0.97713<br>6184754                       |
| 7 Jul]=<br>[32]<br>"A[201      | 167/u1)<br>{(0.732<br>072638            | 94/u2)<br>(0.7904<br>375958           | 52/u3)<br>(0.8471<br>106268           | 88/u4)<br>(0.8992<br>250038           | 96/u5)<br>(0.9435<br>047383           | 21/u6)<br>(0.9766<br>469382           | 85/u7)<br>(0.9958<br>484527           | 71/u8)<br>(0.9993<br>501725           | 97/u9)<br>(0.9868<br>203681           | 23/u10)<br>(0.9594<br>304196            | 22/u11)<br>(0.9195<br>922428            | 76/u12)<br>(0.8704<br>614739            | 05/u13)<br>(0.8153<br>831083            | 93/u14)<br>(0.7574<br>364294            | /u15)}"<br>(0.69915<br>7803288            |
| 7<br>Aug]=<br>[33]<br>"A[201   | 580/u1)<br>{(0.968<br>964955            | 17/u2)<br>(0.9921<br>587609           | 35/u3)<br>(0.9999<br>986388           | 29/u4)<br>(0.9917<br>451879           | 60/u5)<br>(0.9681<br>763437           | 06/u6)<br>(0.9314<br>110159           | 51/u7)<br>(0.8844<br>594730           | 50/u8)<br>(0.8306<br>667201           | 64/u9)<br>(0.7732<br>191200           | 75/u10)<br>(0.7148<br>163797            | 67/u11)<br>(0.6575<br>266560            | 60/u12)<br>(0.6027<br>854276            | 19/u13)<br>(0.5514<br>797035            | 39/u14)<br>(0.5040<br>664019            | /u15)}"<br>(0.46069<br>1101527            |
| 7<br>Sep]=<br>[34]             | 757/u1)<br>{(0.958<br>542891            | 58/u2)<br>(0.9862<br>901623           | 90/u3)<br>(0.9992<br>259052           | 90/u4)<br>(0.9961<br>419543           | 16/u5)<br>(0.9773<br>305348           | 39/u6)<br>(0.9445<br>175281           | 44/u7)<br>(0.9004<br>856057           | 06/u8)<br>(0.8485<br>317748           | 25/u9)<br>(0.7919<br>383289           | 83/u10)<br>(0.7335<br>858688            | 15/u11)<br>(0.6757<br>517936            | 58/u12)<br>(0.6200<br>690349            | 32/u13)<br>(0.5675<br>890656            | 57/u14)<br>(0.5188<br>938567            | /u15)}"<br>(0.47421<br>7100511            |
| "A[201<br>7<br>Oct]=<br>[35]   | 089/u1)<br>{(0.827                      | 64/u2)                                | 42/u3)                                | 419543<br>85/u4)<br>(0.9662           | 19/u5)<br>(0.9907                     | 20/u6)<br>(0.9999                     | 73/u7)                                | 63/u8)                                | 74/u9)                                | 55/u10)                                 | 36/u11)<br>(0.8355                      | (0.7782                                 | 42/u13)                                 | 38/u14)<br>(0.6624                      | /u15)}"<br>(0.60739                       |
| "A[201<br>7<br>Nov]=           | 254026<br>560/u1)                       | 557571<br>27/u2)                      | 184260<br>85/u3)                      | 939398<br>58/u4)                      | 357390<br>84/u5)                      | 560008<br>24/u6)                      | 870011<br>11/u7)                      | 774155<br>42/u8)                      | 448750<br>73/u9)                      | 442219<br>42/u10)                       | 128451<br>78/u11)                       | 665307<br>92/u12)                       | 553234<br>77/u13)                       | 037847<br>73/u14)                       | 9682673<br>/u15)}"                        |
| [36]<br>"A[201<br>7<br>Dec]=   | {(0.926<br>350330<br>661/u1)            | (0.9644<br>823491<br>58/u2)           | (0.9897<br>364059<br>77/u3)           | (0.9998<br>615647<br>22/u4)           | (0.9939<br>064687<br>69/u5)           | (0.9724<br>340857<br>46/u6)           | (0.9373<br>935579<br>85/u7)           | (0.8917<br>009172<br>70/u8)           | (0.8386<br>864444<br>82/u9)           | (0.7815<br>838821<br>86/u10)            | (0.7231<br>757708<br>57/u11)            | (0.6656<br>237727<br>63/u12)            | (0.6104<br>504125<br>27/u13)            | (0.5586<br>145255<br>94/u14)            | (0.51062<br>7241959<br>/u15)}"            |
