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Baryshnikov presented a remarkable algebraic topology proof of Arrow’s impossibility theorem trying to understand the underlying

reason behind the numerous proofs of this fundamental result of social choice theory. We present a combinatorial topology proof that

does not use advance mathematics, and gives a very intuitive geometric reason for Arrow’s impossibility.

The geometric proof for the basis case of two voters, 𝑛 = 2, and three alternatives, |𝑋 | = 3, is based on the index lemma, that

counts the absolute number of times that a closed curve in the plane travels around a point. This yields a characterization of the

domain restrictions that allow non-dictatorial aggregation functions. It also exposes the geometry behind prior pivotal arguments to

Arrow’s impossibility. We explain why the basis case of two voters, is where this interesting geometry happens, by giving a simple

proof that this case implies Arrow’s impossibility for any |𝑋 | ≥ 3 and any finite 𝑛 ≥ 2.

1 INTRODUCTION

Social choice theory is a highly developed field of interest to economics and political science, and more recently to

computer science [13]. The modern field of social choice theory took off with Kenneth Arrow’s remarkable 1950

result [3] for the basic problem of democracy: it is impossible to aggregate the individual preferences into a single social

preference, under some reasonable-looking axioms. Soon after the publication of Arrow’s result alternative proofs

began to emerge; starting with Inada [34] in 1954, numerous other proofs followed, and continue to be proposed until

recently, e.g. [22, 29]. For an overview, including the importance of Arrow’s result, see introductory books such as [28],

or more advanced such as [21].

Motivation. Trying to understand the underlying reason behind the many proofs of Arrow’s theorem, Barysh-

nikov [10] presented in 1993 a remarkable different approach, a topological impossibility proof. However, the goal of

providing intuition about the nature of the problem of social choice is hindered by the relatively advanced algebraic

topology tools used by Baryshnikov (several attempts at explaining the proof have been made [11, 15, 46]).

Our goal here is to further advance the program of Baryshnikov, while making it accessible to an audience not

familiar with algebraic topology. Furthermore, we aim at understanding the gap between the literature on topological

social choice [38] and combinatorial proofs, which have developed largely independently. We do so by moving from

algebraic topology to combinatorial topology, and in doing so discover (and benefit from) remarkable connections with

distributed computing [32].

𝐶 has winding number 2 around 𝑝 .

Contributions. First, we provide new geometric proofs of Arrow’s impossibility

that do not require any acquaintance with algebraic topology. The proofs give

a new insight for the reason of the impossibility, a combinatorial topology result

called the index lemma, a generalization of Sperner’s lemma (which is equivalent

to Brouwer’s fixed point theorem), used to compute winding numbers. The

winding number of a closed curve in the plane around a point is the number of

times that the curve passes counterclockwise around the point minus the number

of times it passes clockwise. It is important in topology, calculus, analysis, physics, etc.
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The geometric argument shows that the basis case of two individuals and three alternatives is somehow special,

explaining an intriguing phenomenon, appearing several times in the literature. Some papers simply treat this case only

e.g. [2, 17, 46, 51]. More interestingly, some papers hint at the idea that this is the case where the interesting things

happen. Baryshnikov [10, Section 7.1] explains that only the arguments of his proof for triples of alternatives are in fact

used, and one could concentrate only on the 2-skeleton of the simplicial complex using one-dimensional (co)homology.

We show the usefulness of the combinatorial topology approach by providing a characterization of the domain

restrictions of the basis case, for which there is a non-dictatorial aggregation function. A very simple geometric argument

for Arrow’s impossibility based on a domain restriction is presented. The domain restriction analysis we present shows

that contractibility of the space of preference profiles is not the reason for Arrow’s impossibility, as conjectured in

topological social choice [38].

We present a combinatorial topology perspective of the recent pivotal arguments to prove Arrow’s impossibility by

Geanakoplos [29] and Yu [56] that have received much attention e.g. [55]. Notice that Baryshnikov [10] does not try to

explain the relation of his topology proof with previous proofs.

Finally, we present a simple proof showing that Arrow’s impossibility result for the basis case of two individuals and

three alternatives implies the general case. This result has been shown before under the restriction of finite number of

alternatives by Tang and Lin [52] and partially by Akashhi [2], but our proof seems, in addition to be more general,

more direct.

New intuition behind Arrow’s impossibility and the connection with distributed computing. Very roughly, the intuition

behind our approach, for the base case of two voters and three alternatives 𝐴, 𝐵,𝐶 is the following (in Section 6 we

present the generalization from the base case by a simple inductive argument). The first step is to represent the set of

possible preferences of the voters, 𝑁𝐼 , as well as the set of possible social preferences, 𝑁𝑂 , as geometric objects built

from triangles. These objects are called 2-dimensional simplicial complexes; an introduction to combinatorial topology

is in Section 2.2.
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<latexit sha1_base64="MOdlsJVEUQwPrEjbqJDHB2IK8LA=">AAAB8XicbVBNT8JAEJ3iF+IX6tHLRmLCRdIaoh6JXDxiYoEIlWyXLWzYbpvdrQlp+i+8eNAYr/4bb/4bF+hBwZdM8vLeTGbm+TFnStv2t1VYW9/Y3Cpul3Z29/YPyodHbRUlklCXRDySXR8rypmgrmaa024sKQ59Tjv+pDnzO09UKhaJez2NqRfikWABI1gb6cEdpDfN7DE9zwblil2z50CrxMlJBXK0BuWv/jAiSUiFJhwr1XPsWHsplpoRTrNSP1E0xmSCR7RnqMAhVV46vzhDZ0YZoiCSpoRGc/X3RIpDpaahbzpDrMdq2ZuJ/3m9RAfXXspEnGgqyGJRkHCkIzR7Hw2ZpETzqSGYSGZuRWSMJSbahFQyITjLL6+S9kXNuazV7+qVRjWPowgncApVcOAKGnALLXCBgIBneIU3S1kv1rv1sWgtWPnMMfyB9fkDJViQgQ==</latexit>

U−

BC

<latexit sha1_base64="oSfyBAmZ9f3xseAhKNDxoWDos4k=">AAAB6HicdVDJSgNBEK2JW4xb1KOXxiDkNPQkMXFuAS8eEzALJEPo6XSSNj0L3T1CGPIFXjwo4tVP8ubf2FkEFX1Q8Hiviqp6fiy40hh/WJmNza3tnexubm//4PAof3zSVlEiKWvRSESy6xPFBA9ZS3MtWDeWjAS+YB1/er3wO/dMKh6Ft3oWMy8g45CPOCXaSE08yBew7ZSdMi4hbLuuW3VrhuBS+dKtIMfGSxRgjcYg/94fRjQJWKipIEr1HBxrLyVScyrYPNdPFIsJnZIx6xkakoApL10eOkcXRhmiUSRNhRot1e8TKQmUmgW+6QyInqjf3kL8y+slenTlpTyME81Culo0SgTSEVp8jYZcMqrFzBBCJTe3IjohklBtssmZEL4+Rf+Tdsl2qnalWSnUi+s4snAG51AEB2pQhxtoQAsoMHiAJ3i27qxH68V6XbVmrPXMKfyA9fYJ6l+M9Q==</latexit>

0

<latexit sha1_base64="GmWj8OHg7/tm73TLxXKm7Mb18Tk=">AAAB6HicdVDLSgNBEOyNrxhfUY9eBoOQ07KbxMS9Bbx4TMA8IFnC7GSSjJmdXWZmhbDkC7x4UMSrn+TNv3HyEFS0oKGo6qa7K4g5U9pxPqzMxubW9k52N7e3f3B4lD8+aasokYS2SMQj2Q2wopwJ2tJMc9qNJcVhwGknmF4v/M49lYpF4lbPYuqHeCzYiBGsjdR0B/mCY7tlt+yUkGN7nlf1aoY4pfKlV0Gu7SxRgDUag/x7fxiRJKRCE46V6rlOrP0US80Ip/NcP1E0xmSKx7RnqMAhVX66PHSOLowyRKNImhIaLdXvEykOlZqFgekMsZ6o395C/MvrJXp05adMxImmgqwWjRKOdIQWX6Mhk5RoPjMEE8nMrYhMsMREm2xyJoSvT9H/pF2y3apdaVYK9eI6jiycwTkUwYUa1OEGGtACAhQe4AmerTvr0XqxXletGWs9cwo/YL19AuvjjPY=</latexit>

1

<latexit sha1_base64="tIuSt3kbPSTIJcwkyLj5mDZBO1M=">AAAB6HicdVDLSgMxFM3UV62vqks3wSJ0NWSmtXV2BTcuW7APaIeSSTNtbCYzJBmhDP0CNy4UcesnufNvTB+Cih64cDjnXu69J0g4UxqhDyu3sbm1vZPfLeztHxweFY9POipOJaFtEvNY9gKsKGeCtjXTnPYSSXEUcNoNptcLv3tPpWKxuNWzhPoRHgsWMoK1kVrusFhCtlNxKsiFyPY8r+bVDUFu5dKrQsdGS5TAGs1h8X0wikkaUaEJx0r1HZRoP8NSM8LpvDBIFU0wmeIx7RsqcESVny0PncMLo4xgGEtTQsOl+n0iw5FSsygwnRHWE/XbW4h/ef1Uh1d+xkSSairIalGYcqhjuPgajpikRPOZIZhIZm6FZIIlJtpkUzAhfH0K/ycd13ZqdrVVLTXK6zjy4AycgzJwQB00wA1ogjYggIIH8ASerTvr0XqxXletOWs9cwp+wHr7BO1njPc=</latexit>

2

<latexit sha1_base64="N2dCuSwaR3W4qj8oXNf5mzefvoc=">AAAB6HicdVDLSgMxFM3UV62vqks3wSJ0NWQ6tXV2BTcuW7APaIeSSTNtbCYzJBmhDP0CNy4UcesnufNvTB+Cih64cDjnXu69J0g4UxqhDyu3sbm1vZPfLeztHxweFY9POipOJaFtEvNY9gKsKGeCtjXTnPYSSXEUcNoNptcLv3tPpWKxuNWzhPoRHgsWMoK1kVrusFhCtuM6LqpAZHueV/PqhqCKe+lVoWOjJUpgjeaw+D4YxSSNqNCEY6X6Dkq0n2GpGeF0XhikiiaYTPGY9g0VOKLKz5aHzuGFUUYwjKUpoeFS/T6R4UipWRSYzgjrifrtLcS/vH6qwys/YyJJNRVktShMOdQxXHwNR0xSovnMEEwkM7dCMsESE22yKZgQvj6F/5NOxXZqdrVVLTXK6zjy4AycgzJwQB00wA1ogjYggIIH8ASerTvr0XqxXletOWs9cwp+wHr7BO7rjPg=</latexit>

3

<latexit sha1_base64="mtfpEy7bDPCS8VAREaMCd+H/u5w=">AAAB5HicdVDLSgNBEOyNr7i+olcvg0HIaZlNYuLeAl48RjAxkCxhdjKbjJl9MDMrhCVf4MWD4tVv8ubfOHkIKlrQUFR1090VpIIrjfGHVdjY3NreKe7ae/sHh0cl+7irkkxS1qGJSGQvIIoJHrOO5lqwXioZiQLB7oLp1cK/e2BS8SS+1bOU+REZxzzklGgj3dSHpTJ23Jpbw1WEHc/zGl7TEFytXXh15Dp4iTKs0R6W3gejhGYRizUVRKm+i1Pt50RqTgWb24NMsZTQKRmzvqExiZjy8+Whc3RulBEKE2kq1mipfp/ISaTULApMZ0T0RP32FuJfXj/T4aWf8zjNNIvpalGYCaQTtPgajbhkVIuZIYRKbm5FdEIkodpkY5sQvj5F/5Nu1XEbTr3cqqzDKMIpnEEFXGhCC66hDR2gwOARnuHFureerNdVY8FaT5zAD1hvn4Thi88=</latexit>

4

<latexit sha1_base64="x9gT42OcQlYNomU8ZSTj7YEqoPY=">AAAB6HicdVDJSgNBEO2JW4xb1KOXxiDkNMxkdW4BLx4TMAskQ+jpVJLWnp6hu0cIQ77AiwdFvPpJ3vwbO4ugog8KHu9VUVUviDlT2nE+rMzG5tb2TnY3t7d/cHiUPz7pqCiRFNo04pHsBUQBZwLammkOvVgCCQMO3eDuauF370EqFokbPYvBD8lEsDGjRBupVR3mC47tlt2yU8KO7Xlezasb4pTKVa+CXdtZooDWaA7z74NRRJMQhKacKNV3nVj7KZGaUQ7z3CBREBN6RybQN1SQEJSfLg+d4wujjPA4kqaExkv1+0RKQqVmYWA6Q6Kn6re3EP/y+okeX/opE3GiQdDVonHCsY7w4ms8YhKo5jNDCJXM3IrplEhCtckmZ0L4+hT/Tzol263ZlVal0Ciu48iiM3SOishFddRA16iJ2ogiQA/oCT1bt9aj9WK9rloz1nrmFP2A9fYJ8fOM+g==</latexit>

5

<latexit sha1_base64="oSfyBAmZ9f3xseAhKNDxoWDos4k=">AAAB6HicdVDJSgNBEK2JW4xb1KOXxiDkNPQkMXFuAS8eEzALJEPo6XSSNj0L3T1CGPIFXjwo4tVP8ubf2FkEFX1Q8Hiviqp6fiy40hh/WJmNza3tnexubm//4PAof3zSVlEiKWvRSESy6xPFBA9ZS3MtWDeWjAS+YB1/er3wO/dMKh6Ft3oWMy8g45CPOCXaSE08yBew7ZSdMi4hbLuuW3VrhuBS+dKtIMfGSxRgjcYg/94fRjQJWKipIEr1HBxrLyVScyrYPNdPFIsJnZIx6xkakoApL10eOkcXRhmiUSRNhRot1e8TKQmUmgW+6QyInqjf3kL8y+slenTlpTyME81Culo0SgTSEVp8jYZcMqrFzBBCJTe3IjohklBtssmZEL4+Rf+Tdsl2qnalWSnUi+s4snAG51AEB2pQhxtoQAsoMHiAJ3i27qxH68V6XbVmrPXMKfyA9fYJ6l+M9Q==</latexit>

0

<latexit sha1_base64="GmWj8OHg7/tm73TLxXKm7Mb18Tk=">AAAB6HicdVDLSgNBEOyNrxhfUY9eBoOQ07KbxMS9Bbx4TMA8IFnC7GSSjJmdXWZmhbDkC7x4UMSrn+TNv3HyEFS0oKGo6qa7K4g5U9pxPqzMxubW9k52N7e3f3B4lD8+aasokYS2SMQj2Q2wopwJ2tJMc9qNJcVhwGknmF4v/M49lYpF4lbPYuqHeCzYiBGsjdR0B/mCY7tlt+yUkGN7nlf1aoY4pfKlV0Gu7SxRgDUag/x7fxiRJKRCE46V6rlOrP0US80Ip/NcP1E0xmSKx7RnqMAhVX66PHSOLowyRKNImhIaLdXvEykOlZqFgekMsZ6o395C/MvrJXp05adMxImmgqwWjRKOdIQWX6Mhk5RoPjMEE8nMrYhMsMREm2xyJoSvT9H/pF2y3apdaVYK9eI6jiycwTkUwYUa1OEGGtACAhQe4AmerTvr0XqxXletGWs9cwo/YL19AuvjjPY=</latexit>

1

<latexit sha1_base64="tIuSt3kbPSTIJcwkyLj5mDZBO1M=">AAAB6HicdVDLSgMxFM3UV62vqks3wSJ0NWSmtXV2BTcuW7APaIeSSTNtbCYzJBmhDP0CNy4UcesnufNvTB+Cih64cDjnXu69J0g4UxqhDyu3sbm1vZPfLeztHxweFY9POipOJaFtEvNY9gKsKGeCtjXTnPYSSXEUcNoNptcLv3tPpWKxuNWzhPoRHgsWMoK1kVrusFhCtlNxKsiFyPY8r+bVDUFu5dKrQsdGS5TAGs1h8X0wikkaUaEJx0r1HZRoP8NSM8LpvDBIFU0wmeIx7RsqcESVny0PncMLo4xgGEtTQsOl+n0iw5FSsygwnRHWE/XbW4h/ef1Uh1d+xkSSairIalGYcqhjuPgajpikRPOZIZhIZm6FZIIlJtpkUzAhfH0K/ycd13ZqdrVVLTXK6zjy4AycgzJwQB00wA1ogjYggIIH8ASerTvr0XqxXletOWs9cwp+wHr7BO1njPc=</latexit>

2
<latexit sha1_base64="N2dCuSwaR3W4qj8oXNf5mzefvoc=">AAAB6HicdVDLSgMxFM3UV62vqks3wSJ0NWQ6tXV2BTcuW7APaIeSSTNtbCYzJBmhDP0CNy4UcesnufNvTB+Cih64cDjnXu69J0g4UxqhDyu3sbm1vZPfLeztHxweFY9POipOJaFtEvNY9gKsKGeCtjXTnPYSSXEUcNoNptcLv3tPpWKxuNWzhPoRHgsWMoK1kVrusFhCtuM6LqpAZHueV/PqhqCKe+lVoWOjJUpgjeaw+D4YxSSNqNCEY6X6Dkq0n2GpGeF0XhikiiaYTPGY9g0VOKLKz5aHzuGFUUYwjKUpoeFS/T6R4UipWRSYzgjrifrtLcS/vH6qwys/YyJJNRVktShMOdQxXHwNR0xSovnMEEwkM7dCMsESE22yKZgQvj6F/5NOxXZqdrVVLTXK6zjy4AycgzJwQB00wA1ogjYggIIH8ASerTvr0XqxXletOWs9cwp+wHr7BO7rjPg=</latexit>

3

<latexit sha1_base64="mtfpEy7bDPCS8VAREaMCd+H/u5w=">AAAB5HicdVDLSgNBEOyNr7i+olcvg0HIaZlNYuLeAl48RjAxkCxhdjKbjJl9MDMrhCVf4MWD4tVv8ubfOHkIKlrQUFR1090VpIIrjfGHVdjY3NreKe7ae/sHh0cl+7irkkxS1qGJSGQvIIoJHrOO5lqwXioZiQLB7oLp1cK/e2BS8SS+1bOU+REZxzzklGgj3dSHpTJ23Jpbw1WEHc/zGl7TEFytXXh15Dp4iTKs0R6W3gejhGYRizUVRKm+i1Pt50RqTgWb24NMsZTQKRmzvqExiZjy8+Whc3RulBEKE2kq1mipfp/ISaTULApMZ0T0RP32FuJfXj/T4aWf8zjNNIvpalGYCaQTtPgajbhkVIuZIYRKbm5FdEIkodpkY5sQvj5F/5Nu1XEbTr3cqqzDKMIpnEEFXGhCC66hDR2gwOARnuHFureerNdVY8FaT5zAD1hvn4Thi88=</latexit>

4

<latexit sha1_base64="x9gT42OcQlYNomU8ZSTj7YEqoPY=">AAAB6HicdVDJSgNBEO2JW4xb1KOXxiDkNMxkdW4BLx4TMAskQ+jpVJLWnp6hu0cIQ77AiwdFvPpJ3vwbO4ugog8KHu9VUVUviDlT2nE+rMzG5tb2TnY3t7d/cHiUPz7pqCiRFNo04pHsBUQBZwLammkOvVgCCQMO3eDuauF370EqFokbPYvBD8lEsDGjRBupVR3mC47tlt2yU8KO7Xlezasb4pTKVa+CXdtZooDWaA7z74NRRJMQhKacKNV3nVj7KZGaUQ7z3CBREBN6RybQN1SQEJSfLg+d4wujjPA4kqaExkv1+0RKQqVmYWA6Q6Kn6re3EP/y+okeX/opE3GiQdDVonHCsY7w4ms8YhKo5jNDCJXM3IrplEhCtckmZ0L4+hT/Tzol263ZlVal0Ciu48iiM3SOishFddRA16iJ2ogiQA/oCT1bt9aj9WK9rloz1nrmFP2A9fYJ8fOM+g==</latexit>

5

<latexit sha1_base64="XZILMIVaULGuLmg/rqQHH2FmKjY=">AAAB6nicdVDLTgJBEOzFF+IL9ehlIjHhtNldEPCGcvGIUR4JbMjsMMCE2UdmZk3Ihk/w4kFjvPpF3vwbZwETNVpJJ5Wq7nR3eRFnUlnWh5FZW9/Y3Mpu53Z29/YP8odHbRnGgtAWCXkouh6WlLOAthRTnHYjQbHvcdrxpo3U79xTIVkY3KlZRF0fjwM2YgQrLd02ri4H+YJlXtQqzrmDLNOyqk6pkhKnWnZKyNZKigKs0Bzk3/vDkMQ+DRThWMqebUXKTbBQjHA6z/VjSSNMpnhMe5oG2KfSTRanztGZVoZoFApdgUIL9ftEgn0pZ76nO32sJvK3l4p/eb1YjWpuwoIoVjQgy0WjmCMVovRvNGSCEsVnmmAimL4VkQkWmCidTk6H8PUp+p+0HdOumOWbcqFeXMWRhRM4hSLYUIU6XEMTWkBgDA/wBM8GNx6NF+N12ZoxVjPH8APG2ycFJo2R</latexit>

CBA

<latexit sha1_base64="WvEtEaqLOr+4/frjoIfWuk/1Gv4=">AAAB7HicdVBNT8JAEJ3iF+IX6tHLRmLCqSkFAW8oF4+YWCSBhmyXBTZst83u1oQQfoMXDxrj1R/kzX/jFjBRoy+Z5OW9mczMC2LOlHacDyuztr6xuZXdzu3s7u0f5A+P2ipKJKEeiXgkOwFWlDNBPc00p51YUhwGnN4Fk2bq391TqVgkbvU0pn6IR4INGcHaSF7z8gqhfr7g2Bf1qnvuIsd2nJpbrqbErVXcMioZJUUBVmj18++9QUSSkApNOFaqW3Ji7c+w1IxwOs/1EkVjTCZ4RLuGChxS5c8Wx87RmVEGaBhJU0Kjhfp9YoZDpaZhYDpDrMfqt5eKf3ndRA/r/oyJONFUkOWiYcKRjlD6ORowSYnmU0MwkczcisgYS0y0ySdnQvj6FP1P2q5dqtqVm0qhUVzFkYUTOIUilKAGDbiGFnhAgMEDPMGzJaxH68V6XbZmrNXMMfyA9fYJsaON5Q==</latexit>

CAB

<latexit sha1_base64="5uby38Su4Cy/SoyDuAuteSDnFwM=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbRU9mVUj0WvOhFKtgPaJeSTbNtaJJdkqxQlv4FLx4U8eof8ua/MdvuQVsfDDzem2FmXhBzpo3rfjuFtfWNza3idmlnd2//oHx41NZRoghtkYhHqhtgTTmTtGWY4bQbK4pFwGknmNxkfueJKs0i+WimMfUFHkkWMoJNJt2fD+4G5YpbdedAq8TLSQVyNAflr/4wIomg0hCOte55bmz8FCvDCKezUj/RNMZkgke0Z6nEgmo/nd86Q2dWGaIwUrakQXP190SKhdZTEdhOgc1YL3uZ+J/XS0x47adMxomhkiwWhQlHJkLZ42jIFCWGTy3BRDF7KyJjrDAxNp6SDcFbfnmVtC+rXr1ae6hVGm4eRxFO4BQuwIMraMAtNKEFBMbwDK/w5gjnxXl3PhatBSefOYY/cD5/AE44jbY=</latexit>

