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A Combinatorial Topology Approach to Arrow’s Impossibility Theorem

SERGIO RAJSBAUM, Instituto de Matemáticas, UNAM, Mexico

ARMAJAC RAVENTÓS, Departamento de Análisis Económico: Economía Cuantitativa, UAM, Spain

Baryshnikov presented a remarkable algebraic topology proof of Arrow’s impossibility theorem trying to understand the underlying

reason behind the numerous proofs of this fundamental result of social choice theory. We present here a novel combinatorial topology

approach that does not use advance mathematics, while giving a geometric intuition of the impossibility. This exposes a remarkable

connection with distributed computing techniques.

We show that Arrow’s impossibility is closely related to the index lemma, and expose the geometry behind prior pivotal arguments

to Arrow’s impossibility. We explain why the case of two voters, 𝑛 = 2, and three alternatives, |𝑋 | = 3, is where this interesting

geometry happens, by giving a simple proof that this case implies Arrow’s impossibility for any finite 𝑛 ≥ 2, |𝑋 | ≥ 3. Finally, we

show how to reason about domain restrictions using combinatorial topology.

1 INTRODUCTION

The modern field of social choice theory took off with Kenneth Arrow’s remarkable 1950 result [3] for the basic problem

of democracy: it is impossible to aggregate the individual preferences into a single social preference, under some

reasonable-looking axioms
1
. Soon after the publication of Arrow’s result alternative proofs began to emerge; starting

with Inada [32] in 1954, numerous other proofs followed, and continue to be proposed until recently, e.g. [22, 27].

Motivation. Trying to understand the underlying reason behind the many proofs of Arrow’s theorem, Barysh-

nikov [10] presented in 1993 a remarkable different approach, a topological impossibility proof. He discussed in [11]

the value of the approach: “the topology we are exploiting is in fact very geometrical and thus appeals to our intuition

much better than dry combinatorial constructions”. However, the goal of providing intuition about the nature of the

problem of social choice is hindered by the relatively advanced algebraic topology tools used by Baryshnikov (several

attempts at explaining the proof have been made [11, 16, 43]).

Our goal here is to further advance the program of Baryshnikov, while making it accessible to an audience not

familiar with algebraic topology. Furthermore, we aim at closing the gap between the literature on topological proofs

and combinatorial proofs, which have developed largely independently. We do so by moving from algebraic topology to

combinatorial topology, and in doing so discover (and benefit from) remarkable connections with distributed computing.

Contributions. First, we provide new proofs of Arrow’s impossibilty that do not require any acquaintance with

algebraic topology. Furthermore, they give a new insight for the reason of the impossibility: the index lemma, an

important combinatorial topology result used to compute winding numbers.

Second, we explore the relation between combinatorial arguments and topological arguments. We present a combi-

natorial topology perspective of the recent pivotal arguments to prove Arrow’s impossibility by Geanakoplos [27] and

Yu [51] that have received much attention e.g. [50]. Notice that Baryshnikov [10] does not try to explain the relation of

his topology proof with previous proofs.

Also, we aim at explaining an intriguing phenomenon, appearing several times in the literature: the case of two

individuals and three alternatives is somehow special. Some papers simply treat this case only e.g. [2, 18, 43, 47]. More

interestingly, some papers hint at the idea that this is the case where the interesting things happen. Baryshnikov [10,

1
Social choice theory is a highly developed field, of interest to economics and political science, and more recently to computer science [13]. For an

overview, including the importance of Arrow’s result, see introductory books such as [26], or more advanced such as [21].
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Section 7.1] explains that only the arguments of his proof for triples of alternatives are in fact used, and one could

concentrate only on the 2-skeleton of the simplicial complex using one-dimensional (co)homology. Our third result is a

simple proof showing that Arrow’s impossibility result for the case of two individuals and three alternatives implies

the general case. This result has been shown before under the restriction of finite number of alternatives by Tang and

Lin [48] and partially by Akashhi [2], but our proof seems, in addition to more general, more direct.

Finally, we show the usefulness of the combinatorial topology approach to study domain restrictions. We explore the

role of contractibility of the space of preference profiles, and provide a very intuitive geometric argument for Arrow’s

impossibility based on a domain restriction.

New intuition behind Arrow’s impossibility and the connection with distributed computing. Very roughly, the intuition

behind our approach, for the base case of two voters and three alternatives 𝐴, 𝐵,𝐶 is the following (recall that the

generalization from the base case is by a simple inductive argument). The first step is to represent the set of possible

preferences of the voters, 𝑁𝐼 , as well as the set of possible social preferences, 𝑁𝑂 , as geometric objects built from

triangles. These objects are called 2-dimensional simplicial complexes; an introduction to combinatorial topology is

in Appendix A. We illustrate the whole set of triangles of 𝑁𝐼 and 𝑁𝑂 in Figure 1 (for 𝑁𝐼 only schematically). Each

triangle of 𝑁𝐼 represents a social profile, and it is mapped by the aggregation map 𝑓 to a triangle of 𝑁𝑂 representing

the corresponding social choice.
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Fig. 1. On the left, 𝑁𝐼 is a torus with 12 additional triangles that form four boundary hollow triangles. Here only 6 of them are shown
together with their 2 hollow triangles (attached to the green cycle); the other 6 triangles are omitted for clarity, they are attached to
the blue cycle. Instead, 𝑁𝑂 is homeomorphic to a cylinder with two hollow boundary triangles.

The notation𝑁𝐼 , 𝑁𝑂 stands for “input” and “output” complexes, following the notion of a task in distributed computing

(see Appendix B and [30]). The processes of the task correspond to the pairs of alternatives P = {𝐴𝐵, 𝐵𝐶,𝐴𝐶}, called
also ids. Thus, we consider chromatic simplicial complexes, where the vertices of each triangle are labeled with distinct

process ids from P. There are four possible individual inputs {++,−−, +−,−+}, while the possible individual outputs
2
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are {+,−}. The output complex 𝑁𝑂 consists of all chromatic triangles, with each vertex labeled with an output value

from {+,−}, except for the two triangles labeled with the same value. Thus, 𝑁𝑂 is the output complex of the weak

symmetry breaking task e.g. [14, 35, 39]. Similarly, 𝑁𝐼 consists of all chromatic triangles whose vertices are labeled with

input values from {++,−−, +−,−+}, except the 16 triangles whose vertices have the same sign in the first or in the

second component. Thus, 𝑁𝐼 includes the (torus) complex of the renaming task [15], where every triangle is labeled

with distinct values from {++,−−, +−,−+}, plus 12 additional triangles where one value repeats twice. We illustrate the

whole set of triangles of 𝑁𝐼 and 𝑁𝑂 in Figure 1 (for 𝑁𝐼 only schematically).

The second step is to observe that the aggregation map 𝑓 , that decides the social output, is a simplicial map from 𝑁𝐼

to 𝑁𝑂 , which is chromatic (preserves vertex ids). In Section 2.3 we reformulate Arrow’s problem in a form analogous to

a task specification of distributed computing: we seek an aggregation chromatic simplicial map 𝑓 from 𝑁𝐼 to 𝑁𝑂 , that

sends vertices with input ++ to vertices with output + and vertices with input −− to vertices with output −. This comes

from the requirement that if both voters prefer an alternative 𝑥 over 𝑦, then the social preference should prefer 𝑥 over 𝑦.

Remarkably, we get a task specification on a restricted domain (of all possible quaternary input values). We stress that

considering task solvability under restricted domains has been thoroughly studied in distributed computing since [41],

as well as in social choice theory, a topic we discuss in Section 6. Arrow’s impossibility reformulation Theorem 2.1 says

that such an aggregation map 𝑓 must be a dictatorship.

The aggregation map 𝑓 maps (hollow) boundary triangles to (hollow) boundary triangles. Notice that 𝑁𝑂 is a

triangulation of a cylinder with two boundary triangles, while 𝑁𝐼 is a kind of product of two cylinders and has 4

boundary triangles. The index lemma computes the winding number
2
of the boundary triangles of 𝑁𝐼 on the boundary

triangles of 𝑁𝑂 . As we shall see, this number is 0 and implies that 𝑓 is a projection (on the preferences of one of the

two voters, the dictator), assuming that 𝑓 satisfies unanimity. The mathematics used is elementary: essentially only

basic parity counting operations are needed. Interestingly, the index lemma is also behind the distributed computing

impossibilities related to weak symmetry breaking e.g. [14, 28].

Organization. First we present the statement of Arrow’s theorem, an introduction to combinatorial topology, and

how to model Arrow’s theorem using combinatorial topology, in Section 2. We then provide two proofs of Arrow’s

theorem (𝑛 = 2, |𝑋 | = 3), using combinatorial topology, one in Section 3 using the index lemma, and one based on

pivotal arguments in Section 4. We present a simple argument to generalize Arrow’s theorem from the basis case

of 𝑛 = 2, |𝑋 | = 3 in Section 5. The topology approach is suitable for studying restricted domains of preferences, as

discussed in Section 6. We focus on the effect of the contractibility of the restricted 𝑁 ′
𝐼
. A domain restriction is used in

Section 6.1 to prove Arrow’s impossibility with a very simple intuitive geometric argument. In Section 6.2 another

domain restriction is described that does allow for a non-dictatorial aggregation, in spite of having a non-contractible

restriction 𝑁 ′′
𝐼
. In Section 7 we present the conclusions. For lack of space, at the end of the paper an Appendix include

some additional details and the remaining proofs.

2 ARROW’S IMPOSSIBILITY THEOREM

We start by recalling Arrow’s theorem in Section 2.1, we then give an informal presentation of the approach in Section 2.2,

and finally we translate it into a combinatorial topology theorem in Section 2.3. An overview of the tools that we use

from this branch of topology is in Appendix A, especially simplicial complex and simplicial map.

2
The winding number of a closed curve in the plane around a point is the number of times that the curve passes counterclockwise around the point minus

the number of times it passes clockwise. It is important in topology, calculus, analysis, physics, etc. The index lemma is a generalization of Sperner’s

lemma, which is equivalent to Brouwer’s fixed point theorem.
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2.1 Problem statement

Let 𝑋 be a set of alternatives, |𝑋 | ≥ 3. The set of all strict total orders of 𝑋 is denoted by𝑊 . Let 𝑛 ≥ 2 denote the (finite)

number of voters, and𝑊 𝑛
be the set of profiles of preferences. Thus, R = (𝑅1, . . . , 𝑅𝑛) ∈𝑊 𝑛

is a profile, where each 𝑅𝑖

is the order on 𝑋 preferred by the 𝑖-th voter, 𝑅𝑖 ∈𝑊 . An aggregation map 𝐹 is a function from𝑊 𝑛
to𝑊 that maps

each profile of𝑊 𝑛
to a unique order in𝑊 . For example, if 𝑋 = {𝐴, 𝐵,𝐶}, 𝑅𝑖 = 𝐴 ≻ 𝐵 ≻ 𝐶 ∈𝑊 denotes that the 𝑖-th

voter prefers 𝐴 over 𝐵, and 𝐵 over 𝐶 . This is also denoted as 𝐴𝑅𝑖 𝐵 𝑅𝑖 𝐶 , or when no confusion arises, simply by 𝐴𝐵𝐶 .

A classic form of Arrow’s impossibility theorem states that whenever the set 𝑋 of possible alternatives has at least 3

elements, there is no aggregation map 𝐹 from𝑊 𝑛
to𝑊 satisfying the following axioms:

(1) Unanimity. If alternative, 𝑎, is ranked strictly higher than 𝑏 for all orderings 𝑅1, . . . , 𝑅𝑛 , then 𝑎 is ranked strictly

higher than 𝑏 by 𝐹 (𝑅1, . . . , 𝑅𝑛).
(2) Non-dictatorship. There is no individual 𝑘 whose strict preferences always prevail. That is, there is no 𝑘 ∈
{1, . . . , 𝑛} such that for all R ∈𝑊 𝑛

, 𝑎 ranked strictly higher than 𝑏 by 𝑅𝑘 implies 𝑎 ranked strictly higher than 𝑏

by 𝐹 (𝑅1, . . . , 𝑅𝑛), for all 𝑎 and 𝑏.
(3) Independence of irrelevant alternatives. For two preference profiles R and S such that for all individuals 𝑖 ,

alternatives 𝑎 and 𝑏 have the same order in 𝑅𝑖 as in 𝑆𝑖 , alternatives 𝑎 and 𝑏 have the same order in 𝐹 (𝑅1, . . . , 𝑅𝑛)
as in 𝐹 (𝑆1, . . . , 𝑆𝑛).

Some formulations of Arrow’s impossibility theorem allow ties in the rankings (e.g. [4, 23, 52]). In this sense, it could

seem that the framework we present here is not as general as it might be. However, this is not the case e.g. [10, Lemma

1], and indeed previous proofs e.g. [10, 36, 43] of Arrow’s impossibility often assume, as we do, strict orders.