| [37]<br>"A[201<br>8            | {(0.590<br>376810<br>367/u1)            | (0.6443<br>712454<br>46/u2)           | (0.7011<br>681792<br>97/u3)           | (0.7594<br>707976<br>76/u4)           | (0.8173<br>638888<br>25/u5)           | (0.8722<br>895918<br>55/u6)           | (0.9211<br>536213<br>94/u7)           | (0.9606<br>090261<br>22/u8)           | (0.9875<br>165519<br>98/u9)           | (0.9994<br>999823<br>64/u10)            | (0.9954<br>376207<br>07/u11)            | (0.9757<br>141612<br>14/u12)            | (0.9421<br>329140<br>70/u13)            | (0.8975<br>239387<br>80/u14)            | (0.84519<br>7463253<br>/u15)}"            |
| Jan]=<br>[38]<br>"A[201<br>8   | {(0.854<br>305488<br>124/u1)            | (0.9055<br>802133<br>47/u2)           | (0.9485<br>763831<br>51/u3)           | (0.9800<br>248194<br>33/u4)           | (0.9972<br>304019<br>76/u5)           | (0.9986<br>056790<br>67/u6)           | (0.9840<br>202448<br>65/u7)           | (0.9548<br>305474<br>16/u8)           | (0.9135<br>780269<br>31/u9)           | (0.8634<br>741447<br>98/u10)            | (0.8078<br>514827<br>09/u11)            | (0.7497<br>295419<br>40/u12)            | (0.6915<br>622812<br>63/u13)            | (0.6351<br>575950<br>80/u14)            | (0.58171<br>7502712<br>/u15)}"            |
| Feb]=<br>[39]<br>"A[201<br>8   | {(0.449<br>809721<br>266/u1)            | (0.4921<br>131946<br>36/u2)           | (0.5384<br>544338<br>54/u3)           | (0.5887<br>527311<br>92/u4)           | (0.6426<br>452347<br>22/u5)           | (0.6993<br>715814<br>52/u6)           | (0.7576<br>528691<br>63/u7)           | (0.8155<br>939940<br>47/u8)           | (0.8706<br>562977<br>86/u9)           | (0.9197<br>588848<br>81/u10)            | (0.9595<br>565252<br>15/u11)            | (0.9868<br>952926<br>43/u12)            | (0.9993<br>670397<br>81/u13)            | (0.9958<br>056566<br>16/u14)            | (0.97654<br>8511917<br>/u15)}"            |
| Mar]=<br>[40]<br>"A[201<br>8   | {(0.750<br>249157<br>119/u1)            | (0.8083<br>606413<br>05/u2)           | (0.8639<br>482806<br>00/u3)           | (0.9139<br>884014<br>60/u4)           | (0.9551<br>473410<br>76/u5)           | (0.9842<br>170935<br>93/u6)           | (0.9986<br>646643<br>94/u7)           | (0.9971<br>459190<br>93/u8)           | (0.9798<br>048620<br>41/u9)           | (0.9482<br>407216<br>66/u10)            | (0.9051<br>562033<br>03/u11)            | (0.8538<br>230556<br>77/u12)            | (0.7975<br>448203<br>01/u13)            | (0.7392<br>528110<br>14/u14)            | (0.68128<br>6901389<br>/u15)}"            |
| Apr]=<br>[41]<br>"A[201        | {(0.614<br>548375                       | (0.6699<br>433102                     | (0.7276<br>219711                     | (0.7860<br>149364                     | (0.8429<br>109866                     | (0.8954<br>849639                     | (0.9404<br>809238                     | (0.9745<br>807414                     | (0.9949<br>231844                     | (0.9996<br>529193                       | (0.9883<br>222901                       | (0.9619<br>933847                       | (0.9229<br>990834                       | (0.8744<br>582217                       | (0.81971<br>9342651                       |
| 8<br>May]=<br>[42]<br>"A[201   | 353/u1)<br>{(0.819<br>719342            | 68/u2)<br>(0.8744<br>582217           | 19/u3)<br>(0.9229<br>990834           | 89/u4)<br>(0.9619<br>933847           | 86/u5)<br>(0.9883<br>222901           | 16/u6)<br>(0.9996<br>529193           | 44/u7)<br>(0.9949<br>231844           | 56/u8)<br>(0.9745<br>807414           | 62/u9)<br>(0.9404<br>809238           | 95/u10)<br>(0.8954<br>849639            | 98/u11)<br>(0.8429<br>109866            | 15/u12)<br>(0.7860<br>149364            | 87/u13)<br>(0.7276<br>219711            | 57/u14)<br>(0.6699<br>433102            | /u15)}"<br>(0.61454<br>8375353            |