N 0

I

<latexit sha1_base64="TmiJsqihRoskx1GvGKJtYp6Ml1k=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPBiyetaD+gDWWznbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrK6tbxQ3S1vbO7t75f2Dpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApG11O/9YRK81g+mnGCfkQHkoecUWOlh9veXa9ccavuDGSZeDmpQI56r/zV7ccsjVAaJqjWHc9NjJ9RZTgTOCl1U40JZSM6wI6lkkao/Wx26oScWKVPwljZkobM1N8TGY20HkeB7YyoGepFbyr+53VSE175GZdJalCy+aIwFcTEZPo36XOFzIixJZQpbm8lbEgVZcamU7IheIsvL5PmWdW7qJ7fn1dqbh5HEY7gGE7Bg0uowQ3UoQEMBvAMr/DmCOfFeXc+5q0FJ585hD9wPn8A9qGNiw==</latexit>

NO

<latexit sha1_base64="fZLWzifGhUXsrZamsqF6/DlliIA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipGQ7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1W962qtWavU3TyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AyHWM4Q==</latexit>

f

<latexit sha1_base64="gnRWJ8Gikv5Frn0DQ5cek3Fy22Y=">AAAB7nicdVDLSsNAFJ3UV62vqhvBzWARXEhI0trWXR8blxXsA9pQJtNJO3QyCTMToYR+hBsXirj1e9z5N07aCip64MLhnHu59x4vYlQqy/owMmvrG5tb2e3czu7e/kH+8Kgjw1hg0sYhC0XPQ5IwyklbUcVILxIEBR4jXW/aTP3uPRGShvxOzSLiBmjMqU8xUlrqNurNy3qzMcwXLPO6WnauHGiZllVxiuWUOJWSU4S2VlIUwAqtYf59MApxHBCuMENS9m0rUm6ChKKYkXluEEsSITxFY9LXlKOASDdZnDuH51oZQT8UuriCC/X7RIICKWeBpzsDpCbyt5eKf3n9WPlVN6E8ihXheLnIjxlUIUx/hyMqCFZspgnCgupbIZ4ggbDSCeV0CF+fwv9JxzHtslm6LRVqJ6s4suAUnIELYIMKqIEb0AJtgMEUPIAn8GxExqPxYrwuWzPGauYY/IDx9gkHRo6b</latexit>

BAC,ACB

<latexit sha1_base64="AL54pNI3UAnlLwN01RI1jiE08Jc=">AAAB7nicdVDLSsNAFJ3UV62vqhvBzWARXEhI0trWXR8blxXsA9pQJtNJO3QyCTMToYR+hBsXirj1e9z5N07aCip64MLhnHu59x4vYlQqy/owMmvrG5tb2e3czu7e/kH+8Kgjw1hg0sYhC0XPQ5IwyklbUcVILxIEBR4jXW/aTP3uPRGShvxOzSLiBmjMqU8xUlrq1hvNy3qzMcwXLPO6WnauHGiZllVxiuWUOJWSU4S2VlIUwAqtYf59MApxHBCuMENS9m0rUm6ChKKYkXluEEsSITxFY9LXlKOASDdZnDuH51oZQT8UuriCC/X7RIICKWeBpzsDpCbyt5eKf3n9WPlVN6E8ihXheLnIjxlUIUx/hyMqCFZspgnCgupbIZ4ggbDSCeV0CF+fwv9JxzHtslm6LRVqJ6s4suAUnIELYIMKqIEb0AJtgMEUPIAn8GxExqPxYrwuWzPGauYY/IDx9gkHRY6b</latexit>

ABC,ACB

<latexit sha1_base64="rx2xpkmUywnzzqN3NTheC+UJHJ8=">AAAB7nicdVDLSsNAFJ3UV62vqhvBzWARXEhI0trWXR8blxXsA9pQJtNJO3QyCTMToYR+hBsXirj1e9z5N07aCip64MLhnHu59x4vYlQqy/owMmvrG5tb2e3czu7e/kH+8Kgjw1hg0sYhC0XPQ5IwyklbUcVILxIEBR4jXW/aTP3uPRGShvxOzSLiBmjMqU8xUlrq1hvNy2a9McwXLPO6WnauHGiZllVxiuWUOJWSU4S2VlIUwAqtYf59MApxHBCuMENS9m0rUm6ChKKYkXluEEsSITxFY9LXlKOASDdZnDuH51oZQT8UuriCC/X7RIICKWeBpzsDpCbyt5eKf3n9WPlVN6E8ihXheLnIjxlUIUx/hyMqCFZspgnCgupbIZ4ggbDSCeV0CF+fwv9JxzHtslm6LRVqJ6s4suAUnIELYIMKqIEb0AJtgMEUPIAn8GxExqPxYrwuWzPGauYY/IDx9gkHR46b</latexit>

ABC,CAB

<latexit sha1_base64="irJ4Vvusc99NbkV+f4p3KxSFH34=">AAAB7nicdVDLSsNAFJ3UV62vqhvBzWARXEhI0trWXR8blxXsA9pQJtNJO3QyCTMToYR+hBsXirj1e9z5N07aCip64MLhnHu59x4vYlQqy/owMmvrG5tb2e3czu7e/kH+8Kgjw1hg0sYhC0XPQ5IwyklbUcVILxIEBR4jXW/aTP3uPRGShvxOzSLiBmjMqU8xUlrq1puNy2a9McwXLPO6WnauHGiZllVxiuWUOJWSU4S2VlIUwAqtYf59MApxHBCuMENS9m0rUm6ChKKYkXluEEsSITxFY9LXlKOASDdZnDuH51oZQT8UuriCC/X7RIICKWeBpzsDpCbyt5eKf3n9WPlVN6E8ihXheLnIjxlUIUx/hyMqCFZspgnCgupbIZ4ggbDSCeV0CF+fwv9JxzHtslm6LRVqJ6s4suAUnIELYIMKqIEb0AJtgMEUPIAn8GxExqPxYrwuWzPGauYY/IDx9gkHSI6b</latexit>

ACB,CAB

<latexit sha1_base64="XxfUQCg4dL83jmAjLcJEqdvhNJM=">AAAB7nicdVDLSsNAFJ3UV62vqhvBzWARXEhI0trWXR8blxXsA9pQJtNJO3QyCTMToYR+hBsXirj1e9z5N07aCip64MLhnHu59x4vYlQqy/owMmvrG5tb2e3czu7e/kH+8Kgjw1hg0sYhC0XPQ5IwyklbUcVILxIEBR4jXW/aTP3uPRGShvxOzSLiBmjMqU8xUlrq1puNy2ajPswXLPO6WnauHGiZllVxiuWUOJWSU4S2VlIUwAqtYf59MApxHBCuMENS9m0rUm6ChKKYkXluEEsSITxFY9LXlKOASDdZnDuH51oZQT8UuriCC/X7RIICKWeBpzsDpCbyt5eKf3n9WPlVN6E8ihXheLnIjxlUIUx/hyMqCFZspgnCgupbIZ4ggbDSCeV0CF+fwv9JxzHtslm6LRVqJ6s4suAUnIELYIMKqIEb0AJtgMEUPIAn8GxExqPxYrwuWzPGauYY/IDx9gkHSY6b</latexit>

ACB,CBA

<latexit sha1_base64="zB+pcH0GpzcSsBQ+uszUcJvYUNk=">AAAB7nicdVDLSsNAFJ3UV62vqhvBzWARXEhI0trWXR8blxXsA9pQJtNJO3QyCTMToYR+hBsXirj1e9z5N07aCip64MLhnHu59x4vYlQqy/owMmvrG5tb2e3czu7e/kH+8Kgjw1hg0sYhC0XPQ5IwyklbUcVILxIEBR4jXW/aTP3uPRGShvxOzSLiBmjMqU8xUlrqNuuNy2ajPswXLPO6WnauHGiZllVxiuWUOJWSU4S2VlIUwAqtYf59MApxHBCuMENS9m0rUm6ChKKYkXluEEsSITxFY9LXlKOASDdZnDuH51oZQT8UuriCC/X7RIICKWeBpzsDpCbyt5eKf3n9WPlVN6E8ihXheLnIjxlUIUx/hyMqCFZspgnCgupbIZ4ggbDSCeV0CF+fwv9JxzHtslm6LRVqJ6s4suAUnIELYIMKqIEb0AJtgMEUPIAn8GxExqPxYrwuWzPGauYY/IDx9gkHS46b</latexit>

CAB,CBA

Fig. 1. Two triangulated cylinders: on the left 𝑁 ′
𝐼
a domain restriction of 𝑁𝐼 , on the right 𝑁𝑂 .
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The notation𝑁𝐼 , 𝑁𝑂 stands for łinputž and łoutputž complexes, following the notion of a task in distributed computing.

We present an introduction of the relation with distributed computing [32] in a proceedings version of this paper [47]

and in Appendix A.

The insight is that either a social profile or social preference is defined by a triangle of three vertices, each one

specifying preferences on two alternatives. Let P = {𝐴𝐵, 𝐵𝐶,𝐴𝐶}, called also ids. The vertices of each triangle are labeled

with distinct process ids from P. Additionally, the vertices of 𝑁𝐼 are also labeled with an element from {++,−−, +−,−+},

while the vertices of 𝑁𝑂 are labeled with an element from {+,−}.

See Figure 1, where a triangulated cylinder 𝑁 ′
𝐼
is depicted, a domain restriction of 𝑁𝐼 consisting of social profiles

where the two voters disagree on one or on two pairs of alternatives (as opposed to triangles with either total agreement

or total disagreement). In the figure 𝑁𝑂 is also depicted. For clarity, only triangles on the łfrontž of the cylinders are

labeled with the corresponding social profile or social decision.

The output complex 𝑁𝑂 consists of all triangles, with each vertex labeled with a unique value from {+,−}, except for

the two triangles labeled with the same value. Consider for example the triangle 𝐶𝐵𝐴 of 𝑁𝑂 depicted in the figure. It is

determined by the vertex 𝑈 −
𝐴𝐵

, meaning that 𝐵 is preferred over 𝐴, the vertex 𝑈 −
𝐵𝐶

, meaning that 𝐶 is preferred over 𝐵,

and the vertex𝑈 +
𝐶𝐴

, meaning that 𝐶 is preferred over 𝐴. Notice that 𝐶𝐵𝐴 is the only social preference satisfying these

three preferences.

Similarly, consider for example the social profile 𝐵𝐴𝐶,𝐴𝐶𝐵 of 𝑁𝐼 . It is determined by the vertex 𝑈 (−,−)
𝐶𝐴

, meaning

that both voters prefer 𝐴 over 𝐶 , the vertex 𝑈 (−,+)
𝐴𝐵

, meaning that the first voter prefers 𝐵 over 𝐴 and the second voter

prefers 𝐴 over 𝐵, and the vertex𝑈 (+,−)
𝐵𝐶

, meaning that the first voter prefers 𝐵 over 𝐶 and the second voter prefers 𝐶

over 𝐵. Notice that 𝐵𝐴𝐶,𝐴𝐶𝐵 is the only social profile satisfying these three preferences.

The second step is to observe that the aggregation map 𝐹 that decides the social output, induces a simplicial map 𝑓

from 𝑁𝐼 to 𝑁𝑂 , which is chromatic (preserves vertex ids). In Section 2.4 we reformulate Arrow’s problem: we seek a

chromatic simplicial map 𝑓 from 𝑁𝐼 to 𝑁𝑂 , that sends vertices with input ++ to vertices with output + and vertices

with input −− to vertices with output −. This comes from the unanimity requirement that if both voters prefer an

alternative 𝑥 over 𝑦, then the social preference should prefer 𝑥 over 𝑦. Arrow’s impossibility reformulation Theorem 2.1

says that such an aggregation map 𝑓 must be a dictatorship.

The geometric reason is illustrated in Figure 1, the green cycle of 𝑁 ′
𝐼
must wrap around once on the green cycle of

𝑁𝑂 . The index lemma can be used to computes the winding number of the boundary triangles of 𝑁 ′
𝐼
(the blue and the

green cycles) on the boundary triangles of 𝑁𝑂 . As we shall see, this number is 0 and implies that 𝑓 is a projection (on

the preferences of one of the two voters, the dictator), assuming that 𝑓 satisfies unanimity. The mathematics used is

elementary: essentially only basic parity counting operations are needed. Interestingly, the index lemma is also behind

the distributed computing impossibilities related to weak symmetry breaking e.g. [14, 30].

Organization. First we present the statement of Arrow’s theorem, an introduction to combinatorial topology, and

how to model Arrow’s theorem using combinatorial topology, in Section 2. The topology approach is suitable for

studying restricted domains of preferences, as discussed in Section 3. A domain restriction is used in Section 3.1 to

prove Arrow’s impossibility with a very simple intuitive geometric argument illustrated in Figure 1. In Section 3.2 we

present the characterization of non-dictatorial domain restrictions. In Section 3.3 a domain restriction is described

that does allow for a non-dictatorial aggregation, in spite of having a non-contractible restriction 𝑁 ′′
𝐼
. We provide two

proofs of Arrow’s theorem (𝑛 = 2, |𝑋 | = 3), using combinatorial topology, one in Section 4 using the index lemma, and

one based on pivotal arguments in Section 5. We present a simple argument to generalize Arrow’s theorem from the
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basis case of 𝑛 = 2, |𝑋 | = 3 in Section 6. In Section 7 we present the conclusions. At the end of the paper an Appendix

includes technical details about the proofs and the connection to distributed computing.

2 ARROW’S IMPOSSIBILITY THEOREM STATEMENT: CLASSIC AND GEOMETRIC FORMULATIONS

We start by recalling Arrow’s theorem in Section 2.1, we then present a quick introduction to combinatorial topology

in Section 2.2, used for the overview of how to use it for Arrow’s setting in Section 2.3, and finally the combinatorial

topology restatement of Arrow’s theorem in Section 2.4.

2.1 Classic formulation

Let 𝑋 be a set of alternatives, |𝑋 | ≥ 3. The set of all strict total orders of 𝑋 is denoted by𝑊 . Let 𝑛 ≥ 2 denote the (finite)

number of voters, and𝑊 𝑛 be the set of profiles of preferences. Thus, R = (𝑅1, . . . , 𝑅𝑛) ∈𝑊
𝑛 is a profile, where each 𝑅𝑖

is the order on 𝑋 preferred by the 𝑖-th voter, 𝑅𝑖 ∈𝑊 . An aggregation map 𝐹 is a function from𝑊 𝑛 to𝑊 that maps

each profile of𝑊 𝑛 to a unique order in𝑊 . For example, if 𝑋 = {𝐴, 𝐵,𝐶}, 𝑅𝑖 = 𝐴 ≻ 𝐵 ≻ 𝐶 ∈𝑊 denotes that the 𝑖-th

voter prefers 𝐴 over 𝐵, and 𝐵 over 𝐶 . This is also denoted as 𝐴𝑅𝑖 𝐵 𝑅𝑖 𝐶 , or when no confusion arises, simply by 𝐴𝐵𝐶 .

A classic form of Arrow’s impossibility theorem states that whenever the set 𝑋 of possible alternatives has at least 3

elements, there is no aggregation map 𝐹 from𝑊 𝑛 to𝑊 satisfying the following axioms:

(1) Unanimity. If alternative, 𝑎, is ranked strictly higher than 𝑏 for all orderings 𝑅1, . . . , 𝑅𝑛 , then 𝑎 is ranked strictly

higher than 𝑏 by 𝐹 (𝑅1, . . . , 𝑅𝑛).

(2) Non-dictatorship. There is no individual 𝑘 whose strict preferences always prevail. That is, there is no 𝑘 ∈

{1, . . . , 𝑛} such that for all R ∈𝑊 𝑛 , 𝑎 ranked strictly higher than 𝑏 by 𝑅𝑘 implies 𝑎 ranked strictly higher than 𝑏

by 𝐹 (𝑅1, . . . , 𝑅𝑛), for all 𝑎 and 𝑏.

(3) Independence of irrelevant alternatives. For two preference profiles R and S such that for all individuals 𝑖 ,

alternatives 𝑎 and 𝑏 have the same order in 𝑅𝑖 as in 𝑆𝑖 , alternatives 𝑎 and 𝑏 have the same order in 𝐹 (𝑅1, . . . , 𝑅𝑛)

as in 𝐹 (𝑆1, . . . , 𝑆𝑛).

Some formulations of Arrow’s impossibility theorem allow ties in the rankings (e.g. [4, 23, 57]). In this sense, it could

seem that the framework we present here is not as general as it might be. However, this is not the case e.g. [10, Lemma

1], and indeed previous proofs e.g. [10, 38, 46] of Arrow’s impossibility often assume, as we do, strict orders.

2.2 Introduction to combinatorial topology

Algebraic topology is a deep and highly developed branch of mathematics, studying algebraic invariants of topological

spaces, such as homology groups. When the spaces are composed of individual cells attached to each other in a simple

way, we have combinatorial topology, which has been gaining importance more recently as more and more applications

are discovered, and the fact that such invariants can be computable. Here we use only elementary notions that can be

found in books such as [31, 32], for more advanced treatments see [36, 50].

2.2.1 Simplicial complex. A simplicial complex is a family of sets that is closed under taking subsets, that is, every

subset of a set in the family is also in the family. The elements of the sets are called vertices. A set of the simplicial

complex is called a simplex, and its dimension is 𝑑 if it has 𝑑 + 1 elements; we say it is a 𝑑-simplex. In this paper we

consider only simplicial complexes of dimension 2, meaning that each simplex contains at most 3 elements.

A simplicial complex is a purely combinatorial object, it can be seen as a generalization of a graph; in our case, in

addition to edges consisting of pairs of vertices, we allow also triangles consisting of triples of vertices. As in graph
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theory, it is sometimes useful to embed a simplicial complex in Euclidean space. A simplicial complex can represent a

discretization of a geometric object, in the case of dimension 2, a triangulation. We may think of the simplices of size 3

as triangles, the simplices of size 2 as edges, and simplices of size 1 as points, as illustrated in Figure 4.

A subset of a simplex is called a face. Notice that if a triangle is in the complex, so are its three 1-dimensional faces

(edges), and its three 0-dimensional faces (vertices), because a complex is closed under containment.

2.2.2 Simplicial map. A simplicial map is a function from the vertices of one simplicial complex 𝐾 to the vertices of

another simplicial complex, 𝐾 ′, that preserves simplices: it sends sets of vertices that belong to a simplex of 𝐾 , to sets of

vertices that belong to a simplex of 𝐾 ′; thus, it respects the simplicial structure. A simplicial map is a discrete version of

a continuous map.

2.2.3 Index lemma. Quoting from Henle [31],

łThe combinatorial method is used not only to construct complicated figures from simple ones but also to

deduce properties of the complicated from the simple. In combinatorial topology it is remarkable that the only

machinery needed to make these deductions is the elementary process of counting!ž

The index lemma illustrates this point. Here we describe the basic version of [31]. Consider the following simplicial

complex, 𝐾 , consisting of a polygon of any number of sides, triangulated. The vertices are labeled arbitrarily, with

labels 0, 1, 2. The content 𝐶 is the number of triangles labelled 0, 1, 2, counted by orientation: it counts +1 if its labels

read 012 in a counterclockwise direction around the triangle, and counts −1 if they clockwise around the triangle. The

index 𝐼 is the number of edges labeled 01 around the boundary of the polygon counted by orientation: and edge counts

+1 if it reads 01 counterclockwise around the polygon, and −1 if it reads 01 clockwise. In the figure, 𝐼 = 𝐶 = −1. The

index lemma says that this is always the case, 𝐼 = 𝐶 . This simplicial complex from [31] illustrates the index lemma,

highlighting the three complete triangles.

2

2 2

0
1 1

21

0

0

1

0

−1−1

+1

The miracle of the index lemma is that the proof is a very simple parity

counting argument (see Theorem B.2), despite the fact of being at the core of the

study vector fields and other areas [31]. Furthermore, it implies Sperner’s lemma

(which is equivalent to Brouwer’s fixed point theorem). For a general formulation

of the index lemma see [20].

The see the geometric interpretation, we think of the coloring of the vertices

of 𝐾 as a simplicial map 𝑓 from 𝐾 to the complex 𝐾 ′, that consists of a single 2-

dimensional simplex {0, 1, 2}, together with all its faces. The index lemma counts

the number of times the boundary of 𝐾 is wrapped around the boundary of 𝐾 ′.

In Section 4 we need a simple generalization to prove Arrow’s theorem: while the boundary of the complex consists

of exterior edges belonging to a single triangle, each interior edge belongs to an even number of triangles (at least 2). As

opposed to Sperner’s lemma, the index lemma requires the complex to be orientable (Definition B.1). An example of a

such an orientable complex, is the triangulated torus. After removing one triangle, say 𝑐𝑒 𝑓 , the boundary consists of the

edges of this triangle. An example a complex that is not orientable is a triangulation of the Möbius strip. See Figure 2.

2.3 Representing𝑊 2 and𝑊 for three alternatives using combinatorial topology

We use the simplicial complexes 𝑁𝐼 and 𝑁𝑂 to represent𝑊 2 and𝑊 following Baryshnikov [10]. The intuition behind

these complexes is as follows, for three alternatives and two voters.
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𝑎 𝑏 𝑐 𝑎

𝑑
𝑖 𝑗

𝑑

𝑒
𝑓 𝑔

𝑒

𝑎 𝑏 𝑐 𝑎

ℎ

𝑎 𝑏 𝑐

𝑑 𝑒 𝑓

𝑑

𝑎

Fig. 2. Arrows indicate edges that are identified. The triangulated torus on the left has 10 vertices. The triangulated Möbius strip on
the right has only 4 vertices, the boundary consists of a cycle of 6 edges: 𝑎𝑏, 𝑏𝑐 , 𝑐𝑑 , 𝑑𝑒 , 𝑒 𝑓 and 𝑓 𝑎.

