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One-factor model of liquidity risk 

Maksim Osadchiy1 

 

Abstract 

Credit and liquidity risks at the bank level depend on idiosyncratic and systematic (market) 

risks at the firm level. Portfolio effect transforms idiosyncratic risk into expected factor and 

leaves only systematic risk. Dependence only on market risk allows evaluating credit and 

liquidity risk using one-factor models. Since market risk is common to both credit risk and 

liquidity risk, it is useful to evaluate their joint distribution in a closed form. 

The one-factor Vasicek model was designed to evaluate credit risk – the probability distribution 

of the portfolio loss. The one-factor model proposed in the paper is designed to evaluate 

liquidity risk. Combination of credit risk and liquidity risk models is used to evaluate the joint 

distribution of credit and liquidity risks. 
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Introduction 

At the heart of modern banking risk management is the Internal ratings-based approach. The 

IRB approach underlies Basel II and Basel III. In turn, the IRB approach is based on the Vasicek 

distribution, which evaluates credit risk taking into account the correlation of borrowing firms' 

assets. The Vasicek model takes into account the peculiarities of the collective behavior of 

borrowers associated with the common dependence of their business on market risk. 

The Vasicek model was created in 1987, 35 years ago. It was used in Basel II in 2005, and since 

than no substantial progress has been made in applying the results of modern financial 

mathematics to the regulation of the banking sector. Besides, the Vasicek model has a 

significant drawback: it does not take into account premature defaults. 

The liquidity risk of a bank is also significantly dependent on similar features of the collective 

behavior of firms, since deposit outflow is just as strongly dependent on the overall market risk 

as probability of their default. Meanwhile, liquidity risk evaluations used in modern risk 

management do not take into account this correlation, which leads to an underestimation of 

liquidity risk. 

It is especially important to evaluate joint distribution of credit and liquidity risks. Meanwhile, 

in modern banking risk management, this issue is not considered. 

Thus, the main purpose of the paper is to apply the Vasicek approach to evaluation of liquidity 

risk and to joint evaluation of credit risk and liquidity risk. 

The paper is organized as follows. Section 1 reviews the related literature. Section 2 develops 

the model for assessing liquidity risk taking into account the correlation effect in the style of 

the Vasicek model, and premature defaults are taken into account. The dependence of the 

default probability on parameters is considered. A numerical example is also considered. 

Section 3 is devoted to joint evaluation of credit risk and liquidity risk. Section 3 concludes. 
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1. Literature Review 

On the base of the Black-Scholes model Robert Merton (Merton, 1974) proposed the first 

structural credit risk model for assessing the default probability of the firm and valuation of the 

debt. Merton modeled the firm’s equity as a European vanilla call option written on its assets. 

Oldrich Vasicek (Vasicek 1987) created the model of assessing risk of loan portfolio on the base 

of the Merton model. Vasicek modeled the loan portfolio as a portfolio of binary cash-or-

nothing call-options written on the assets of borrowing firms, while the size of the firm's debt 

is the strike price. The model considers two sources of credit risk: the idiosyncratic risk and the 

systematic risk. The portfolio effect completely eliminates the idiosyncratic risk, while the 

systematic risk remains. 

The MtM credit risk model KMV Portfolio ManagerTM was constructed on the base of the 

Vasicek approach. This commercial model was used in the AIRB approach (BIS 2005). 

From the study of the simplest options - European vanilla options, researchers quickly moved 

on to the study of more complex exotic options, and, in particular, barrier options. Barrier 

options were first evaluated by Merton (1973). And the first results were immediately applied 

to credit risk modeling. Black and Cox (1976) calculated the default probability of a firm, taking 

into account the possibility of a premature default. 

However, the generalization of the Vasicek model to the case of premature defaults is still not 

possible, since there is no closed form solution to the corresponding problem. 

 

2. Model of liquidity risk valuation 

Assume the size of the deposit is proportional to the value of the firm’s assets. Since assets 

obey geometric Brownian motion, hence the firm's deposit also obeys the geometric Brownian 

motion. The Wiener process that governs this motion consists of two components - 

idiosyncratic and systematic (market) risks. The portfolio effect eliminates idiosyncratic risk. 

The portfolio of deposits also obeys the geometric Brownian motion, leaving only systematic 

risk. The outflow of deposits reduces liquidity. If the outflow reaches a critical level, then a 

default occurs. The probability of default is calculated according to the formula known from 

the theory of barrier options. 