2.2 Informal overview of the combinatorial topology form of Arrow’s theorem

We use the simplicial complexes𝑁𝐼 and𝑁𝑂 onwhich Baryshnikov’s framework [10] is based. These simplicial complexes

have been explained in detail e.g. [16, 37, 43] where additional details can be found.

The intuition behind these complexes is as follows, for three alternatives and two voters. On the right side of Figure 2,

two triangles of 𝑁𝑂 are depicted, labeled 𝐵𝐴𝐶 and 𝐵𝐶𝐴. The label 𝐵𝐴𝐶 means that society prefers 𝐵 over 𝐴 and 𝐴 over

𝐶 . The two triangles share and edge because 𝐵𝐴𝐶 and 𝐵𝐶𝐴 agree on two pairwise preferences. The first is represented

by the vertex𝑈 −
𝐴𝐵

, namely 𝐵 is preferred over 𝐴, and the second by the vertex𝑈 +
𝐵𝐶

, namely 𝐵 is preferred over 𝐶 . Now,
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U�
AC

<latexit sha1_base64="sa6a0OFo5fRY+zFkXkLaeuWAXgc=">AAAB6nicbVDLSgNBEOz1GeMrPm5eBoPgKexKUI/RXDxGNA9IljA7mU2GzM4uM71CCPkELx4U8eoXefNvnCR70MSChqKqm+6uIJHCoOt+Oyura+sbm7mt/PbO7t5+4eCwYeJUM15nsYx1K6CGS6F4HQVK3ko0p1EgeTMYVqd+84lrI2L1iKOE+xHtKxEKRtFKD7fVm26h6JbcGcgy8TJShAy1buGr04tZGnGFTFJj2p6boD+mGgWTfJLvpIYnlA1pn7ctVTTixh/PTp2QM6v0SBhrWwrJTP09MaaRMaMosJ0RxYFZ9Kbif147xfDaHwuVpMgVmy8KU0kwJtO/SU9ozlCOLKFMC3srYQOqKUObTt6G4C2+vEwaFyXvslS+Lxcrx1kcOTiBUzgHD66gAndQgzow6MMzvMKbI50X5935mLeuONnMEfyB8/kDnCmNOQ==</latexit>

BCA

<latexit sha1_base64="J5pFc2tGVedUpFD6aRlh/gjjor4=">AAAB8XicbVBNS8NAEJ3Ur1q/ql4EL4tFEISSSFGPxV48VjBtsY1ls920SzebsLsRSsi/8OJBEa/+G2/+G7dtDtr6YODx3gwz8/yYM6Vt+9sqrKyurW8UN0tb2zu7e+X9g5aKEkmoSyIeyY6PFeVMUFczzWknlhSHPqdtf9yY+u0nKhWLxL2exNQL8VCwgBGsjfTg9tObRvaYnmf9csWu2jOgZeLkpAI5mv3yV28QkSSkQhOOleo6dqy9FEvNCKdZqZcoGmMyxkPaNVTgkCovnV2coVOjDFAQSVNCo5n6eyLFoVKT0DedIdYjtehNxf+8bqKDay9lIk40FWS+KEg40hGavo8GTFKi+cQQTCQztyIywhITbUIqmRCcxZeXSeui6lxWa3e1Sv0oj6MIx3ACZ+DAFdThFprgAgEBz/AKb5ayXqx362PeWrDymUP4A+vzBx1+kG8=</latexit>

U+
BC

Fig. 2. Four triangles of 𝑁𝐼 and two of 𝑁𝑂 , intersecting in an edge, because they agree on two pairwise preferences, 𝐴𝐵 and 𝐵𝐶 .

on the left part of Figure 2, an edge is contained in four triangles, representing four different profiles, all sharing their

pairwise preferences for 𝐴, 𝐵 and 𝐵,𝐶 (in all 4 triangles, the first voter prefers 𝐵𝐴 and 𝐵𝐶 , while the second prefers 𝐴𝐵

and 𝐶𝐵).
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Cycles (empty triangles) defined by boundary edges turn out to be important. An edge in the boundary of a complex

is contained in a single triangle because the pair of vertices of the edge determines the third one by transitivity. Consider

for example the two pairwise preferences of 𝐴𝐵𝐶 given by the vertices 𝑈 +
𝐴𝐵

and 𝑈 +
𝐵𝐶

in Figure 1. This edge belongs

only to this triangle, since the vertices together determine the order 𝐴𝐵𝐶 .

The triangles of 𝑁𝐼 are similarly defined, by using the preferences of two voters. Consider for example the edge

representing that both voters prefer 𝐴𝐵 and both prefer 𝐵𝐶 , given by the vertices 𝑈
(+,+)
𝐴𝐵

and 𝑈
(+,+)
𝐵𝐶

(see Figure 1). This

is an external edge because it is contained in the unique triangle where both prefer 𝐴𝐵𝐶 . Three such edges (connecting

the two former vertices with𝑈
(+,+)
𝐶𝐴

) form a hollow triangle, because a Condorcet cycle is created if also both of them

prefer𝐶𝐴. There are edges in 𝑁𝐼 that are internal, for instance when both prefer𝐴𝐵, while the first voter prefers 𝐵𝐶 and

the second prefers 𝐶𝐵, see Figure 14b. This edge is contained in two triangles; in the figure, the left triangle correspond

to the first voter’s preference 𝐴𝐵𝐶 , and the second voter’s preference 𝐴𝐶𝐵. The other triangle in the figure corresponds

to the preferences 𝐴𝐵𝐶 and 𝐶𝐴𝐵. There are also internal edges contained in four triangles, as illustrated in Figure 2.

The remarkable insight of the aggregation map 𝑓 is that it is a simplicial map: it sends triangles of 𝑁𝐼 to triangles of

𝑁𝑂 , and if two triangles share a vertex (edge) in 𝑁𝐼 then 𝑓 must send them to two triangles in 𝑁𝑂 that also share a

vertex (edge). This follows from the independence of irrelevant alternatives axiom.

2.3 Combinatorial topology form of Arrow’s theorem

The main goal of this section is to state Arrow’s theorem in the combinatorial topology framework.

We define the two simplicial complexes, 𝑁𝐼 , 𝑁𝑂 , for a finite set of alternatives, |𝑋 | ≥ 3 and 𝑛 ≥ 2 voters. The first

one, 𝑁𝐼 represents all possible profiles of preferences, and the second, 𝑁𝑂 , represents all possible social preferences. A

simplicial map 𝑓 from 𝑁𝐼 to 𝑁𝑂 represents an aggregation map that satisfies the independence of irrelevant alternatives

property. As we shall see, if 𝑓 sends vertices where everybody prefers 𝛼 over 𝛽 , denoted𝑈
(+, · · · ,+)
𝛼𝛽

, to vertices where 𝛼

is preferred over 𝛽 in the social choice, denoted 𝑈 +
𝛼𝛽

, then 𝑓 also satisfies the unanimity property. Finally, there is a

dictator if 𝑓 is a projection, namely, if 𝑓 always selects the preference of some voter 𝑘 . Intuitively, the following says

that Arrow’s theorem can be viewed as the existence of a continuous map from 𝑁𝐼 to 𝑁𝑂 preserving unanimity. We

will explain in detail the theorem in Sections 2.3.1, 2.3.2 and 2.3.3.

Theorem 2.1 (Arrow’s impossibility). Let |𝑋 | ≥ 3 and 𝑛 ≥ 2. If 𝑓 : 𝑁𝐼 → 𝑁𝑂 is a simplicial map such that for all

vertices𝑈 (+, · · · ,+)
𝛼𝛽

of 𝑁𝐼 , it holds that 𝑓 (𝑈 (+, · · · ,+)𝛼𝛽
) = 𝑈 +

𝛼𝛽
, then 𝑓 is a projection.

That 𝑓 is a projection means that there is a dictator 𝑘 , such that, 𝑓 returns the preferences of the 𝑘-th voter. That is,

as we explain in more detail below, for all vertices𝑈 𝝈
𝛼𝛽

of 𝑁𝐼 ,

𝑓 (𝑈 𝝈
𝛼𝛽
) = 𝑈 𝝈 (𝑘)

𝛼𝛽
,

where 𝝈 (𝑘) ∈ {+,−} denotes the 𝑘-th sign of the vector of 𝑛 signs 𝝈 .

2.3.1 The output complex 𝑁𝑂 . We define the output complex 𝑁𝑂 as follows. Consider the notation𝑈 𝜎
𝛼𝛽

, for 𝛼, 𝛽 ∈ 𝑋
and 𝜎 ∈ {+,−}. Then,𝑈 𝜎

𝛼𝛽
denotes the subset of𝑊 , of all strict orderings on 𝑋 such that 𝛼 is ranked higher than 𝛽 if

𝜎 = +, and otherwise, 𝛽 is ranked higher than 𝛼 . Notice that𝑈 +
𝛼𝛽

denotes the same set as𝑈 −
𝛽𝛼

. The set vertices 𝑉 of the

output complex 𝑁𝑂 consists of all such subsets of𝑊 , each one identified by one 𝑈 𝜎
𝛼𝛽

. A set of vertices of 𝑉 forms a

simplex of 𝑁𝑂 iff their intersection is nonempty. This family of sets forms a simplicial complex, as it is closed under

containment.
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As mentioned earlier, for the purposes of this article, it is sufficient to consider 𝑋 of size 3. Then, the complex 𝑁𝑂 is

depicted in Figure 1 taking 𝑋 = {𝐴, 𝐵,𝐶}. We remark that our discussion holds for any finite 𝑋 .

In the case of |𝑋 | = 3, 𝑁𝑂 is of dimension 2. A facet is a 2-simplex {𝑈 𝜎0
𝛼0𝛽0

,𝑈
𝜎1
𝛼1𝛽1

,𝑈
𝜎2
𝛼2𝛽2
}, which represents the

strict order that is compatible with its three vertices, that is, the strict order contained in 𝑈
𝜎0
𝛼0𝛽0
∩ 𝑈 𝜎1

𝛼1𝛽1
∩ 𝑈 𝜎2

𝛼2𝛽2
.

Consider for example the triangle 𝐴𝐵𝐶 , and its two vertices𝑈 +
𝐴𝐵

and 𝑈 +
𝐵𝐶

. Notice that 𝑈 +
𝐴𝐵

= {𝐴𝐵𝐶,𝐴𝐶𝐵,𝐶𝐴𝐵}, and
𝑈 +
𝐵𝐶

= {𝐴𝐵𝐶, 𝐵𝐴𝐶, 𝐵𝐶𝐴}. These two vertices form an edge of 𝑁𝑂 because their intersection is not empty. Moreover,

it belongs to a single triangle, because the third vertex is unique, 𝑈 −
𝐶𝐴

= {𝐴𝐵𝐶,𝐴𝐶𝐵, 𝐵𝐴𝐶}. Indeed, the three vertices
intersect in a unique order, 𝐴𝐵𝐶 .

There are exactly two triangles that are empty, that do not form a simplex, the external one requiring that𝐴 ≻ 𝐵, 𝐵 ≻
𝐶,𝐶 ≻ 𝐴, and the central one, requiring that 𝐴 ≻ 𝐶,𝐶 ≻ 𝐵, 𝐵 ≻ 𝐴. Furthermore, the boundary edges that belong to a

single triangle, are those that by transitivity uniquely imply the third vertex, e.g. the edge {𝑈 +
𝐴𝐵

,𝑈 +
𝐵𝐶
} implies the third

vertex, 𝑈 −
𝐶𝐴

. Similarly, a partial order defined by an edge, e.g. {𝑈 +
𝐴𝐵

, 𝑈 +
𝐴𝐶
}, is compatible with the two vertices that

resolve the incomparability of 𝐵 and 𝐶 , namely,𝑈 −
𝐵𝐶

and𝑈 +
𝐵𝐶

.

The complex 𝑁𝑂 is the space of output preferences because each one of its facets represents a possible social

preference. Such a social preference is decided by an aggregation rule 𝑓 , applied to a set of individual preferences of

𝑊 𝑛
, which we also represent as a simplicial complex.

Remark 2.1. For simplicity, we always denote the six vertices of 𝑁𝑂 by the representatives 𝑈 +
𝐴𝐵

, 𝑈 −
𝐴𝐵

, 𝑈 +
𝐵𝐶

, 𝑈 −
𝐵𝐶

, 𝑈 +
𝐶𝐴

and𝑈 −
𝐶𝐴

, as in the figure. We will need in Section 3 all vertices in the same boundary sharing the same sign.

Remark 2.2. Consider two adjacent 2-simplices, intersecting in an edge. The strict order associated with one simplex

and the one associated with the other simplex are equal, modulo permuting two consecutive elements in the strict order.