On the right side of Figure 3, two triangles of 𝑁𝑂 are depicted, labeled 𝐵𝐴𝐶 and 𝐵𝐶𝐴. The label 𝐵𝐴𝐶 means that

society prefers 𝐵 over 𝐴 and 𝐴 over 𝐶 . The two triangles share an edge because 𝐵𝐴𝐶 and 𝐵𝐶𝐴 agree on two pairwise

preferences. The first is represented by the vertex𝑈 −
𝐴𝐵

, namely 𝐵 is preferred over 𝐴, and the second by the vertex𝑈 +
𝐵𝐶

,

namely 𝐵 is preferred over 𝐶 . Now, on the left part of Figure 3, four triangles of 𝑁𝐼 are depicted, each one labeled with

<latexit sha1_base64="Zel7Wbgv5yl0RBD2hx7gfD57J3M=">AAAB7nicbVDJSgNBEK12jXGLy81LYxA8SJiRoB6zXDxGMAskQ+jp9CRNenqG7h4hDPkILx4U8er3ePNv7CRz0MQHBY/3qqiq58eCa+M432htfWNzazu3k9/d2z84LBwdt3SUKMqaNBKR6vhEM8ElaxpuBOvEipHQF6ztj+szv/3ElOaRfDSTmHkhGUoecEqMldrVWv2qWq/1C0Wn5MyBV4mbkSJkaPQLX71BRJOQSUMF0brrOrHxUqIMp4JN871Es5jQMRmyrqWShEx76fzcKb6wygAHkbIlDZ6rvydSEmo9CX3bGRIz0sveTPzP6yYmuPNSLuPEMEkXi4JEYBPh2e94wBWjRkwsIVRxeyumI6IINTahvA3BXX55lbSuS+5NqfxQLlZOszhycAbncAku3EIF7qEBTaAwhmd4hTcUoxf0jj4WrWsomzmBP0CfP6MZjlM=</latexit>

ABC,ACB

<latexit sha1_base64="DFL7TEeiV/RWaeXEOqj1lxUYMPI=">AAAB9XicbVBNS8NAEJ3Ur1q/ql4EL8EiVColkaIeq148VjBtoU3LZrtpl242YXejlJD/4cWDIl79L978N27bHLT6YODx3gwz87yIUaks68vILS2vrK7l1wsbm1vbO8XdvaYMY4GJg0MWiraHJGGUE0dRxUg7EgQFHiMtb3wz9VsPREga8ns1iYgboCGnPsVIaann9JOr67SXlCunlZO0XyxZVWsG8y+xM1KCDI1+8bM7CHEcEK4wQ1J2bCtSboKEopiRtNCNJYkQHqMh6WjKUUCkm8yuTs1jrQxMPxS6uDJn6s+JBAVSTgJPdwZIjeSiNxX/8zqx8i/dhPIoVoTj+SI/ZqYKzWkE5oAKghWbaIKwoPpWE4+QQFjpoAo6BHvx5b+keVa1z6u1u1qpfpDFkYdDOIIy2HABdbiFBjiAQcATvMCr8Wg8G2/G+7w1Z2Qz+/ALxsc3u2qRPQ==</latexit>

U
(+,+)
AB

<latexit sha1_base64="roniGFkJVzZxJvYGZjmV3taSrE4=">AAAB9XicbVBNS8NAEJ3Ur1q/ql4EL8EiVNSSSFGPlV48VjBtoU3LZrtpl242YXejlJD/4cWDIl79L978N27bHNT6YODx3gwz87yIUaks68vILS2vrK7l1wsbm1vbO8XdvaYMY4GJg0MWiraHJGGUE0dRxUg7EgQFHiMtb1yf+q0HIiQN+b2aRMQN0JBTn2KktNRz+kn9Ju0l5fOz05O0XyxZFWsGc5HYGSlBhka/+NkdhDgOCFeYISk7thUpN0FCUcxIWujGkkQIj9GQdDTlKCDSTWZXp+axVgamHwpdXJkz9edEggIpJ4GnOwOkRvKvNxX/8zqx8q/dhPIoVoTj+SI/ZqYKzWkE5oAKghWbaIKwoPpWE4+QQFjpoAo6BPvvy4ukeVGxLyvVu2qpdpDFkYdDOIIy2HAFNbiFBjiAQcATvMCr8Wg8G2/G+7w1Z2Qz+/ALxsc3wAmRQA==</latexit>

U
(−,+)
CA

<latexit sha1_base64="slaS19Wvd5u9uVz6UbeFKNcy7A4=">AAAB+HicbVBNS8NAEN3Ur1o/GvUieFksQkUtiRT1WOzFYwXTFtoYNttNu3SzCbsboYb8Ei8eFPHqT/Hmv3Hb5qDWBwOP92aYmefHjEplWV9GYWl5ZXWtuF7a2NzaLps7u20ZJQITB0csEl0fScIoJ46iipFuLAgKfUY6/rg59TsPREga8Ts1iYkboiGnAcVIackzy46XXjez+7R6cnp2nEHPrFg1awa4SOycVECOlmd+9gcRTkLCFWZIyp5txcpNkVAUM5KV+okkMcJjNCQ9TTkKiXTT2eEZPNLKAAaR0MUVnKk/J1IUSjkJfd0ZIjWSf72p+J/XS1Rw5aaUx4kiHM8XBQmDKoLTFOCACoIVm2iCsKD6VohHSCCsdFYlHYL99+VF0j6v2Re1+m290tjP4yiCA3AIqsAGl6ABbkALOACDBDyBF/BqPBrPxpvxPm8tGPnMHvgF4+Mbky+RnA==</latexit>

U
(+,−)
BC

<latexit sha1_base64="bE4rJxUt1p19vBnex92BxEHtldM=">AAAB7nicbVDJSgNBEK12jXGLy81LYxA8SJiRoB6zXDxGMAskQ+jp9CRNenqG7h4hDPkILx4U8er3ePNv7CRz0MQHBY/3qqiq58eCa+M432htfWNzazu3k9/d2z84LBwdt3SUKMqaNBKR6vhEM8ElaxpuBOvEipHQF6ztj+szv/3ElOaRfDSTmHkhGUoecEqMldrVWv2qXq31C0Wn5MyBV4mbkSJkaPQLX71BRJOQSUMF0brrOrHxUqIMp4JN871Es5jQMRmyrqWShEx76fzcKb6wygAHkbIlDZ6rvydSEmo9CX3bGRIz0sveTPzP6yYmuPNSLuPEMEkXi4JEYBPh2e94wBWjRkwsIVRxeyumI6IINTahvA3BXX55lbSuS+5NqfxQLlZOszhycAbncAku3EIF7qEBTaAwhmd4hTcUoxf0jj4WrWsomzmBP0CfP6MbjlM=</latexit>

ABC,CAB

<latexit sha1_base64="dGacKdSdKgtqpPB3rGmr6Sa1wrU=">AAAB9XicbVBNS8NAEJ3Ur1q/ql4EL4tFqGBLIkU9VnrxWMG0hTYtm+2mXbr5YHejlJD/4cWDIl79L978N27bHLT6YODx3gwz89yIM6lM88vIrayurW/kNwtb2zu7e8X9g5YMY0GoTUIeio6LJeUsoLZiitNOJCj2XU7b7qQx89sPVEgWBvdqGlHHx6OAeYxgpaW+PUgaN2k/KVfOK2fpoFgyq+Yc6C+xMlKCDM1B8bM3DEns00ARjqXsWmaknAQLxQinaaEXSxphMsEj2tU0wD6VTjK/OkWnWhkiLxS6AoXm6s+JBPtSTn1Xd/pYjeWyNxP/87qx8q6dhAVRrGhAFou8mCMVolkEaMgEJYpPNcFEMH0rImMsMFE6qIIOwVp++S9pXVSty2rtrlaqH2Vx5OEYTqAMFlxBHW6hCTYQEPAEL/BqPBrPxpvxvmjNGdnMIfyC8fENwxWRQg==</latexit>

U
(−,−)
CA

<latexit sha1_base64="WaEYJBDFdCOd/fpx2Y7iqMdtBZg=">AAAB6nicbVDLSgNBEOz1GeMrPm5eBoPgKexKUI/RXDxGNA9IljA7mU2GzM4uM71CCPkELx4U8eoXefNvnCR70MSChqKqm+6uIJHCoOt+Oyura+sbm7mt/PbO7t5+4eCwYeJUM15nsYx1K6CGS6F4HQVK3ko0p1EgeTMYVqd+84lrI2L1iKOE+xHtKxEKRtFKD7c31W6h6JbcGcgy8TJShAy1buGr04tZGnGFTFJj2p6boD+mGgWTfJLvpIYnlA1pn7ctVTTixh/PTp2QM6v0SBhrWwrJTP09MaaRMaMosJ0RxYFZ9Kbif147xfDaHwuVpMgVmy8KU0kwJtO/SU9ozlCOLKFMC3srYQOqKUObTt6G4C2+vEwaFyXvslS+Lxcrx1kcOTiBUzgHD66gAndQgzow6MMzvMKbI50X5935mLeuONnMEfyB8/kDnCeNOQ==</latexit>

BAC

<latexit sha1_base64="FPBrc+wC8VVPi9w9jjl7NfMMVuw=">AAAB8XicbVBNS8NAEJ3Ur1q/ql4EL4tFEISSSFGPlV48VjBtsY1ls920SzebsLsRSsi/8OJBEa/+G2/+G7dtDtr6YODx3gwz8/yYM6Vt+9sqrKyurW8UN0tb2zu7e+X9g5aKEkmoSyIeyY6PFeVMUFczzWknlhSHPqdtf9yY+u0nKhWLxL2exNQL8VCwgBGsjfTg9tObRvaYnmf9csWu2jOgZeLkpAI5mv3yV28QkSSkQhOOleo6dqy9FEvNCKdZqZcoGmMyxkPaNVTgkCovnV2coVOjDFAQSVNCo5n6eyLFoVKT0DedIdYjtehNxf+8bqKDay9lIk40FWS+KEg40hGavo8GTFKi+cQQTCQztyIywhITbUIqmRCcxZeXSeui6lxWa3e1Sv0oj6MIx3ACZ+DAFdThFprgAgEBz/AKb5ayXqx362PeWrDymUP4A+vzBxv0kG4=</latexit>

U+
AC

<latexit sha1_base64="SiuX8iP/QeZukN7oxixlf2KePUU=">AAAB8XicbVBNS8NAEJ3Ur1q/ql4EL4tF8GJJpKjHqhePFUxbbGPZbDft0s0m7G6EEvIvvHhQxKv/xpv/xm2bg7Y+GHi8N8PMPD/mTGnb/rYKS8srq2vF9dLG5tb2Tnl3r6miRBLqkohHsu1jRTkT1NVMc9qOJcWhz2nLH91M/NYTlYpF4l6PY+qFeCBYwAjWRnpwe+nVdfaYnma9csWu2lOgReLkpAI5Gr3yV7cfkSSkQhOOleo4dqy9FEvNCKdZqZsoGmMywgPaMVTgkCovnV6coWOj9FEQSVNCo6n6eyLFoVLj0DedIdZDNe9NxP+8TqKDSy9lIk40FWS2KEg40hGavI/6TFKi+dgQTCQztyIyxBITbUIqmRCc+ZcXSfOs6pxXa3e1Sv0gj6MIh3AEJ+DABdThFhrgAgEBz/AKb5ayXqx362PWWrDymX34A+vzBx11kG8=</latexit>

U−

AB

<latexit sha1_base64="yKq1dtXklYaP7b9GgCb6fQWAyDI=">AAAB8nicbVBNS8NAEJ34WetX1YvgZbEIXiyJFPVY6cVjBdMW0lg22027dLMJuxuhhPwMLx4U8eqv8ea/cdvmoK0PBh7vzTAzL0g4U9q2v62V1bX1jc3SVnl7Z3dvv3Jw2FZxKgl1Scxj2Q2wopwJ6mqmOe0mkuIo4LQTjJtTv/NEpWKxeNCThPoRHgoWMoK1kTy3n90288fsIkf9StWu2TOgZeIUpAoFWv3KV28QkzSiQhOOlfIcO9F+hqVmhNO83EsVTTAZ4yH1DBU4osrPZifn6MwoAxTG0pTQaKb+nshwpNQkCkxnhPVILXpT8T/PS3V442dMJKmmgswXhSlHOkbT/9GASUo0nxiCiWTmVkRGWGKiTUplE4Kz+PIyaV/WnKta/b5ebRwXcZTgBE7hHBy4hgbcQQtcIBDDM7zCm6WtF+vd+pi3rljFzBH8gfX5A3gnkJo=</latexit>

U−

AC

<latexit sha1_base64="sa6a0OFo5fRY+zFkXkLaeuWAXgc=">AAAB6nicbVDLSgNBEOz1GeMrPm5eBoPgKexKUI/RXDxGNA9IljA7mU2GzM4uM71CCPkELx4U8eoXefNvnCR70MSChqKqm+6uIJHCoOt+Oyura+sbm7mt/PbO7t5+4eCwYeJUM15nsYx1K6CGS6F4HQVK3ko0p1EgeTMYVqd+84lrI2L1iKOE+xHtKxEKRtFKD7fVm26h6JbcGcgy8TJShAy1buGr04tZGnGFTFJj2p6boD+mGgWTfJLvpIYnlA1pn7ctVTTixh/PTp2QM6v0SBhrWwrJTP09MaaRMaMosJ0RxYFZ9Kbif147xfDaHwuVpMgVmy8KU0kwJtO/SU9ozlCOLKFMC3srYQOqKUObTt6G4C2+vEwaFyXvslS+Lxcrx1kcOTiBUzgHD66gAndQgzow6MMzvMKbI50X5935mLeuONnMEfyB8/kDnCmNOQ==</latexit>

BCA

<latexit sha1_base64="J5pFc2tGVedUpFD6aRlh/gjjor4=">AAAB8XicbVBNS8NAEJ3Ur1q/ql4EL4tFEISSSFGPxV48VjBtsY1ls920SzebsLsRSsi/8OJBEa/+G2/+G7dtDtr6YODx3gwz8/yYM6Vt+9sqrKyurW8UN0tb2zu7e+X9g5aKEkmoSyIeyY6PFeVMUFczzWknlhSHPqdtf9yY+u0nKhWLxL2exNQL8VCwgBGsjfTg9tObRvaYnmf9csWu2jOgZeLkpAI5mv3yV28QkSSkQhOOleo6dqy9FEvNCKdZqZcoGmMyxkPaNVTgkCovnV2coVOjDFAQSVNCo5n6eyLFoVKT0DedIdYjtehNxf+8bqKDay9lIk40FWS+KEg40hGavo8GTFKi+cQQTCQztyIywhITbUIqmRCcxZeXSeui6lxWa3e1Sv0oj6MIx3ACZ+DAFdThFprgAgEBz/AKb5ayXqx362PeWrDymUP4A+vzBx1+kG8=</latexit>

U+
BC

<latexit sha1_base64="eSmRWuIjL1nAsCKKmkqgm2VzjYE=">AAAB+HicbVBNS8NAEN3Ur1o/GvUieFksQgVbEinqsdKLxwqmLbQxbLabdulmE3Y3Qg35JV48KOLVn+LNf+O2zUGrDwYe780wM8+PGZXKsr6Mwsrq2vpGcbO0tb2zWzb39jsySgQmDo5YJHo+koRRThxFFSO9WBAU+ox0/Ulr5ncfiJA04ndqGhM3RCNOA4qR0pJnlh0vvW5l92m1dlY7zaBnVqy6NQf8S+ycVECOtmd+DoYRTkLCFWZIyr5txcpNkVAUM5KVBokkMcITNCJ9TTkKiXTT+eEZPNHKEAaR0MUVnKs/J1IUSjkNfd0ZIjWWy95M/M/rJyq4clPK40QRjheLgoRBFcFZCnBIBcGKTTVBWFB9K8RjJBBWOquSDsFefvkv6ZzX7Yt647ZRaR7mcRTBETgGVWCDS9AEN6ANHIBBAp7AC3g1Ho1n4814X7QWjHzmAPyC8fENlLKRnQ==</latexit>

U
(−,−)
AC

<latexit sha1_base64="1vvqGlN1oEP3BtW54y88bulclM4=">AAAB9XicbVBNS8NAEJ3Ur1q/ql4EL8EiVNSSSFGPxV48VjBtoU3LZrtpl242YXejlJD/4cWDIl79L978N27bHNT6YODx3gwz87yIUaks68vILS2vrK7l1wsbm1vbO8XdvaYMY4GJg0MWiraHJGGUE0dRxUg7EgQFHiMtb1yf+q0HIiQN+b2aRMQN0JBTn2KktNRz+slNPe0l5dOz85O0XyxZFWsGc5HYGSlBhka/+NkdhDgOCFeYISk7thUpN0FCUcxIWujGkkQIj9GQdDTlKCDSTWZXp+axVgamHwpdXJkz9edEggIpJ4GnOwOkRvKvNxX/8zqx8q/dhPIoVoTj+SI/ZqYKzWkE5oAKghWbaIKwoPpWE4+QQFjpoAo6BPvvy4ukeVGxLyvVu2qpdpDFkYdDOIIy2HAFNbiFBjiAQcATvMCr8Wg8G2/G+7w1Z2Qz+/ALxsc3wZGRQQ==</latexit>

U
(+,−)
BC

<latexit sha1_base64="YsDoAIX+d3PzNKJ64WtVVpLmVdM=">AAAB9XicbVBNS8NAEJ3Ur1q/ql4EL8EiVColkaIeK714rGDaQpuWzXbTLt1swu5GKSH/w4sHRbz6X7z5b9y2OWj1wcDjvRlm5nkRo1JZ1peRW1ldW9/Ibxa2tnd294r7By0ZxgITB4csFB0PScIoJ46iipFOJAgKPEba3qQx89sPREga8ns1jYgboBGnPsVIaanvDJKbRtpPypXzylk6KJasqjWH+ZfYGSlBhuag+NkbhjgOCFeYISm7thUpN0FCUcxIWujFkkQIT9CIdDXlKCDSTeZXp+apVoamHwpdXJlz9edEggIpp4GnOwOkxnLZm4n/ed1Y+dduQnkUK8LxYpEfM1OF5iwCc0gFwYpNNUFYUH2ricdIIKx0UAUdgr388l/Suqjal9XaXa1UP8riyMMxnEAZbLiCOtxCExzAIOAJXuDVeDSejTfjfdGaM7KZQ/gF4+MbvPeRPg==</latexit>

U
(+,+)
AC

<latexit sha1_base64="F+IleiUsCaIEB3Z0Gd6HGkmcisM=">AAAB9XicbVBNS8NAEJ3Ur1q/ql4EL8EiVNSSSFGPVS8eK5i20KZls920SzebsLtRSsj/8OJBEa/+F2/+G7dtDmp9MPB4b4aZeV7EqFSW9WXkFhaXllfyq4W19Y3NreL2TkOGscDEwSELRctDkjDKiaOoYqQVCYICj5GmN7qZ+M0HIiQN+b0aR8QN0IBTn2KktNR1esnVddpNyqcnx0dpr1iyKtYU5jyxM1KCDPVe8bPTD3EcEK4wQ1K2bStSboKEopiRtNCJJYkQHqEBaWvKUUCkm0yvTs1DrfRNPxS6uDKn6s+JBAVSjgNPdwZIDeVfbyL+57Vj5V+6CeVRrAjHs0V+zEwVmpMIzD4VBCs21gRhQfWtJh4igbDSQRV0CPbfl+dJ46xin1eqd9VSbS+LIw/7cABlsOECanALdXAAg4AneIFX49F4Nt6M91lrzshmduEXjI9vvnqRPw==</latexit>

U
(−,+)
AB

<latexit sha1_base64="LByNVccxUFsIqij6tax6S0Y8RdY=">AAAB7nicbVDJSgNBEK12jXGLy81LYxA8SJiRoB6zXDxGMAskQ+jp9CRNenqG7h4hDPkILx4U8er3ePNv7CRz0MQHBY/3qqiq58eCa+M432htfWNzazu3k9/d2z84LBwdt3SUKMqaNBKR6vhEM8ElaxpuBOvEipHQF6ztj+szv/3ElOaRfDSTmHkhGUoecEqMldq1av2qWq/1C0Wn5MyBV4mbkSJkaPQLX71BRJOQSUMF0brrOrHxUqIMp4JN871Es5jQMRmyrqWShEx76fzcKb6wygAHkbIlDZ6rvydSEmo9CX3bGRIz0sveTPzP6yYmuPNSLuPEMEkXi4JEYBPh2e94wBWjRkwsIVRxeyumI6IINTahvA3BXX55lbSuS+5NqfxQLlZOszhycAbncAku3EIF7qEBTaAwhmd4hTcUoxf0jj4WrWsomzmBP0CfP6MajlM=</latexit>

BAC,ACB

<latexit sha1_base64="bvYdr9CPXa+VNuCwFS+jPxlosJY=">AAAB7nicbVDJSgNBEK12jXGLy81LYxA8SJiRoB6zXDxGMAskQ+jp9CRNenqG7h4hDPkILx4U8er3ePNv7CRz0MQHBY/3qqiq58eCa+M432htfWNzazu3k9/d2z84LBwdt3SUKMqaNBKR6vhEM8ElaxpuBOvEipHQF6ztj+szv/3ElOaRfDSTmHkhGUoecEqMldq1evWqXq31C0Wn5MyBV4mbkSJkaPQLX71BRJOQSUMF0brrOrHxUqIMp4JN871Es5jQMRmyrqWShEx76fzcKb6wygAHkbIlDZ6rvydSEmo9CX3bGRIz0sveTPzP6yYmuPNSLuPEMEkXi4JEYBPh2e94wBWjRkwsIVRxeyumI6IINTahvA3BXX55lbSuS+5NqfxQLlZOszhycAbncAku3EIF7qEBTaAwhmd4hTcUoxf0jj4WrWsomzmBP0CfP6MejlM=</latexit>

BCA,CAB <latexit sha1_base64="2IPH4N0ijKilzE4LzWL5iBat8F0=">AAAB+HicbVBNS8NAEN3Ur1o/GvUieFksQkUtiRT1WOnFYwXTFtoYNttNu3SzCbsboYb8Ei8eFPHqT/Hmv3Hb5qDWBwOP92aYmefHjEplWV9GYWl5ZXWtuF7a2NzaLps7u20ZJQITB0csEl0fScIoJ46iipFuLAgKfUY6/rg59TsPREga8Ts1iYkboiGnAcVIackzy46XXjez+7R6cnp2nEHPrFg1awa4SOycVECOlmd+9gcRTkLCFWZIyp5txcpNkVAUM5KV+okkMcJjNCQ9TTkKiXTT2eEZPNLKAAaR0MUVnKk/J1IUSjkJfd0ZIjWSf72p+J/XS1Rw5aaUx4kiHM8XBQmDKoLTFOCACoIVm2iCsKD6VohHSCCsdFYlHYL99+VF0j6v2Re1+m290tjP4yiCA3AIqsAGl6ABbkALOACDBDyBF/BqPBrPxpvxPm8tGPnMHvgF4+MbkaCRmw==</latexit>

U
(+,−)
AC

<latexit sha1_base64="XHL0bGRsH2SYR511MAyI8d5KmZQ=">AAAB7nicbVDJSgNBEK12jXGLy81LYxA8SJiRoB6zXDxGMAskQ+jp9CRNenqG7h4hDPkILx4U8er3ePNv7CRz0MQHBY/3qqiq58eCa+M432htfWNzazu3k9/d2z84LBwdt3SUKMqaNBKR6vhEM8ElaxpuBOvEipHQF6ztj+szv/3ElOaRfDSTmHkhGUoecEqMldq1av2qXq31C0Wn5MyBV4mbkSJkaPQLX71BRJOQSUMF0brrOrHxUqIMp4JN871Es5jQMRmyrqWShEx76fzcKb6wygAHkbIlDZ6rvydSEmo9CX3bGRIz0sveTPzP6yYmuPNSLuPEMEkXi4JEYBPh2e94wBWjRkwsIVRxeyumI6IINTahvA3BXX55lbSuS+5NqfxQLlZOszhycAbncAku3EIF7qEBTaAwhmd4hTcUoxf0jj4WrWsomzmBP0CfP6McjlM=</latexit>

BAC,CAB

<latexit sha1_base64="6zlFedTZ5i9z7Xj6ZvFrhVUXBrk=">AAAB+HicbVBNS8NAEN3Ur1o/GvUieFksQkUtiRT1WOnFYwXTFtoYNttNu3SzCbsboYb8Ei8eFPHqT/Hmv3Hb5qDWBwOP92aYmefHjEplWV9GYWl5ZXWtuF7a2NzaLps7u20ZJQITB0csEl0fScIoJ46iipFuLAgKfUY6/rg59TsPREga8Ts1iYkboiGnAcVIackzy46XXjez+7R6dnpynEHPrFg1awa4SOycVECOlmd+9gcRTkLCFWZIyp5txcpNkVAUM5KV+okkMcJjNCQ9TTkKiXTT2eEZPNLKAAaR0MUVnKk/J1IUSjkJfd0ZIjWSf72p+J/XS1Rw5aaUx4kiHM8XBQmDKoLTFOCACoIVm2iCsKD6VohHSCCsdFYlHYL99+VF0j6v2Re1+m290tjP4yiCA3AIqsAGl6ABbkALOACDBDyBF/BqPBrPxpvxPm8tGPnMHvgF4+MbkaSRmw==</latexit>

U
(−,+)
AC

<latexit sha1_base64="0KEsmdDd5FPs7hFbUs403N7u0K8=">AAAB7nicbVDJSgNBEK12jXGLy81LYxA8SJiRoB6zXDxGMAskQ+jp9CRNenqG7h4hDPkILx4U8er3ePNv7CRz0MQHBY/3qqiq58eCa+M432htfWNzazu3k9/d2z84LBwdt3SUKMqaNBKR6vhEM8ElaxpuBOvEipHQF6ztj+szv/3ElOaRfDSTmHkhGUoecEqMldq1evWqWq/1C0Wn5MyBV4mbkSJkaPQLX71BRJOQSUMF0brrOrHxUqIMp4JN871Es5jQMRmyrqWShEx76fzcKb6wygAHkbIlDZ6rvydSEmo9CX3bGRIz0sveTPzP6yYmuPNSLuPEMEkXi4JEYBPh2e94wBWjRkwsIVRxeyumI6IINTahvA3BXX55lbSuS+5NqfxQLlZOszhycAbncAku3EIF7qEBTaAwhmd4hTcUoxf0jj4WrWsomzmBP0CfP6McjlM=</latexit>

BCA,ACB

Fig. 3. Four triangles of 𝑁𝐼 , then two, and finally two of 𝑁𝑂 , intersecting in an edge, because they agree on two pairwise preferences,
𝐴𝐵 and 𝐵𝐶 .

a profile of 2 voters. An edge is contained in the four triangles, representing four different profiles, all sharing their

pairwise preferences for 𝐴, 𝐵 and 𝐵,𝐶 (in all 4 triangles, the first voter prefers 𝐵𝐴 and 𝐵𝐶 , while the second prefers 𝐴𝐵

and 𝐶𝐵).