Consider a bank portfolio of deposits. Let the firm 𝑘 has only one deposit, 𝑘 = 1,… , 𝑛. Size of 

the deposit is proportional to the value of the assets of the firm	
𝐷!(𝑡) = 𝛽!𝑉!(𝑡) 

If assets grow, the firm increases the deposit. If assets decline, then the firm reduces the 

deposit. 

The value of assets 𝑉!(𝑡) of the firm 𝑘 obeys the geometric Brownian motion with the risk-free 

rate 𝑟 and the volatility 𝜎: 

 

𝑑𝑉!(𝑡) = 𝑟𝑉!(𝑡)𝑑𝑡 + 𝜎𝑉!(𝑡)𝑑𝑊!(𝑡) 
where 𝑊!(𝑡) is the Wiener process. Assume 

𝑊!(𝑡) = 31 − 𝜌𝑤!(𝑡) + 3𝜌𝑤(𝑡) 
where 𝑤!(𝑡) is the idiosyncratic (entity specific) Wiener process, 𝑤(𝑡) is the systematic 

(market) Wiener process; processes 𝑤!(𝑡), k=1,…,n and 𝑤(𝑡) are independent; and 𝜌 is the 

correlation coefficient. 
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The size of deposit portfolio obeys the geometric Brownian motion 

𝐷(𝑡) = 𝐷(0)𝑒"#$%&#'($) 
with deposit portfolio volatility 

𝜎9 = 3𝜌𝜎 

and deposit portfolio drift 

𝜈9 = 𝑟 − 𝜎9*2  

For the proof see Appendix 1. 

 

Outflow of deposits during period 𝑡 equals 

 𝐷(0) − 𝐷(𝑡) 
 

Let the critical level of liquidity outflow is 𝐶. Accordingly the barrier 

 𝑌 = 𝐷(0) − 𝐶 

 

is the critical level of the deposit portfolio. If 𝐷(𝑡) falls below the barrier 𝑌, then there is a 

shortage of liquidity, and a default occurs. 

Since the size of the deposit portfolio obeys geometric Brownian motion, the well-known 

formula of the theory of barrier options can be used: 

Probability of default during period 𝑡 equals 

ℙ(𝑀(𝑡) ≤ 𝑌) = ΦB𝑦 − 𝜈9𝑡𝜎9√𝑡 E + 𝑒+,ΦB
𝑦 + 𝜈9𝑡
𝜎9√𝑡 E 

 

where the minimum to date for the size of deposit portfolio 

 𝑀(𝑡) = min-∈[0,$]𝐷(𝑠) 
 

𝑦 = 𝑙𝑛K𝑌/𝐷(0)M 

𝛼 = 𝑟 − 𝜎9*2𝜎9*2
 

the “direct” distance to default 𝑦 − 𝜈9𝑡
𝜎9√𝑡  

the “image” distance to default 𝑦 + 𝜈9𝑡
𝜎9√𝑡  

 Φ(. ) is the standard normal CDF. For the proof see Appendix 2. The first term of the sum is the 

probability of a “mature” default, and the second term is the adjustment for a “premature” 

default. 
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If the regulator limits the default probability ℙ(𝑀(𝑡) ≤ 𝑌) ≤ 𝛽, then the bank can choose the 

ratio of the size of liquidity 𝐶 and the initial size of deposit portfolio 𝐷(0) so as to comply with 

this limitation on liquidity risk. 

 

The equation ℙ(𝑀(𝑡) ≤ 𝑌) = 𝛽 allows us to determine the minimum allowable value of the 

parameter 

𝑦 = 𝑙𝑛K𝑌/𝐷(0)M = 𝑙𝑛K1 − 𝐶/𝐷(0)M 

 

Dependence of default probability on parameters 

Easy to check that the intuitively obvious inequalities hold: 

 ∂
∂ρℙ(𝑀(𝑡) ≤ 𝑌) ≥ 0 

∂
∂𝜎 ℙ(𝑀(𝑡) ≤ 𝑌) ≥ 0 

∂
∂𝑦ℙ(𝑀(𝑡) ≤ 𝑌) ≥ 0 

∂
∂𝑡 ℙ(𝑀(𝑡) ≤ 𝑌) ≥ 0 

∂
∂𝑟 ℙ(𝑀(𝑡) ≤ 𝑌) ≤ 0 

If volatility 𝜎9 → 0 (𝜎 → 0 or 𝜌 → 0) then default is impossible: ℙ(𝑀(𝑡) ≤ 𝑌) = 0 

If 𝑦 = 0 ⟹ 𝑌 = 𝐷(0) ⟹ 𝐶 = 0 

then default is inevitable: 