For example, the facet corresponding to 𝐴𝐵𝐶 and the one corresponding to 𝐴𝐶𝐵 are adjacent: they are equal modulo

the permutation of 𝐵 and 𝐶 . This fact will be a keystone of the proof of Section 4.

2.3.2 The input complex 𝑁𝐼 . We define the sets 𝑈 𝝈
𝛼𝛽

, with 𝛼, 𝛽 ∈ 𝑋 and 𝝈 ∈ {+,−}𝑛 as the subset of profiles of𝑊 𝑛

where for each voter 𝑖 , 𝛼 is ranked higher than 𝛽 if 𝝈 (𝑖) = +, and otherwise, 𝛽 is ranked higher than 𝛼 . As before, 𝑈 𝝈
𝛼𝛽

defines the same set of social preferences as𝑈 −𝝈
𝛽𝛼

. The set of vertices of the input complex 𝑁𝐼 consist of all such subsets

of𝑊 𝑛
. As in the previous section, a set of vertices is a simplex of 𝑁𝐼 iff their intersection is nonempty.

The complex𝑁𝐼 is much bigger than𝑁𝑂 . Whereas𝑁𝑂 has |𝑋 | ( |𝑋 |−1) vertices and its dimension is ( |𝑋 |+1) ( |𝑋 |−2)/2,
𝑁𝐼 has |𝑋 | ( |𝑋 | − 1)2𝑛−1 vertices, but it has the same dimension as 𝑁𝑂 (see [10]). So 𝑁𝐼 cannot be drawn in the plane

even when |𝑋 | = 3, as 𝑁𝑂 , but a schematic representation is in Figure 1 and Figure 3. Notice, in the remark below, that

analogous observations to the ones we made for 𝑁𝑂 hold for 𝑁𝐼 as well.

Remark 2.3. First, whereas each 2-simplex of 𝑁𝑂 is a preference, in 𝑁𝐼 each 2-simplex is represented by two individual

preferences. Second, consider two adjacent 2-simplices (intersecting in an edge) of 𝑁𝐼 . The individual preferences

associated with one simplex and those associated with the other simplex are equal, modulo permuting the preference of

two alternatives, 𝑥,𝑦, of one or two voters, without changing the preferences of other alternatives. For example, in

Figure 2, the triangles 𝐵𝐴𝐶,𝐴𝐶𝐵 and 𝐵𝐶𝐴,𝐶𝐴𝐵 are adjacent, because the preferences of both voters over 𝐴 and 𝐶 are

exchanged, and only over 𝐴 and 𝐶 . This fact will be a keystone of the proof of Section 4.

As an example, consider the inner cylinder in the left of the Figure 3. The front triangle has vertices𝑈
(−,−)
𝐶𝐴

,𝑈
(+,+)
𝐴𝐵

,𝑈
(+,+)
𝐵𝐶

.

It represents that both voters prefer 𝐴𝐵𝐶 . The vertex 𝑈
(+,+)
𝐴𝐵

is also contained in its right triangle where both prefer
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𝑈
(+,+)
𝐴𝐵

𝑈
(+,+)
𝐶𝐴

𝑈
(+,+)
𝐵𝐶

𝑈
(−,−)
𝐴𝐵

𝑈
(−,−)
𝐶𝐴

𝑈
(−,−)
𝐵𝐶

𝑈
(+,−)
𝐴𝐵

𝑈
(+,−)
𝐶𝐴

𝑈
(+,−)
𝐵𝐶

𝑈
(−,+)
𝐴𝐵

𝑈
(−,+)
𝐶𝐴

𝑈
(−,+)
𝐵𝐶 𝑈

(+,−)
𝐶𝐴

𝑈
(−,+)
𝐴𝐵

𝑈
(+,−)
𝐵𝐶

𝑈
(−,+)
𝐶𝐴

𝑈
(+,−)
𝐴𝐵

𝑈
(−,+)
𝐵𝐶

𝑈
(+,−)
𝐶𝐴

𝑈
(+,+)
𝐴𝐵

𝑈
(−,−)
𝐵𝐶

𝑈
(+,+)
𝐶𝐴

𝑈
(−,−)
𝐴𝐵

𝑈
(+,+)
𝐵𝐶

𝑈
(−,−)
𝐶𝐴

𝑈
(+,+)
𝐴𝐵

𝑈
(+,−)
𝐵𝐶

𝑈
(−,+)
𝐶𝐴

𝑈
(+,−)
𝐴𝐵

𝑈
(−,+)
𝐵𝐶

𝑈
(+,−)
𝐶𝐴

𝑈
(−,+)
𝐴𝐵

𝑈
(+,−)
𝐵𝐶

Fig. 3. When |𝑋 | = 3 and 𝑛 = 2, the complex 𝑁𝐼 can be built using two (cylindrical) copies of 𝑁𝑂 placed one inside the other (in the
left side of the figure). The outer cylinder are the unanimous profiles, whereas the inner one are the profiles where the voters have
opposite preferences. Additionally, both cylinders are joined through the torus in the right (the torus is folded by identifying vertices
according to the coloured edges), so the total number of vertices of 𝑁𝐼 is 12.

𝐶𝐴𝐵. The green edge of this triangle, {𝑈 (+,+)
𝐴𝐵

,𝑈
(−,−)
𝐵𝐶

}, is contained in the triangle (in the torus on the right side of

the figure) that has also the vertex 𝑈
(+,−)
𝐴𝐵

, representing that the first voter prefers 𝐶𝐴𝐵 but the second prefers 𝐴𝐶𝐵.

Figure 1 illustrates how 𝑁𝐼 consists of a torus, where two “parallel” cycles, a green one and a blue one are identified

with some additional triangles (in the figure only the triangles identified with the green one are drawn, for clarity). In

the green cycle, 6 vertices are used to add 6 triangles, as “flaps” of the torus (same for the blue cycle).

2.3.3 The simplicial aggregation map. Finally, it remains to define an aggregation simplicial map 𝑓 : 𝑁𝐼 → 𝑁𝑂 from

an aggregation map 𝐹 :𝑊 𝑛 →𝑊 . Since 𝐹 satisfies the independence of irrelevant alternatives property and𝑈 𝝈
𝛼𝛽

is a

subset of profiles in𝑊 𝑛
defined purely by the orderings between 𝛼 and 𝛽 , 𝑓 (𝑈 𝝈

𝛼𝛽
) can be defined to be the vertex𝑈 𝜎

𝛼𝛽

with the sign 𝜎 determined by the ordering of 𝛼 and 𝛽 on the social aggregation of any of the profiles in𝑈 𝝈
𝛼𝛽

. In other

words, 𝑓 (𝑈 𝝈
𝛼𝛽
) = {𝐹 (R) ∈𝑊 : R ∈ 𝑈 𝝈

𝛼𝛽
}.

The images of the higher dimensional simplices of 𝑁𝐼 can be defined by extension. We only need such simplices

being in 𝑁𝑂 . However, this is immediate because a simplex in 𝑁𝐼 is generated iff the intersection of their vertices

contain at least one profile. The image of such profile must belong to the intersection of the images of those vertices

since the image of a profile is determined by the ordering of pairs of alternatives.

Finally, we get the statement of Theorem 2.1. The independence of irrelevant alternatives property implies that 𝑓

is a simplicial map from 𝑁𝐼 to 𝑁𝑂 . Moreover, the unanimity of 𝑓 determines the image of the vertices formulated as

𝑈
(+, · · · ,+)
𝛼𝛽

or𝑈
(−, · · · ,−)
𝛼𝛽

.

3 IMPOSSIBILITY PROOF BASED ON THE INDEX LEMMA

We present the first of the topological proofs of Theorem 2.1, for |𝑋 | = 3, 𝑛 = 2, using the index lemma. The classic form

of the index lemma is in Appendix A. We use a simple generalization, Theorem C.2 described in Appendix C, where in

addition to orientability, we assume that each interior edge belongs to an even number of triangles (at least 2). Let 𝐾 be

an oriented simplicial complex of dimension 2 with each vertex labeled with a color from {0, 1, 2}. The content 𝐶 of 𝐾

is the number of tricoloured triangles in 𝐾 counted +1 if the order of the labeling agrees with the orientation and −1
7
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otherwise. The index 𝐼 of 𝐾 is the number of edges

−→
01 on the boundary (contained in exactly one triangle) counted +1 if

the order of the vertices agrees with the orientation and −1 otherwise. The index lemma states that 𝐼 = 𝐶 .

Assuming 𝑁𝐼 is orientable and we can use the index lemma (we defer the proof to Section C), we present our first

proof of Theorem 2.1 here, for the case |𝑋 | = 3, 𝑛 = 2.

Let 𝑓 : 𝑁𝐼 → 𝑁𝑂 be a simplicial map such that for all vertices𝑈
(+, · · · ,+)
𝛼𝛽

of 𝑁𝐼 , it holds that 𝑓 (𝑈 (+, · · · ,+)𝛼𝛽
) = 𝑈 +

𝛼𝛽
. We

use 𝑓 to define a coloring of the vertices of 𝑁𝐼 with colors {0, 1, 2}, and then use the index lemma (Theorem C.2) to

show that 𝑓 is a projection.

In order to define the coloring of the vertices of 𝑁𝐼 , first we colour them with {+1,−1} according to the image of

every vertex by 𝑓 . That is, we label𝑈 𝝈
𝛼𝛽

with +1 iff 𝑓 (𝑈 𝝈
𝛼𝛽
) ∈ 𝑁𝑂 has the superindex +, and otherwise with −1. We call

it the sign of𝑈 𝝈
𝛼𝛽

and it is denoted by 𝑠 (𝑈 𝝈
𝛼𝛽
).

Second, we color every vertex of 𝑁𝐼 with one colour 𝑝 ∈ {0, 1, 2} following the rule:

𝑝 (𝑈 𝝈
𝛼𝛽
) = 𝐼𝐷 (𝑈 𝝈

𝛼𝛽
) + 𝑠 (𝑈 𝝈

𝛼𝛽
) (𝑚𝑜𝑑 3) (1)

where 𝐼𝐷 (𝑈 𝝈
𝐴𝐵
) = 0, 𝐼𝐷 (𝑈 𝝈

𝐵𝐶
) = 1 and 𝐼𝐷 (𝑈 𝝈

𝐶𝐴
) = 2 (for every 𝝈 ∈ {+,−}𝑛).

𝑈
(+,−)
𝐶𝐴

𝑈
(+,−)
𝐴𝐵

𝑈
(+,−)
𝐵𝐶

𝑈
(−,+)
𝐶𝐴

𝑈
(−,+)
𝐴𝐵

𝑈
(−,+)
𝐵𝐶

𝑈
(−,−)
𝐶𝐴

𝑈
(−,−)
𝐴𝐵

𝑈
(−,−)
𝐵𝐶

𝑈
(+,+)
𝐶𝐴

𝑈
(+,+)
𝐴𝐵

𝑈
(+,+)
𝐵𝐶

Fig. 4. 𝑁𝐼 has four boundary components generated by Condorcet cycles. A single triangle intersects each boundary edge since each
pair of vertices determines the third one by transitivity.

Notice that a cycle of three vertices is 3-coloured if and only if the sign of all of them is the same. This implies that

the content 𝐶 = 0 because no 2-simplex in 𝑁𝐼 can be mapped to one of the holes in 𝑁𝑂 .

We conclude from the index lemma that 𝐼 = 0, on the boundary of 𝑁𝐼 , which consists of 4 combinations of Condorcet

cycles (see Figure 4). The contribution to the index from the unanimity cycles is +2 (see Figure 5a).
Since the contribution of the unanimity cycles is +2 and 𝐼 = 0, the two remaining contributions to 𝐼 have to be −1 for

each one of the remaining boundary components. So, we can conclude that both have to be tricoloured and mapped on

the boundary of 𝑁𝑂 .

Both of these boundary components cannot be mapped on the same boundary of 𝑁𝑂 because if it were the case the

simplex {𝑈 (−,+)
𝐴𝐵

,𝑈
(−,+)
𝐵𝐶

,𝑈
(+,−)
𝐶𝐴

} would be mapped on one of the holes of 𝑁𝑂 (see Figure 5b).

Finally, we have all the information we need about the images of the 12 vertices of 𝑁𝐼 to state that 𝑓 is a projection.

Recall that the images of the first and the fourth boundaries in Figure 4 are determined by the unanimity. If the second

boundary is mapped on the inner boundary of 𝑁𝑂 (and the third in the outer), it is straightforward to check that 𝑓 is

the projection over the first component. On the contrary, if the second boundary is mapped on the outer boundary of

𝑁𝑂 (and the third on the inner), then 𝑓 is the projection over the second component.