An edge in the boundary of a complex is contained in a single triangle. The pair of vertices of the edge determine the

third one by transitivity. Consider for example the two pairwise preferences of 𝐴𝐵𝐶 given by the vertices 𝑈 +
𝐴𝐵

and

𝑈 +
𝐵𝐶

in the right side of Figure 4. The edge {𝑈 +
𝐴𝐵
,𝑈 +

𝐵𝐶
} belongs to a single triangle, 𝐴𝐵𝐶 , since the vertices together

determine the order 𝐴𝐵𝐶 . Cycles (empty triangles) defined by boundary edges turn out to be important.

The triangles of 𝑁𝐼 are defined by using the preferences of two voters. For example, the vertex 𝑈 (+,−)
𝐴𝐵

of 𝑁𝐼 means

that the first voter prefers 𝐴 over 𝐵, and the second voter prefers 𝐵 over 𝐴.

Consider the edge representing that both voters prefer 𝐴𝐵 and both prefer 𝐵𝐶 , given by the vertices 𝑈 (+,+)
𝐴𝐵

and

𝑈
(+,+)
𝐵𝐶

(see Figure 4). This is an edge in the boundary because it is contained in the unique triangle where both prefer

𝐴𝐵𝐶 . Three such edges (connecting the two former vertices with𝑈 (+,+)
𝐶𝐴

) form a hollow triangle, because a Condorcet

cycle is created if also both of them prefer 𝐶𝐴.
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There are internal edges of 𝑁𝐼 contained in four triangles, as illustrated on the left of Figure 3, and there are internal

edges contained in two triangles, in the center of the figure. The edge {𝑈 (+,+)
𝐴𝐵

,𝑈
(+,−)
𝐵𝐶

} when both prefer 𝐴𝐵, while the

first voter prefers 𝐵𝐶 and the second prefers 𝐶𝐵. This edge is contained in two triangles; in the figure, the left triangle

correspond to the first voter’s preference 𝐴𝐵𝐶 , and the second voter’s preference 𝐴𝐶𝐵. The other triangle in the figure

corresponds to the preferences 𝐴𝐵𝐶 and 𝐶𝐴𝐵.

2.4 Combinatorial topology form of Arrow’s theorem

Here we state Arrow’s theorem in the combinatorial topology framework, based on the two simplicial complexes,

𝑁𝐼 , 𝑁𝑂 , for a finite set of alternatives, |𝑋 | ≥ 3 and 𝑛 ≥ 2 voters. The structure of these complexes is analyzed in

Section 2.5, see also [15, 39, 46].

For a fixed 𝑛, a vertex 𝑈 𝝈

𝛼𝛽
, with 𝛼, 𝛽 ∈ 𝑋 and 𝝈 ∈ {+,−}𝑛 means that for each one of the 𝑛 voters, 𝑖 , 𝛼 is ranked

higher than 𝛽 if 𝝈 (𝑖) = +, and otherwise, 𝛽 is ranked higher than 𝛼 .

Now, both 𝑁𝐼 and 𝑁𝑂 are defined on vertices of the form𝑈 𝝈

𝛼𝛽
, taking 𝑛 = 2 for 𝑁𝐼 , and 𝑛 = 1 for 𝑁𝑂 . In both cases, a

set of vertices forms a simplex if there is a profile respecting the preferences defined by all its vertices. We will explain

in detail these complexes in Sections 2.5.1, 2.5.2.

The remarkable insight is that if the aggregation map 𝐹 satisfies independence of irrelevant alternatives then the

corresponding map 𝑓 from 𝑁𝐼 to 𝑁𝑂 is simplicial: it sends triangles of 𝑁𝐼 to triangles of 𝑁𝑂 , and if two triangles share

a vertex (edge) in 𝑁𝐼 then 𝑓 must send them to two triangles in 𝑁𝑂 that also share a vertex (edge).

If 𝐹 satisfies unanimity, it sends profiles where everybody prefers 𝛼 over 𝛽 to a social preference where 𝛼 is preferred

over 𝛽 . Then 𝑓 sends vertices where everybody prefers 𝛼 over 𝛽 , denoted 𝑈 (+, · · · ,+)
𝛼𝛽

, to vertices where 𝛼 is preferred

over 𝛽 in the social choice, denoted𝑈 +
𝛼𝛽

. Thus, we say that the simplicial map 𝑓 satisfies unanimity if it is such that for

all vertices𝑈 (+, · · · ,+)
𝛼𝛽

of 𝑁𝐼 , it holds that 𝑓 (𝑈
(+, · · · ,+)

𝛼𝛽
) = 𝑈 +

𝛼𝛽
.

Finally, there is a dictator if 𝑓 is a projection on some coordinate 𝑘 , namely, if 𝑓 always selects the preference of

voter 𝑘 .

Theorem 2.1 (Arrow’s impossibility). Let |𝑋 | ≥ 3 and 𝑛 ≥ 2. If 𝑓 : 𝑁𝐼 → 𝑁𝑂 is a simplicial map that satisfies

unanimity then 𝑓 is a projection.

Intuitively, this theorem says that Arrow’s impossibility can be viewed as stating that a continuous map from 𝑁𝐼

to 𝑁𝑂 preserving unanimity must be a projection. That 𝑓 is a projection means that there is a dictator 𝑘 , such that, 𝑓

returns the preferences of the 𝑘-th voter. That is, for all vertices𝑈 𝝈

𝛼𝛽
of 𝑁𝐼 ,

𝑓 (𝑈 𝝈

𝛼𝛽
) = 𝑈

𝝈 (𝑘)

𝛼𝛽
,

where 𝝈 (𝑘) ∈ {+,−} denotes the 𝑘-th sign of the vector of 𝑛 signs 𝝈 .

In more detail, an aggregation simplicial map 𝑓 : 𝑁𝐼 → 𝑁𝑂 is defined from an aggregation map 𝐹 :𝑊 𝑛 →𝑊 . Since

𝐹 satisfies the independence of irrelevant alternatives property and 𝑈 𝝈

𝛼𝛽
represents a subset of profiles in𝑊 𝑛 defined

purely by the orderings between 𝛼 and 𝛽 , 𝑓 (𝑈 𝝈

𝛼𝛽
) can be defined to be the vertex𝑈 𝜎

𝛼𝛽
with the sign 𝜎 determined by

the ordering of 𝛼 and 𝛽 on the social aggregation of any of the profiles in𝑈 𝝈

𝛼𝛽
1.

The images of the higher dimensional simplices of 𝑁𝐼 can be defined by extension. We only need such simplices

to be in 𝑁𝑂 . However, this is immediate because a simplex in 𝑁𝐼 exists whenever the intersection of their vertices

1If we assume independence of irrelevant alternatives together with unanimity, it can be defined as 𝑓 (𝑈 𝝈

𝛼𝛽
) = {𝐹 (R) ∈𝑊 : R ∈ 𝑈 𝝈

𝛼𝛽
}.
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contains at least one profile. The image of such a profile must belong to the intersection of the images of those vertices,

since the image of a profile is determined by the ordering of pairs of alternatives.

Finally, we get the statement of Theorem 2.1. The independence of irrelevant alternatives property implies that 𝑓

is a simplicial map from 𝑁𝐼 to 𝑁𝑂 . Moreover, the unanimity of 𝑓 determines the image of the vertices formulated as

𝑈
(+, · · · ,+)

𝛼𝛽
or𝑈 (−, · · · ,−)

𝛼𝛽
.

2.5 The structure of the complexes 𝑁𝐼 and 𝑁𝑂

We now describe the two complexes more formally and in more detail, the complex 𝑁𝑂 in Section 2.5.1 and the complex

𝑁𝐼 in Section 2.5.2.

We illustrate the whole set of triangles of 𝑁𝐼 and 𝑁𝑂 in Figure 4 (for 𝑁𝐼 only schematically). Each triangle of 𝑁𝐼

represents a social profile, and it is mapped by the aggregation map to a triangle of 𝑁𝑂 representing the corresponding

social choice. The aggregation map 𝑓 maps (hollow) boundary triangles to (hollow) boundary triangles. Notice that 𝑁𝑂

<latexit sha1_base64="Zeuce+V6Hqc8TE4SBVHs1xnAslw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkfhwLXjy2YGuhDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjto5TxbDFYhGrTkA1Ci6xZbgR2EkU0igQ+BCMb2f+wxMqzWN5byYJ+hEdSh5yRo2VmmG/XHGr7hxklXg5qUCORr/81RvELI1QGiao1l3PTYyfUWU4Ezgt9VKNCWVjOsSupZJGqP1sfuiUnFllQMJY2ZKGzNXfExmNtJ5Ege2MqBnpZW8m/ud1UxPe+BmXSWpQssWiMBXExGT2NRlwhcyIiSWUKW5vJWxEFWXGZlOyIXjLL6+S9kXVu6rWmrVK/TKPowgncArn4ME11OEOGtACBgjP8ApvzqPz4rw7H4vWgpPPHMMfOJ8/yfaM5g==</latexit>

f

<latexit sha1_base64="euVmS4PQvP++GKcILgcNCWqsctY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPBiyetaD+gDWWz3bRLN5uwOxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkQKg6777RRWVtfWN4qbpa3tnd298v5B08SpZrzBYhnrdkANl0LxBgqUvJ1oTqNA8lYwup76rSeujYjVI44T7kd0oEQoGEUrPdz27nrlilt1ZyDLxMtJBXLUe+Wvbj9macQVMkmN6Xhugn5GNQom+aTUTQ1PKBvRAe9YqmjEjZ/NTp2QE6v0SRhrWwrJTP09kdHImHEU2M6I4tAselPxP6+TYnjlZ0IlKXLF5ovCVBKMyfRv0heaM5RjSyjTwt5K2JBqytCmU7IheIsvL5PmWdW7qJ7fn1dqtTyOIhzBMZyCB5dQgxuoQwMYDOAZXuHNkc6L8+58zFsLTj5zCH/gfP4A+3GNmw==</latexit>

NO

 

7

<latexit sha1_base64="35AvmJBw5SeNdLWeTvHe+g/VHWk=">AAAB9XicbVBNT8JAEJ3iF+IX6tFLIzHBYEhriHpEvXjExAIJFLJdtrBhu212txrS9H948aAxXv0v3vw3LtCDgi+Z5OW9mczM8yJGpbKsbyO3srq2vpHfLGxt7+zuFfcPmjKMBSYODlko2h6ShFFOHEUVI+1IEBR4jLS88e3Ubz0SIWnIH9QkIm6Ahpz6FCOlpZ7TT65v0l5SrpxVTtN+sWRVrRnMZWJnpAQZGv3iV3cQ4jggXGGGpOzYVqTcBAlFMSNpoRtLEiE8RkPS0ZSjgEg3mV2dmidaGZh+KHRxZc7U3xMJCqScBJ7uDJAayUVvKv7ndWLlX7kJ5VGsCMfzRX7MTBWa0wjMARUEKzbRBGFB9a0mHiGBsNJBFXQI9uLLy6R5XrUvqrX7WqlezuLIwxEcQxlsuIQ63EEDHMAg4Ble4c14Ml6Md+Nj3pozsplD+APj8wfAOpFN</latexit>

U
(+,+)
AB

<latexit sha1_base64="6Py/sRLaZJEb5x1b1W6OtDpsIRg=">AAAB83icbVBNT8JAEJ36ifiFevSykZhwENIaoh6JXDxiYoEEKtkuW9iw3Ta7WxPS9G948aAxXv0z3vw3LtCDgi+Z5OW9mczM82POlLbtb2ttfWNza7uwU9zd2z84LB0dt1WUSEJdEvFIdn2sKGeCupppTruxpDj0Oe34k+bM7zxRqVgkHvQ0pl6IR4IFjGBtpL47SG+b2WNavahmg1LZrtlzoFXi5KQMOVqD0ld/GJEkpEITjpXqOXasvRRLzQinWbGfKBpjMsEj2jNU4JAqL53fnKFzowxREElTQqO5+nsixaFS09A3nSHWY7XszcT/vF6igxsvZSJONBVksShIONIRmgWAhkxSovnUEEwkM7ciMsYSE21iKpoQnOWXV0n7suZc1er39XKjksdRgFM4gwo4cA0NuIMWuEAghmd4hTcrsV6sd+tj0bpm5TMn8AfW5w/9HZDu</latexit>

U
−,−
BC

<latexit sha1_base64="d6fQ/KFt0p/4+pOcZQxgVSZ+L/A=">AAAB83icbVBNT8JAEJ36ifiFevSykZhwENIaoh4xXDxiYoEEKtkuW9iw3Ta7WxPS9G948aAxXv0z3vw3LtCDgi+Z5OW9mczM82POlLbtb2ttfWNza7uwU9zd2z84LB0dt1WUSEJdEvFIdn2sKGeCupppTruxpDj0Oe34k+bM7zxRqVgkHvQ0pl6IR4IFjGBtpL47SJu32WNavahmg1LZrtlzoFXi5KQMOVqD0ld/GJEkpEITjpXqOXasvRRLzQinWbGfKBpjMsEj2jNU4JAqL53fnKFzowxREElTQqO5+nsixaFS09A3nSHWY7XszcT/vF6igxsvZSJONBVksShIONIRmgWAhkxSovnUEEwkM7ciMsYSE21iKpoQnOWXV0n7suZc1er39XKjksdRgFM4gwo4cA0NuIMWuEAghmd4hTcrsV6sd+tj0bpm5TMn8AfW5w/7k5Dt</latexit>

U
−,−
CA

<latexit sha1_base64="tTDGBWMaynX0/7X+jvNdjyGmuUc=">AAAB83icbVBNS8NAEJ34WetX1aOXxSIUKiWRoh4rvXisYNpCG8tmu2mXbjZhdyOUkL/hxYMiXv0z3vw3btsctPXBwOO9GWbm+TFnStv2t7W2vrG5tV3YKe7u7R8clo6O2ypKJKEuiXgkuz5WlDNBXc00p91YUhz6nHb8SXPmd56oVCwSD3oaUy/EI8ECRrA2Ut8dpM3b7DGtXlSzQals1+w50CpxclKGHK1B6as/jEgSUqEJx0r1HDvWXoqlZoTTrNhPFI0xmeAR7RkqcEiVl85vztC5UYYoiKQpodFc/T2R4lCpaeibzhDrsVr2ZuJ/Xi/RwY2XMhEnmgqyWBQkHOkIzQJAQyYp0XxqCCaSmVsRGWOJiTYxFU0IzvLLq6R9WXOuavX7erlRyeMowCmcQQUcuIYG3EELXCAQwzO8wpuVWC/Wu/WxaF2z8pkT+APr8wf1e5Dp</latexit>

U
+,+
CA

<latexit sha1_base64="+S/53pqIe3pKRvGkv8wOnEJS05g=">AAAB83icbVBNT8JAEJ36ifiFevSykZhwENIaoh5RLx4xsUAClWyXLWzYbpvdrQlp+je8eNAYr/4Zb/4bF+hBwZdM8vLeTGbm+TFnStv2t7Wyura+sVnYKm7v7O7tlw4OWypKJKEuiXgkOz5WlDNBXc00p51YUhz6nLb98e3Ubz9RqVgkHvQkpl6Ih4IFjGBtpJ7bT69vsse0elbN+qWyXbNnQMvEyUkZcjT7pa/eICJJSIUmHCvVdexYeymWmhFOs2IvUTTGZIyHtGuowCFVXjq7OUOnRhmgIJKmhEYz9fdEikOlJqFvOkOsR2rRm4r/ed1EB1deykScaCrIfFGQcKQjNA0ADZikRPOJIZhIZm5FZIQlJtrEVDQhOIsvL5PWec25qNXv6+VGJY+jAMdwAhVw4BIacAdNcIFADM/wCm9WYr1Y79bHvHXFymeO4A+szx/6BpDs</latexit>

U
−,−
AB

<latexit sha1_base64="vmLa6joGRHx826BP+JsdiOR6gLM=">AAAB83icbVBNS8NAEJ34WetX1aOXxSIUKiWRoh6LvXisYNpCG8tmu2mXbjZhdyOUkL/hxYMiXv0z3vw3btsctPXBwOO9GWbm+TFnStv2t7W2vrG5tV3YKe7u7R8clo6O2ypKJKEuiXgkuz5WlDNBXc00p91YUhz6nHb8SXPmd56oVCwSD3oaUy/EI8ECRrA2Ut8dpLfN7DGtXlSzQals1+w50CpxclKGHK1B6as/jEgSUqEJx0r1HDvWXoqlZoTTrNhPFI0xmeAR7RkqcEiVl85vztC5UYYoiKQpodFc/T2R4lCpaeibzhDrsVr2ZuJ/Xi/RwY2XMhEnmgqyWBQkHOkIzQJAQyYp0XxqCCaSmVsRGWOJiTYxFU0IzvLLq6R9WXOuavX7erlRyeMowCmcQQUcuIYG3EELXCAQwzO8wpuVWC/Wu/WxaF2z8pkT+APr8wf3BZDq</latexit>

U
+,+
BC

<latexit sha1_base64="r7sIWk2t3UKTWu+Yox4xPdQycVQ=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8SNiVoB6juXiMaB6QLGF20psMmZ1dZmaFEPIJXjwo4tUv8ubfOEn2oIkFDUVVN91dQSK4Nq777aysrq1vbOa28ts7u3v7hYPDho5TxbDOYhGrVkA1Ci6xbrgR2EoU0igQ2AyG1anffEKleSwfzShBP6J9yUPOqLHSw031tlsouiV3BrJMvIwUIUOtW/jq9GKWRigNE1Trtucmxh9TZTgTOMl3Uo0JZUPax7alkkao/fHs1Ak5tUqPhLGyJQ2Zqb8nxjTSehQFtjOiZqAXvan4n9dOTXjtj7lMUoOSzReFqSAmJtO/SY8rZEaMLKFMcXsrYQOqKDM2nbwNwVt8eZk0LkreZal8Xy5WzrM4cnAMJ3AGHlxBBe6gBnVg0IdneIU3RzgvzrvzMW9dcbKZI/gD5/MHo1+NUQ==</latexit>

ACB

<latexit sha1_base64="qPx6tNpVVBzxm8dltqWdw0Gh0eo=">AAAB7HicbVBNSwMxEJ3Ur1q/qh69BIvgQcquFPVY7cVjBbcttEvJptk2NJtdkqxQlv4GLx4U8eoP8ua/MW33oK0PBh7vzTAzL0gE18ZxvlFhbX1jc6u4XdrZ3ds/KB8etXScKso8GotYdQKimeCSeYYbwTqJYiQKBGsH48bMbz8xpXksH80kYX5EhpKHnBJjJa9xd4txv1xxqs4ceJW4OalAjma//NUbxDSNmDRUEK27rpMYPyPKcCrYtNRLNUsIHZMh61oqScS0n82PneIzqwxwGCtb0uC5+nsiI5HWkyiwnRExI73szcT/vG5qwhs/4zJJDZN0sShMBTYxnn2OB1wxasTEEkIVt7diOiKKUGPzKdkQ3OWXV0nrsupeVWsPtUr9Io+jCCdwCufgwjXU4R6a4AEFDs/wCm9Iohf0jj4WrQWUzxzDH6DPH0/vjaU=</latexit>

CBA

<latexit sha1_base64="3TQNTJ+vT5AoqExdixgX3lnblx0=">AAAB9XicbVBNT8JAEJ3iF+IX6tHLRmKCUUlriHokcvGIiQUSKGS7bGHD9iO7Ww1p+j+8eNAYr/4Xb/4bF+hBwZdM8vLeTGbmuRFnUpnmt5FbWV1b38hvFra2d3b3ivsHTRnGglCbhDwUbRdLyllAbcUUp+1IUOy7nLbccX3qtx6pkCwMHtQkoo6PhwHzGMFKSz27n9zW015SPju/OE37xZJZMWdAy8TKSAkyNPrFr+4gJLFPA0U4lrJjmZFyEiwUI5ymhW4saYTJGA9pR9MA+1Q6yezqFJ1oZYC8UOgKFJqpvycS7Es58V3d6WM1koveVPzP68TKu3ESFkSxogGZL/JijlSIphGgAROUKD7RBBPB9K2IjLDAROmgCjoEa/HlZdK8rFhXlep9tVRDWRx5OIJjKIMF11CDO2iADQQEPMMrvBlPxovxbnzMW3NGNnMIf2B8/gDD+ZFJ</latexit>

U
(+,−)
BC

<latexit sha1_base64="sxSS0Vk6iF2EmXfkNZPUOC562zM=">AAAB9XicbVBNT8JAEJ3iF+IX6tHLRmKCUUlriHpEvXjExAIJFLJdtrBh+5HdrYY0/R9ePGiMV/+LN/+NC/Sg4EsmeXlvJjPz3IgzqUzz28gtLa+sruXXCxubW9s7xd29hgxjQahNQh6Klosl5SygtmKK01YkKPZdTpvu6HbiNx+pkCwMHtQ4oo6PBwHzGMFKS127l1zfpN2kfHZ6cpz2iiWzYk6BFomVkRJkqPeKX51+SGKfBopwLGXbMiPlJFgoRjhNC51Y0giTER7QtqYB9ql0kunVKTrSSh95odAVKDRVf08k2Jdy7Lu608dqKOe9ifif146Vd+UkLIhiRQMyW+TFHKkQTSJAfSYoUXysCSaC6VsRGWKBidJBFXQI1vzLi6RxXrEuKtX7aqmGsjjycACHUAYLLqEGd1AHGwgIeIZXeDOejBfj3fiYteaMbGYf/sD4/AHA4pFH</latexit>

U
(−,+)
AB

<latexit sha1_base64="Pa/JQZnePsDPjlIV6ocw/4DL840=">AAAB9XicbVBNT8JAEJ3iF+IX6tHLRmKCUUlriHrEcPGIiQUSKGS7bGHD9iO7Ww1p+j+8eNAYr/4Xb/4bF+hBwZdM8vLeTGbmuRFnUpnmt5FbWV1b38hvFra2d3b3ivsHTRnGglCbhDwUbRdLyllAbcUUp+1IUOy7nLbccX3qtx6pkCwMHtQkoo6PhwHzGMFKSz27n9Rv015SPju/OE37xZJZMWdAy8TKSAkyNPrFr+4gJLFPA0U4lrJjmZFyEiwUI5ymhW4saYTJGA9pR9MA+1Q6yezqFJ1oZYC8UOgKFJqpvycS7Es58V3d6WM1koveVPzP68TKu3ESFkSxogGZL/JijlSIphGgAROUKD7RBBPB9K2IjLDAROmgCjoEa/HlZdK8rFhXlep9tVRDWRx5OIJjKIMF11CDO2iADQQEPMMrvBlPxovxbnzMW3NGNnMIf2B8/gDCbZFI</latexit>