| 8<br>Jun]=<br>[43]             | 651/u1)<br>{(0.492                      | 57/u2)<br>(0.5389                     | 87/u3)<br>(0.5892                     | 15/u4)<br>(0.6432                     | 98/u5)<br>(0.6999                     | 95/u6)<br>(0.7582                     | 62/u7)<br>(0.8161                     | 56/u8)<br>(0.8712                     | 44/u9)<br>(0.9202                     | 16/u10)<br>(0.9599                      | 86/u11)<br>(0.9871                      | 89/u12)<br>(0.9994                      | 19/u13)<br>(0.9956                      | 68/u14)<br>(0.9762                      | /u15)}"<br>(0.94295                       |
| "A[201<br>8 Jul]=<br>[44]      | 572660<br>765/u1)<br>{(0.797            | 557164<br>93/u2)<br>(0.8537           | 937021<br>96/u3)<br>(0.9050           | 202641<br>27/u4)<br>(0.9481           | 702771<br>62/u5)<br>(0.9797           | 588792<br>55/u6)<br>(0.9971           | 842672<br>88/u7)<br>(0.9986           | 013714<br>45/u8)<br>(0.9842           | 248028<br>62/u9)<br>(0.9552           | 087078<br>18/u10)<br>(0.9140            | 039897<br>96/u11)<br>(0.8640            | 130902<br>20/u12)<br>(0.8084            | 846749<br>60/u13)<br>(0.7503            | 718970<br>34/u14)<br>(0.6921            | 1792676<br>/u15)}"<br>(0.63572            |
| "A[201<br>8<br>Aug]=<br>[45]   | 459357<br>574/u1)<br>{(0.851            | 426125<br>33/u2)<br>(0.9029           | 854716<br>20/u3)<br>(0.9464           | 846892<br>97/u4)<br>(0.9786           | 680926<br>15/u5)<br>(0.9966           | 317162<br>72/u6)<br>(0.9989           | 743718<br>44/u7)<br>(0.9852           | 497888<br>16/u8)<br>(0.9567           | 000469<br>14/u9)<br>(0.9161           | 567290<br>88/u10)<br>(0.8664            | 272609<br>58/u11)<br>(0.8110            | 454821<br>40/u12)<br>(0.7529            | 357596<br>20/u13)<br>(0.6947            | 585859<br>07/u14)<br>(0.6382            | 8500759<br>/u15)}"<br>(0.58459            |
| "A[201<br>8<br>Sep]=           | 283979<br>471/u1)                       | 195279<br>92/u2)                      | 635769<br>66/u3)                      | 315911<br>67/u4)                      | 817573<br>91/u5)                      | 534952<br>08/u6)                      | 314581<br>65/u7)                      | 947376<br>28/u8)                      | 313050<br>64/u9)                      | 302959<br>45/u10)                       | 304751<br>27/u11)                       | 770900<br>72/u12)                       | 590024<br>79/u13)                       | 197610<br>31/u14)                       | 2662467<br>/u15)}"                        |
| [46]<br>"A[201<br>8<br>Oct]=   | {(0.796<br>176906<br>407/u1)            | (0.8525<br>346806<br>63/u2)           | (0.9040<br>223343<br>74/u3)           | (0.9473<br>411685<br>40/u4)           | (0.9792<br>127910<br>57/u5)           | (0.9969<br>144821<br>09/u6)           | (0.9988<br>157496<br>67/u7)           | (0.9847<br>363405<br>37/u8)           | (0.9559<br>874336<br>89/u9)           | (0.9150<br>792980<br>11/u10)            | (0.8652<br>105075<br>76/u11)            | (0.8097<br>174376<br>83/u12)            | (0.7516<br>347900<br>09/u13)            | (0.6934<br>370297<br>21/u14)            | (0.63695<br>2952505<br>/u15)}"            |
| [47]<br>"A[201<br>8<br>Nov]=   | {(0.878<br>457343<br>713/u1)            | (0.9263<br>825896<br>54/u2)           | (0.9645<br>061469<br>98/u3)           | (0.9897<br>497022<br>96/u4)           | (0.9998<br>631287<br>36/u5)           | (0.9938<br>961513<br>31/u6)           | (0.9724<br>128537<br>07/u7)           | (0.9373<br>632767<br>78/u8)           | (0.8916<br>639682<br>02/u9)           | (0.8386<br>453119<br>62/u10)            | (0.7815<br>408247<br>73/u11)            | (0.7231<br>326284<br>80/u12)            | (0.6655<br>819037<br>45/u13)            | (0.6104<br>107221<br>18/u14)            | (0.55857<br>7542467<br>/u15)}"            |