4 IMPOSSIBILITY PROOFWITH PIVOTAL VOTERS

The second proof of Theorem 2.1 for |𝑋 | = 3, 𝑛 = 2 exposes the geometry behind the combinatorial proofs by

Geanakoplos [27] and Yu [51], using pivotal voters, that have received much attention e.g. [50].
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𝑝 (𝑈 (+,+)
𝐶𝐴
) = 0

𝑝 (𝑈 (+,+)
𝐴𝐵
) = 1 𝑝 (𝑈 (+,+)

𝐵𝐶
) = 2

𝑝 (𝑈 (−,−)
𝐶𝐴

) = 1

𝑝 (𝑈 (−,−)
𝐴𝐵

) = 2𝑝 (𝑈 (−,−)
𝐵𝐶

) = 0

+1

𝑝 (𝑈 (−,−)
𝐶𝐴

) = 1

𝑝 (𝑈 (−,−)
𝐴𝐵

) = 2 𝑝 (𝑈 (−,−)
𝐵𝐶

) = 0

𝑝 (𝑈 (+,+)
𝐶𝐴
) = 0

𝑝 (𝑈 (+,+)
𝐴𝐵
) = 1𝑝 (𝑈 (+,+)

𝐵𝐶
) = 2

+1

(a)

𝑈
(−,+)
𝐴𝐵

𝑈
(−,+)
𝐵𝐶

𝑈
(−,+)
𝐶𝐴

𝑈
(+,−)
𝐴𝐵

𝑈
(+,−)
𝐵𝐶

𝑈
(+,−)
𝐶𝐴

𝑈 +
𝐴𝐵

𝑈 +
𝐵𝐶

𝑈 +
𝐶𝐴

𝑈 −
𝐴𝐵

𝑈 −
𝐵𝐶

𝑈 −
𝐶𝐴

𝑓

(b)

Fig. 5. (a) The contribution of these two boundary components to the index is +2 according with the orientation exposed in
Proposition C.3 . (b) If these two boundary components of 𝑁𝐼 are mapped on the same boundary component of 𝑁𝑂 , then𝑈 (−,+)

𝐴𝐵
,

𝑈
(−,+)
𝐵𝐶

and𝑈 (+,−)
𝐶𝐴

are also mapped on the same boundary component. That is, a hole.

4.1 Paths and pivotal voters

We say that a sequence of triangles in either 𝑁𝐼 or 𝑁𝑂 is a path, if each two consecutive triangles are adjacent (share

an edge). Let 𝑅 = 𝑅0, . . . , 𝑅𝑚 be a sequence of preferences in𝑊 such that every 𝑅𝑖 can be obtained from 𝑅𝑖−1 by a

permutation of the preference of two alternatives (see Remark 2.2). This sequence induces a path in 𝑁𝑂 .

Similarly, a sequence of profiles R = R0, . . . ,R𝑚 in𝑊 2
defines a path in 𝑁𝐼 , if R𝑖 can be obtained from R𝑖−1 by a

permutation of the preference of two alternatives of at least one of the voters (see Remark 2.3). We will consider here

only paths in 𝑁𝐼 where R𝑖 is obtained from R𝑖−1 by a permutation of the preference of two alternatives of exactly one

of the voters.

Notice that since the aggregation map 𝑓 is a simplicial map, it sends triangles to triangles, and the image of a path in

𝑁𝐼 is a path in 𝑁𝑂 .

We will consider paths in 𝑁𝐼 starting and ending in unanimous profiles. Additionally, such that all triangles in the

path share a vertex 𝑈 𝝈
𝑥𝑦 , 𝑥,𝑦 ∈ 𝑋 , for 𝝈 consisting of the same sign, either + or −. Notice that since all the triangles

share vertex𝑈 𝝈
𝑥𝑦 , then all the triangles of the path in 𝑁𝑂 of the image under 𝑓 share the vertex𝑈 𝜎

𝑥𝑦 , where 𝜎 is equal

to the single sign in 𝝈 .

An example is the path 𝑹 = 𝑹0, . . . , 𝑹4, in 𝑁𝐼 , defined on the left of Figure 6. All the triangles in this path contain the

vertex𝑈
(+,+)
𝐵𝐶

, since both voters prefer 𝐵 over 𝐶 . Additionally, the path starts in the unanimous profile 𝐴𝐵𝐶,𝐴𝐵𝐶 and

ends in the unanimous profile 𝐵𝐶𝐴, 𝐵𝐶𝐴. In the figure there is another example, the path 𝑹′ = 𝑹′
0
, . . . , 𝑹′

4
starting in

the triangle 𝐵𝐴𝐶, 𝐵𝐴𝐶 , ending in the triangle 𝐴𝐶𝐵,𝐴𝐶𝐵, and around the vertex𝑈
(−,−)
𝐶𝐴

.

Consider the path R of Figure 6, and its depiction in Figure 7. We call such a path bivalent because the social choice

has to move from 𝑓 (R0) = 𝐴𝐵𝐶 to 𝑓 (R4) = 𝐵𝐶𝐴, by the unanimity axiom. The notion of pivotal voter arises in such

bivalent paths. The social choice has to exchange the preferences of the pair 𝐴, 𝐵 and also 𝐴,𝐶 , because it starts in the

edge {𝑈 (+,+)
𝐴𝐵

,𝑈
(−,−)
𝐶𝐴

} and ends in the edge {𝑈 (−,−)
𝐴𝐵

,𝑈
(+,+)
𝐶𝐴

}. It does not change preferences over 𝐵,𝐶 , since the path
keeps fixed the vertex𝑈

(+,+)
𝐵𝐶

.

Consider a sequence of profiles in which the first profile unanimously prefers an alternative 𝑥 over another 𝑦, we

change at each step the preference of a single individual from 𝑥 over 𝑦 to 𝑦 over 𝑥 until we arrive at the unanimous

profile in which everyone prefers 𝑦 over 𝑥 . By unanimity, the first profile socially prefers 𝑥 over 𝑦, whereas the last one

9
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𝑦 over 𝑥 . Barberà [8] named the first voter who produces the change on the social preference from 𝑥 over 𝑦 to 𝑦 over 𝑥 ,

the pivotal voter of 𝑦 over 𝑥 . Denote this voter by 𝑘𝑦𝑥 .

In Section 4.2, we will use these paths to prove Theorem 2.1. Whereas in Section D we will compare this topological

proof based on pivotal voters with the combinatorial ones by Geanakoplos [27] and Yu [51].

4.2 The proof based on pivotal voters

Following Geankoplos [27] and Yu [51], first, we will prove that all pivotal voters are the same, and the next step will

apply a simple argument to see that this pivotal voter is, in fact, a dictator.

Step 1: all pivotal voters are the same. Consider the path R of Figure 6 and its depiction in Figure 7. Notice that indeed

all the triangles of the path share the vertex 𝑈
(+,+)
𝐵𝐶

, and it starts in the edge {𝑈 (+,+)
𝐴𝐵

,𝑈
(−,−)
𝐶𝐴

} and ends in the edge

{𝑈 (−,−)
𝐴𝐵

,𝑈
(+,+)
𝐶𝐴

}. Traversing the path, we see that voter 1 changes its preferences twice, first from 𝑹0 to 𝑹1 (𝐴𝐵 to 𝐵𝐴)

and then from 𝑹1 to 𝑹2 (𝐴𝐶 to 𝐶𝐴). The next two changes of preferences are by voter 2, from 𝑹2 to 𝑹3 (𝐴𝐵 to 𝐵𝐴) and

then from 𝑹3 to 𝑹4 (𝐴𝐶 to 𝐶𝐴). We are interested in comparing 𝑘𝐶𝐴 with 𝑘𝐵𝐴 .

The fact that the image of this path in 𝑁𝑂 has to exchange the preferences of the pair 𝐴, 𝐵 and also 𝐴,𝐶 , means that

the path in 𝑁𝑂 has to cross the triangle 𝐵𝐴𝐶 . The figure shows why it has to cross first the edge adjacent to𝑈 −
𝐶𝐴

, and

then the one adjacent to the vertex𝑈 −
𝐴𝐵

, both of this edges incident on𝑈 +
𝐵𝐶

. The social preference has to change to 𝐵

over 𝐴 before it changes𝐶 over 𝐴, and given that in the path R the first changes are by voter 1, followed by the changes

by voter 2, we conclude that that 𝑘𝐵𝐴 ≤ 𝑘𝐶𝐴 .

1 2 1 2

A A B B

R0 B B R′
0

A A

C C C C

B A A B

R1 A B R′
1

B A

C C C C

B A A B

R2 C B R′
2

C A

A C B C

B B A A

R3 C A R′
3

C B

A C B C

B B A A

R4 C C R′
4

C C

A A B B

𝑈 +
𝐴𝐵

𝑈 +
𝐵𝐶

𝑈 +
𝐶𝐴

𝑈 −
𝐴𝐵

𝑈 −
𝐵𝐶

𝑈 −
𝐶𝐴

𝐴𝐶𝐵

𝐴𝐵𝐶

𝐵𝐴𝐶

𝐵𝐶𝐴

𝐶𝐴𝐵

𝐶𝐵𝐴

𝑓 (R0)
𝑓 (R

2𝑘𝐵𝐴−1)

𝑓 (R
2𝑘𝐶𝐴
)

𝑓 (R4)

Fig. 6. In the left side, the sequences R and R′ are defined. Writing an alternative on the top on another means that the one on top is
preferred to the one in the bottom. On the right side there is a graphical representation of the paths defined by 𝑓 (R) .

This argument can be repeated using any path analogous to R around the green cycle in Figure 7, even in the opposite

direction, such as R′. That is, taking any two of the three unanimous green triangles labeled 𝐴𝐵𝐶 , 𝐵𝐶𝐴 or𝐶𝐴𝐵, and the

corresponding bivalent path connecting them clockwisely (that preserves along the path the vertex in the intersection

of the two selected triangles). This proves three inequalities 𝑘𝑦𝑥 ≤ 𝑘𝑧𝑥 , for the corresponding 𝑥,𝑦, 𝑧 ∈ 𝑋 . Conversely,
taking the three unanimous blue triangles labeled 𝐵𝐴𝐶 ,𝐶𝐵𝐴 and𝐴𝐶𝐵 and the corresponding bivariant paths connecting

them counterclockwisely (as R′), we obtain three additional inequalities 𝑘𝑥𝑦 ≤ 𝑘𝑥𝑧 for some 𝑥,𝑦, 𝑧 ∈ 𝑋 . Joining the six

inequalities we obtain that 𝑘𝐵𝐴 ≤ 𝑘𝐶𝐴 ≤ 𝑘𝐶𝐵 ≤ 𝑘𝐴𝐵 ≤ 𝑘𝐴𝐶 ≤ 𝑘𝐵𝐶 ≤ 𝑘𝐵𝐴 . So, there is a unique pivotal voter.
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BCA, ABC

<latexit sha1_base64="SGOhodT5OXIJEe0zIxZC85mXbHk=">AAAB7nicbVDLSgNBEOzxGeMr6tHLYBBykLArQT3mcfEYwTwgWcLsZDYZMju7zMwKYclHePGgiFe/x5t/4yTZgyYWNBRV3XR3+bHg2jjON9rY3Nre2c3t5fcPDo+OCyenbR0lirIWjUSkuj7RTHDJWoYbwbqxYiT0Bev4k8bc7zwxpXkkH800Zl5IRpIHnBJjpU69Ubuq1xqDQtEpOwvgdeJmpAgZmoPCV38Y0SRk0lBBtO65Tmy8lCjDqWCzfD/RLCZ0QkasZ6kkIdNeujh3hi+tMsRBpGxJgxfq74mUhFpPQ992hsSM9ao3F//zeokJ7ryUyzgxTNLloiAR2ER4/jsecsWoEVNLCFXc3orpmChCjU0ob0NwV19eJ+3rsntTrjxUitVSFkcOzuECSuDCLVThHprQAgoTeIZXeEMxekHv6GPZuoGymTP4A/T5A6kgjmc=</latexit>

BCA, BAC

<latexit sha1_base64="4balseT75XK0xk0WYXlZ8srz3ic=">AAAB9XicbVBNT8JAEJ3iF+IX6tHLRmKCUUlriHpEvXjExAIJFLJdtrBh+5HdrYY0/R9ePGiMV/+LN/+NC/Sg4EsmeXlvJjPz3IgzqUzz28gtLa+sruXXCxubW9s7xd29hgxjQahNQh6Klosl5SygtmKK01YkKPZdTpvu6HbiNx+pkCwMHtQ4oo6PBwHzGMFKS127l1zfpN2kfHZ6cpz2iiWzYk6BFomVkRJkqPeKX51+SGKfBopwLGXbMiPlJFgoRjhNC51Y0giTER7QtqYB9ql0kunVKTrSSh95odAVKDRVf08k2Jdy7Lu608dqKOe9ifif146Vd+UkLIhiRQMyW+TFHKkQTSJAfSYoUXysCSaC6VsRGWKBidJBFXQI1vzLi6RxXrEuKtX7aqlWzuLIwwEcQhksuIQa3EEdbCAg4Ble4c14Ml6Md+Nj1pozspl9+APj8wfDSpFP</latexit>