U
(+,−)
CA

<latexit sha1_base64="eNk3w3E2RYxYVCFMQeTbH9Nmr9U=">AAAB9XicbVBNT8JAEJ3iF+IX6tHLRmKCUUlriHokcvGIiQUSKGS7bGHD9iO7Ww1p+j+8eNAYr/4Xb/4bF+hBwZdM8vLeTGbmuRFnUpnmt5FbWV1b38hvFra2d3b3ivsHTRnGglCbhDwUbRdLyllAbcUUp+1IUOy7nLbccX3qtx6pkCwMHtQkoo6PhwHzGMFKSz27n9zW015Svjg/O037xZJZMWdAy8TKSAkyNPrFr+4gJLFPA0U4lrJjmZFyEiwUI5ymhW4saYTJGA9pR9MA+1Q6yezqFJ1oZYC8UOgKFJqpvycS7Es58V3d6WM1koveVPzP68TKu3ESFkSxogGZL/JijlSIphGgAROUKD7RBBPB9K2IjLDAROmgCjoEa/HlZdK8rFhXlep9tVRDWRx5OIJjKIMF11CDO2iADQQEPMMrvBlPxovxbnzMW3NGNnMIf2B8/gDD/ZFJ</latexit>

U
(−,+)
BC

<latexit sha1_base64="sIq97ajU9MEa5JCNoppoKHf1sZc=">AAAB9XicbVBNT8JAEJ3iF+IX6tHLRmKCUUlriHpEvXjExAIJFLJdtrBh+5HdrYY0/R9ePGiMV/+LN/+NC/Sg4EsmeXlvJjPz3IgzqUzz28gtLa+sruXXCxubW9s7xd29hgxjQahNQh6Klosl5SygtmKK01YkKPZdTpvu6HbiNx+pkCwMHtQ4oo6PBwHzGMFKS127l1zfpN2kfHJ6dpz2iiWzYk6BFomVkRJkqPeKX51+SGKfBopwLGXbMiPlJFgoRjhNC51Y0giTER7QtqYB9ql0kunVKTrSSh95odAVKDRVf08k2Jdy7Lu608dqKOe9ifif146Vd+UkLIhiRQMyW+TFHKkQTSJAfSYoUXysCSaC6VsRGWKBidJBFXQI1vzLi6RxXrEuKtX7aqmGsjjycACHUAYLLqEGd1AHGwgIeIZXeDOejBfj3fiYteaMbGYf/sD4/AHA3pFH</latexit>

U
(+,−)
AB

<latexit sha1_base64="YVyKZsZb0sQObdGj6dGJS7NMIVg=">AAAB9XicbVBNT8JAEJ3iF+IX6tHLRmKCUUlriHrEcPGIiQUSKGS7bGHD9iO7Ww1p+j+8eNAYr/4Xb/4bF+hBwZdM8vLeTGbmuRFnUpnmt5FbWV1b38hvFra2d3b3ivsHTRnGglCbhDwUbRdLyllAbcUUp+1IUOy7nLbccX3qtx6pkCwMHtQkoo6PhwHzGMFKSz27n9Rv015Svjg/O037xZJZMWdAy8TKSAkyNPrFr+4gJLFPA0U4lrJjmZFyEiwUI5ymhW4saYTJGA9pR9MA+1Q6yezqFJ1oZYC8UOgKFJqpvycS7Es58V3d6WM1koveVPzP68TKu3ESFkSxogGZL/JijlSIphGgAROUKD7RBBPB9K2IjLDAROmgCjoEa/HlZdK8rFhXlep9tVRDWRx5OIJjKIMF11CDO2iADQQEPMMrvBlPxovxbnzMW3NGNnMIf2B8/gDCcZFI</latexit>

U
(−,+)
CA

<latexit sha1_base64="3oCJt0R0WFoZnZ4v0WDnxlbRnOo=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPBi16kov2ANpTNdtMu3WzC7kQooT/BiwdFvPqLvPlv3LY5aOuDgcd7M8zMCxIpDLrut1NYWV1b3yhulra2d3b3yvsHTROnmvEGi2Ws2wE1XArFGyhQ8naiOY0CyVvB6Hrqt564NiJWjzhOuB/RgRKhYBSt9HDXu+2VK27VnYEsEy8nFchR75W/uv2YpRFXyCQ1puO5CfoZ1SiY5JNSNzU8oWxEB7xjqaIRN342O3VCTqzSJ2GsbSkkM/X3REYjY8ZRYDsjikOz6E3F/7xOiuGVnwmVpMgVmy8KU0kwJtO/SV9ozlCOLaFMC3srYUOqKUObTsmG4C2+vEyaZ1Xvonp+f16p1fI4inAEx3AKHlxCDW6gDg1gMIBneIU3RzovzrvzMW8tOPnMIfyB8/kD8lmNlQ==</latexit>

NI

Fig. 4. On the left, 𝑁𝐼 is a torus with 12 additional triangles that form four boundary hollow triangles. Here only 6 of them are shown
together with their 2 hollow triangles (attached to the green cycle); the other 6 triangles are omitted for clarity, they are attached to
the blue cycle. Instead, 𝑁𝑂 is homeomorphic to a cylinder with two hollow boundary triangles.

is a triangulation of a cylinder with two boundary triangles, while 𝑁𝐼 is a kind of product of two cylinders and has 4

boundary triangles. The index lemma computes the winding number. As we shall see, this number is 0 and implies that

𝑓 is a projection (on the preferences of one of the two voters, the dictator), assuming that 𝑓 satisfies unanimity.

2.5.1 The output complex 𝑁𝑂 . The output complex 𝑁𝑂 is defined as follows. Consider the notation𝑈 𝜎
𝛼𝛽

, for 𝛼, 𝛽 ∈ 𝑋

with 𝛼 ≠ 𝛽 and 𝜎 ∈ {+,−}. Then,𝑈 𝜎
𝛼𝛽

denotes the subset of𝑊 , of all strict orderings on 𝑋 such that 𝛼 is ranked higher

than 𝛽 if 𝜎 = +, and otherwise, 𝛽 is ranked higher than 𝛼 . Notice that 𝑈 +
𝛼𝛽

denotes the same set as 𝑈 −
𝛽𝛼

. The set of

vertices 𝑉 of the output complex 𝑁𝑂 consists of all such subsets of𝑊 , each one identified by one 𝑈 𝜎
𝛼𝛽

. A set of vertices

of 𝑉 forms a simplex of 𝑁𝑂 iff their intersection is nonempty. This family of sets forms a simplicial complex, as it is

closed under containment.

As mentioned earlier, for the purposes of this article, it is sufficient to consider 𝑋 of size 3. Then, the complex 𝑁𝑂 is

depicted in Figure 4 taking 𝑋 = {𝐴, 𝐵,𝐶}. We remark that our discussion holds for any finite 𝑋 .

In the case of |𝑋 | = 3, 𝑁𝑂 is of dimension 2. A facet is a 2-simplex {𝑈 𝜎0
𝛼0𝛽0

,𝑈
𝜎1
𝛼1𝛽1

,𝑈
𝜎2
𝛼2𝛽2
}, which represents the

strict order that is compatible with its three vertices, that is, the strict order contained in 𝑈 𝜎0
𝛼0𝛽0
∩ 𝑈

𝜎1
𝛼1𝛽1
∩ 𝑈

𝜎2
𝛼2𝛽2

.

8



A Combinatorial Topology Approach to Arrow’s Impossibility Theorem

Consider for example the triangle 𝐴𝐵𝐶 , and its two vertices𝑈 +
𝐴𝐵

and 𝑈 +
𝐵𝐶

. Notice that 𝑈 +
𝐴𝐵

= {𝐴𝐵𝐶,𝐴𝐶𝐵,𝐶𝐴𝐵}, and

𝑈 +
𝐵𝐶

= {𝐴𝐵𝐶, 𝐵𝐴𝐶, 𝐵𝐶𝐴}. These two vertices form an edge of 𝑁𝑂 because their intersection is not empty. Moreover,

it belongs to a single triangle, because the third vertex is unique, 𝑈 −
𝐶𝐴

= {𝐴𝐵𝐶,𝐴𝐶𝐵, 𝐵𝐴𝐶}. Indeed, the three vertices

intersect in a unique order, 𝐴𝐵𝐶 .

There are exactly two triangles that are empty, that do not form a simplex, the external one requiring that𝐴 ≻ 𝐵, 𝐵 ≻

𝐶,𝐶 ≻ 𝐴, and the central one, requiring that 𝐴 ≻ 𝐶,𝐶 ≻ 𝐵, 𝐵 ≻ 𝐴. Furthermore, the boundary edges that belong to a

single triangle are those that by transitivity uniquely imply the third vertex, e.g. the edge {𝑈 +
𝐴𝐵

,𝑈 +
𝐵𝐶
} implies the third

vertex, 𝑈 −
𝐶𝐴

. Similarly, a partial order defined by an edge, e.g. {𝑈 +
𝐴𝐵

, 𝑈 +
𝐴𝐶
}, is compatible with the two vertices that

resolve the incomparability of 𝐵 and 𝐶 , namely,𝑈 −
𝐵𝐶

and𝑈 +
𝐵𝐶

.

The complex 𝑁𝑂 is the space of output preferences because each one of its facets represents a possible social

preference. Such a social preference is decided by an aggregation rule 𝑓 , applied to a set of individual preferences of

𝑊 𝑛 , represented by the complex 𝑁𝐼 .

Remark 2.1. For simplicity, we always denote the six vertices of 𝑁𝑂 by the representatives𝑈 +
𝐴𝐵

, 𝑈 −
𝐴𝐵

, 𝑈 +
𝐵𝐶

, 𝑈 −
𝐵𝐶

, 𝑈 +
𝐶𝐴

and𝑈 −
𝐶𝐴

, as in the figure. In Section 4 we will need all vertices in the same boundary to share the same sign.

Remark 2.2. Consider two adjacent 2-simplices, intersecting in an edge. The strict order associated with one simplex

and the one associated with the other simplex are equal, modulo permuting two consecutive elements in the strict order.

For example, the facet corresponding to 𝐴𝐵𝐶 and the one corresponding to 𝐴𝐶𝐵 are adjacent: they are equal modulo

the permutation of 𝐵 and 𝐶 . This fact will be used in the proof of Section 5.

2.5.2 The input complex 𝑁𝐼 . We define the sets 𝑈 𝝈

𝛼𝛽
, with 𝛼, 𝛽 ∈ 𝑋 and 𝝈 ∈ {+,−}𝑛 as the subset of profiles of𝑊 𝑛

where for each voter 𝑖 , 𝛼 is ranked higher than 𝛽 if 𝝈 (𝑖) = +, and otherwise, 𝛽 is ranked higher than 𝛼 . As before, 𝑈 𝝈

𝛼𝛽

defines the same set of social preferences as𝑈 −𝝈
𝛽𝛼

. The set of vertices of the input complex 𝑁𝐼 consists of all such subsets

of𝑊 𝑛 . As in the previous section, a set of vertices is a simplex of 𝑁𝐼 iff their intersection is nonempty.

The complex𝑁𝐼 is much bigger than𝑁𝑂 . Whereas𝑁𝑂 has |𝑋 | ( |𝑋 |−1) vertices and its dimension is ( |𝑋 |+1) ( |𝑋 |−2)/2,

𝑁𝐼 has |𝑋 | ( |𝑋 | − 1)2
𝑛−1 vertices, but it has the same dimension as 𝑁𝑂 (see [10]). So, in contrast to 𝑁𝑂 , the complex 𝑁𝐼

cannot be drawn in the plane even when |𝑋 | = 3, but a schematic representation is in Figure 4 and Figure 5. Notice, in

the remark below, that analogous observations to the ones we made for 𝑁𝑂 hold for 𝑁𝐼 as well.

Remark 2.3. First, whereas each 2-simplex of 𝑁𝑂 is a preference, in 𝑁𝐼 each 2-simplex is represented by two individual

preferences. Second, consider two adjacent 2-simplices (intersecting in an edge) of 𝑁𝐼 . The individual preferences

associated with one simplex and those associated with the other simplex are equal, modulo permuting the preference of

two alternatives, 𝑥,𝑦, of one or two voters, without changing the preferences of other alternatives. For example, in

Figure 3, the triangles 𝐵𝐴𝐶,𝐴𝐶𝐵 and 𝐵𝐶𝐴,𝐶𝐴𝐵 are adjacent, because the preferences of both voters over 𝐴 and 𝐶 are

exchanged, and only over 𝐴 and 𝐶 . This fact will be a keystone of the proof of Section 5.

As an example, consider the inner cylinder on the left of the Figure 5. The front triangle has vertices𝑈 (−,−)
𝐶𝐴

,𝑈
(+,+)
𝐴𝐵

,𝑈
(+,+)
𝐵𝐶

.

This represents that both voters prefer 𝐴𝐵𝐶 . The vertex 𝑈 (+,+)
𝐴𝐵

is also contained in its right triangle where both prefer

𝐶𝐴𝐵. The green edge of this triangle, {𝑈 (+,+)
𝐴𝐵

,𝑈
(−,−)
𝐵𝐶

}, is contained in the triangle (in the torus on the right side of the

figure) that also contains 𝑈 (+,−)
𝐶𝐴

, representing that the first voter prefers 𝐶𝐴𝐵 but the second prefers 𝐴𝐶𝐵. Figure 4

illustrates how 𝑁𝐼 consists of a torus, where two łparallelž cycles, a green one and a blue one are identified with some

additional triangles (in the figure only the triangles identified with the green one are drawn, for clarity). In the green

cycle, 6 vertices are used to add 6 triangles, as łflapsž of the torus (same for the blue cycle).
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𝑈
(+,+)
𝐴𝐵

𝑈
(+,+)
𝐶𝐴

𝑈
(+,+)
𝐵𝐶

𝑈
(−,−)
𝐴𝐵

𝑈
(−,−)
𝐶𝐴

𝑈
(−,−)
𝐵𝐶

𝑈
(+,−)
𝐴𝐵

𝑈
(+,−)
𝐶𝐴

𝑈
(+,−)
𝐵𝐶

𝑈
(−,+)
𝐴𝐵

𝑈
(−,+)
𝐶𝐴

𝑈
(−,+)
𝐵𝐶 𝑈

(+,−)
𝐶𝐴

𝑈
(−,+)
𝐴𝐵

𝑈
(+,−)
𝐵𝐶

𝑈
(−,+)
𝐶𝐴

𝑈
(+,−)
𝐴𝐵

𝑈
(−,+)
𝐵𝐶

𝑈
(+,−)
𝐶𝐴

𝑈
(+,+)
𝐴𝐵

𝑈
(−,−)
𝐵𝐶

𝑈
(+,+)
𝐶𝐴

𝑈
(−,−)
𝐴𝐵

𝑈
(+,+)
𝐵𝐶

𝑈
(−,−)
𝐶𝐴

𝑈
(+,+)
𝐴𝐵

𝑈
(+,−)
𝐵𝐶

𝑈
(−,+)
𝐶𝐴

𝑈
(+,−)
𝐴𝐵

𝑈
(−,+)
𝐵𝐶

𝑈
(+,−)
𝐶𝐴

𝑈
(−,+)
𝐴𝐵

𝑈
(+,−)
𝐵𝐶

Fig. 5. When |𝑋 | = 3 and 𝑛 = 2, the complex 𝑁𝐼 can be built using two (cylindrical) copies of 𝑁𝑂 placed one inside the other (on the
left side of the figure). The outer cylinder are the unanimous profiles, whereas the inner one are the profiles where the voters have
opposite preferences. Additionally, both cylinders are joined through the torus in the right (the torus is folded by identifying vertices
according to the coloured edges), so the total number of vertices of 𝑁𝐼 is 12.

3 APPLYING THE COMBINATORIAL TOPOLOGY APPROACH TO DOMAIN RESTRICTIONS

Arrow’s impossibility applies to universal domains, where all possible individual preferences are considered. There is an

extensive literature on the subject of domain restrictions, going back at least to Black [12], Arrow [4] and their famous

single-peaked domain restriction, where the alternatives to be ranked lie on a one-dimensional axis and voters prefer

values that are close to their favorite value. The research area is still very active today, some recent surveys are [9, 19].

Researchers have proved that it is possible to avoid Arrow’s impossibility on various non-universal domains, including

generalizations of single-peakedness, see, e.g. [27, 40] and the previous surveys for many examples. However, there is

no general rule characterizing the domains in which aggregation is possible.

We illustrate here how the combinatorial topology approach can shed light on this topic. We present a very intuitive

proof of Arrow’s impossibility using domain restrictions in Section 3.1. We provide a characterization of the domain

restrictions of the basis case in which non-dictatorial aggregation is possible in Section 3.2. We also discuss the role

of contractibility of the restricted domain, showing it is not what determines the possibility of avoiding Arrow’s

impossibility, in Section 3.3.

Remarkably, considering task solvability under restricted domains has been thoroughly studied in distributed

computing since [43].

3.1 Arrow’s impossibility using domain restrictions

We start with a domain restriction that exposes clearly a geometric reason for Arrow’s impossibility, related to winding

numbers, already discussed in the Introduction using Figure 1, providing a proof of Theorem 2.1 for |𝑋 | = 3 and 𝑛 = 2.

It is the basis of the characterization of the domain restrictions in which non-dictatorial aggregation is possible of

Section 3.2.

Recall the torus on the right of Figure 5. It consists of all the social profiles of 𝑁𝐼 where the two voters disagree in

either 1 or 2 of their pairwise preferences. The torus is depicted again in Figure 6, where in the top-left triangle, the

profile is 𝐴𝐵𝐶,𝐴𝐶𝐵, and there is disagreement in only one pairwise preference, 𝐵𝐶 , since the first voter prefers 𝐵 over
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𝐶 and the second prefers 𝐶 over 𝐵. In the following triangle on the left, the profile is 𝐵𝐴𝐶,𝐴𝐶𝐵, with two pairwise

disagreements, on 𝐵𝐶 and on 𝐴𝐵. In fact, the torus is made of two triangulated cylinders, joined by the blue dashed

circle and by the green dashed circle. The left cylinder is called 𝐶1 and the right one is 𝐶2. They are symmetric, if one

exchanges the voter 1 and voter 2 in𝐶1 one gets𝐶2. Namely, the top-left triangle of𝐶1 is 𝐴𝐵𝐶,𝐴𝐶𝐵, and the symmetric

triangle in 𝐶2 is 𝐴𝐶𝐵,𝐴𝐵𝐶 . Similarly for the next triangle of 𝐶1, 𝐵𝐴𝐶,𝐴𝐶𝐵, its symmetric triangle on 𝐶2 is 𝐴𝐶𝐵, 𝐵𝐴𝐶 .

Consider 𝐶1 as a domain restriction of 𝑁𝐼 , in Figure 6. It is obtained by removing the cylinder 𝐶2 from the torus on

the right of Figure 5, and removing also both of the concentric cylinders on the left of the figure, corresponding to

unanimous profiles and those where the voters have opposite preferences. In Figure 6 all the triangles of𝐶2 are removed

from the torus: from top to bottom, the triangles𝐶𝐴𝐵,𝐴𝐵𝐶 , 𝐴𝐶𝐵,𝐴𝐵𝐶 , etc. Only the triangles on the left remain, which

form the cylinder 𝐶1. Notice that 𝑁𝑂 is also a cylinder, except that the cylinder 𝐶1 is subdivided into 12 triangles while

𝑁𝑂 consists of 6 triangles. Denote by 𝑁 ′
𝐼
the resulting restricted domain, and recall the different drawing in Figure 1.

𝑈
(+,−)
𝐶𝐴

𝑈
(−,+)
𝐴𝐵

𝑈
(+,−)
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𝐶𝐴

𝑈
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𝑈
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𝑈
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𝑈
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𝑈
(−,−)
𝐵𝐶

𝑈
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𝑈
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𝐶𝐵𝐴, 𝐵𝐶𝐴

𝐶𝐵𝐴, 𝐵𝐴𝐶

𝐵𝐶𝐴, 𝐵𝐴𝐶

𝐵𝐶𝐴,𝐴𝐵𝐶

𝐵𝐴𝐶 ,𝐴𝐵𝐶
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𝐶𝐴

𝑈 −
𝐴𝐵

𝑈 −
𝐵𝐶

𝑈 −
𝐶𝐴

𝐴𝐶𝐵

𝐴𝐵𝐶

𝐵𝐴𝐶

𝐵𝐶𝐴

𝐶𝐴𝐵

𝐶𝐵𝐴

1

2 3

4

50

Fig. 6. On the left is 𝑁 ′
𝐼
, a domain restriction on 𝑁𝐼 , resulting in a cylinder and how the green cycle is mapped to 𝑁𝑂 . Inside of each

triangle of 𝑁 ′
𝐼
is the corresponding individual preference; the top triangle is 𝐴𝐵𝐶,𝐴𝐶𝐵, the next one 𝐵𝐴𝐶,𝐴𝐶𝐵, and so on. The blue

cycle has two labels on each of its edges; the first one is the social choice where the first voter is the dictator, from top to bottom,
2, 3, 4, 5, 0, 1. With the second labels, the second voter is the dictator.

Now, Arrow’s geometric impossibility becomes clear:𝐶1 is wrapped once around 𝑁𝑂 , and the wrapping is determined

by the green-dashed cycle in 𝐶1, due to unanimity. In Figure 1 the image of the green-dashed cycle in 𝐶1 on 𝑁𝑂 is

shown. This implies that the blue-dotted cycle, which is parallel to the green-dashed cycle, also has to wrap once around

the cylinder, going in the same direction. There are two options for the aggregation function, labeled on the blue edges;

to map the first (from top to bottom) blue edge to the edge 2 or to 5, the next one to 3 or 0 in 𝑁𝑂 , and so on. In the first

option the first voter is the dictator, in the second option the second voter is (in either case, the blue cycle goes on top

of the green cycle of 𝑁𝑂 ).
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3.2 The non-dictatorial domain restrictions

The profiles on the cylinders 𝐶1 and 𝐶2 are the basis of the characterization of subdomains of 𝑁𝐼 allowing unanimous

and non-dictatorial aggregation maps when |𝑋 | = 3 and 𝑛 = 2.

We are interested in triangles that contain an edge in the blue cycle, and a vertex in the green cycle. Consider a

profile R that corresponds to such a triangle, that we call a critical profile. An example of a critical profile is the top one

on the left, (𝐵𝐴𝐶,𝐴𝐶𝐵). Notice that the two voters disagree on their preferences of the pair 𝐴𝐵 and the pair 𝐵𝐶 , but

they agree on the pair𝐶𝐴. In general, for each critical profile, R, there exists an edge defined by two pairs of alternatives

𝑥𝑦 and 𝑥 ′𝑦′, such that the two voters disagree on them, but agree on the third pair of alternatives, 𝑥 ′′𝑦′′. Namely, R is

defined by the edge {𝑈 (+,−)𝑥𝑦 ,𝑈 (−,+)
𝑥 ′𝑦′

}, together with the vertex𝑈 (𝑠,𝑠)
𝑥 ′′𝑦′′

, 𝑠 ∈ {+,−}.