| [48]<br>"A[201<br>8<br>Dec]=   | {(0.934<br>398380<br>402/u1)            | (0.9703<br>179637<br>84/u2)           | (0.9928<br>547278<br>95/u3)           | (0.9999<br>726129<br>72/u4)           | (0.9909<br>996519<br>70/u5)           | (0.9667<br>806426<br>20/u6)           | (0.9294<br>859249<br>12/u7)           | (0.8821<br>529648<br>83/u8)           | (0.8281<br>292396<br>04/u9)           | (0.7705<br>847848<br>32/u10)            | (0.7121<br>926360<br>86/u11)            | (0.6549<br>915495<br>20/u12)            | (0.6003<br>900033<br>39/u13)            | (0.5492<br>529360<br>90/u14)            | (0.50202<br>0733577<br>/u15)}"            |
| [49]<br>"A[201<br>9            | {(0.471<br>384508<br>851/u1)            | (0.5157<br>916818<br>69/u2)           | (0.5642<br>232701<br>06/u3)           | (0.6164<br>647167<br>86/u4)           | (0.6719<br>609619<br>70/u5)           | (0.7296<br>955636<br>08/u6)           | (0.7880<br>770947<br>69/u7)           | (0.8448<br>712828<br>03/u8)           | (0.8972<br>334622<br>67/u9)           | (0.9418<br>980743<br>39/u10)            | (0.9755<br>537069<br>67/u11)            | (0.9953<br>657881<br>29/u12)            | (0.9995<br>235326<br>84/u13)            | (0.9876<br>332417<br>24/u14)            | (0.96080<br>8123157<br>/u15)}"            |
| Jan]=<br>[50]<br>"A[201<br>9   | {(0.929<br>231925<br>665/u1)            | (0.9665<br>956061<br>01/u2)           | (0.9908<br>995509<br>98/u3)           | (0.9999<br>667466<br>61/u4)           | (0.9929<br>436558<br>39/u5)           | (0.9704<br>933770<br>83/u6)           | (0.9346<br>449624<br>25/u7)           | (0.8883<br>596239<br>66/u8)           | (0.8349<br>757855<br>95/u9)           | (0.7777<br>060898<br>86/u10)            | (0.7192<br>950442<br>46/u11)            | (0.6618<br>609438<br>70/u12)            | (0.6068<br>857152<br>10/u13)            | (0.5552<br>945640<br>25/u14)            | (0.50757<br>3160463<br>/u15)}"            |
| Feb]=<br>[51]<br>"A[201<br>9   | {(0.635<br>728500<br>759/u1)            | (0.6921<br>585859<br>07/u2)           | (0.7503<br>357596<br>20/u3)           | (0.8084<br>454821<br>40/u4)           | (0.8640<br>272609<br>58/u5)           | (0.9140<br>567290<br>88/u6)           | (0.9552<br>000469<br>14/u7)           | (0.9842<br>497888<br>16/u8)           | (0.9986<br>743718<br>44/u9)           | (0.9971<br>317162<br>72/u10)            | (0.9797<br>680926<br>15/u11)            | (0.9481<br>846892<br>97/u12)            | (0.9050<br>854716<br>20/u13)            | (0.8537<br>426125<br>33/u14)            | (0.79745<br>9357574<br>/u15)}"            |
| Mar]=<br>[52]<br>"A[201<br>9   | {(0.618<br>144926<br>867/u1)            | (0.6737<br>287770<br>46/u2)           | (0.7315<br>106864<br>05/u3)           | (0.7898<br>798979<br>62/u4)           | (0.8465<br>819958<br>81/u5)           | (0.8987<br>554385<br>20/u6)           | (0.9431<br>266454<br>27/u7)           | (0.9763<br>906304<br>57/u8)           | (0.9957<br>367321<br>60/u9)           | (0.9993<br>935668<br>73/u10)            | (0.9870<br>147451<br>81/u11)            | (0.9597<br>579372<br>75/u12)            | (0.9200<br>252465<br>15/u13)            | (0.8709<br>678467<br>32/u14)            | (0.81593<br>1330479<br>/u15)}"            |
| Apr]=<br>[53]<br>"A[201<br>9   | {(0.699<br>799203<br>737/u1)            | (0.7580<br>857367<br>82/u2)           | (0.8160<br>156490<br>04/u3)           | (0.8710<br>457013<br>68/u4)           | (0.9200<br>917857<br>80/u5)           | (0.9598<br>082216<br>15/u6)           | (0.9870<br>445262<br>33/u7)           | (0.9994<br>001100<br>83/u8)           | (0.9957<br>194144<br>07/u9)           | (0.9763<br>510833<br>34/u10)            | (0.9430<br>683855<br>94/u11)            | (0.8986<br>831335<br>42/u12)            | (0.8465<br>006310<br>54/u13)            | (0.7897<br>940849<br>65/u14)            | (0.73142<br>4237459<br>/u15)}"            |