U
(�,+)
AB

<latexit sha1_base64="OYRjdaKn1hwYbb71axkmiFthnvw=">AAAB9XicbVBNT8JAEJ3iF+IX6tHLRmKCUUlriHrEcPGIiQUSKGS7bGHD9iO7Ww1p+j+8eNAYr/4Xb/4bF+hBwZdM8vLeTGbmuRFnUpnmt5FbWV1b38hvFra2d3b3ivsHTRnGglCbhDwUbRdLyllAbcUUp+1IUOy7nLbccX3qtx6pkCwMHtQkoo6PhwHzGMFKSz27n9Rv015SPju/OE37xZJZMWdAy8TKSAkyNPrFr+4gJLFPA0U4lrJjmZFyEiwUI5ymhW4saYTJGA9pR9MA+1Q6yezqFJ1oZYC8UOgKFJqpvycS7Es58V3d6WM1koveVPzP68TKu3ESFkSxogGZL/JijlSIphGgAROUKD7RBBPB9K2IjLDAROmgCjoEa/HlZdK8rFhXlep9tVQrZ3Hk4QiOoQwWXEMN7qABNhAQ8Ayv8GY8GS/Gu/Exb80Z2cwh/IHx+QPE1ZFQ</latexit>

U
(+,�)
CA

1 2
1

2

<latexit sha1_base64="ferNYER2G+Y05eK3PHUjHjJGYlo=">AAAB9XicbVBNT8JAEJ3iF+IX6tHLRmKCwZDWEPVI5OIREwskUMh22cKG7Ud2txrS9H948aAxXv0v3vw3LtCDgi+Z5OW9mczMcyPOpDLNbyO3tr6xuZXfLuzs7u0fFA+PWjKMBaE2CXkoOi6WlLOA2oopTjuRoNh3OW27k8bMbz9SIVkYPKhpRB0fjwLmMYKVlvr2ILltpP2kXLmonKeDYsmsmnOgVWJlpAQZmoPiV28YktingSIcS9m1zEg5CRaKEU7TQi+WNMJkgke0q2mAfSqdZH51is60MkReKHQFCs3V3xMJ9qWc+q7u9LEay2VvJv7ndWPl3TgJC6JY0YAsFnkxRypEswjQkAlKFJ9qgolg+lZExlhgonRQBR2CtfzyKmldVq2rau2+VqqXszjycAKnUAYLrqEOd9AEGwgIeIZXeDOejBfj3fhYtOaMbOYY/sD4/AHDVZFP</latexit>

U
(+,+)
BC

Fig. 7. The sequence R = R0, . . . ,R4 in the complex 𝑁𝐼 . The red curved arrow shows the order in which these triangles appear in R,
and it indicates that voter 1 changes its preference twice and then voter 2 changes its preference twice. For clarity, the triangle R0 is
labeled with 𝐴𝐶𝐵, and the triangle R4 is labeled with𝐶𝐵𝐴.

Surprisingly, as we will see on Section 6.1, the triangles conforming these six bivariant paths constitute a minimal

subsimplex 𝑁 ′
𝐼
of 𝑁𝐼 (see 𝑁

′
𝐼
in Figure 9) that causes an impossibility. This is, the cylinder 𝑁 ′

𝐼
contained in the torus

is sufficient to connect the unanimity vertices and the vertices with opposite pairwise preferences leading to an

impossibility result. Whereas we use here 6 paths going across the 12 triangles of 𝑁 ′
𝐼
, in Section 6.1 they have been

joined together in a single closed path. Using this closed path we will describe a geometric argument for the impossibility.

Cutting this closed path in 6 paths, we have connected the geometrical arguments with the classical pivotal argument.

So, it is not needed the domain containing all preferences and, consequentially, the whole complex 𝑁𝐼 , to apply the

arguments contained in this section.

Step 2: the pivotal voter is a dictator. It remains to prove that 𝑓 is a projection over the 𝑘-th component. That is,

𝑓 (𝑈 𝝈
𝑥𝑦) = 𝑈

𝝈 (𝑘)
𝑥𝑦 . However, this is immediate to see taking the definition of pivotal voter (for 𝑛 = 2). When there are two

voters, being a pivotal voter and a dictator is equivalent. The Figure 8 shows, as an example, how to use the definition

of a pivotal voter to compute 𝑓 (𝑈 (+,−)𝑥𝑦 ) when 𝑘 = 1 and 𝑘 = 2.

S0 S1 S2 S′
0

S′
1

S′
2

Case 𝑘 = 1

𝑦 𝑦 𝑥 𝑦 𝑥 𝑥
Case 𝑘 = 2

𝑦 𝑦 𝑥 𝑦 𝑥 𝑥

𝑥 𝑥 𝑦 𝑥 𝑦 𝑦 𝑥 𝑥 𝑦 𝑥 𝑦 𝑦

Social pref. 𝑦𝑥 𝑥𝑦 𝑥𝑦 Social pref. 𝑦𝑥 𝑦𝑥 𝑥𝑦

Fig. 8. The table on the left represents a sequence of profiles S = S0, S1, S2 starting from unanimity profile of 𝑦 over 𝑥 to 𝑥 over 𝑦 in
which the pivotal voter is 𝑘 = 1. Since 𝑘 = 1 is the pivotal voter, the social preference changes in the first step, so 𝑓 (𝑈 (+,−)𝑥𝑦 ) = 𝑈 +𝑥𝑦 .
The table on the right represents the converse situation, when 𝑘 = 2.

In Appendix D, we further discuss the correspondence of pivotal with the simplicial complex setting.

5 REDUCTION TO THE CASE OF 𝑛 = 2 AND |𝑋 | = 3

We have proved Arrow’s impossibility Theorem 2.1 for |𝑋 | = 3, 𝑛 = 2. The proof of Theorem 2.1 for |𝑋 | ≥ 3, 𝑛 ≥ 2

follows directly from Lemma 5.1 and 5.2, given that the case |𝑋 | = 3, 𝑛 = 2 has been proved.

11



Sergio Rajsbaum and Armajac Raventós

Lemma 5.1. Let the number of voters be any 𝑛 ≥ 2. Arrow’s impossibility theorem for |𝑋 | = 3 implies it for |𝑋 | ≥ 3.

The proof of the previous lemma (in Appendix E.1), contrary to the ones in [2, 48], is not inductive. This fact makes

possible reducing the cases of any cardinality of 𝑋 to |𝑋 | = 3 in a single step.

Lemma 5.2. Let the number of alternatives be any |𝑋 | ≥ 3. If Arrow’s impossibility theorem is true for 𝑛 = 2 then it is

true for 𝑛 > 2.

Proof. The proof is by induction on 𝑛. By hypothesis, the theorem is true when 𝑛 = 2. Suppose that it is true for

𝑛 − 1 and we will prove it for 𝑛.

Let 𝐹𝑛 :𝑊 𝑛 →𝑊 an aggregation map satisfying unanimity and independence of irrelevant alternatives. We will

prove that 𝐹𝑛 is dictatorial in three steps:

Step 1: We define the aggregation map on𝑊 𝑛−1
, 𝐹𝑛−1

1
(𝑅1, . . . , 𝑅𝑛−1) := 𝐹𝑛 (𝑅1, . . . , 𝑅𝑛−1, 𝑅1). Since 𝐹𝑛−1

1
satisfies

unanimity and independence of irrelevant alternatives, the induction hypothesis guarantees that it has a dictator 𝑘1.

We will prove that if 𝑘1 ≠ 1, then 𝑘1 is also a dictator for 𝐹𝑛 .

Suppose R ∈ 𝑊 𝑛
and 𝑥𝑅𝑘𝑦. If the ordering of 𝑅1 and 𝑅𝑛 coincides on {𝑥,𝑦}, then 𝑥𝐹𝑛 (R)𝑦 because 𝐹𝑛−1

1
has 𝑘1

as a dictator. Otherwise, we can suppose without loss of generality that 𝑥𝑅1𝑦, 𝑦𝑅𝑛𝑥 . Then, let 𝑧 ∈ 𝑋 be an auxiliary

alternative and let R′ ∈𝑊 𝑛
be a profile which coincides with R over {𝑥,𝑦}, 𝑥𝑅′

𝑘1
𝑧𝑅′

𝑘1
𝑦 and 𝑧 is below 𝑥 and 𝑦 for the

remaining voters.

Since 𝑅′
1
and 𝑅′𝑛 agrees on {𝑦, 𝑧} and 𝑘1 is a dictator for 𝐹𝑛−1

1
, we have that 𝑧𝐹𝑛 (R′)𝑦. Moreover, 𝑥𝐹𝑛 (R′)𝑧 because of

the unanimity. Using the transitivity we obtain that 𝑥𝐹𝑛 (R′)𝑦, and applying the independence of irrelevant alternatives
we obtain that 𝑥𝐹𝑛 (R)𝑦. So, 𝑘1 is a dictator of 𝐹𝑛 (if 𝑘1 ≠ 1).

Step 2: We define 𝐹𝑛−1
2
(𝑅1, . . . , 𝑅𝑛−1) := 𝐹𝑛 (𝑅1, . . . , 𝑅𝑛−1, 𝑅2). Using the inductive hypothesis, 𝐹𝑛−1

2
has a dictator

𝑘2. If 𝑘2 ≠ 2, apply a symmetric reasoning to the one in step 1 to deduce that 𝑘2 is the dictator of 𝐹
𝑛
(if 𝑘2 ≠ 2).

Step 3: If 𝑘1 = 1 and 𝑘2 = 2, we show that 𝑛 is the dictator of 𝐹𝑛 . Let R ∈𝑊 𝑛
be a profile with 𝑥𝑅𝑛𝑦. Consider 𝑧 ∈ 𝑋 ,

and R′ ∈𝑊 𝑛
coinciding with R over {𝑥,𝑦}, 𝑥𝑅′𝑛𝑧𝑅′𝑛𝑦, 𝑥𝑅′1𝑧 and 𝑧𝑅

′
2
𝑦. Using that 1 (resp. 2) is the dictator of 𝐹𝑛−1

1
(resp.

𝐹𝑛−1
2

) and the independence of irrelevant alternatives, we obtain that 𝑥𝐹𝑛 (R)𝑧 (resp. 𝑧𝐹𝑛 (R)𝑦). So, using transitivity,
we obtain that 𝑥𝐹𝑛 (R)𝑦. Finally we conclude that 𝑛 is the dictator of 𝐹𝑛 (if 𝑘1 = 1 and 𝑘2 = 2). □

The reader may wonder why Lemma 5.2 is inductive, instead of applying some direct argument extending from

𝑛 = 2 to any number of voters (as we have done in Lemma 5.1). If such argument existed, it would allow to extend the

theorem to infinite number of voters. However, this is not possible because Arrow’s impossibility is not true when 𝑛 is

infinite [23]. Further discussion about related work is in Appendix E.2.

6 APPLYING THE COMBINATORIAL TOPOLOGY APPROACH TO DOMAIN RESTRICTIONS

There is an extensive literature on the subject of domain restrictions, going back at least to Black [12] and Arrow [4], and

still very active today [9]. Arrow’s impossibility applies to universal domains, where all possible individual preferences

are considered. Many researchers have proved that it is possible to aggregate on some non-universal domains (see, e.g.

[25, 38]). However, there is no general rule characterising the domains in which aggregation is possible. We illustrate

here how the combinatorial topology approach can shed some light on this topic, focusing on contractibility of the

restricted domain of 𝑁𝐼 . We describe the arguments here less formally, to concentrate on the geometric intuition.
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A Combinatorial Topology Approach to Arrow’s Impossibility Theorem

6.1 Arrow’s impossibility using domain restrictions

We illustrate the use of the index lemma and winding numbers with a domain restriction that exposes clearly a geometric

reason for Arrow’s impossibility. Namely, the following provides the third proof of Theorem 2.1 for |𝑋 | = 3 and 𝑛 = 2.

Consider the domain restriction of Figure 9, a triangulated cylinder. It is obtained by removing a cylinder from the

torus universal domain on the right of Figure 3, and removing also both of the concentric cylinders on the left of the

figure, corresponding to unanimous profiles and those where the voters have opposite preferences. In Figure 9 all the

triangles marked are removed from the torus: from top to bottom, the triangles 𝐶𝐴𝐵,𝐴𝐵𝐶 , 𝐴𝐶𝐵,𝐴𝐵𝐶 , etc. Thus, only

the triangles on the left remain, which form a cylinder, just as 𝑁𝑂 , except that the cylinder of 𝑁𝐼 ’s restricted domain is

subdivided into 12 triangles while 𝑁𝑂 consists of 6 triangles. Denote by 𝑁 ′
𝐼
the resulting restricted domain.