We now define the main notion of a pair of critical profiles. It is a pair of critical profiles, (R1,R2), R1 on 𝐶1 and R2

on 𝐶2, such that they do not share a blue edge. That is, if the blue edge of R1, is {𝑈
(+,−)
𝑥𝑦 ,𝑈 (−,+)

𝑥 ′𝑦′
}, then this edge does

not belong to R2.

We are interested in characterizing domain restrictions 𝐷 ⊆ 𝑁𝐼 that contain all vertices of 𝑁𝐼 , for two voters and

three alternatives. This assumption is not new in the literature: it is equivalent to requiring that every pair of alternatives

is free (see [27, 40]). A pair is free if, for every ordering over such pair, there is a profile whose restriction on the pair is

identically ordered2. As a summary, we will study the domains in which every pair of alternatives are comparable. The

theorem below characterizes such domains.

Theorem 3.1 (Domain Restriction Characterization). A domain restriction 𝐷 that contains all vertices of 𝑁𝐼

allows for a unanimous, non-dictatorial aggregation map if and only if 𝐷 does not contain at least one critical pair of

profiles.

Proof. To prove the ł⇒ž direction of the theorem, assume there is a unanimous, non-dictatorial aggregation map 𝑓 .

We show by contradiction, that if 𝐷 does not omit any critical pair, then 𝑓 must be dictatorial. Two scenarios may occur:

one of the cylinders restricted to 𝐷 (i.e. 𝐶1 ∩ 𝐷 or 𝐶2 ∩ 𝐷) contains all of its triangles with blue edges, or both of the

cylinders lack one triangle with a blue edge and both triangles, R1 and R2, share a blue edge. We will see that in both

cases, 𝑓 can be extended to a simplicial map on one of the cylinders (and we are back in the situation of Section 3.1).

We start with the first case. Suppose without loss of generality that 𝐶1 ∩ 𝐷 contains all the critical triangles with

blue edges from 𝐶1. We denote 𝐶1 ∩ 𝐷 as 𝐷− and 𝑓− as the restriction of 𝑓 in 𝐷−. In case 𝐷− is not 𝐶1, we can extend

𝑓− to 𝐶1 because the image of the green edges of 𝐶1 are determined by unanimity. Since they are not mapped to the

boundary of 𝑁𝑂 , the image of the triangles with a green edge are well-defined by the image of their vertices. That is, 𝑓−

has been extended to a unanimous simplicial map 𝑓+ defined on 𝐶1. Using the argument in Section 3.1, we conclude

that 𝑓+ must be dictatorial. This is a contradiction because being dictatorial is determined by the images of the vertices,

and 𝑓 and 𝑓+ have the same twelve vertices with the same images.

In the second case, we will see first that 𝑓 can be extended over one of the missing triangles R1,R2 with a common

blue edge. First, if the blue edge is mapped to an interior edge of 𝑁𝑂 , then 𝑓 can be extended in both triangles R1 and

R2 using the image of their third vertex (the third vertex of both R1 and R2 are on the green cycle). Second, if the blue

edge is mapped on the boundary, then 𝑓 can be extended on one of the triangles, since the third vertices of R1,R2 are of

the form𝑈
(+,+)

𝛼𝛽
and𝑈 (−,−)

𝛼𝛽
, and hence the image of the blue edge will form a triangle of 𝑁𝑂 together with the image of

2There are numerous works in social choice that escape from this framework and assume that there is some structural incapacity to compare some
alternatives [24] or only allowing non-complete social rankings, but complete individual preferences [25, 54]
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one of these two vertices. Once 𝑓 has been extended, we are in the first case. Following the same arguments, we arrive

to a contradiction.

To prove the ł⇐ž direction, assume a domain not containing the critical pair (R1,R2). Without loss of generality,

we can suppose that the first profile is R1 = (𝐵𝐴𝐶,𝐴𝐶𝐵) ∈ 𝐶1 and the second one, R2, can be any triangle in 𝐶2 but

(𝐵𝐶𝐴,𝐶𝐴𝐵). We define the following aggregation maps for the five cases in Figure 7. It can be checked that they are all

well-defined and non-dictatorial. The algorithm used to find these maps is in Appendix D. □

𝑣 𝑓 (𝑣)

𝑈
(+,−)
𝐴𝐵

𝑈 +
𝐴𝐵

𝑈
(−,+)
𝐴𝐵

𝑈 −
𝐴𝐵

𝑈
(+,−)
𝐵𝐶

𝑈 −
𝐵𝐶

𝑈
(−,+)
𝐵𝐶

𝑈 −
𝐵𝐶

𝑈
(+,−)
𝐶𝐴

𝑈 +
𝐶𝐴

𝑈
(−,+)
𝐶𝐴

𝑈 −
𝐶𝐴

(a) R2 = (𝐵𝐴𝐶,𝐶𝐴𝐵)

𝑣 𝑓 (𝑣)

𝑈
(+,−)
𝐴𝐵

𝑈 +
𝐴𝐵

𝑈
(−,+)
𝐴𝐵

𝑈 −
𝐴𝐵

𝑈
(+,−)
𝐵𝐶

𝑈 −
𝐵𝐶

𝑈
(−,+)
𝐵𝐶

𝑈 −
𝐵𝐶

𝑈
(+,−)
𝐶𝐴

𝑈 +
𝐶𝐴

𝑈
(−,+)
𝐶𝐴

𝑈 +
𝐶𝐴

(b) R2 = (𝐴𝐵𝐶, 𝐵𝐶𝐴)

𝑣 𝑓 (𝑣)

𝑈
(+,−)
𝐴𝐵

𝑈 −
𝐴𝐵

𝑈
(−,+)
𝐴𝐵

𝑈 −
𝐴𝐵

𝑈
(+,−)
𝐵𝐶

𝑈 −
𝐵𝐶

𝑈
(−,+)
𝐵𝐶

𝑈 −
𝐵𝐶

𝑈
(+,−)
𝐶𝐴

𝑈 +
𝐶𝐴

𝑈
(−,+)
𝐶𝐴

𝑈 +
𝐶𝐴

(c) R2 = (𝐴𝐶𝐵, 𝐵𝐴𝐶)

𝑣 𝑓 (𝑣)

𝑈
(+,−)
𝐴𝐵

𝑈 −
𝐴𝐵

𝑈
(−,+)
𝐴𝐵

𝑈 −
𝐴𝐵

𝑈
(+,−)
𝐵𝐶

𝑈 −
𝐵𝐶

𝑈
(−,+)
𝐵𝐶

𝑈 +
𝐵𝐶

𝑈
(+,−)
𝐶𝐴

𝑈 +
𝐶𝐴

𝑈
(−,+)
𝐶𝐴

𝑈 +
𝐶𝐴

(d) R2 = (𝐶𝐴𝐵,𝐴𝐵𝐶)

𝑣 𝑓 (𝑣)

𝑈
(+,−)
𝐴𝐵

𝑈 −
𝐴𝐵

𝑈
(−,+)
𝐴𝐵

𝑈 −
𝐴𝐵

𝑈
(+,−)
𝐵𝐶

𝑈 −
𝐵𝐶

𝑈
(−,+)
𝐵𝐶

𝑈 +
𝐵𝐶

𝑈
(+,−)
𝐶𝐴

𝑈 −
𝐶𝐴

𝑈
(−,+)
𝐶𝐴

𝑈 +
𝐶𝐴

(e) R2 = (𝐶𝐵𝐴,𝐴𝐶𝐵)

Fig. 7. This figure contains the definition of the five aggregations maps depending on R2. Their definition relies on the image of the
vertices. We do not include the images of the unanimous vertices since they are determined by the unanimity axiom.

The maps in Figure 7 may seem somewhat opaque. However, for example, the aggregation map for R2 = (𝐶𝐴𝐵,𝐴𝐵𝐶)

can be expressed as:

𝐴𝐹 (R)𝐵 ⇔ 𝐴𝑅1𝐵 and 𝐴𝑅2𝐵 𝐵𝐹 (R)𝐶 ⇔ 𝐵𝑅2𝐶 𝐴𝐹 (R)𝐶 ⇔ 𝐴𝑅1𝐶 and 𝐴𝑅2𝐶

Using the expression above, we can see that the map is composed of a local dictator (the social choice between 𝐵 and𝐶)

and two almost constant decisions (the social choice between 𝐴 and 𝐵 and between 𝐴 and 𝐶).

This simplicity is mainly due to two factors: First, we are working with the simplest basis case (three alternatives

and two voters). Second, as it is explained in Appendix D, these maps are deduced from the domains in which the

unique removed profiles is a single critical pair. Moreover, in such domains, these maps are the unique ones that are not

dictatorial. But the more profiles are removed, the more aggregation maps are compatible with the axioms. The next

Section 3.3 is devoted to a domain restriction with a political interpretation, that allows more sophisticated aggregation

maps.

3.3 Eluding Arrow’s impossibility while preserving non-contractibility

It has been argued that the existence of a rule that permits aggregation is related to contractibility of a topological

space. For the existence case in the continuous setting (which is different from our Arrovian setting), Chichilnisky and

Heal [16], and a 1954 topology theorem by Eckmann [18] show that, for a general class of domains, contractibility

is necessary and sufficient. Building on this result and on Baryshnikov [10], for weak orders, Tanaka [51] shows a

connection with Brower’s fixed point theorem, in the case of 𝑛 = 2 and |𝑋 | = 3. Baryshnikov [10] and other authors

such as Lauwers [38] and Baigent [46] hypothesised in subsequent publications that the aggregation on non-universal

domains could be equivalent to the contractibility of the induced input simplicial complex. That is, the aggregation á la

Arrow on a domain 𝐷 ⊆𝑊 𝑛 would be possible iff the induced complex 𝑁 ′
𝐼
is contractible. Moreover, they added that in

the well-known case of single-peaked preferences (in which aggregation is possible) contractibility is satisfied.
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Next, we present a domain of preferences that proves that Baryshnikov’s hypothesis above is not true. That is, the

domain 𝑁 ′′
𝐼

represented in Figure 8 is not contractible and it allows non-dictatorial aggregation maps.

𝑈
(+,+)
𝐴𝐵

𝑈
(+,+)
𝐶𝐴

𝑈
(+,+)
𝐵𝐶

𝑈
(−,−)
𝐴𝐵

𝑈
(−,−)
𝐶𝐴

𝑈
(−,−)
𝐵𝐶

𝑈
(+,−)
𝐴𝐵

𝑈
(+,−)
𝐶𝐴

𝑈
(+,−)
𝐵𝐶

𝑈
(−,+)
𝐴𝐵

𝑈
(−,+)
𝐶𝐴

𝑈
(−,+)
𝐵𝐶

(a)

𝑈
(+,−)
𝐶𝐴

𝑈
(−,+)
𝐴𝐵

𝑈
(+,−)
𝐵𝐶

𝑈
(−,+)
𝐶𝐴

𝑈
(+,−)
𝐴𝐵

𝑈
(−,+)
𝐵𝐶

𝑈
(+,−)
𝐶𝐴

𝑈
(+,+)
𝐴𝐵

𝑈
(−,−)
𝐵𝐶

𝑈
(+,+)
𝐶𝐴

𝑈
(−,−)
𝐴𝐵

𝑈
(+,+)
𝐵𝐶

𝑈
(−,−)
𝐶𝐴

𝑈
(+,+)
𝐴𝐵

𝑈
(+,−)
𝐵𝐶

𝑈
(−,+)
𝐶𝐴

𝑈
(+,−)
𝐴𝐵

𝑈
(−,+)
𝐵𝐶

𝑈
(+,−)
𝐶𝐴

𝑈
(−,+)
𝐴𝐵

𝑈
(+,−)
𝐵𝐶

(b)

𝑈
(−,−)
𝐴𝐵

𝑈
(+,+)
𝐵𝐶

𝑈
(−,−)
𝐶𝐴

𝑈
(−,−)
𝐵𝐶

𝑈
(+,+)
𝐶𝐴

𝑈
(+,+)
𝐴𝐵

𝑈
(+,−)
𝐴𝐵

𝑈
(−,+)
𝐵𝐶

𝑈
(+,−)
𝐶𝐴

𝑈
(+,−)
𝐵𝐶

𝑈
(−,+)
𝐶𝐴

𝑈
(−,+)
𝐴𝐵

(c)

Fig. 8. The restricted domain 𝑁 ′′
𝐼
is the union of the simplicial complexes represented in (a) and (b) according the identifications

defined by vertices’ labeling and colours. The simplicial complex 𝑁 ∗ is represented in (c). The colours of the edges (resp. the labelings
of the vertices) show where the edges (resp. the vertices) of 𝑁 ′′

𝐼
have been compressed in 𝑁 ∗.

This restricted domain 𝑁 ′′
𝐼

corresponds to a polarised society where political parties are classified as left-wing

and right-wing parties. Assume that every left-wing voter will prefer all left-wing parties over all right-wing parties

(vice-versa for right-wing voters). A priori we do not know if a voter is right-wing or left-wing. The polarized preferences

in this section are a particular case of group-separable preferences (see. e.g. [19]).

We focus on the case in which there are two right-wing parties {𝐴, 𝐵} and one left-wing party 𝐶 and two voters

(𝑛 = 2). This way, 𝑁 ′′
𝐼

can be compared with the previous examples and proofs on this article.

The polarised domain restriction deletes the profiles in which a voter has 𝐶 as the middle preferred party. For

example, no voter will have the preference 𝐴𝐶𝐵 because it prefer the right-wing party 𝐴 over the left-wing party 𝐶 and

𝐶 over the right-wing party 𝐵. Formally, applying this restriction means deleting from Figure 5 the edges of the form

{𝑈
(+, ·)
𝐶𝐴

,𝑈
(+, ·)
𝐵𝐶
}, {𝑈 (−, ·)

𝐶𝐴
,𝑈
(−, ·)
𝐵𝐶
}, {𝑈 ( ·,+)

𝐶𝐴
,𝑈
( ·,+)
𝐵𝐶
} and {𝑈 ( ·,−)

𝐶𝐴
,𝑈
( ·,−)
𝐵𝐶
} and all triangles containing them, and we obtain

the simplicial complex 𝑁 ′′
𝐼

represented in Figure 8.

There are non-dictatorial aggregation rules for 𝑁 ′′
𝐼
. One of these rules is defined by two local dictators. The first

voter is a local dictator between the right-wing parties 𝐴 and 𝐵, whereas the second voter is a local dictator between

a right-wing party and the left wing-party 𝐶 . Formally, this aggregation map 𝐹 is defined for every profile R in the

domain as:

𝐴𝐹 (R)𝐵 ⇔ 𝐴𝑅1𝐵, 𝐴𝐹 (R)𝐶 ⇔ 𝐴𝑅2𝐶, 𝐵𝐹 (R)𝐶 ⇔ 𝐵𝑅2𝐶.

Using the fact that 𝐴𝐹 (R)𝐶 ⇔ 𝐵𝐹 (R)𝐶 , it is straightforward to check that 𝐹 is well defined (i.e. 𝐹 (R) is transitive

and complete for every R). Additionally, 𝐹 is unanimous, non-dictatorial and satisfies the independence of irrelevant

alternatives.

It remains to check that 𝑁 ′′
𝐼
is not contractible. In Figure 8, 𝑁 ′′

𝐼
has been drawn deleting a triangle on each of the

concentric cylinders of 𝑁𝐼 , and from the torus they only remain four pairs of triangles that join both cylinders. To see

that 𝑁 ′′
𝐼
is not contractible, we apply contractions to 𝑁 ′′

𝐼
obtaining a new topological space 𝑁 ∗ (that is non-contractible).

This contractions consist on contracting first the eight triangles placed in the former torus (Figure 8b) to eight edges
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(black edges in Figure 8c). Second, we contract both cylinders (Figure 8a) into two concentric circles (green and blue

edges in Figure 8c).

4 IMPOSSIBILITY PROOF BASED ON THE INDEX LEMMA

We present the first of the topological proofs of Theorem 2.1, for |𝑋 | = 3, 𝑛 = 2, using the index lemma. The classic form

of the index lemma is in Appendix 2.2. We use a simple generalization, Theorem B.2 described in Appendix B, where in

addition to orientability, we assume that each interior edge belongs to an even number of triangles (at least 2). Let 𝐾 be

an oriented simplicial complex of dimension 2 with each vertex labeled with a color from {0, 1, 2}. The content 𝐶 of 𝐾

is the number of tricoloured triangles in 𝐾 counted +1 if the order of the labeling agrees with the orientation and −1

otherwise. The index 𝐼 of 𝐾 is the number of edges
−→
01 on the boundary (contained in exactly one triangle) counted +1 if

the order of the vertices agrees with the orientation and −1 otherwise. The index lemma states that 𝐼 = 𝐶 .

Assuming 𝑁𝐼 is orientable and we can use the index lemma (we defer the proof to Section B), we present our first

proof of Theorem 2.1 here, for the case |𝑋 | = 3, 𝑛 = 2.

Let 𝑓 : 𝑁𝐼 → 𝑁𝑂 be a simplicial map such that for all vertices𝑈 (+, · · · ,+)
𝛼𝛽

of 𝑁𝐼 , it holds that 𝑓 (𝑈
(+, · · · ,+)

𝛼𝛽
) = 𝑈 +

𝛼𝛽
. We

use 𝑓 to define a coloring of the vertices of 𝑁𝐼 with colors {0, 1, 2}, and then use the index lemma (Theorem B.2) to

show that 𝑓 is a projection.

In order to define the coloring of the vertices of 𝑁𝐼 , first we colour them with {+1,−1} according to the image of

every vertex by 𝑓 . That is, we label𝑈 𝝈

𝛼𝛽
with +1 iff 𝑓 (𝑈 𝝈

𝛼𝛽
) ∈ 𝑁𝑂 has the superindex +, and otherwise with −1. We call

it the sign of𝑈 𝝈

𝛼𝛽
and it is denoted by 𝑠 (𝑈 𝝈

𝛼𝛽
).

Second, we color every vertex of 𝑁𝐼 with one colour 𝑝 ∈ {0, 1, 2} following the rule:

𝑝 (𝑈 𝝈

𝛼𝛽
) = 𝐼𝐷 (𝑈 𝝈

𝛼𝛽
) + 𝑠 (𝑈 𝝈

𝛼𝛽
) (𝑚𝑜𝑑 3) (1)

where 𝐼𝐷 (𝑈 𝝈

𝐴𝐵
) = 0, 𝐼𝐷 (𝑈 𝝈

𝐵𝐶
) = 1 and 𝐼𝐷 (𝑈 𝝈

𝐶𝐴
) = 2 (for every 𝝈 ∈ {+,−}𝑛).

𝑈
(+,−)
𝐶𝐴

𝑈
(+,−)
𝐴𝐵

𝑈
(+,−)
𝐵𝐶

𝑈
(−,+)
𝐶𝐴

𝑈
(−,+)
𝐴𝐵

𝑈
(−,+)
𝐵𝐶

𝑈
(−,−)
𝐶𝐴

𝑈
(−,−)
𝐴𝐵

𝑈
(−,−)
𝐵𝐶

𝑈
(+,+)
𝐶𝐴

𝑈
(+,+)
𝐴𝐵

𝑈
(+,+)
𝐵𝐶

Fig. 9. 𝑁𝐼 has four boundary components generated by Condorcet cycles. A single triangle intersects each boundary edge since each
pair of vertices determines the third one by transitivity.

Notice that a cycle of three vertices is 3-coloured if and only if the sign of all of them is the same. This implies that

the content 𝐶 = 0 because no 2-simplex in 𝑁𝐼 can be mapped to one of the holes in 𝑁𝑂 .

We conclude from the index lemma that 𝐼 = 0, on the boundary of 𝑁𝐼 , which consists of 4 combinations of Condorcet

cycles (see Figure 9). The contribution to the index from the unanimity cycles is +2 (see Figure 10a).

Since the contribution of the unanimity cycles is +2 and 𝐼 = 0, the two remaining contributions to 𝐼 have to be −1 for

each one of the remaining boundary components. So, we can conclude that both have to be tricoloured and mapped by

𝑓 to the boundary of 𝑁𝑂 .
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Both of these boundary components cannot be mapped to the same boundary of 𝑁𝑂 because if it were the case the

simplex {𝑈 (−,+)
𝐴𝐵

,𝑈
(−,+)
𝐵𝐶

,𝑈
(+,−)
𝐶𝐴

} would be mapped to one of the holes of 𝑁𝑂 (see Figure 10b).

𝑝 (𝑈
(+,+)
𝐶𝐴
) = 0

𝑝 (𝑈
(+,+)
𝐴𝐵
) = 1 𝑝 (𝑈

(+,+)
𝐵𝐶
) = 2

𝑝 (𝑈
(−,−)
𝐶𝐴

) = 1

𝑝 (𝑈
(−,−)
𝐴𝐵

) = 2𝑝 (𝑈
(−,−)
𝐵𝐶

) = 0

+1

𝑝 (𝑈
(−,−)
𝐶𝐴

) = 1

𝑝 (𝑈
(−,−)
𝐴𝐵

) = 2 𝑝 (𝑈
(−,−)
𝐵𝐶

) = 0

𝑝 (𝑈
(+,+)
𝐶𝐴
) = 0

𝑝 (𝑈
(+,+)
𝐴𝐵
) = 1𝑝 (𝑈

(+,+)
𝐵𝐶
) = 2

+1

(a)

𝑈
(−,+)
𝐴𝐵

𝑈
(−,+)
𝐵𝐶

𝑈
(−,+)
𝐶𝐴

𝑈
(+,−)
𝐴𝐵

𝑈
(+,−)
𝐵𝐶

𝑈
(+,−)
𝐶𝐴

𝑈 +
𝐴𝐵

𝑈 +
𝐵𝐶

𝑈 +
𝐶𝐴

𝑈 −
𝐴𝐵

𝑈 −
𝐵𝐶

𝑈 −
𝐶𝐴

𝑓

(b)

Fig. 10. (a) The contribution of these two boundary components to the index is +2 according with the orientation exposed in

Proposition B.3 . (b) If these two boundary components of 𝑁𝐼 are mapped to the same boundary component of 𝑁𝑂 , then𝑈 (−,+)
𝐴𝐵

,

𝑈
(−,+)
𝐵𝐶

and𝑈 (+,−)
𝐶𝐴

are also mapped to the same boundary component. That is, a hole.

Finally, we have all the information we need about the images of the 12 vertices of 𝑁𝐼 to state that 𝑓 is a projection.

Recall that the images of the first and the fourth boundaries in Figure 9 are determined by the unanimity. If the second

boundary is mapped to the inner boundary of 𝑁𝑂 (and the third in the outer), it is straightforward to check that 𝑓 is

the projection over the first component. In contrast, if the second boundary is mapped to the outer boundary of 𝑁𝑂

(and the third on the inner), then 𝑓 is the projection over the second component.

5 IMPOSSIBILITY PROOFWITH PIVOTAL VOTERS

The second proof of Theorem 2.1 for |𝑋 | = 3, 𝑛 = 2 exposes the geometry behind the combinatorial proofs by

Geanakoplos [29] and Yu [56], using pivotal voters, that have received much attention e.g. [55].

5.1 Paths and pivotal voters

We say that a sequence of triangles in either 𝑁𝐼 or 𝑁𝑂 is a path, if each two consecutive triangles are adjacent (share

an edge). Let 𝑅 = 𝑅0, . . . , 𝑅𝑚 be a sequence of preferences in𝑊 such that every 𝑅𝑖 can be obtained from 𝑅𝑖−1 by a

permutation of the preference of two alternatives (see Remark 2.2). This sequence induces a path in 𝑁𝑂 .

Similarly, a sequence of profiles R = R0, . . . ,R𝑚 in𝑊 2 defines a path in 𝑁𝐼 , if R𝑖 can be obtained from R𝑖−1 by a

permutation of the preference of two alternatives of at least one of the voters (see Remark 2.3). We will consider here

only paths in 𝑁𝐼 where R𝑖 is obtained from R𝑖−1 by a permutation of the preference of two alternatives of exactly one

of the voters.