| May]=<br>[54]<br>"A[201<br>9   | {(0.460<br>691101<br>527/u1)            | (0.5040<br>664019<br>57/u2)           | (0.5514<br>797035<br>32/u3)           | (0.6027<br>854276<br>58/u4)           | (0.6575<br>266560<br>15/u5)           | (0.7148<br>163797<br>83/u6)           | (0.7732<br>191200<br>25/u7)           | (0.8306<br>667201<br>06/u8)           | (0.8844<br>594730<br>44/u9)           | (0.9314<br>110159<br>39/u10)            | (0.9681<br>763437<br>16/u11)            | (0.9917<br>451879<br>90/u12)            | (0.9999<br>986388<br>90/u13)            | (0.9921<br>587609<br>58/u14)            | (0.96896<br>4955757<br>/u15)}"            |
| Jun]=<br>[55]<br>"A[201        | {(0.732<br>072638                       | (0.7904<br>375958                     | (0.8471<br>106268                     | (0.8992<br>250038                     | (0.9435<br>047383                     | (0.9766<br>469382                     | (0.9958<br>484527                     | (0.9993<br>501725                     | (0.9868<br>203681                     | (0.9594<br>304196                       | (0.9195<br>922428                       | (0.8704<br>614739                       | (0.8153<br>831083                       | (0.7574<br>364294                       | (0.69915<br>7803288                       |
| 9 Jul]=<br>[56]<br>"A[201<br>9 | 580/u1)<br>{(0.917<br>952431<br>503/u1) | 17/u2)<br>(0.9581<br>855400<br>00/u2) | 35/u3)<br>(0.9860<br>752749<br>59/u3) | 29/u4)<br>(0.9991<br>731631<br>13/u4) | 60/u5)<br>(0.9962<br>563773<br>73/u5) | 06/u6)<br>(0.9776<br>013276<br>41/u6) | 51/u7)<br>(0.9449<br>205308<br>13/u7) | 50/u8)<br>(0.9009<br>883617<br>08/u8) | 64/u9)<br>(0.8490<br>993719<br>47/u9) | 75/u10)<br>(0.7925<br>383039<br>99/u10) | 67/u11)<br>(0.7341<br>912705<br>84/u11) | 60/u12)<br>(0.6763<br>423659<br>45/u12) | 19/u13)<br>(0.6206<br>310055<br>42/u13) | 39/u14)<br>(0.5681<br>141577<br>22/u14) | /u15)}"<br>(0.51937<br>8028583<br>/u15)}" |
| Aug]=<br>[57]<br>"A[201<br>9   | {(0.797<br>459357<br>574/u1)            | (0.8537<br>426125<br>33/u2)           | (0.9050<br>854716<br>20/u3)           | (0.9481<br>846892<br>97/u4)           | (0.9797<br>680926<br>15/u5)           | (0.9971<br>317162<br>72/u6)           | (0.9986<br>743718<br>44/u7)           | (0.9842<br>497888<br>16/u8)           | (0.9552<br>000469<br>14/u9)           | (0.9140<br>567290<br>88/u10)            | (0.8640<br>272609<br>58/u11)            | (0.8084<br>454821<br>40/u12)            | (0.7503<br>357596<br>20/u13)            | (0.6921<br>585859<br>07/u14)            | (0.63572<br>8500759<br>/u15)}"            |
| Sep]=<br>[58]<br>"A[201<br>9   | {(0.744<br>403794<br>970/u1)            | (0.8026<br>218058<br>65/u2)           | (0.8585<br>896829<br>71/u3)           | (0.9093<br>318094<br>57/u4)           | (0.9515<br>286636<br>25/u5)           | (0.9819<br>359130<br>77/u6)           | (0.9979<br>279810<br>65/u7)           | (0.9980<br>236636<br>40/u8)           | (0.9822<br>138865<br>05/u9)           | (0.9519<br>637796<br>90/u10)            | (0.9098<br>882276<br>01/u11)            | (0.8592<br>275485<br>71/u12)            | (0.8033<br>031647<br>62/u13)            | (0.7450<br>965142<br>51/u14)            | (0.68701<br>1362643<br>/u15)}"            |
| Oct]=<br>[59]<br>"A[201<br>9   | {(0.802<br>579210<br>642/u1)            | (0.8585<br>497921                     | (0.9092<br>969934<br>47/u3)           | (0.9515<br>014136                     | (0.9819<br>184721<br>14/u5)           | (0.9979<br>219262                     | (0.9980<br>295691<br>52/u7)           | (0.9822<br>311921<br>75/u8)           | (0.9519<br>909191                     | (0.9099<br>229637                       | (0.8592<br>673908<br>56/u11)            | (0.8033<br>457393                       | (0.7451<br>398100                       | (0.6870<br>538396<br>89/u14)            | (0.63084<br>5572346                       |