𝑈
(+,−)
𝐶𝐴

𝑈
(−,+)
𝐴𝐵

𝑈
(+,−)
𝐵𝐶

𝑈
(−,+)
𝐶𝐴

𝑈
(+,−)
𝐴𝐵

𝑈
(−,+)
𝐵𝐶

𝑈
(+,−)
𝐶𝐴

𝑈
(+,+)
𝐴𝐵

𝑈
(−,−)
𝐵𝐶

𝑈
(+,+)
𝐶𝐴

𝑈
(−,−)
𝐴𝐵

𝑈
(+,+)
𝐵𝐶

𝑈
(−,−)
𝐶𝐴

𝑈
(+,+)
𝐴𝐵

𝑈
(+,−)
𝐵𝐶

𝑈
(−,+)
𝐶𝐴

𝑈
(+,−)
𝐴𝐵

𝑈
(−,+)
𝐵𝐶

𝑈
(+,−)
𝐶𝐴

𝑈
(−,+)
𝐴𝐵

𝑈
(+,−)
𝐵𝐶

𝐴𝐶𝐵,𝐶𝐴𝐵

𝐴𝐶𝐵,𝐶𝐵𝐴

𝐶𝐴𝐵,𝐶𝐵𝐴

𝐶𝐴𝐵, 𝐵𝐶𝐴

𝐶𝐵𝐴, 𝐵𝐶𝐴

𝐶𝐵𝐴, 𝐵𝐴𝐶

𝐵𝐶𝐴, 𝐵𝐴𝐶

𝐵𝐶𝐴,𝐴𝐵𝐶

𝐵𝐴𝐶 ,𝐴𝐵𝐶

𝐵𝐴𝐶 ,𝐴𝐶𝐵

𝐴𝐵𝐶 ,𝐴𝐶𝐵

𝐴𝐵𝐶 ,𝐶𝐴𝐵

5

4

3

2

1

0

1, 4

0, 3

5, 2

4, 1

3, 0

2, 5

𝑈 +
𝐴𝐵

𝑈 +
𝐵𝐶

𝑈 +
𝐶𝐴

𝑈 −
𝐴𝐵

𝑈 −
𝐵𝐶

𝑈 −
𝐶𝐴

𝐴𝐶𝐵

𝐴𝐵𝐶

𝐵𝐴𝐶

𝐵𝐶𝐴

𝐶𝐴𝐵

𝐶𝐵𝐴

1

2 3

4

50

Fig. 9. On the left is 𝑁 ′
𝐼
, a domain restriction on 𝑁𝐼 , resulting in a cylinder and how the green cycle is mapped to 𝑁𝑂 . Inside of each

triangle of 𝑁 ′
𝐼
is the corresponding individual preference; the top triangle is 𝐴𝐵𝐶,𝐴𝐶𝐵, the next one 𝐵𝐴𝐶,𝐴𝐶𝐵, and so on. The blue

cycle has two labels on each of its edges; the first one is the social choice where the first voter is the dictator, from top to bottom,
2, 3, 4, 5, 0, 1. With the second labels, the second voter is the dictator.

Now, Arrow’s geometric impossibility becomes clear: 𝑁 ′
𝐼
is wrapped once around 𝑁𝑂 , and the wrapping is determined

by the green cycle in 𝑁 ′
𝐼
, due to unanimity. In the figure the image of the green cycle in 𝑁 ′

𝐼
is shown on 𝑁𝑂 . This

implies that the blue cycle, which is parallel to the green cycle, also has to wrap once around the cylinder, going in the

same direction. There are two options for the aggregation function, labeled on the blue edges; to map the first (from top

to bottom) blue edge to the edge 2 or to 5, the next one to 3 or 0 in 𝑁𝑂 , and so on. In the first option the first voter is the

dictator, in the second option the second voter is (in either case, the blue cycle goes on top of the green cycle of 𝑁𝑂 ).

6.2 Eluding Arrow’s impossibility while preserving non-contractibility

It has been argued that the existence of a rule that permits aggregation is related to contractibility of a topological

space. For the existence case in the continuous setting (which is different from our Arrovian setting), Chichilnisky and

Heal [17], and a 1954 topology theorem by Eckmann [19] show that, for a general class of domains, contractibility is

necessary and sufficient. Building on this result and Baryshnikov [10], for weak orders, Tanaka [47] shows a connection

13



Sergio Rajsbaum and Armajac Raventós

with Brower’s fixed point theorem, in the case of 𝑛 = 2 and |𝑋 | = 3. Baryshnikov [10] and other authors such as

Lauwers [36] and Baigent [43] hypothesised in subsequent publications that the aggregation on non-universal domains

could be equivalent to the contractibility of the induced input simplicial complex. That is, the aggregation á la Arrow

on a domain 𝐷 ⊆ 𝑊 𝑛
would be possible iff the induced complex 𝑁 ′

𝐼
is contractible. Moreover, they added that the

well-known case of single-peaked preferences (in which aggregation is possible) contractibility is satisfied.

Next, we present a domain of preferences that proves that Baryshnikov’s hypothesis above is not true. That is, the

domain 𝑁 ′′
𝐼

represented in Figure 10 is not contractible and it allows non-dictatorial aggregation maps.

𝑈
(+,+)
𝐴𝐵

𝑈
(+,+)
𝐶𝐴

𝑈
(+,+)
𝐵𝐶

𝑈
(−,−)
𝐴𝐵

𝑈
(−,−)
𝐶𝐴

𝑈
(−,−)
𝐵𝐶

𝑈
(+,−)
𝐴𝐵

𝑈
(+,−)
𝐶𝐴

𝑈
(+,−)
𝐵𝐶

𝑈
(−,+)
𝐴𝐵

𝑈
(−,+)
𝐶𝐴

𝑈
(−,+)
𝐵𝐶

(a)

𝑈
(+,−)
𝐶𝐴

𝑈
(−,+)
𝐴𝐵

𝑈
(+,−)
𝐵𝐶

𝑈
(−,+)
𝐶𝐴

𝑈
(+,−)
𝐴𝐵

𝑈
(−,+)
𝐵𝐶

𝑈
(+,−)
𝐶𝐴

𝑈
(+,+)
𝐴𝐵

𝑈
(−,−)
𝐵𝐶

𝑈
(+,+)
𝐶𝐴

𝑈
(−,−)
𝐴𝐵

𝑈
(+,+)
𝐵𝐶

𝑈
(−,−)
𝐶𝐴

𝑈
(+,+)
𝐴𝐵

𝑈
(+,−)
𝐵𝐶

𝑈
(−,+)
𝐶𝐴

𝑈
(+,−)
𝐴𝐵

𝑈
(−,+)
𝐵𝐶

𝑈
(+,−)
𝐶𝐴

𝑈
(−,+)
𝐴𝐵

𝑈
(+,−)
𝐵𝐶

(b)

𝑈
(−,−)
𝐴𝐵

𝑈
(+,+)
𝐵𝐶

𝑈
(−,−)
𝐶𝐴

𝑈
(−,−)
𝐵𝐶

𝑈
(+,+)
𝐶𝐴

𝑈
(+,+)
𝐴𝐵

𝑈
(+,−)
𝐴𝐵

𝑈
(−,+)
𝐵𝐶

𝑈
(+,−)
𝐶𝐴

𝑈
(+,−)
𝐵𝐶

𝑈
(−,+)
𝐶𝐴

𝑈
(−,+)
𝐴𝐵

(c)

Fig. 10. The restricted domain 𝑁 ′′
𝐼
is the union of the simplicial complexes represented in (a) and (b) according the identifications

defined by vertices’ labeling and colours. The simplicial complex 𝑁 ∗ is represented in (c). The colours of the edges (resp. the labelings
of the vertices) show where the edges (resp. the vertices) of 𝑁 ′′

𝐼
have been compressed in 𝑁 ∗.

This restricted domain 𝑁 ′′
𝐼

corresponds to a polarised society where political parties are classified as left-wing

and right-wing parties. Assume that every left-wing voter will prefer all left-wing parties over all right-wing parties

(vice-versa for right-wing voters). A priori we do not know if a voter is right-wing or left-wing.

We focus on the case in which there are two right-wing parties {𝐴, 𝐵} and one left-wing party 𝐶 and two voters

(𝑛 = 2). This way, 𝑁 ′′
𝐼

can be compared with the previous examples and proofs on this article.

The polarised domain restriction deletes the profiles in which a voter has 𝐶 as the middle preferred party. For

example, no voter will have the preference 𝐴𝐶𝐵 because it prefer the right-wing party 𝐴 over the left-wing party 𝐶 and

𝐶 over the right-wing party 𝐵. Formally, applying this restriction means deleting from Figure 3 the edges of the form

{𝑈 (+, ·)
𝐶𝐴

,𝑈
(+, ·)
𝐵𝐶
}, {𝑈 (−, ·)

𝐶𝐴
,𝑈
(−, ·)
𝐵𝐶
}, {𝑈 ( ·,+)

𝐶𝐴
,𝑈
( ·,+)
𝐵𝐶
} and {𝑈 ( ·,−)

𝐶𝐴
,𝑈
( ·,−)
𝐵𝐶
} and all triangles containing them, and we obtain

the simplicial complex 𝑁 ′′
𝐼

represented in Figure 10.

There are non-dictatorial aggregation rules for 𝑁 ′′
𝐼
. One of these rules is defined by two local dictators. The first

voter is a local dictator between the right-wing parties 𝐴 and 𝐵, whereas the second voter is a local dictator between

a right-wing party and the left wing-party 𝐶 . Formally, this aggregation map 𝐹 is defined for every profile R in the

domain as:

𝐴𝐹 (R)𝐵 ⇔ 𝐴𝑅1𝐵, 𝐴𝐹 (R)𝐶 ⇔ 𝐴𝑅2𝐶, 𝐵𝐹 (R)𝐶 ⇔ 𝐵𝑅2𝐶.

Using the fact that 𝐴𝐹 (R)𝐶 ⇔ 𝐵𝐹 (R)𝐶 , it is straightforward to check that 𝐹 is well defined (i.e. 𝐹 (R) is transitive
and complete for every R). Additionally, 𝐹 is unanimous, non-dictatorial and satisfies the independence of irrelevant

alternatives.
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It remains to check that 𝑁 ′′
𝐼

is not contractible. In Figure 10, 𝑁 ′′
𝐼

has been drawn deleting a triangle on each of the

concentric cylinders of 𝑁𝐼 , and from the torus they only remain four pairs of triangles that join both cylinders. To see

that 𝑁 ′′
𝐼
is not contractible, we apply contractions to 𝑁 ′′

𝐼
obtaining a new topological space 𝑁 ∗ (that is non-contractible).

This contractions consist on contracting first the eight triangles placed in the former torus (Figure 10b) to eight edges

(black edges in Figure 10c). Second, we contract both cylinders (Figure 10a) into two concentric circles (green and blue

edges in Figure 10c).

7 CONCLUSIONS

We have given new proofs of Arrow’s theorem consisting of two parts. The first part deals with the base case of two

voters and three alternatives, and we presented three different versions: using the index lemma, using pivotal voters,

and using domain restrictions. The second part proves the general case by a simple reduction to the base case.

The first part shows that any aggregation function is dictatorial, because in essence it is mapping a torus onto a

cylinder, in a continuous way, respecting unanimity. The argument sheds light on the remarkable algebraic topology

proof of Baryshnikov [10], and makes it accessible to a wider audience. Furthermore, it connects it to standard proofs of

Arrow’s theorem based on pivotal arguments, by explaining how the paths of such arguments move along the torus

and the cylinder.

The structure of our proofs, in two parts, tries to explain that the interesting structure happens in the base case.

We have considered domain restrictions on the base case, showing that there is a domain restriction where Arrow’s

impossibility is derived from the geometry in an intuitive way, and there is another domain restriction where it does

not hold, yet it is not contractible.

We hope that bringing in combinatorial topology to social choice problems opens interesting opportunities for future

work. These tools have been encountering many applications recently. Some examples are in concurrency [1], image

processing [7], political structures [40], data analysis [33] and wireless networks [44].