ℙ(𝑀(𝑡) ≤ 𝑌) = ΦB−𝜈9𝑡𝜎9√𝑡E + ΦB
𝜈9𝑡
𝜎9√𝑡E = 1 

 

Numerical example 

Let 𝑟 = 0.02 𝜎 = 0.2 𝑡 = 1 𝐶
𝐷(0) = 0.1 

 

The table shows the dependence of the default probability ℙ(𝑀(𝑡) ≤ 𝑌) on the correlation 𝜌: 

 𝜌 ℙ(𝑀(𝑡) ≤ 𝑌) 20% 19.2% 50% 43.2% 100% 59.8% 

 

3. Joint distribution of credit and liquidity risks 

Since both credit risk and liquidity risk depend only on market risk, it is possible to calculate the 

joint distribution of credit and liquidity risks also using a formula known from the theory of 

barrier options. 
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Consider a portfolio of 𝑛 loans, each with a face value 1 and a maturity 𝑡. Portfolio loss is equal 

to the share of defaulted firms 

 

𝐿𝑜𝑠𝑠 = 1
𝑛]𝕀3!($)45!

6

!78
 

where	
𝑉!(𝑡) = 𝑉!(0)𝑒"$%&9:8;<'!($)%:<'($)= 

 

𝕀> = _1, 𝑖𝑓	𝐴	𝑖𝑠	𝑡𝑟𝑢𝑒0, 𝑜/𝑤  

𝐿! is the size of liabilities of the firm 𝑘. 

 

Condition of default 𝑉!(𝑡) ≤ 𝐿! 

can be written as 

𝑉!(0)𝑒"$%&?:8;<'!($)%:<'($)@ ≤ 𝐿! 

 

Assume 𝐿!𝑉!(0) =
𝐿

𝑉(0) 
for each 𝑘 = 1…𝑛, where 

𝐿 = ]𝐿!
6

!78
 

Hence the default condition 

𝜈𝑡 + 𝜎K31 − 𝜌𝑤!(𝑡) + 3𝜌𝑤(𝑡)M ≤ ln(𝐿/𝑉(0)) 
 

𝑤!(𝑡) ≤ ln(𝐿/𝑉(0)) − 𝜈𝑡 − 𝜎3𝜌𝑤(𝑡)
𝜎31 − 𝜌  

 

𝑍!(𝑡) ≤ ln(𝐿/𝑉(0)) − 𝜈𝑡 − 𝜎3𝜌𝑤(𝑡)
𝜎√𝑡31 − 𝜌  

Hence the loss of portfolio conditional on the market shock	𝑍(𝑡)	equals 

𝐿𝑜𝑠𝑠(𝑍(𝑡)) = 1
𝑛]𝕀

A!($)4BC
(5/3(0));"$;&:<'($)

&√$:8;<

6

!78
 

Due to the law of large numbers 

𝐿𝑜𝑠𝑠(𝑍(𝑡)) = Φfln(𝐿/𝑉(0)) − 𝜈𝑡 − 𝜎3𝜌𝑤(𝑡)𝜎√𝑡31 − 𝜌 g 

Hence the portfolio loss 𝐿𝑜𝑠𝑠(𝑍(𝑡)) doesn’t obey the geometric Brownian motion. 

 

If 𝐿𝑜𝑠𝑠(𝑍(𝑡)) ≥ 𝜆 

 

where	𝜆 – some critical level of portfolio loss, then 
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 𝜎9𝑤(𝑡) + 𝜈9𝑡 ≤ 𝑥(𝑡) 
where 

𝑥(𝑡) = ln(𝐿/𝑉(0)) + 𝜎j*2 𝑡 − 𝜎j√𝑡Φ;8(𝜆) 
𝜎j = 𝜎31 − 𝜌 

Hence the probability of default due to both loss of liquidity and loss of capital is 

ℙB min-∈[0,$] B𝑤(𝑠) +
𝜈9
𝜎9 𝑠E ≤

𝑦
𝜎9 , 𝑤(𝑡) +

𝜈9
𝜎9 𝑡 ≤

𝑥(𝑡)
𝜎9 E

= ΦB𝑦 − 𝜈9𝑡𝜎9√𝑡 E + 𝑒+,ΦB
𝑦 + 𝜈9𝑡
𝜎9√𝑡 E − 𝑒+,ΦB

2𝑦 − 𝑥(𝑡) + 𝜈9𝑡
𝜎9√𝑡 E 

if 𝑦 ≤ 𝑥(𝑡) 
For the proof see Appendix 2. 

