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1 Introduction

Hidden-city ticketing (HCT) is a pricing phenomenon in the airline industry that occurs when

the price for a nonstop trip from A to B is more expensive than the price for a connecting trip

from A to C that connects at B (i.e., the “hidden city”).1 When this phenomenon occurs,

passengers traveling from A to B can save money by purchasing the connecting A-B-C trip.

These HCT passengers would take the first flight from A to B, then deliberately forego the

trip’s second flight from B to C.

Figure 1 presents an example of HCT on American Airlines. In this example, the A-B

route is a nonstop trip from Chicago O’Hare to Reagan National (DCA) in Washington,

D.C. The A-C route is a connecting trip from Chicago O’Hare (city A) to Boston (city C)

that connects at DCA (i.e., “hidden-city” B). In this instance, the price of the connecting

A-B-C trip ($178) is $209 cheaper than the price of the nonstop A-B trip ($387). Hence,

passengers whose final destination is Washington, D.C. will save money if they purchase the

connecting Chicago to Boston trip and then, after deplaning at DCA, ending their journey

by not boarding the second flight to Boston.

Although passengers can save money by purchasing hidden-city tickets, only one-way

passengers are eligible to take advantage of these opportunities. For instance, failure to show

up for the second flight on the outbound portion of a roundtrip will result in the cancellation

of the rest of the roundtrip ticket. In addition, only passengers with carry-on luggage may

engage in HCT because checked luggage will not be transferred to baggage claim at the

connecting city on a hidden-city ticket.

There is another key risk that prospective HCT passengers should be aware of. Specif-

ically, most airlines prohibit HCT in their contract of carriage (e.g., American, Delta, and

United explicitly state that a passenger must complete all segments of a purchased ticket).
1HCT is also referred to as “skiplagging”. For a comprehensive review on different aspects of HCT, see

Meire and Derudder (2022). For some theory behind the cause and impact of HCT, see Wang and Ye (2016)
and Oh and Huh (2022).
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Figure 1: Example of Hidden-City ticketing

(AA 831) 

(AA 831) 

(AA 2116) 

 

ORD        DCA  

                               $387                      

   A            B                 C 

                   $178 

ORD         DCA        BOS 

            

 Chicago-Washington, nonstop trip (Route A-B)
One way · 1 · Economy

Chicago Washington
Total price from

$387

Selected �ights Track prices

Fare options

Share

This airline may be offering additional flexibility for bookings. More details

Departing �ight · Sun, Jan 26

12:20 PM · O'Hare International Airport (ORD)

Travel time: 1 hr 53 min

3:13 PM · Ronald Reagan Washington National Airport (DCA)

American · Economy · Airbus A321 · AA 831

Average legroom (30 in)

Wi-Fi

In-seat power & USB outlets

Stream media to your device

Change flight

Chicago-Boston, with connection in Washington (Route A-C)
One way · 1 · Economy

Chicago Boston
Total price from

$178

Selected �ights Track prices

Share

This airline may be offering additional flexibility for bookings. More details

Departing �ight · Sun, Jan 26

12:20 PM · O'Hare International Airport (ORD)

Travel time: 1 hr 53 min

3:13 PM · Ronald Reagan Washington National Airport (DCA)

American · Economy · Airbus A321 · AA 831

Average legroom (30 in)

Wi-Fi

In-seat power & USB outlets

Stream media to your device

Carbon emissions estimate: 134 kg

2 hr 17 min layover · Washington (DCA)

5:30 PM · Ronald Reagan Washington National Airport (DCA)

Travel time: 1 hr 37 min

7:07 PM · Boston Logan International Airport (BOS)

American · Economy · Embraer E190 · AA 2116

Average legroom (30 in)

Wi-Fi

In-seat power outlet

Stream media to your device

Carbon emissions estimate: 119 kg

Change flight

As a result, passengers engaging in HCT may suffer retaliatory consequences including re-

ceiving a lifetime ban from the airline or having their frequent flyer membership revoked. In
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rare instances, airlines have even sued HCT passengers.2

Even though there are risks associated with HCT, the focus of this article is on the poten-

tial factors (e.g., network, route, and ticket characteristics) that contribute to the existence

of HCT opportunities. One obvious factor is the extensive hub-and-spoke network structure

of the large full-service carriers (e.g., American, Delta, and United). By funneling passengers

through a hub, carriers are able to exploit economies of traffic density, resulting in a lower

cost per passenger (Caves et al., 1984; Brueckner et al., 1992; Brueckner and Spiller, 1994).

However, by controlling a large fraction of flights and gates at their hubs, carriers are also

able to exercise market power and charge a “hub premium” to passengers who originate or

terminate their trips at the hub (Borenstein, 1989; Lederman, 2008; Ciliberto and Williams,

2010; Escobari, 2011; Bilotkach and Pai, 2016). In other words, fares for A-B trips may be

high due to the hub premium while fares for A-B-C trips may be low due to the density

savings that are passed on to passengers who connect or “flow through” the hub.

A second factor that likely contributes to the existence of HCT opportunities is an airline’s

yield management strategy.3 For example, airlines employ a variety of mechanisms (e.g.,

advance-purchase requirements and other ticket restrictions such as Saturday night stay,

minimum stay, and non-refundability) to segment passengers with different price elasticities

of demand.4 All else equal, HCT opportunities will likely arise if passengers on the A-C route

are more price-elastic (i.e., have a higher price elasticity of demand) than passengers on the

A-B route.