In particular, combinatorial topology has been very useful in distributed computing [30]. We described some analogies

that are worth exploring, since computing processes that communicate with each other need to agree on one of their

inputs in many applications. Remarkably, while Sperner’s lemma is the key to the impossibilities of tasks where processes

need to reach agreement such as consensus, set agreement [5], vector consensus [42] and interactive consistency [24]

(where domain restrictions are studied), for Arrow’s impossibility, the key is the index lemma, as it is for tasks related

to renaming and weak symmetry breaking [14, 28]. Here we studied only Arrow’s setting, where the aggregation map

is defined directly on the input complex; it would be interesting to explore the case where the agents can communicate

with each other and subdivisions of the input complex arise. Notice that the index lemma is preserved under subdivisions

e.g. [28, Corollary 4]. However, we are not aware of a distributed task where the impossibility is proved in dimension 2,

and then extended easily to any dimension.
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A COMBINATORIAL TOPOLOGY

Algebraic topology is a deep and highly developed branch of mathematics, studying algebraic invariants of topological

spaces, such as homology groups. When the spaces are composed of individual cells attached to each other in a simple

way, we have combinatorial topology, which has been gaining importance more recently as more and more applications

are discovered, and the fact that such invariants can be computable. Here we use only elementary notions that can be

found in books such as [29, 30], for more advanced treatments see [34, 46].

An abstract simplicial complex is a family of sets that is closed under taking subsets, that is, every subset of a set in

the family is also in the family. The elements of the sets are called vertices. A set of the simplicial complex is called a

simplex, and its dimension is 𝑑 if it has 𝑑 + 1 elements; we say it is a 𝑑-simplex. In this paper we consider only simplicial

complexes of dimension 2, meaning that each simplex contains at most 3 elements.

An abstract simplicial complex is a purely combinatorial object. It can be seen as a generalization of a graph; in

our case, in addition to edges consisting of pairs of vertices, we allow also triangles consisting of triples of vertices.

However, in topology a simplicial complex is often embedded in Euclidean space, to represent a discretization of a

geometric object. In the case of simplicial complexes of dimension 2, a triangulation. Thus, we think of the simplices of

size 3 as triangles, the simplices of size 2 as edges, and the simplices of size 1, also called vertices, as points, as illustrated

in Figure 1. Notice that if a triangle is in the complex, so are its three edges, and its three vertices; the family of sets is

indeed closed under containment.

A simplicial map is a function from the vertices of one simplicial complex 𝐾 to the vertices of another simplicial

complex, 𝐾 ′, that preserves simplices: it sends sets of vertices that belong to a simplex of 𝐾 , to sets of vertices that

belong to a simplex of 𝐾 ′; thus, it respects the simplicial structure. A simplicial map is a discrete version of a continuous

map.

Quoting from Henle [29],
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“The combinatorial method is used not only to construct complicated figures from simple ones but also to

deduce properties of the complicated from the simple. In combinatorial topology it is remarkable that the only

machinery needed to make these deductions is the elementary process of counting!”

The index lemma illustrates this point. Here we describe the basic version of [29]. We will generalize it in Section 3 and

use it to prove Arrow’s theorem. Consider the following simplicial complex, consisting of a polygon of any number

of sides, triangulated. The vertices are labeled arbitrarily, with labels 0, 1, 2. The content 𝐶 is the number of triangles

labelled 0, 1, 2, counted by orientation: it counts +1 if its labels read 012 in a counterclockwise direction around the

triangle, and counts −1 if they clockwise around the triangle. The index 𝐼 is the number of edges labeled 01 around

the boundary of the polygon counted by orientation: and edge counts +1 if it reads 01 counterclockwise around the

polygon, and −1 if it reads 01 clockwise. In the figure, 𝐼 = 𝐶 = −1. The index lemma says that this is always the case,

𝐼 = 𝐶 . This simplicial complex from [29] illustrates the index lemma, highlighting the three complete triangles.

2

2 2

0

1 1

21

0

0

1

0

−1−1

+1

The miracle of the index lemma is that the proof is a very simple parity

counting argument (see Theorem C.2), despite the fact of being at the core, of

the study vector fields and other areas [29]. Furthermore, it implies Sperner’s

lemma (which is equivalent to Brouwer’s fixed point theorem). For the general

case of the index lemma see [20].

As we explain in Section C, the assumption needed for the proof of Section 3 is

that the boundary of the complex consists of exterior edges belonging to a single

triangle, and each interior edge belongs to an even number of triangles (at least

2), and additionally, it is orientable (Definition C.1). An example of a such an orientable complex, is the triangulated

torus in Figure 11, after removing one triangle, say 𝑐𝑒 𝑓 , with boundary the edges of this triangle. An example of such

a complex, but which is not orientable is the Möbius strip; more precisely, no triangulation of the Möbius strip is

orientable.

𝑎 𝑏 𝑐 𝑎

𝑑

𝑒 𝑓

𝑑

𝑎 𝑏 𝑐 𝑎

𝑏 𝑑 𝑎

𝑎 𝑐 𝑏

Fig. 11. The triangulated torus on the left has 6 vertices. The triangulated Möbius strip on the right has only 4 vertices (the left edge
𝑎𝑏 is the same as the right edge 𝑎𝑏), the boundary consists of edges 𝑎𝑐 , 𝑎𝑑 , 𝑏𝑑 and 𝑏𝑐 . The colouring on the edges shows the pairing
of the gluing whereas arrows the direction of it.

B TASKS AND DISTRIBUTED COMPUTING

There are many good books about distributed computing e.g. [6, 45]. Here we give a very brief introduction to the

notion of a task, and its representation using simplicial complexes, following the overview of the topology approach to

distributed computing [30], and provide more details about the analogy with Arrow’s theorem.

A task is a specification of a concurrent problem, namely, a problem to be solved by a set of individual computing

processes communicating with each other. Each process runs its own sequential program code, that includes instructions
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to communicate with other processes. Typical ways of communicating is by sending messages or by writing and reading

a shared memory. A task is a distributed version of a function. When there is a single computing process, the function

𝑓 specifies, for each possible initial input 𝑥 , the value 𝑓 (𝑥) that the process should compute. In a distributed system

composed of several processes, each one gets only part of the input 𝑥 . Thus, we may think of 𝑥 as a vector (𝑥1, 𝑥2, . . . , 𝑥𝑛),
for 𝑛 processes, where initially process 𝑖 gets as input 𝑥𝑖 , and does not know what the inputs of the the other processes

are. Then, the processes run their individual programs, communicating with each other, and eventually produce

individual local output values, defining a vector (𝑦1, 𝑦2, . . . , 𝑦𝑛), where 𝑦𝑖 is the output value of process 𝑖 . The task
defines an input output relation Δ, that specifies, for each possible input vector 𝑥 , a set of legal output vectors 𝑦. A

classic example is binary consensus, where the possible inputs 𝑥𝑖 are taken from the set {0, 1}, and there are only two

possible output vectors: either everybody decides 0 or everybody decides 1. Then, Δ(𝑥) states that if everybody starts

with the same input, then everybody decides that input, else, it is valid to decide either of the two output vectors.

A task can be defined in terms of simplicial complexes [30]. For a set of processes {𝑖𝑑1, . . . , 𝑖𝑑𝑘 }, a set 𝜎 =

{(𝑖𝑑1, 𝑥1), . . . , (𝑖𝑑𝑘 , 𝑥𝑘 )} is used to denote the input values, or output values, where 𝑥𝑖 denotes the value of the process

with identity 𝑖𝑑𝑖 , either an input value or an output value. The elements of 𝜎 are pairs, called vertices. And they are said

to be colored by the identities 𝑖𝑑𝑖 ’s. A set 𝜎 as above is called a chromatic simplex, because the vertices are colored with

distinct ids. If the values are input values, it is an input simplex, if they are output values, it is an output simplex. An

input vertex 𝑣 = (𝑖𝑑𝑖 , 𝑥𝑖 ) represents the initial state of process 𝑖𝑑𝑖 , while an output vertex represents its decision. The

dimension of a simplex 𝜎 , denoted dim(𝜎), is |𝜎 | − 1, and it is full if it contains 𝑛 vertices, one for each process. A subset

of a simplex, which is a simplex as well, is called a face. The set of possible input simplexes forms a complex because its

sets are closed under containment. Similarly, the set of possible output simplexes also form a complex.

The dimension of a complex 𝐾 is the largest dimension of its simplexes, and 𝐾 is pure of dimension 𝑘 if each of its

simplexes is face of a 𝑘-dimensional simplex. In distributed computing, the simplexes (and complexes) are chromatic,

since each vertex 𝑣 of a simplex is labeled with a distinct process identity, and we usually get pure complexes. The set

of processes identities in an input or output simplex 𝜎 is denoted 𝐼𝐷 (𝜎).
A task 𝑇 for 𝑛 processes is a triple (I,O,Δ) where I and O are pure chromatic (𝑛 − 1)-dimensional complexes, and

Δ maps each simplex 𝜎 from I to a subcomplex Δ(𝜎) of O, satisfying:

(1) Δ(𝜎) is pure of dimension dim(𝜎),
(2) For every 𝜏 in Δ(𝜎) of dimension dim(𝜎), 𝐼𝐷 (𝜏) = 𝐼𝐷 (𝜎),
(3) If 𝜎, 𝜎 ′ are two simplexes in I with 𝜎 ′ ⊂ 𝜎 then Δ(𝜎 ′) ⊂ Δ(𝜎).

We say that Δ is a carrier map from the input complex I to the output complex O.
Thus, each input simplex 𝜎 ∈ I defines an initial configuration of the distributed system. After the processes run

their local algorithms and communicate with each other, they eventually stop, and end up in a final configuration 𝜎 ′.

The simplex 𝜏 ′ is of the same form of the input and output simplexes, except that in a pair (𝑖𝑑𝑖 , 𝑥𝑖 ), 𝑥𝑖 denotes the final
local state of process 𝑖𝑑𝑖 . This local state 𝑥𝑖 determines the output value decided by the process 𝑖𝑑𝑖 , and is denoted by

𝛿 (𝑖𝑑𝑖 , 𝑥𝑖 ).
Actually, there may be many possible runs all starting on input 𝜎 , because of possible failures, different speed of

execution of the processes, etc, The set of all possible final configurations can also be represented as a chromatic

complex, denoted P(𝜎). The protocol complex, P, is the union of P(𝜎), over all 𝜎 ∈ I. The task is solved, if there exists

a chromatic simplicial map 𝛿 from P to O respecting Δ, such that 𝛿 (P(𝜎)) is contained in Δ(𝜎). The simplicial map 𝛿

is chromatic in the sense that it sends vertices to vertices preserving ids.
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This approach to the theory of distributed computing is so successful, because the solvability of a task depends

on the topological properties of the protocol complex, and how they relate to the topological properties of the task.

Furthermore, the protocol complex preserves topological properties of the input complex. How well this topological

properties are preserved, depends on the specific assumptions about the distributed system model: how many processes

can fail, what types of failures are possible, how the processes communicate with each other, and their relative speed

of execution. Many different models have been analyzed, and the topological properties preserved by their protocol

complexes identified [30].

Remarkably, in the most basic model, called wait-free, if we denote the protocol complex after 𝑡 rounds of commu-

nication by P𝑡 , then P𝑡+1 is a chromatic subdivision of P𝑡 . The main theorem [31] is that a protocol in the wait-free

model solves a task (I,O,Δ), if and only if there exists a chromatic subdivision of I and a chromatic simplicial map

from the subdivision to O respecting Δ.

Notice that the protocol complex P𝑡 is equal to the input complex I, when 𝑡 = 0, before any communication takes

place. This is precisely the situation corresponding to Arrow’s setting. In this case, a 0-round protocol solves a task if

and only if there exists a chromatic simplicial map 𝑓 from I to O respecting Δ. This explains the analogy of distributed

computing with Arrow’s impossibility theorem, in the form of Theorem 2.1, where the input/output relation is requiring

only that 𝑓 (𝑈 (+, · · · ,+)
𝛼𝛽

) = 𝑈 +
𝛼𝛽

.

C INDEX LEMMA AND THE COMPLEX 𝑁𝐼

Here we present the generalized version of the index lemma, and show that it holds on 𝑁𝐼 .

Definition C.1. Let 𝐾 be a simplicial complex of dimension 2 satisfying that every simplex of dimension 1 has a single

or an even number of 2-simplices containing it. An orientation on 𝐾 is an orientation on every 2-simplex satisfying that

the induced orientations on the 1-simplices by the 2-simplices have to be opposite by pairs.

Fig. 12. The simplicial complex on the left is oriented because the induced orientations on the inner edge are opposite. However, the
right one is not because it has three orientations in one direction and one on the opposite direction.

As in the original framework, let 𝐾 be an oriented simplicial complex of dimension 2 with each vertex labeled with

a color from {0, 1, 2}. The content 𝐶 of 𝐾 is the number of tricoloured triangles in 𝐾 counted +1 if the order of the
labeling agrees with the orientation (see the right side of Figure 13) and −1 otherwise. The index 𝐼 of 𝐾 is the number

of edges

−→
01 on the boundary counted +1 if the order of the vertices agrees with the orientation and −1 otherwise. Now,

we can state and proof the index lemma for oriented simplicial 2-complexes.