Notice that since the aggregation map 𝑓 is a simplicial map, it sends triangles to triangles, and the image of a path in

𝑁𝐼 is a path in 𝑁𝑂 .

We will consider paths in 𝑁𝐼 starting and ending in unanimous profiles. Additionally, such that all triangles in the

path share a vertex 𝑈 𝝈

𝑥𝑦 , 𝑥,𝑦 ∈ 𝑋 , for 𝝈 consisting of the same sign, either + or −. Notice that since all the triangles

share vertex𝑈 𝝈

𝑥𝑦 , then all the triangles of the path in 𝑁𝑂 of the image under 𝑓 share the vertex𝑈 𝜎
𝑥𝑦 , where 𝜎 is equal

to the single sign in 𝝈 .
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An example is the path 𝑹 = 𝑹0, . . . , 𝑹4, in 𝑁𝐼 , defined on the left of Figure 11. All the triangles in this path contain

the vertex𝑈 (+,+)
𝐵𝐶

, since both voters prefer 𝐵 over 𝐶 . Additionally, the path starts in the unanimous profile 𝐴𝐵𝐶,𝐴𝐵𝐶

and ends in the unanimous profile 𝐵𝐶𝐴, 𝐵𝐶𝐴. In the figure there is another example, the path 𝑹
′
= 𝑹

′

0, . . . , 𝑹
′

4 starting

in the triangle 𝐵𝐴𝐶, 𝐵𝐴𝐶 , ending in the triangle 𝐴𝐶𝐵,𝐴𝐶𝐵, and around the vertex𝑈 (−,−)
𝐶𝐴

.

Consider the path R of Figure 11, and its depiction in Figure 12. We call such a path bivalent because the social choice

has to move from 𝑓 (R0) = 𝐴𝐵𝐶 to 𝑓 (R4) = 𝐵𝐶𝐴, by the unanimity axiom. The notion of pivotal voter arises in such

bivalent paths. The social choice has to exchange the preferences of the pair 𝐴, 𝐵 and also 𝐴,𝐶 , because it starts in the

edge {𝑈 (+,+)
𝐴𝐵

,𝑈
(−,−)
𝐶𝐴

} and ends in the edge {𝑈 (−,−)
𝐴𝐵

,𝑈
(+,+)
𝐶𝐴

}. It does not change preferences over 𝐵,𝐶 , since the path

keeps fixed the vertex𝑈 (+,+)
𝐵𝐶

.

Consider a sequence of profiles in which the first profile unanimously prefers an alternative 𝑥 over another 𝑦, we

change at each step the preference of a single individual from 𝑥 over 𝑦 to 𝑦 over 𝑥 until we arrive at the unanimous

profile in which everyone prefers 𝑦 over 𝑥 . By unanimity, the first profile socially prefers 𝑥 over 𝑦, whereas the last one

𝑦 over 𝑥 . Barberà [8] named the first voter who produces the change on the social preference from 𝑥 over 𝑦 to 𝑦 over 𝑥 ,

the pivotal voter of 𝑦 over 𝑥 . Denote this voter by 𝑘𝑦𝑥 .

In Section 5.2, we will use these paths to prove Theorem 2.1. Whereas in Section C we will compare this topological

proof based on pivotal voters with the combinatorial ones by Geanakoplos [29] and Yu [56].

5.2 The proof based on pivotal voters

Following Geanakoplos [29] and Yu [56], we will first prove that all pivotal voters are the same, and then apply a simple

argument to show that this pivotal voter is, in fact, a dictator.

Step 1: all pivotal voters are the same. Consider the path R of Figure 11 and its depiction in Figure 12. Notice that indeed

all the triangles of the path share the vertex 𝑈 (+,+)
𝐵𝐶

, and it starts in the edge {𝑈 (+,+)
𝐴𝐵

,𝑈
(−,−)
𝐶𝐴

} and ends in the edge

{𝑈
(−,−)
𝐴𝐵

,𝑈
(+,+)
𝐶𝐴

}. Traversing the path, we see that voter 1 changes its preferences twice, first from 𝑹0 to 𝑹1 (𝐴𝐵 to 𝐵𝐴)

and then from 𝑹1 to 𝑹2 (𝐴𝐶 to 𝐶𝐴). The next two changes of preferences are by voter 2, from 𝑹2 to 𝑹3 (𝐴𝐵 to 𝐵𝐴) and

then from 𝑹3 to 𝑹4 (𝐴𝐶 to 𝐶𝐴). We are interested in comparing 𝑘𝐶𝐴 with 𝑘𝐵𝐴 .

The fact that the image of this path in 𝑁𝑂 has to exchange the preferences of the pair 𝐴, 𝐵 and also 𝐴,𝐶 , means that

the path in 𝑁𝑂 has to cross the triangle 𝐵𝐴𝐶 . The figure shows why it has to cross first the edge adjacent to𝑈 −
𝐶𝐴

, and

then the one adjacent to the vertex𝑈 −
𝐴𝐵

, both of this edges incident on𝑈 +
𝐵𝐶

. The social preference has to change to 𝐵

over 𝐴 before it changes𝐶 over 𝐴, and given that in the path R the first changes are by voter 1, followed by the changes

by voter 2, we conclude that that 𝑘𝐵𝐴 ≤ 𝑘𝐶𝐴 .

This argument can be repeated using any path analogous to R around the green cycle in Figure 12, even in the

opposite direction, such as R′. That is, taking any two of the three unanimous green triangles labeled 𝐴𝐵𝐶 , 𝐵𝐶𝐴 or

𝐶𝐴𝐵, and the corresponding bivalent path connecting them clockwisely (that preserves along the path the vertex in the

intersection of the two selected triangles). This proves three inequalities 𝑘𝑦𝑥 ≤ 𝑘𝑧𝑥 , for the corresponding 𝑥,𝑦, 𝑧 ∈ 𝑋 .

Conversely, taking the three unanimous blue triangles labeled 𝐵𝐴𝐶 , 𝐶𝐵𝐴 and 𝐴𝐶𝐵 and the corresponding bivariant

paths connecting them counterclockwisely (as R′), we obtain three additional inequalities 𝑘𝑥𝑦 ≤ 𝑘𝑥𝑧 for some 𝑥,𝑦, 𝑧 ∈ 𝑋 .

Joining the six inequalities we obtain that 𝑘𝐵𝐴 ≤ 𝑘𝐶𝐴 ≤ 𝑘𝐶𝐵 ≤ 𝑘𝐴𝐵 ≤ 𝑘𝐴𝐶 ≤ 𝑘𝐵𝐶 ≤ 𝑘𝐵𝐴 . So, there is a unique pivotal

voter.
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′
3 C B

A C B C
B B A A
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4 C C
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)

𝑓 (R4)

Fig. 11. On the left side, the sequences R and R
′ are defined. Writing an alternative on the top on another means that the one on top

is preferred to the one in the bottom. On the right side there is a graphical representation of the paths defined by 𝑓 (R) .
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Fig. 12. The sequence R = R0, . . . ,R4 in the complex 𝑁𝐼 . The red curved arrow shows the order in which these triangles appear in R,
and it indicates that voter 1 changes its preference twice and then voter 2 changes its preference twice. For clarity, the triangle R0 is
labeled with 𝐴𝐶𝐵, and the triangle R4 is labeled with𝐶𝐵𝐴.

Surprisingly, as we will see on Section 3.1, the triangles conforming these six bivariant paths constitute a minimal

subsimplex 𝑁 ′
𝐼
of 𝑁𝐼 (see 𝑁

′
𝐼
in Figure 6) that causes an impossibility. That is, the cylinder 𝑁 ′

𝐼
contained in the torus

is sufficient to connect the unanimity vertices and the vertices with opposite pairwise preferences leading to an

impossibility result. Whereas we use here 6 paths going across the 12 triangles of 𝑁 ′
𝐼
, in Section 3.1 they have been

joined together in a single closed path. Using this closed path we will describe a geometric argument for the impossibility.

Cutting this closed path into 6 paths, we have connected the geometrical arguments with the classical pivotal argument.

Thus, the domain does not need to contain all preferences and, consequentially, the whole complex 𝑁𝐼 , to apply the

arguments contained in this section.

Step 2: the pivotal voter is a dictator. It remains to prove that 𝑓 is a projection over the 𝑘-th component. That is,

𝑓 (𝑈 𝝈

𝑥𝑦) = 𝑈
𝝈 (𝑘)
𝑥𝑦 . However, this is immediate to see taking the definition of pivotal voter (for 𝑛 = 2). When there are

two voters, being a pivotal voter and a dictator is equivalent. The Figure 13 shows, as an example, how to use the

definition of a pivotal voter to compute 𝑓 (𝑈 (+,−)𝑥𝑦 ) when 𝑘 = 1 and 𝑘 = 2.
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S0 S1 S2 S
′
0 S

′
1 S

′
2

Case 𝑘 = 1
𝑦 𝑦 𝑥 𝑦 𝑥 𝑥

Case 𝑘 = 2
𝑦 𝑦 𝑥 𝑦 𝑥 𝑥

𝑥 𝑥 𝑦 𝑥 𝑦 𝑦 𝑥 𝑥 𝑦 𝑥 𝑦 𝑦

Social pref. 𝑦𝑥 𝑥𝑦 𝑥𝑦 Social pref. 𝑦𝑥 𝑦𝑥 𝑥𝑦

Fig. 13. The table on the left represents a sequence of profiles S = S0, S1, S2 starting from unanimity profile of 𝑦 over 𝑥 to 𝑥 over 𝑦 in

which the pivotal voter is 𝑘 = 1. Since 𝑘 = 1 is the pivotal voter, the social preference changes in the first step, so 𝑓 (𝑈
(+,−)
𝑥𝑦 ) = 𝑈 +𝑥𝑦 .

The table on the right represents the converse situation, when 𝑘 = 2.

In Appendix C, we further discuss the correspondence of pivotal with the simplicial complex setting.

6 REDUCTION TO THE CASE OF 𝑛 = 2 AND |𝑋 | = 3

We have proved Arrow’s impossibility Theorem 2.1 for |𝑋 | = 3, 𝑛 = 2. The proof of Theorem 2.1 for |𝑋 | ≥ 3, 𝑛 ≥ 2

follows directly from Lemma 6.1 and 6.2, given that the case |𝑋 | = 3, 𝑛 = 2 has been proved.

There are several works in which the proof of Arrow’s theorem is only for |𝑋 | = 3 and/or 𝑛 = 2 (e.g. [2, 17, 46, 51]).

Using Lemma 6.1 and 6.2, all these proofs are extended to |𝑋 | ≥ 3 and/or 𝑛 ≥ 2.

A few works have used inductive arguments over the number of voters or alternatives. In the fifties, Weldon [53]

proved an impossibility theorem under a set of non-Arrovian axioms. Unlike our case, he could set the initial case of his

inductive argument on the trivial case 𝑛 = 1 (instead of 𝑛 = 2). More recent works [2, 52] use inductive arguments using

the base case |𝑋 | = 3, 𝑛 = 2, as we do. However, our proof is more general. That is, whereas the results of Akashi [2,

Lemma 1] and Tang and Lin [52, Lemma 1] are constrained to finite sets of alternatives, Lemma 6.1 works also for

infinite 𝑋 . In addition, the inductive step in [52, Lemma 2] is proved by contradiction using a large family of maps,

while Lemma 6.2 uses only two, and using an explicit map that helps to understand the inductive step.

Lemma 6.1. Let the number of voters be any 𝑛 ≥ 2. Arrow’s impossibility theorem for |𝑋 | = 3 implies it for |𝑋 | ≥ 3.

Proof. Suppose that Arrow’s theorem is true when |𝑋 | = 3. We prove that for any 𝑋 (with |𝑋 | ≥ 3) and any

𝐹 :𝑊 𝑛 →𝑊 satisfying unanimity and independence of irrelevant alternatives, 𝐹 is dictatorial.

Given 𝐹 , choose three distinct alternatives 𝑥,𝑦, 𝑧 ∈ 𝑋 and denote𝑊 0 the set of all strict orders over these three

alternatives. Define an aggregation map 𝐹 :𝑊 0
𝑛
→𝑊 0 as follows. The image of a profile (𝑅1, . . . , 𝑅𝑛) ∈𝑊 0

𝑛
by 𝐹 is

the restriction of the ordering 𝐹 (𝑅1, . . . , 𝑅𝑛) ∈𝑊 on the set {𝑥,𝑦, 𝑧} ⊆ 𝑋 , where for each 𝑖 , 𝑅𝑖 is any extension of 𝑅𝑖

from𝑊 0 to𝑊 . Notice that the definition of 𝐹 does not depend on the chosen extension because of the independence of

irrelevant alternatives of 𝐹 . Moreover, it is easy to check that 𝐹 satisfies unanimity as well as independence of irrelevant

alternatives. So, it follows that 𝐹 is dictatorial because we have supposed that Arrow’s theorem is true when |𝑋 | = 3. It

remains to prove that 𝐹 is also dictatorial.

If 𝑘 is the dictator of 𝐹 , we will prove that it is also a dictator for 𝐹 . Consider a profile R = (𝑅1, . . . 𝑅𝑛) ∈𝑊
𝑛 where

𝑎𝑅𝑘𝑏 for some 𝑎, 𝑏 ∈ 𝑋 . Then take a profile R′ = (𝑅′1, . . . 𝑅
′
𝑛) ∈𝑊

𝑛 satisfying that, for every 𝑖 , 𝑥𝑅′𝑖𝑏𝑅
′
𝑖𝑎𝑅
′
𝑖𝑦 if 𝑏𝑅𝑖𝑎, and

𝑎𝑅′𝑖𝑦𝑅
′
𝑖𝑥𝑅
′
𝑖𝑏 if 𝑎𝑅𝑖𝑏.

Since 𝑘 is a dictator of 𝐹 and 𝑦𝑅′
𝑘
𝑥 (𝑘 prefers 𝑎 over 𝑏 in 𝑅𝑘 ), we know that the image by 𝐹 of the restriction of

R
′ over𝑊

𝑛
0 prefers 𝑦 over 𝑥 , hence 𝐹 (R′) also prefers 𝑦 over 𝑥 . Moreover, by unanimity, it holds that 𝑎𝐹 (R′)𝑦 and

𝑥𝐹 (R′)𝑏. Then, we obtain that 𝑎𝐹 (R′)𝑏 from the relations 𝑎𝐹 (R′)𝑦𝐹 (R′)𝑥𝐹 (R′)𝑏 using the transitivity. Finally, using

the independence of irrelevant alternatives, we obtain that 𝑎𝐹 (R)𝑏. Since this happens for every pair 𝑎, 𝑏 ∈ 𝑋 , 𝑘 must

be the dictator of 𝐹 . □

19



Sergio Rajsbaum and Armajac Raventós-Pujol

The proof of the previous lemma, contrary to the ones in [2, 52], is not inductive. This fact enables us to reduce the

cases of any cardinality of 𝑋 to |𝑋 | = 3 in a single step.

Lemma 6.2. Let the number of alternatives be any |𝑋 | ≥ 3. If Arrow’s impossibility theorem is true for 𝑛 = 2 then it is

true for 𝑛 > 2.

Proof. The proof is by induction on 𝑛. By hypothesis, the theorem is true when 𝑛 = 2. Suppose that it is true for

𝑛 − 1 and we will prove it for 𝑛.

Let 𝐹𝑛 :𝑊 𝑛 →𝑊 an aggregation map satisfying unanimity and independence of irrelevant alternatives. We will

prove that 𝐹𝑛 is dictatorial in three steps:

Step 1: We define the aggregation map on𝑊 𝑛−1, 𝐹𝑛−11 (𝑅1, . . . , 𝑅𝑛−1) := 𝐹𝑛 (𝑅1, . . . , 𝑅𝑛−1, 𝑅1). Since 𝐹𝑛−11 satisfies

unanimity and independence of irrelevant alternatives, the induction hypothesis guarantees that it has a dictator 𝑘1.

We will prove that if 𝑘1 ≠ 1, then 𝑘1 is also a dictator for 𝐹𝑛 .

Suppose R ∈ 𝑊 𝑛 and 𝑥𝑅𝑘1𝑦. If the ordering of 𝑅1 and 𝑅𝑛 coincides on {𝑥,𝑦}, then 𝑥𝐹𝑛 (R)𝑦 because 𝐹𝑛−11 has 𝑘1

as a dictator. Otherwise, we can suppose without loss of generality that 𝑥𝑅1𝑦, 𝑦𝑅𝑛𝑥 . Then, let 𝑧 ∈ 𝑋 be an auxiliary

alternative and let R′ ∈𝑊 𝑛 be a profile which coincides with R over {𝑥,𝑦}, 𝑥𝑅′
𝑘1
𝑧𝑅′

𝑘1
𝑦 and 𝑧 is below 𝑥 and 𝑦 for the

remaining voters.

Since 𝑅′1 and 𝑅
′
𝑛 agrees on {𝑦, 𝑧} and 𝑘1 is a dictator for 𝐹𝑛−11 , we have that 𝑧𝐹𝑛 (R′)𝑦. Moreover, 𝑥𝐹𝑛 (R′)𝑧 because of

the unanimity. Using the transitivity we obtain that 𝑥𝐹𝑛 (R′)𝑦, and applying the independence of irrelevant alternatives

we obtain that 𝑥𝐹𝑛 (R)𝑦. So, 𝑘1 is a dictator of 𝐹𝑛 (if 𝑘1 ≠ 1).

Step 2: We define 𝐹𝑛−12 (𝑅1, . . . , 𝑅𝑛−1) := 𝐹𝑛 (𝑅1, . . . , 𝑅𝑛−1, 𝑅2). Using the inductive hypothesis, 𝐹𝑛−12 has a dictator

𝑘2. If 𝑘2 ≠ 2, apply a symmetric reasoning to the one in step 1 to deduce that 𝑘2 is the dictator of 𝐹𝑛 (if 𝑘2 ≠ 2).

Step 3: If 𝑘1 = 1 and 𝑘2 = 2, we show that 𝑛 is the dictator of 𝐹𝑛 . Let R ∈𝑊 𝑛 be a profile with 𝑥𝑅𝑛𝑦. Consider 𝑧 ∈ 𝑋 ,

and R′ ∈𝑊 𝑛 coinciding with R over {𝑥,𝑦}, 𝑥𝑅′𝑛𝑧𝑅
′
𝑛𝑦, 𝑥𝑅

′
1𝑧 and 𝑧𝑅

′
2𝑦. Using that 1 (resp. 2) is the dictator of 𝐹𝑛−11 (resp.

𝐹𝑛−12 ) and the independence of irrelevant alternatives, we obtain that 𝑥𝐹𝑛 (R)𝑧 (resp. 𝑧𝐹𝑛 (R)𝑦). So, using transitivity,

we obtain that 𝑥𝐹𝑛 (R)𝑦. Finally we conclude that 𝑛 is the dictator of 𝐹𝑛 (if 𝑘1 = 1 and 𝑘2 = 2). □

The reader may wonder why Lemma 6.2 is inductive, instead of applying some direct argument extending from

𝑛 = 2 to any number of voters (as we have done in Lemma 6.1). If such argument existed, it would allow to extend the

theorem to an infinite number of voters. However, this is not possible because Arrow’s impossibility is not true when 𝑛

is infinite [23].

7 CONCLUSIONS

We have given new proofs of Arrow’s theorem consisting of two parts. The first part deals with the base case of two

voters and three alternatives, and we presented three different versions: using the index lemma, using pivotal voters,

and using domain restrictions. The second part proves the general case by a simple reduction to the base case.

The first part shows that any aggregation function is dictatorial, because in essence it is mapping a torus onto a

cylinder, in a continuous way, respecting unanimity. The argument sheds light on the remarkable algebraic topology

proof of Baryshnikov [10], and makes it accessible to a wider audience. Also, it connects it to standard proofs of Arrow’s

theorem based on pivotal arguments, by explaining how the paths of such arguments move along the torus and the

cylinder. Furthermore, it provided a guide on how to characterize the domain restrictions that allow non-dictatorial

maps.
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The conformation of our proofs, in two parts, suggests that the interesting geometry happens in the base case.

We have considered domain restrictions on the base case, showing that there is a domain restriction where Arrow’s

impossibility is derived from the geometry in an intuitive way, and there is another domain restriction where it does

not hold, yet it is not contractible.

We hope that bringing in combinatorial topology to social choice problems opens interesting opportunities for future

work. These tools have been encountering many applications recently. Some examples are in concurrency [1], image

processing [7], political structures [42], data analysis [35] and wireless networks [48].

In particular, combinatorial topology has been very useful in distributed computing [32]. We described some analogies

that are worth exploring, since computing processes that communicate with each other need to agree on one of their

inputs in many applications. Remarkably, while Sperner’s lemma is the key to the impossibilities of tasks where processes

need to reach agreement such as consensus, set agreement [5], vector consensus [45] and interactive consistency [26]

(where domain restrictions are studied), for Arrow’s impossibility, the key is the index lemma, as it is for tasks related

to renaming and weak symmetry breaking [14, 30]. Here we studied only Arrow’s setting, where the aggregation map

is defined directly on the input complex; it would be interesting to explore the case where the agents can communicate

with each other and subdivisions of the input complex arise. Notice that the index lemma is preserved under subdivisions

e.g. [30, Corollary 4]. However, we are not aware of a distributed task where the impossibility is proved in dimension 2,

and then extended easily to any dimension.

Acknowledgments. The authors would like to thank Isaac Lara for his valuable comments.
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A TASKS AND DISTRIBUTED COMPUTING

There are many good books about distributed computing e.g. [6, 49]. Here we give a very brief introduction to the

notion of a task, and its representation using simplicial complexes, following the overview of the topology approach to

distributed computing [32], and provide more details about the analogy with Arrow’s theorem.

A task is a specification of a concurrent problem, namely, a problem to be solved by a set of individual computing

processes communicating with each other. Each process runs its own sequential program code, that includes instructions

to communicate with other processes. Typical ways of communicating is by sending messages or by writing and reading

a shared memory. A task is a distributed version of a function. When there is a single computing process, the function

𝑓 specifies, for each possible initial input 𝑥 , the value 𝑓 (𝑥) that the process should compute. In a distributed system

composed of several processes, each one gets only part of the input 𝑥 . Thus, we may think of 𝑥 as a vector (𝑥1, 𝑥2, . . . , 𝑥𝑛),

for 𝑛 processes, where initially process 𝑖 gets as input 𝑥𝑖 , and does not know what the inputs of the the other processes

are. Then, the processes run their individual programs, communicating with each other, and eventually produce

individual local output values, defining a vector (𝑦1, 𝑦2, . . . , 𝑦𝑛), where 𝑦𝑖 is the output value of process 𝑖 . The task

defines an input output relation Δ, that specifies, for each possible input vector 𝑥 , a set of legal output vectors 𝑦. A

classic example is binary consensus, where the possible inputs 𝑥𝑖 are taken from the set {0, 1}, and there are only two

possible output vectors: either everybody decides 0 or everybody decides 1. Then, Δ(𝑥) states that if everybody starts

with the same input, then everybody decides that input, else, it is valid to decide either of the two output vectors.