| Nov]=<br>[60]<br>"A[201        | {(0.934<br>860420                       | 23/u2)<br>(0.9706<br>464760           | (0.9930<br>210206                     | 73/u4)<br>(0.9999<br>611470           | (0.9908<br>115211                     | 71/u6)<br>(0.9664<br>333213           | (0.9290<br>093874                     | (0.8815<br>836945                     | 82/u9)<br>(0.8275<br>041725           | 88/u10)<br>(0.7699<br>367413            | (0.7115<br>478357                       | 45/u12)<br>(0.6543<br>689847            | 65/u13)<br>(0.5998<br>020553            | (0.5487<br>065967                       | /u15)}"<br>(0.50151<br>8966933            |
| 9<br>Dec]=<br>[61]<br>"A[202   | 628/u1)<br>{(0.469<br>037637            | 81/u2)<br>(0.5132<br>202429           | 82/u3)<br>(0.5614<br>314468           | 65/u4)<br>(0.6134<br>722727           | 04/u5)<br>(0.6688<br>096710           | 77/u6)<br>(0.7264<br>559964           | 11/u7)<br>(0.7848<br>541640           | 80/u8)<br>(0.8418<br>059346           | 08/u9)<br>(0.8944<br>972239           | 38/u10)<br>(0.9396<br>777020            | 70/u11)<br>(0.9740<br>257621            | 93/u12)<br>(0.9946<br>654885            | 25/u13)<br>(0.9997<br>167191            | 66/u14)<br>(0.9887<br>015047            | /u15)}"<br>(0.96265<br>3039946            |
| 0<br>Jan]=                     | 086/u1)                                 | 60/u2)                                | 26/u3)                                | 69/u4)                                | 73/u5)                                | 24/u6)                                | 98/u7)                                | 89/u8)                                | 27/u9)                                | 95/u10)                                 | 43/u11)                                 | 20/u12)                                 | 59/u13)                                 | 96/u14)                                 | /u15)}"                                   |

| [62]                 | {(0.817           | (0.8727           | (0.9215           | (0.9608           | (0.9876           | (0.9995           | (0.9953           | (0.9754           | (0.9418           | (0.8971           | (0.8447           | (0.7879           | (0.7295           | (0.6718           | (0.61634            |
|----------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|---------------------|
| "A[202<br>0<br>Feb]= | 826969<br>750/u1) | 163989<br>98/u2)  | 174084<br>49/u3)  | 826704<br>08/u4)  | 768644<br>07/u5)  | 322178<br>11/u6)  | 387082<br>82/u7)  | 934106<br>63/u8)  | 099095<br>26/u9)  | 244640<br>00/u10) | 489253<br>71/u11) | 482654<br>42/u12) | 659372<br>47/u13) | 347735<br>78/u14) | 4823304<br>/u15)}"  |
| [63]<br>"A[202       | {(0.630<br>845572 | (0.6870<br>538396 | (0.7451<br>398100 | (0.8033<br>457393 | (0.8592<br>673908 | (0.9099<br>229637 | (0.9519<br>909191 | (0.9822<br>311921 | (0.9980<br>295691 | (0.9979<br>219262 | (0.9819<br>184721 | (0.9515<br>014136 | (0.9092<br>969934 | (0.8585<br>497921 | (0.80257<br>9210642 |
| 0<br>Mar]=           | 346/u1)           | 89/u2)            | 65/u3)            | 45/u4)            | 56/u5)            | 88/u6)            | 82/u7)            | 75/u8)            | 52/u9)            | 71/u10)           | 14/u11)           | 73/u12)           | 47/u13)           | 23/u14)           | /u15)}"             |
| [64]<br>"A[202       | {(0.667<br>383465 | (0.7249<br>881919 | (0.7833<br>916615 | (0.8404<br>119920 | (0.8932<br>491436 | (0.9386<br>600655 | (0.9733<br>190652 | (0.9943<br>320586 | (0.9997<br>878572 | (0.9891<br>704291 | (0.9634<br>764480 | (0.9249<br>906110 | (0.8768<br>083960 | (0.8222<br>791537 | (0.76453<br>3007298 |
| 0<br>Apr]=           | 675/u1)           | 36/u2)            | 57/u3)            | 33/u4)            | 48/u5)            | 30/u6)            | 40/u7)            | 82/u8)            | 36/u9)            | 53/u10)           | 92/u11)           | 11/u12)           | 05/u13)           | 24/u14)           | /u15)}"             |
| [65]<br>"A[202       | {(0.666<br>754737 | (0.7243<br>408011 | (0.7827<br>461697 | (0.8397<br>961800 | (0.8926<br>970232 | (0.9382<br>089331 | (0.9730<br>045204 | (0.9941<br>817995 | (0.9998<br>159794 | (0.9893<br>742513 | (0.9638<br>371296 | (0.9254<br>773084 | (0.8773<br>843437 | (0.8229<br>076353 | (0.76518<br>1740725 |