 

Hence 

 

ℙ(𝑀(𝑡) ≤ 𝑌, 𝐿𝑜𝑠𝑠(𝑍(𝑡)) ≥ 𝜆) = ΦB𝑦 − 𝜈9𝑡𝜎9√𝑡 E + 𝑒+,ΦB
𝑦 + 𝜈9𝑡
𝜎9√𝑡 E − 𝑒+,ΦB

2𝑦 − 𝑥(𝑡) + 𝜈9𝑡
𝜎9√𝑡 E 

 

Since 

ℙ(𝑀(𝑡) ≤ 𝑌) = ΦB𝑦 − 𝜈9𝑡𝜎9√𝑡 E + 𝑒+,ΦB
𝑦 + 𝜈9𝑡
𝜎9√𝑡 E 

 

the amendment 

𝑒+,ΦB2𝑦 − 𝑥(𝑡) + 𝜈9𝑡𝜎9√𝑡 E 

is the default probability due to loss of liquidity, provided that there is no default due to loss of 

capital. 

The disadvantage of using the Vasicek model and the liquidity risk valuation model together is 

that the Vasicek model takes into account only “mature” defaults, while the liquidity risk 

valuation model also takes into account “premature” defaults. 

4. Conclusion 

The paper builds a one-factor liquidity risk model that takes into account premature defaults. 

The main result of the article is the calculation of the probability of default in the event of a 

liquidity outflow. The joint distribution of credit risk and liquidity risk was also calculated. 

Calculations are based on the theory of barrier options. 

 

Appendix 1 

The solution of the stochastic differential equation 

 𝑑𝑉!(𝑡) = 𝑟𝑉!(𝑡)𝑑𝑡 + 𝜎𝑉!(𝑡)𝑑𝑊!(𝑡) 
is 

𝑉!(𝑡) = 𝑉!(0)𝑒"$%&F!($) 
where drift 
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𝜈 = 𝑟 − 𝜎*2  

Since size of deposit of firm 𝑘 𝐷!(𝑡) = 𝛽!𝑉!(𝑡) 
then 

𝐷!(𝑡) = 𝐷!(0)𝑒"$%&F!($) 
Since 

𝑊!(𝑡) = 31 − 𝜌𝑤!(𝑡) + 3𝜌𝑤(𝑡) 
then 

𝐷!(𝑡) = 𝐷!(0)𝑒"$%&9:8;<'!($)%:<'($)= 
 

The size of deposit portfolio 

𝐷(𝑡) = ]𝐷!(𝑡)
6

!78
 

weight of the deposit in deposit portfolio 

𝑐!,6 = 𝐷!(0)/𝐷(0) 
 

Due to the Kolmogorov’s strong law of large numbers if 

]l𝑐!,6𝑘 m*
6

!78
< ∞ 

then 

𝐷(𝑡) = ]𝐷!(𝑡)
6

!78
= 𝐷(0)𝑒"$%&:<'($)]𝑐!,6𝑒&:8;<'!($)

6

!78

= 𝐷(0)𝑒"$%&:<'($)]𝑐!,6𝑒&:8;<√$A(!)($)
6

!78
= 𝐷(0)𝑒"$%&:<'($)𝔼G l𝑒&:8;<√$Gm

= 𝐷(0)𝑒"$%&:<'($)𝑒(8;<)&$* $ = 𝐷(0)𝑒"#$%&#'($) 
where 

𝑤!(𝑡) = √𝑡𝑍(!)(𝑡) 
is the idiosyncratic Wiener process, 

𝑍(!)(𝑡)~𝑁(0,1), 1 ≤ 𝑘 ≤ 𝑛 

are i.i.d. r.v., 𝑥~𝑁(0,1) 
 

Example: 𝑐!,6 = 1/𝑛 (all deposits have the same size). 

 

Hence the size of the deposit portfolio obeys the geometric Brownian motion 

 𝑑𝐷(𝑡) = 𝑟𝐷(𝑡)𝑑𝑡 + 𝜎9𝐷(𝑡)𝑑𝑤(𝑡) 
with the deposit portfolio volatility 𝜎9 = 3𝜌𝜎. 
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Due to this circumstance, it is possible (for the proof see Appendix 2) to calculate the 

probability of premature default in a closed form in the case of liquidity risk, which is 

impossible in the case of credit risk. 

 

Appendix 2 

 

Let's prove that if 

𝐷(𝑡) = 𝐷(0)𝑒"#$%&#'($) 
 

then 

 

ℙ(𝑀(𝑡) ≤ 𝑌) = ΦB𝑦 − 𝜈9𝑡𝜎9√𝑡 E + 𝑒+,ΦB
𝑦 + 𝜈9𝑡
𝜎9√𝑡 E 

 

This is a known result. This paper provides a proof based on the paper (Kostadinov, 2008). 