A task can be defined in terms of simplicial complexes [32]. For a set of processes {𝑖𝑑1, . . . , 𝑖𝑑𝑘 }, a set 𝜎 =

{(𝑖𝑑1, 𝑥1), . . . , (𝑖𝑑𝑘 , 𝑥𝑘 )} is used to denote the input values, or output values, where 𝑥𝑖 denotes the value of the process

with identity 𝑖𝑑𝑖 , either an input value or an output value. The elements of 𝜎 are pairs, called vertices. And they are said

to be colored by the identities 𝑖𝑑𝑖 ’s. A set 𝜎 as above is called a chromatic simplex, because the vertices are colored with

distinct ids. If the values are input values, it is an input simplex, if they are output values, it is an output simplex. An

input vertex 𝑣 = (𝑖𝑑𝑖 , 𝑥𝑖 ) represents the initial state of process 𝑖𝑑𝑖 , while an output vertex represents its decision. The

dimension of a simplex 𝜎 , denoted dim(𝜎), is |𝜎 | − 1, and it is full if it contains 𝑛 vertices, one for each process. A subset

of a simplex, which is a simplex as well, is called a face. The set of possible input simplexes forms a complex because its

sets are closed under containment. Similarly, the set of possible output simplexes also form a complex.

The dimension of a complex 𝐾 is the largest dimension of its simplexes, and 𝐾 is pure of dimension 𝑘 if each of its

simplexes is face of a 𝑘-dimensional simplex. In distributed computing, the simplexes (and complexes) are chromatic,

since each vertex 𝑣 of a simplex is labeled with a distinct process identity, and we usually get pure complexes. The set

of processes identities in an input or output simplex 𝜎 is denoted 𝐼𝐷 (𝜎).

A task 𝑇 for 𝑛 processes is a triple (I,O,Δ) where I and O are pure chromatic (𝑛 − 1)-dimensional complexes, and

Δ maps each simplex 𝜎 from I to a subcomplex Δ(𝜎) of O, satisfying:

(1) Δ(𝜎) is pure of dimension dim(𝜎),

(2) For every 𝜏 in Δ(𝜎) of dimension dim(𝜎), 𝐼𝐷 (𝜏) = 𝐼𝐷 (𝜎),
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(3) If 𝜎, 𝜎 ′ are two simplexes in I with 𝜎 ′ ⊂ 𝜎 then Δ(𝜎 ′) ⊂ Δ(𝜎).

We say that Δ is a carrier map from the input complex I to the output complex O.

Thus, each input simplex 𝜎 ∈ I defines an initial configuration of the distributed system. After the processes run

their local algorithms and communicate with each other, they eventually stop, and end up in a final configuration 𝜎 ′.

The simplex 𝜏 ′ is of the same form of the input and output simplexes, except that in a pair (𝑖𝑑𝑖 , 𝑥𝑖 ), 𝑥𝑖 denotes the final

local state of process 𝑖𝑑𝑖 . This local state 𝑥𝑖 determines the output value decided by the process 𝑖𝑑𝑖 , and is denoted by

𝛿 (𝑖𝑑𝑖 , 𝑥𝑖 ).

Actually, there may be many possible runs all starting on input 𝜎 , because of possible failures, different speed of

execution of the processes, etc, The set of all possible final configurations can also be represented as a chromatic

complex, denoted P(𝜎). The protocol complex, P, is the union of P(𝜎), over all 𝜎 ∈ I. The task is solved, if there exists

a chromatic simplicial map 𝛿 from P to O respecting Δ, such that 𝛿 (P(𝜎)) is contained in Δ(𝜎). The simplicial map 𝛿

is chromatic in the sense that it sends vertices to vertices preserving ids.

This approach to the theory of distributed computing is so successful, because the solvability of a task depends

on the topological properties of the protocol complex, and how they relate to the topological properties of the task.

Furthermore, the protocol complex preserves topological properties of the input complex. How well this topological

properties are preserved, depends on the specific assumptions about the distributed system model: how many processes

can fail, what types of failures are possible, how the processes communicate with each other, and their relative speed

of execution. Many different models have been analyzed, and the topological properties preserved by their protocol

complexes identified [32].

Remarkably, in the most basic model, called wait-free, if we denote the protocol complex after 𝑡 rounds of commu-

nication by P𝑡 , then P𝑡+1 is a chromatic subdivision of P𝑡 . The main theorem [33] is that a protocol in the wait-free

model solves a task (I,O,Δ), if and only if there exists a chromatic subdivision of I and a chromatic simplicial map

from the subdivision to O respecting Δ.

Notice that the protocol complex P𝑡 is equal to the input complex I, when 𝑡 = 0, before any communication takes

place. This is precisely the situation corresponding to Arrow’s setting. In this case, a 0-round protocol solves a task if

and only if there exists a chromatic simplicial map 𝑓 from I to O respecting Δ. This explains the analogy of distributed

computing with Arrow’s impossibility theorem, in the form of Theorem 2.1, where the input/output relation is requiring

only that 𝑓 (𝑈 (+, · · · ,+)
𝛼𝛽

) = 𝑈 +
𝛼𝛽

.

We present the relation with distributed computing in a conference version of this paper [47], the idea is that the

processes of the task correspond to the pairs of alternatives P = {𝐴𝐵, 𝐵𝐶,𝐴𝐶}, called also ids. Thus, we consider

chromatic simplicial complexes, where the vertices of each triangle are labeled with distinct process ids from P. There

are four possible individual inputs {++,−−, +−,−+}, while the possible individual outputs are {+,−}. The output

complex 𝑁𝑂 consists of all chromatic triangles, with each vertex labeled with an output value from {+,−}, except for

the two triangles labeled with the same value. Thus, 𝑁𝑂 is the output complex of the weak symmetry breaking task

e.g. [14, 37, 41]. Similarly, 𝑁𝐼 consists of all chromatic triangles whose vertices are labeled with input values from

{++,−−, +−,−+}, except the 16 triangles whose vertices have the same sign in the first or in the second component.

Thus, 𝑁𝐼 includes the (torus) complex of the renaming task [44], where every triangle is labeled with distinct values

from {++,−−, +−,−+}, plus 12 additional triangles where one value repeats twice, illustrated in Figure 4 (for 𝑁𝐼 only

schematically).
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B INDEX LEMMA AND THE COMPLEX 𝑁𝐼

Here we present the generalized version of the index lemma, and show that it holds on 𝑁𝐼 .

Definition B.1. Let 𝐾 be a simplicial complex of dimension 2 satisfying that every simplex of dimension 1 has a single

or an even number of 2-simplices containing it. An orientation on 𝐾 is an orientation on every 2-simplex satisfying that

the induced orientations on the 1-simplices by the 2-simplices have to be opposite by pairs.

Fig. 14. The simplicial complex on the left is oriented because the induced orientations on the inner edge are opposite. However, the
right one is not because it has three orientations in one direction and one on the opposite direction.

As in the original framework, let 𝐾 be an oriented simplicial complex of dimension 2 with each vertex labeled with

a color from {0, 1, 2}. The content 𝐶 of 𝐾 is the number of tricoloured triangles in 𝐾 counted +1 if the order of the

labeling agrees with the orientation (see the right side of Figure 15) and −1 otherwise. The index 𝐼 of 𝐾 is the number

of edges
−→
01 on the boundary counted +1 if the order of the vertices agrees with the orientation and −1 otherwise. Now,

we can state and proof the index lemma for oriented simplicial 2-complexes.

Theorem B.2 (Index lemma). Let 𝐾 be a 3-colored oriented simplicial complex of dimension 2. Then, the index 𝐼 is

equal to the content 𝐶 .

Proof. Let 𝑆 be the number of edges
−→
01 counted according to the orientation. We will prove that 𝐼 = 𝑆 and 𝐶 = 𝑆 .

First, we will see that the contribution of every interior edge
−→
01 is equal to 0. Since every interior edge has an even

number of incident 2-simplices, by definition of being oriented, their contribution is 0. Then 𝐼 = 𝑆 .

For every triangle in the complex, the contribution is only non-zero if the triangle is tricoloured. If it is not tricoloured,

it is 0 because, in case it has at least one 0 and one 1, the third vertex has to be coloured by 0 or 1, then one edge

compensates the other. Otherwise, if it is tricoloured, its contribution is the same as the content’s contribution (see

Figure 15).

0

0 1+1

−1

1

0

2

−1

Fig. 15. On the left, the contribution of the simplex is 0 because the two edges
−→
01 compensate each other. On the right, the contribution

of the tricolored triangle is −1.
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□

Now we provide 𝑁𝐼 with an orientation. Recall that we assume that the number of alternatives is |𝑋 | = 3 and the

number of voters is 𝑛 = 2.

Proposition B.3. The complex 𝑁𝐼 is orientable.

Proof. We will define an orientation on 𝑁𝐼 as follows. For every 2-simplex Δ = {𝑈
𝝈1
𝐴𝐵
,𝑈

𝝈2
𝐵𝐶
,𝑈

𝝈3
𝐶𝐴
} we define its parity

as the product of all the signs of 𝝈1, 𝝈2 and 𝝈3. For instance, if 𝝈1 = (+, +), 𝝈2 = (+,−) and 𝝈3 = (−,−), the parity is −1

(see Figure 16a). We define the orientation of this 2-simplex as clockwise (𝐴𝐵 → 𝐶𝐴→ 𝐵𝐶 → 𝐴𝐵) if its parity is −1

and (𝐴𝐵 → 𝐵𝐶 → 𝐶𝐴→ 𝐴𝐵) if its parity is 1.

𝑈
(−,−)
𝐶𝐴

𝑈
(+,+)
𝐴𝐵

𝑈
(+,−)
𝐵𝐶

(a)

𝑈
(+,+)
𝐴𝐵

𝑈
(−,+)
𝐶𝐴

𝑈
(+,−)
𝐵𝐶

𝑈
(−,−)
𝐶𝐴

(b)

𝑈
(+,+)
𝐴𝐵

𝑈
(−,−)
𝐶𝐴

𝑈
(+,+)
𝐵𝐶

𝑈
(−,+)
𝐵𝐶

𝑈
(+,−)
𝐵𝐶

𝑈
(−,−)
𝐵𝐶

(c)

Fig. 16. (a) Since the parity of the triangle is negative, the orientation is𝑈 (+,+)
𝐴𝐵

← 𝑈
(+,−)
𝐵𝐶

← 𝑈
(−,−)
𝐶𝐴

. (b) Two triangles sharing the

edge {𝑈 (+,+)
𝐴𝐵

,𝑈 (+,−)
𝐵𝐶

}. (c) Four triangles sharing the edge {𝑈 (+,+)
𝐴𝐵

,𝑈 (−,−)
𝐶𝐴

}

This is an orientation because for every non-boundary edge, there are an even number of 2-simplices containing

it, and they are paired by their opposite induced orientations. For example, consider the edge {𝑈 𝝈1
𝐴𝐵
,𝑈

𝝈2
𝐵𝐶
}, this edge

only can be completed with a vertex indexed as𝑈 𝝈3
𝐶𝐴

for some compatible 𝝈3 ∈ {+,−}𝑛 constrained by the transitivity

property. That is, for every component 𝑖 ∈ {1, . . . 𝑛}, if 𝝈1 (𝑖) = 𝝈2 (𝑖) = + (resp. 𝝈1 (𝑖) = 𝝈2 (𝑖) = −, then 𝝈3 (𝑖) = +

(resp. 𝝈3 (𝑖) = +). However, if 𝝈1 (𝑖) and 𝝈2 (𝑖) have different signs, both signs are compatible in 𝝈3 (𝑖). We can conclude

that the admissible 𝝈3 are exactly 2𝑘 (where 𝑘 is equal to the number of voters 𝑖 on the third situation). And, since by

hypothesis {𝑈 𝝈1
𝐴𝐵
,𝑈

𝝈2
𝐵𝐶
} is not in the boundary, 𝑘 > 0.

Second, we can pair these 2𝑘 2-simplices saying that {𝑈 𝝈1
𝐴𝐵
,𝑈

𝝈2
𝐵𝐶
,𝑈

𝝈3
𝐶𝐴
} and {𝑈 𝝈1

𝐴𝐵
,𝑈

𝝈2
𝐵𝐶
,𝑈

𝝈
′
3

𝐶𝐴
} are paired if 𝝈3 and 𝝈 ′3

are equal on each component but one. Then the parity associated to every triangle of a pair is opposite to the other

member, so, their contribution on the edge {𝑈 𝝈1
𝐴𝐵
,𝑈

𝝈2
𝐵𝐶
} determined by the induced orientations is also opposite. □

C PIVOTAL VOTERS AND PATHS IN 𝑁𝐼

In this section, we further discuss the correspondence of the pivotal setting with the simplicial complex setting of

Section 5.

To discuss the role of pivotal voters and the paths defined by sequences, consider as an example the path R defined in

Figure 11. This path starts and ends in the inner cylinder of 𝑁𝐼 , that is, the unanimity simplices (see Figure 5). Obviously,

this cylinder is identified with 𝑁𝑂 because of the unanimity property of the aggregation map 𝑓 . The remaining simplices

{R1,R2,R3} of the path link the inner cylinder with the outer one (see the complex at the right of Figure 17).
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𝑈
(−,−)
𝐶𝐴

𝑈
(−,−)
𝐴𝐵

𝑈
(+,+)
𝐵𝐶

𝑈
(+,−)
𝐶𝐴

𝑈
(−,+)
𝐴𝐵

R0 R1

R2

R3

R4

𝑓

𝑓 (𝑈
(+,−)
𝐶𝐴

) = 𝑈 −
𝐶𝐴 𝑈 −

𝐴𝐵

𝑓 (𝑈
(−,+)
𝐴𝐵

) = 𝑈 +
𝐴𝐵

𝑈 +
𝐵𝐶

Case: 𝑘𝐶𝐴 = 2

𝑈 −
𝐶𝐴

𝑈 −
𝐴𝐵

= 𝑓 (𝑈𝐴𝐵 (−, +))

𝑓 (𝑈
(+,−)
𝐶𝐴

) = 𝑈 +
𝐶𝐴

𝑈 +
𝐵𝐶

Case: 𝑘𝐶𝐴 = 1

Fig. 17. The figure in the right represents the simplices {R1,R2,R3 } linking the inner cylinder of 𝑁𝐼 (green edges) with the outer
cylinder (red edge) and the path R. The figure in the middle represents the folding of the hinges and the inner cylinder when 𝑘𝐶𝐴 = 2;
the one on the left, when 𝑘𝐶𝐴 = 1.

When the aggregation map 𝑓 is applied, the inner cylinder remains invariant because we have identified it with

𝑁𝑂 , but the outer cylinder and the links (the torus joining both cylinders) are compressed into the inner cylinder. We

have to imagine the simplices between the cylinders (from Figure 5), the ones linking the cylinders, playing the role of

łhingesž, folding into each other so that the two cylinders fit together.

In Figure 17 we can see that the hinge {R1,R2,R3} can fold two ways. It folds one way or another depending on the

value of 𝑘𝐶𝐴 . Notice that its folding also determines the value of 𝑓 (𝑈 (−,+)
𝐴𝐵

), and this determination of the folding is the

geometrical representation of the inequality 𝑘𝐶𝐴 ≤ 𝑘𝐵𝐴 , proved in Section 5.2. Moreover, the simplex R3 also belongs

to another hinge, which at the same time will represent an inequality. So, all hinges are connected and they constrain

each other foldings. Consequently, there are only two possible ways to fold and fit both cylinders together: the two

projections.

D SCHEMA OF HOW OBTAIN AGGREGATION MAPS ON RESTRICTED DOMAINS

Here we give an overview of the procedure we have followed to obtain the maps of Figure 7 in Section 3.2.

First, we have studied the scenario in which only a critical pair has been removed from 𝑁𝐼 . Notice that if a non-

dictatorial map 𝑓 exists in a domain 𝐷 like this, then in every subdomain 𝐷 ′ ⊆ 𝐷 we will have as a non-dictatorial map

𝑓 |𝐷′ . This assertion is true because 𝐷 and 𝐷 ′ have the same vertices.

As in the proof of Theorem 3.1, we focus on the domain 𝐷 obtained by removing the critical pair (R1,R2) being

R1 = (𝐵𝐴𝐶,𝐴𝐶𝐵). We will define a non-dictatorial map 𝑓 , but it has to satisfy certain conditions. First, the boundary

of R1 would have to be mapped on the boundary of 𝑁𝑂 , otherwise the 𝑓 could be extended to another map defined

on 𝐶1 and, using the arguments in Section 3.1, we conclude it would be dictatorial. Using that 𝑓 (𝑈 (−,−)
𝐶𝐴

) = 𝑈 −
𝐶𝐴

,

we state that 𝑓 (𝑈 (+,−)
𝐵𝐶

) = 𝑈 −
𝐵𝐶

and 𝑓 (𝑈 (−,+)
𝐴𝐵

) = 𝑈 −
𝐴𝐵

. However, we find clearer using the same nomenclature as in

Section 3.1, working with the green and blue cycles. Using this approach, the edge {𝑈 (+,−)
𝐵𝐶

,𝑈
(−,+)
𝐴𝐵

} is mapped to the

edge 𝛼 = {𝑈 −
𝐵𝐶
,𝑈 −

𝐴𝐵
} ∈ 𝑁𝑂 (see Figure 18c).

Following the same argument as above, we would conclude that the boundary of R2 should be also mapped on

the boundary of 𝑁𝑂 . However, instead of developing an argument for each feasible R2, we will start our argument

uniquely considering the image of the boundary of R1 fixed (i.e. 𝑓 ({𝑈 (+,−)
𝐵𝐶

,𝑈
(−,+)
𝐴𝐵

}) = 𝛼). Moreover, we will use the

same argument to propose the five candidates to aggregation maps (one for each triangle R2).
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𝛼

3

4

5

0

𝛽

𝐶

4

𝛼

3

4

𝐵

2

3

4

𝛾

1

2

3

4

𝑓
({

𝑈
(+,−)
𝐵𝐶

,𝑈
(−,+)
𝐴𝐵

})

𝑓
({

𝑈
(−,+)
𝐴𝐵

,𝑈
(+,−)
𝐶𝐴

})

𝑓
({

𝑈
(+,−)
𝐶𝐴

,𝑈
(−,+)
𝐵𝐶

})

𝑓
({

𝑈
(−,+)
𝐵𝐶

,𝑈
(+,−)
𝐴𝐵

})

𝑓
({

𝑈
(+,−)
𝐴𝐵

,𝑈
(−,+)
𝐶𝐴

})

𝑓
({

𝑈
(−,+)
𝐶𝐴

,𝑈
(+,−)
𝐵𝐶

})

(a)

𝑈
(+,−)
𝐶𝐴

𝑈
(−,+)
𝐴𝐵

𝑈
(+,−)
𝐵𝐶

𝑈
(−,+)
𝐶𝐴

𝑈
(+,−)
𝐴𝐵

𝑈
(−,+)
𝐵𝐶

𝑈
(+,−)
𝐶𝐴

𝑈
(+,+)
𝐴𝐵

𝑈
(−,−)
𝐵𝐶

𝑈
(+,+)
𝐶𝐴

𝑈
(−,−)
𝐴𝐵

𝑈
(+,+)
𝐵𝐶

𝑈
(−,−)
𝐶𝐴

𝑈
(+,+)
𝐴𝐵

𝑈
(+,−)
𝐵𝐶

𝑈
(−,+)
𝐶𝐴

𝑈
(+,−)
𝐴𝐵

𝑈
(−,+)
𝐵𝐶

𝑈
(+,−)
𝐶𝐴

𝑈
(−,+)
𝐴𝐵

𝑈
(+,−)
𝐵𝐶

3, 𝛾

𝛼

. . .

. . .

3, 𝛾

𝛼

(b)

𝑈 +
𝐴𝐵

𝑈 +
𝐵𝐶

𝑈 +
𝐶𝐴

𝑈 −
𝐴𝐵

𝑈 −
𝐵𝐶

𝑈 −
𝐶𝐴

𝐴

𝐵

𝐶

𝛼

𝛽

𝛾

𝐴𝐶𝐵

𝐴𝐵𝐶

𝐵𝐴𝐶

𝐵𝐶𝐴

𝐶𝐴𝐵

𝐶𝐵𝐴

1

2 3

4

50

(c)

Fig. 18. (a) The tree representing the admissible mappings of the blue edges when R1 = {𝑈
(−,+)
𝐴𝐵

,𝑈
(+,−)
𝐵𝐶

,𝑈
(−,−)
𝐶𝐴

}. The first row of the

three represents the admissible image of the edge {𝑈 (+,−)
𝐵𝐶

,𝑈
(−,+)
𝐴𝐵

}, the second row the admissible images of {𝑈 (−,+)
𝐴𝐵

,𝑈
(+,−)
𝐶𝐴

}, and

successively until the edge {𝑈 (−,+)
𝐶𝐴

,𝑈
(+,−)
𝐵𝐶

}. So, a tupple represents an admissible mapping of the blue cycle. For instance, the tuple
(𝛼, 3, 𝐵, 2, 3, 4) represents a map in which the first blue edge is mapped to 𝛼 , the second to 3 and the sixth to 4. (b) The torus without

the triangle R1 = {𝑈
(−,+)
𝐴𝐵

,𝑈
(+,−)
𝐵𝐶

,𝑈
(−,−)
𝐶𝐴

} and some admissible mappings of the edges represented. (c) The 𝑁𝑂 complex with their
edges labeled.

Our strategy will be the following: We will determine all possible images of the blue path (i.e. the antiunanimity

vertices), using exclusively the simplicial properties of 𝐶1 and the unanimity axiom. For instance, taking into account

that 𝑓 (𝑈 (−,+)
𝐴𝐵

) = 𝑈 −
𝐴𝐵

and 𝑓 (𝑈 (+,+)
𝐵𝐶
) = 𝑈 +

𝐵𝐶
, the image of 𝑈 (+,−)

𝐶𝐴
is a priori not determined. In other words, the

edge {𝑈 (−,+)
𝐴𝐵

,𝑈
(+,−)
𝐶𝐴

} can be mapped either in 3 or in 𝛾 (second row of the tree in Figure 18a). If it were mapped

to 𝛾 , using the same reasoning, we conclude that the next edge {𝑈 (+,−)
𝐶𝐴

,𝑈
(−,+)
𝐵𝐶

} must be mapped in 1. Otherwise, if

𝑓 ({𝑈
(−,+)
𝐴𝐵

,𝑈
(+,−)
𝐶𝐴

}) = 3, then 𝑓 ({𝑈 (+,−)
𝐶𝐴

,𝑈
(−,+)
𝐵𝐶

}) could be 4 of 𝐵 (third row in Figure 18a).

We repeat the same types of arguments until we have mapped all possible images for the blue cycle. In Figure 18a

each branch corresponds to a candidate for the mapping. Starting with 𝛼 as the image of {𝑈 (+,−)
𝐵𝐶

,𝑈
(−,+)
𝐴𝐵

} and finishing

with 4 or 𝛽 as the image of {𝑈 (−,+)
𝐶𝐴

,𝑈
(+,−)
𝐵𝐶

}.

We have five candidates for the image of the blue cycle, equivalently, five candidates for an aggregation map. By the

definition of 𝑓 , we know that these maps are simplicial in 𝐶1, but we need to verify that these candidates are simplicial

in the whole domain 𝑁𝐼 ∖ {(R1,R2)} (for a suitable R2).

It turns out that the unique obstacle for each of these five maps to be simplicial is overcomed by removing a single

triangle from 𝐶2. That is, for each critical pair (R1,R2) (being R1 = (𝐵𝐴𝐶,𝐴𝐶𝐵)), we obtain a unique non dictatorial

aggregation map.

Given a triangle R2 ∈ 𝐶2, as we have argued before, it has to be mapped to the boundary of 𝑁𝑂 , then the unique

map compatible, is the one which maps the blue edge of R2 in the boundary of R2. For example, if R2 = (𝐴𝐵𝐶, 𝐵𝐶𝐴),

the unique candidate to be simplicial is the map which maps
{

𝑈
(+,−)
𝐴𝐵

,𝑈
(−,+)
𝐶𝐴

}

to 𝐶 . That is, the map represented by the

tupple (𝛼, 3, 4, 5,𝐶, 4).
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