| 0<br>May]=           | 065/u1)           | 59/u2)            | 02/u3)            | 11/u4)            | 99/u5)            | 47/u6)            | 09/u7)            | 63/u8)            | 25/u9)            | 57/u10)           | 83/u11)           | 17/u12)           | 44/u13)           | 41/u14)           | /u15)}"             |
| [66]<br>"A[202       | {(0.541<br>612444 | (0.5921<br>595669 | (0.6462<br>647932 | (0.7031<br>376075 | (0.7614<br>614665 | (0.8192<br>991030 | (0.8740<br>717378 | (0.9226<br>707350 | (0.9617<br>477762 | (0.9881<br>803083 | (0.9996<br>276486 | (0.9950<br>170331 | (0.9747<br>848873 | (0.9407<br>773065 | (0.89585<br>0027602 |
| 0<br>Jun]=           | 917/u1)           | 17/u2)            | 47/u3)            | 86/u4)            | 96/u5)            | 72/u6)            | 78/u7)            | 29/u8)            | 83/u9)            | 55/u10)           | 97/u11)           | 93/u12)           | 14/u13)           | 24/u14)           | /u15)}"             |
| [67]<br>"A[202       | {(0.875<br>577106 | (0.9239<br>483257 | (0.9627<br>017003 | (0.9887<br>293543 | (0.9997<br>211877 | (0.9946<br>461502 | (0.9739<br>844331 | (0.9396<br>180311 | (0.8944<br>239384 | (0.8417<br>240116 | (0.7847<br>681585 | (0.7263<br>696405 | (0.6687<br>257351 | (0.6133<br>926143 | (0.56135<br>7160673 |
| 0 Jul]=              | 612/u1)           | 50/u2)            | 79/u3)            | 43/u4)            | 57/u5)            | 16/u6)            | 68/u7)            | 76/u8)            | 56/u9)            | 01/u10)           | 71/u11)           | 56/u12)           | 24/u13)           | 76/u14)           | /u15)}"             |
| [68]<br>"A[202       | {(0.819<br>719342 | (0.8744<br>582217 | (0.9229<br>990834 | (0.9619<br>933847 | (0.9883<br>222901 | (0.9996<br>529193 | (0.9949<br>231844 | (0.9745<br>807414 | (0.9404<br>809238 | (0.8954<br>849639 | (0.8429<br>109866 | (0.7860<br>149364 | (0.7276<br>219711 | (0.6699<br>433102 | (0.61454<br>8375353 |
| 0<br>Aug]=           | 651/u1)           | 57/u2)            | 87/u3)            | 15/u4)            | 98/u5)            | 95/u6)            | 62/u7)            | 56/u8)            | 44/u9)            | 16/u10)           | 86/u11)           | 89/u12)           | 19/u13)           | 68/u14)           | /u15)}"             |
| [69]<br>"A[202       | {(0.840<br>288870 | (0.8931<br>387925 | (0.9385<br>699452 | (0.9732<br>562915 | (0.9943<br>021614 | (0.9997<br>936414 | (0.9892<br>113434 | (0.9635<br>487113 | (0.9250<br>880464 | (0.8769<br>236480 | (0.8224<br>048814 | (0.7646<br>627595 | (0.7063<br>094485 | (0.6493<br>177576 | (0.59503<br>6207559 |
| 0<br>Sep]=           | 362/u1)           | 80/u2)            | 95/u3)            | 62/u4)            | 07/u5)            | 81/u6)            | 41/u7)            | 61/u8)            | 62/u9)            | 92/u10)           | 53/u11)           | 21/u12)           | 70/u13)           | 11/u14)           | /u15)}"             |
| [70]<br>"A[202       | {(0.600<br>899907 | (0.6555<br>313694 | (0.7127<br>515872 | (0.7711<br>463435 | (0.8286<br>706178 | (0.8826<br>456671 | (0.9298<br>979207 | (0.9670<br>803433 | (0.9911<br>611672 | (0.9999<br>809325 | (0.9927<br>090582 | (0.9700<br>319106 | (0.9339<br>969035 | (0.8875<br>754271 | (0.83410<br>7476978 |
| 0<br>Oct]=           | 300/u1)           | 34/u2)            | 03/u3)            | 44/u4)            | 39/u5)            | 50/u6)            | 96/u7)            | 42/u8)            | 12/u9)            | 85/u10)           | 48/u11)           | 76/u12)           | 40/u13)           | 58/u14)           | /u15)}"             |
| [71]                 | {(0.908           | (0.9510           | (0.9816           | (0.9978           | (0.9981           | (0.9825           | (0.9524           | (0.9105           | (0.8599           | (0.8040           | (0.7458           | (0.6877           | (0.6315           | (0.5783           | (0.52880            |