Theorem C.2 (index lemma). Let 𝐾 be a 3-colored oriented simplicial complex of dimension 2. Then, the index 𝐼 is

equal to the content 𝐶 .
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Proof. Let 𝑆 be the number of edges

−→
01 counted according to the orientation. We will prove that 𝐼 = 𝑆 and 𝐶 = 𝑆 .

First, we will see that the contribution of every interior edge

−→
01 is equal to 0. Since every interior edge has an even

number of incident 2-simplices, by definition of being oriented, their contribution is 0. Then 𝐼 = 𝑆 .

For every triangle in the complex, the contribution is only non-zero if the triangle is tricoloured. If it is not tricoloured,

it is 0 because, in case it has at least one 0 and one 1, the third vertex has to be coloured by 0 or 1, then one edge

compensates the other. Otherwise, if it is tricoloured, its contribution is the same as the content’s contribution (see

Figure 13).

0

0 1+1

−1

1

0

2

−1

Fig. 13. On the left, the contribution of the simplex is 0 because the two edges
−→
01 compensate each other. On the right, the contribution

of the tricolored triangle is −1.

□

Now we provide 𝑁𝐼 with an orientation. Recall that we assume that the number of alternatives is |𝑋 | = 3 and the

number of voters is 𝑛 = 2.

Proposition C.3. The complex 𝑁𝐼 is orientable.

Proof. We will define an orientation on 𝑁𝐼 as follows. For every 2-simplex Δ = {𝑈 𝝈1

𝐴𝐵
,𝑈

𝝈2

𝐵𝐶
,𝑈

𝝈3

𝐶𝐴
} we define its parity

as the product of all the signs of 𝝈1, 𝝈2 and 𝝈3. For instance, if 𝝈1 = (+, +), 𝝈2 = (+,−) and 𝝈3 = (−,−), the parity is −1
(see Figure 14a). We define the orientation of this 2-simplex as clockwise (𝐴𝐵 → 𝐶𝐴→ 𝐵𝐶 → 𝐴𝐵) if its parity is −1
and (𝐴𝐵 → 𝐵𝐶 → 𝐶𝐴→ 𝐴𝐵) if its parity is 1.

𝑈
(−,−)
𝐶𝐴

𝑈
(+,+)
𝐴𝐵

𝑈
(+,−)
𝐵𝐶

(a)

𝑈
(+,+)
𝐴𝐵

𝑈
(−,+)
𝐶𝐴

𝑈
(+,−)
𝐵𝐶

𝑈
(−,−)
𝐶𝐴

(b)

𝑈
(+,+)
𝐴𝐵

𝑈
(−,−)
𝐶𝐴

𝑈
(+,+)
𝐵𝐶

𝑈
(−,+)
𝐵𝐶

𝑈
(+,−)
𝐵𝐶

𝑈
(−,−)
𝐵𝐶

(c)

Fig. 14. (a) Since the parity of the triangle is negative, the orientation is𝑈 (+,+)
𝐴𝐵

← 𝑈
(+,−)
𝐵𝐶

← 𝑈
(−,−)
𝐶𝐴

. (b) Two triangles sharing the

edge {𝑈 (+,+)
𝐴𝐵

,𝑈 (+,−)
𝐵𝐶

}. (c) Four triangles sharing the edge {𝑈 (+,+)
𝐴𝐵

,𝑈 (−,−)
𝐶𝐴

}

This is an orientation because for every non-boundary edge, there are an even number of 2-simplices containing

it, and they are paired by their opposite induced orientations. For example, consider the edge {𝑈 𝝈1

𝐴𝐵
,𝑈

𝝈2

𝐵𝐶
}, this edge
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only can be completed with a vertex indexed as𝑈
𝝈3

𝐶𝐴
for some compatible 𝝈3 ∈ {+,−}𝑛 constrained by the transitivity

property. That is, for every component 𝑖 ∈ {1, . . . 𝑛}, if 𝝈1 (𝑖) = 𝝈2 (𝑖) = + (resp. 𝝈1 (𝑖) = 𝝈2 (𝑖) = −, then 𝝈3 (𝑖) = +
(resp. 𝝈3 (𝑖) = +). However, if 𝝈1 (𝑖) and 𝝈2 (𝑖) have different signs, both signs are compatible in 𝝈3 (𝑖). We can conclude

that the admissible 𝝈3 are exactly 2
𝑘
(where 𝑘 is equal to the number of voters 𝑖 on the third situation). And, since by

hypothesis {𝑈 𝝈1

𝐴𝐵
,𝑈

𝝈2

𝐵𝐶
} is not in the boundary, 𝑘 > 0.

Second, we can pair these 2
𝑘
2-simplices saying that {𝑈 𝝈1

𝐴𝐵
,𝑈

𝝈2

𝐵𝐶
,𝑈

𝝈3

𝐶𝐴
} and {𝑈 𝝈1

𝐴𝐵
,𝑈

𝝈2

𝐵𝐶
,𝑈

𝝈 ′
3

𝐶𝐴
} are paired if 𝝈3 and 𝝈 ′

3

are equal on each component but one. Then the parity associated to every triangle of a pair is opposite to the other

member, so, their contribution on the edge {𝑈 𝝈1

𝐴𝐵
,𝑈

𝝈2

𝐵𝐶
} determined by the induced orientations is also opposite. □

D PIVOTAL VOTERS AND PATHS IN 𝑁𝐼

In this section, we further discuss the correspondence of the pivotal setting with the simplicial complex setting of

Section 4.

To discuss the role of pivotal voters and the paths defined by sequences, consider as an example the path R defined in

Figure 6. This path starts and ends in the inner cylinder of 𝑁𝐼 , that is, the unanimity simplices (see Figure 3). Obviously,

this cylinder is identified with 𝑁𝑂 because of the unanimity property of the aggregation map 𝑓 . The remaining simplices

{R1,R2,R3} of the path link the inner cylinder with the outer one (see the complex at the right of Figure 15).

𝑈
(−,−)
𝐶𝐴

𝑈
(−,−)
𝐴𝐵

𝑈
(+,+)
𝐵𝐶

𝑈
(+,−)
𝐶𝐴

𝑈
(−,+)
𝐴𝐵

R0 R1
R2

R3

R4
𝑓

𝑓 (𝑈 (+,−)
𝐶𝐴

) = 𝑈 −
𝐶𝐴 𝑈 −

𝐴𝐵

𝑓 (𝑈 (−,+)
𝐴𝐵

) = 𝑈 +
𝐴𝐵

𝑈 +
𝐵𝐶

Case: 𝑘𝐶𝐴 = 2

𝑈 −
𝐶𝐴

𝑈 −
𝐴𝐵

= 𝑓 (𝑈𝐴𝐵 (−, +))

𝑓 (𝑈 (+,−)
𝐶𝐴

) = 𝑈 +
𝐶𝐴

𝑈 +
𝐵𝐶

Case: 𝑘𝐶𝐴 = 1

Fig. 15. The figure in the right represents the simplices {R1,R2,R3 } linking the inner cylinder of 𝑁𝐼 (green edges) with the outer
cylinder (red edge) and the path R. The figure in the middle represents the folding of the hinges and the inner cylinder when 𝑘𝐶𝐴 = 2;
the one on the left, when 𝑘𝐶𝐴 = 1.

When the aggregation map 𝑓 is applied, the inner cylinder remains invariant because we have identified it with

𝑁𝑂 , but the outer cylinder and the links (the torus joining both cylinders) are compressed into the inner cylinder. We

have to imagine the simplices between the cylinders (from Figure 3), the ones linking the cylinders, playing the role of

“hinges”, folding into each other so that the two cylinders fit together.

In Figure 15 we can see that the hinge {R1,R2,R3} can fold two ways. It folds one way or another depending on the

value of 𝑘𝐶𝐴 . Notice that its folding also determines the value of 𝑓 (𝑈 (−,+)
𝐴𝐵

), and this determination of the folding is the

geometrical representation of the inequality 𝑘𝐶𝐴 ≤ 𝑘𝐵𝐴 , proved in Section 4.2. Moreover, the simplex R3 also belongs

to another hinge, which at the same time will represent an inequality. So, all hinges are connected and they constrain

each other foldings. Consequently, there are only two possible ways to fold and fit both cylinders together: the two

projections.
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E ADDITIONAL DETAILS ABOUT THE REDUCTION TO THE CASE OF 𝑛 = 2 AND |𝑋 | = 3

E.1 The missing proofs

Lemma 5.1 Let the numbers of voters be any 𝑛 ≥ 2. Arrow’s impossibility theorem for |𝑋 | = 3 implies it for |𝑋 | ≥ 3.

Proof. Suppose that Arrow’s theorem is true when |𝑋 | = 3. We prove that for any 𝑋 (with |𝑋 | ≥ 3) and any

𝐹 :𝑊 𝑛 →𝑊 satisfying unanimity and independence of irrelevant alternatives, 𝐹 is dictatorial.

Given 𝐹 , choose three distinct alternatives 𝑥,𝑦, 𝑧 ∈ 𝑋 and denote𝑊 0 the set of all strict orders over these three

alternatives. Define an aggregation map 𝐹 :𝑊 0

𝑛 →𝑊 0 as follows. The image of a profile (𝑅1, . . . , 𝑅𝑛) ∈𝑊 0

𝑛
by 𝐹 is

the restriction of the ordering 𝐹 (𝑅1, . . . , 𝑅𝑛) ∈𝑊 on the set {𝑥,𝑦, 𝑧} ⊆ 𝑋 , where for each 𝑖 , 𝑅𝑖 is any extension of 𝑅𝑖

from𝑊 0 to𝑊 . Notice that the definition of 𝐹 does not depend on the chosen extension because of the independence of

irrelevant alternatives of 𝐹 . Moreover, it is easy to check that 𝐹 satisfies unanimity as well as independence of irrelevant

alternatives. So, it follows that 𝐹 is dictatorial because we have supposed that Arrow’s theorem is true when |𝑋 | = 3. It

remains to prove that 𝐹 is also dictatorial.

If 𝑘 is the dictator of 𝐹 , we will prove that it is also a dictator for 𝐹 . Consider a profile R = (𝑅1, . . . 𝑅𝑛) ∈𝑊 𝑛
where

𝑎𝑅𝑘𝑏 for some 𝑎, 𝑏 ∈ 𝑋 . Then take a profile R′ = (𝑅′
1
, . . . 𝑅′𝑛) ∈𝑊 𝑛

satisfying that, for every 𝑖 , 𝑥𝑅′
𝑖
𝑏𝑅′

𝑖
𝑎𝑅′

𝑖
𝑦 if 𝑏𝑅𝑖𝑎, and

𝑎𝑅′
𝑖
𝑦𝑅′

𝑖
𝑥𝑅′

𝑖
𝑏 if 𝑎𝑅𝑖𝑏.

Since 𝑘 is a dictator of 𝐹 and 𝑦𝑅′
𝑘
𝑥 (𝑘 prefers 𝑎 over 𝑏 in 𝑅𝑘 ), we know that the image by 𝐹 of the restriction of

R′ over𝑊
𝑛
0
prefers 𝑦 over 𝑥 , hence 𝐹 (R′) also prefers 𝑦 over 𝑥 . Moreover, by unanimity, it holds that 𝑎𝐹 (R′)𝑦 and

𝑥𝐹 (R′)𝑏. Then, we obtain that 𝑎𝐹 (R′)𝑏 from the relations 𝑎𝐹 (R′)𝑦𝐹 (R′)𝑥𝐹 (R′)𝑏 using the transitivity. Finally, using
the independence of irrelevant alternatives, we obtain that 𝑎𝐹 (R)𝑏. Since this happens for every pair 𝑎, 𝑏 ∈ 𝑋 , 𝑘 must

be the dictator of 𝐹 . □

E.2 Related work on inductive proofs

There are several works in which the proof of Arrow’s theorem is only for |𝑋 | = 3 and/or 𝑛 = 2 (e.g. [2, 18, 43, 47]).

Using Lemma 5.1 and 5.2, all these proofs are extended to |𝑋 | ≥ 3 and/or 𝑛 ≥ 2.

A few works have used inductive arguments over the number of voters or alternatives. In the fifties, Weldon [49]

proved an impossibility theorem under a set of non-Arrovian axioms. Unlike our case, he could set the initial case of his

inductive argument on the trivial case 𝑛 = 1 (instead of 𝑛 = 2). More recent works [2, 48] use inductive arguments using

the base case |𝑋 | = 3, 𝑛 = 2, as we do. However, our proof is more general. That is, whereas the results of Akashi [2,

Lemma 1] and Tang and Lin [48, Lemma 1] are constrained to finite sets of alternatives, Lemma 5.1 works also for

infinite 𝑋 . In addition, the inductive step in [48, Lemma 2] is proved by contradiction using a large family of maps,

while Lemma 5.2 uses only two, and using an explicit map that helps to understand the inductive step.
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