 

Probability of default 

ℙ(𝑀(𝑡) ≤ 𝑌) = ℙB min-∈[0,$]𝐷(0)𝑒"#-%&#'(-) ≤ 𝑌E = ℙB min-∈[0,$] B𝑤(𝑠) +
𝜈9
𝜎9 𝑠E ≤

𝑦
𝜎9E 

where 

𝑦 = 𝑙𝑛K𝑌/𝐷(0)M 

 

To get rid of the trend we use the new measure with the Brownian motion 

𝑤s(𝑡) = 𝑤(𝑡) + 𝜈9
𝜎9 𝑡 

The event 

𝐴 = B min-∈[0,$]𝑤s(𝑠) ≤
𝑦
𝜎9 , 𝑤s(𝑡) ≥

𝑥
𝜎9E 

where 𝑦 ≤ 𝑥. 

 

Girsanov’s theorem allows to get 

ℙ(𝐴) = 𝔼(𝕀>) = 𝔼t B𝑒;8*?,&#@$$%"#&#'#($)𝕀>E 

using the Radon-Nikodym derivative. 

Let use the reflection principle. After replacement 𝑤s(𝑡) with 2 ,&# −𝑤s(𝑡) we get 

ℙ(𝐴) = 𝔼t f𝑒;8*?,&#@$$%"#&#H*,&#;'#($)I𝕀*,&#;'#($)JG&#g = 𝑒*,"#&#$𝔼t B𝑒;8*?,&#@$$;"#&#'#($)𝕀'#($)4*,;G&#
E 

To get rid of the Radon-Nikodym derivative we use the new measure with the Brownian motion 

𝑤u(𝑡) = 𝑤s(𝑡) + 𝜈9
𝜎9 𝑡 

Girsanov’s theorem allows to get 

𝔼t B𝑒;8*?,&#@$$;"#&#'#($)𝕀'#($)4*,;G&#
E = ℙv B𝑤u(𝑡) ≤ 2𝑦 − 𝑥 + 𝜈9𝑡

𝜎9 E = ΦB2𝑦 − 𝑥 + 𝜈9𝑡𝜎9√𝑡 E 

Hence the joint distribution 

ℙB min-∈[0,$] B𝑤(𝑠) +
𝜈9
𝜎9 𝑠E ≤

𝑦
𝜎9 , 𝑤(𝑡) ≥

𝑥
𝜎9E = 𝑒*,"#&#$ΦB2𝑦 − 𝑥 + 𝜈9𝑡𝜎9√𝑡 E 

Hence 
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ℙB min-∈[0,$] B𝑤(𝑠) +
𝜈9
𝜎9 𝑠E ≤

𝑦
𝜎9E

= ℙB min-∈[0,$] B𝑤(𝑠) +
𝜈9
𝜎9 𝑠E ≤

𝑦
𝜎9 , 𝑤(𝑡) ≥

𝑥
𝜎9E

+ ℙB min-∈[0,$] B𝑤(𝑠) +
𝜈9
𝜎9 𝑠E ≤

𝑦
𝜎9 , 𝑤(𝑡) <

𝑥
𝜎9E 

ℙB min-∈[0,$] B𝑤(𝑠) +
𝜈9
𝜎9 𝑠E ≤

𝑦
𝜎9 , 𝑤(𝑡) <

𝑦
𝜎9E = ℙl𝑤(𝑡) < 𝑦

𝜎9m 

 

ℙB min-∈[0,$] B𝑤(𝑠) +
𝜈9
𝜎9 𝑠E ≤

𝑦
𝜎9E = ℙ B min-∈[0,$] B𝑤(𝑠) +

𝜈9
𝜎9 𝑠E ≤

𝑦
𝜎9 , 𝑤(𝑡) ≥

𝑦
𝜎9E + ℙl𝑤(𝑡) ≤

𝑦
𝜎9m 

 

Hence 

ℙ(𝑀(𝑡) ≤ 𝑌) = ΦB𝑦 − 𝜈9𝑡𝜎9√𝑡 E + 𝑒
*"#,
&#$ ΦB𝑦 + 𝜈9𝑡𝜎9√𝑡 E = ΦB𝑦 − 𝜈9𝑡𝜎9√𝑡 E + 𝑒+,ΦB

𝑦 + 𝜈9𝑡
𝜎9√𝑡 E 

 

Q.E.D. 
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