| "A[202<br>0          | 704405<br>899/u1) | 371730<br>85/u2)  | 207600<br>35/u3)  | 176519<br>48/u4)  | 286186<br>34/u5)  | 241690<br>21/u6)  | 512936<br>80/u7)  | 127575<br>35/u8)  | 442697<br>44/u9)  | 693190<br>62/u10) | 758528<br>87/u11) | 761106<br>33/u12) | 358588<br>95/u13) | 204292<br>02/u14) | 0297058<br>/u15)}"  |
| Nov]=                | ,                 | ,                 | ,                 | ,                 | ,                 | ,                 | ,                 | ,                 | ,                 | ,                 | ,                 | ,                 | ,                 | ,                 |                     |
| [72]<br>"A[202       | {(0.874<br>419588 | (0.9229<br>662722 | (0.9619<br>688552 | (0.9883<br>081292 | (0.9996<br>504322 | (0.9949<br>326081 | (0.9746<br>011901 | (0.9405<br>105890 | (0.8955<br>214889 | (0.8429<br>518818 | (0.7860<br>579171 | (0.7276<br>651613 | (0.6699<br>853148 | (0.6145<br>882565 | (0.56247<br>2340071 |
| 0                    | 419566<br>574/u1) | 00/u2)            | 42/u3)            | 48/u4)            | 504322<br>40/u5)  | 326081<br>34/u6)  | 87/u7)            | 91/u8)            | 214669<br>73/u9)  | 31/u10)           | 08/u11)           | 57/u12)           | 52/u13)           | 05/u14)           | /u15)}"             |
| Dec]=                |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                     |

## References

- Abbasov, A.M. and Mamedova, M.H., 2003. Application of fuzzy time series to population forecasting, *Proceedings of 8th Symposium on Information Technology in Urban and Spatial Planning*, Vienna University of Technology, February 25-March1, pp: 545-552.
- Asli, Kaveh Hariri; Aliyev, Soltan Ali Ogli; Thomas, Sabu; Gopakumar, Deepu A. (2017-11-23). Handbook of Research for Fluid and Solid Mechanics: Theory, Simulation, and Experiment. CRC Press. ISBN 9781315341507.
- Bose Mahua, & Kalyani Mali.2019, Designing fuzzy time series forecasting models: A survey, International Journal of Approximate Reasoning .111. pp: 78–99.
- Chellai, F. (2022). Application of the hybrid forecasting models to road traffic accidents in Algeria. Statistika, 102(2), 184-197.
- Chen, S.M., 1996. Forecasting enrollments based on fuzzy time series. *Fuzzy Sets and Systems*. 81: pp.311-319.
- Chen, S.M. and Hsu, C.C., 2004. A New method to forecast enrollments using fuzzy time series. International Journal of Applied Science and Engineering, 12:pp. 234-244.
- Huarng, H., 2001. Huarng models of fuzzy time series for forecasting. *Fuzzy Sets and Systems*. 123: pp.369-386.

- Jiang, P Q. Dong, P. Li, L. Lian. 2017. A novel high-order weighted fuzzy time series model and its application in nonlinear time series prediction, *Appl. Soft Comput.* 55, pp.44–62
- Liu . H.-T., M.-L. Wei. 2010, An improved fuzzy forecasting method for seasonal time series, Expert Syst. Appl. 37 (9), pp.6310–6318.
- Mamdani, E.H. (1974). "Application of fuzzy algorithms for control of simple dynamic plant". Proceedings of the Institution of Electrical Engineers. 121 (12): 1585–1588. doi:10.1049/PIEE.1974.0328.
- Rob J Hyndman, Rebecca Killick (2022). CRAN Task View: Time Series Analysis. Version 2022-06-02. URL <u>https://CRAN.R-project.org/view=TimeSeries</u>.
- Singh, S.R., 2008. A computational method of forecasting based on fuzzy time series. Mathematics and Computers in Simulation. 79: 539-554.
- Song.Q and Chissom. B. S.1993. *Forecasting enrollments with fuzzy time series-part 1*. Fuzzy Sets and Systems, vol. 54, pp. 1-9.
- Theil, Henry.1966. Applied Economic Forecasts. Amsterdam: North Holland.
- Tran Thi Ngoc Han, Doan Hai Nghi, Mai Thi Hong Diem, Nguyen Thi Diem My, Hong Viet Minh, Vo Van Tai and Pham Minh Truc. (2016). AnalyzeTS: Analyze Fuzzy Time Series. R package version 2.2. https://CRAN.R-project.org/package=AnalyzeTS