In the sections that follow, we examine how various route and ticket characteristics af-

fect the prevalence of HCT opportunities. Related to the first factor mentioned above, we

hypothesize that the level of competition within an airline’s hub-and-spoke network is a key
2For example, Lufthansa sued a passenger in 2019 for missing the last leg of his ticketed journey. See

https://www.cnn.com/travel/article/lufthansa-sues-passenger-scli-intl/index.html.
3For background on airline yield management practices, see Talluri et al. (2004) and Belobaba (2009).
4For specific examples of price discrimination in the airline industry, see Dana (1998), Stavins (2001),

Bischoff et al. (2011), Puller and Taylor (2012), Aslani et al. (2014), Escobari and Jindapon (2014), Wang
and Ye (2016), Escobari et al. (2019), and Luttmann (2019b), among others.
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driver of HCT. In particular, the level of competition on A-B and A-C routes should have

countervailing effects on the frequency of HCT opportunities. Since HCT occurs when the

nonstop A-B fare is more expensive than the connecting A-C fare (i.e., FareAB > FareAC),

additional competition on A-C routes should decrease FareAC, increasing the likelihood that

FareAB > FareAC holds. In contrast, additional competition on A-B routes should decrease

FareAB, decreasing the likelihood that FareAB > FareAC holds.

In addition to competition, we hypothesize that advance-purchase requirements are an-

other key driver of HCT. Assuming that passengers who purchase tickets closer to departure

are more price-inelastic and have higher search costs than passengers who book further in

advance, then HCT opportunities are expected to be more frequent closer to departure. In

other words, passengers who purchase tickets further in advance are more likely to seek out

HCT opportunities given their low search costs and high price elasticity. In contrast, passen-

gers who purchase tickets closer to departure are less likely to seek out these opportunities

given their high search costs and low price elasticity. Armed with this knowledge of the

customer base, airlines may respond by ensuring that HCT opportunities are scarce during

the early booking period.

Although HCT opportunities may be common in hub-and-spoke networks,5 the lack of

sufficient data has likely been the reason why few empirical studies have previously been

conducted on this topic.6 For instance, the Airline Origin and Destination Survey (DB1B)

released by the United States Department of Transportation has been used in several previous

empirical studies of the airline industry.7 However, the DB1B currently does not include

information on the specific flight(s) purchased or the exact purchase and departure dates
5For example, a study conducted by Hopper in 2015 found that HCT opportuni-

ties exist in 26% of U.S. domestic routes. See https://media.hopper.com/research/
hidden-city-ticket-opportunities-common-think.

6To the best of our knowledge, two recent empirical studies have examined HCT. Liu (2020) examines
HCT on a single departure date (April 6th, 2016), with corresponding fares collected two months prior to
departure (February 6th, 2016). Sun et al. (2022) conduct a data-driven analysis to identify spatial regions
and temporal periods of HCT using data from 2010 to 2021.

7For example, see Brueckner et al. (1992), Gerardi and Shapiro (2009), Brueckner et al. (2013), or Dai
et al. (2014), among others.
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(only the quarter of travel is reported). As a result, the DB1B cannot be used to examine how

factors such as advance-purchase requirements affect the frequency of HCT opportunities.

To examine when and why HCT opportunities occur, we rely on a unique panel of over

772 thousand published fares collected over a seven-month period from a major online travel

agency. Flights in our sample depart between October 1st, 2019 and February 29th, 2020 and

encompass many of the most densely traveled routes across the continental United States.

Notably, because we track the price of both nonstop (A-B trips) and connecting trips (A-B-C

trips) in the sixty-day period before departure, we are able to examine how advance-purchase

requirements affect HCT opportunities.

We have three primary findings. First, the level of competition on both A-B and A-C

routes are key determinants of HCT. Consistent with expectations, we find that an additional

carrier providing nonstop service on the A-C route increases the likelihood of HCT by 1.6%-

3.6% while an additional nonstop carrier on the A-B route decreases the likelihood of HCT

by 3.5%.8

Second, we find that advance-purchase requirements are another key determinant of HCT.

In particular, HCT opportunities are more frequent in the last week before departure because

nonstop A-B fares increase at a higher rate than connecting A-C fares during this period.

As we previously discussed, one possible explanation for this result is related to passenger

heterogeneity during the booking period. Because most passengers purchasing tickets a few

days before departure are price-inelastic customers with high search costs, airlines may be

less concerned about passengers seeking out HCT opportunities during this period.

Third, we find that the major full-service carriers (i.e., American, Delta, and United) are

responsible for majority of HCT, while HCT opportunities are relatively rare on low-cost

carriers (e.g., Frontier, JetBlue, Spirit, and Sun Country). As alluded to earlier, the hub-
8As we mentioned earlier, HCT occurs when the nonstop A-B fare is more expensive than the connecting

A-C fare (i.e., FareAB > FareAC). Therefore, additional competition on A-C routes should decrease FareAC,
increasing the likelihood that FareAB > FareAC holds. In contrast, additional competition on A-B routes
should decrease FareAB, decreasing the likelihood that FareAB > FareAC holds.
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and-spoke network structure provides passengers with more opportunities to exploit HCT. In

contrast, the business models of low-cost carriers typically do not involve funneling passengers

through large connecting hubs.

Although the focus of this article is on the airline industry, we believe our results are

applicable to variety of other industries that operate using hub-and-spoke networks. Obvious

candidates are other passenger transport modes such as bus and rail (especially in Europe and

Asia). In addition, companies involved in cargo, container shipping, electricity generation,

freight, manufacturing, and warehousing may also have interest in our findings considering

that many companies in these sectors employ hub-and-spoke networks to distribute and/or

manufacture their goods.

The rest of this article is structured as follows. Section 2 describes the data sources used

in the analysis. Section 3 presents a descriptive analysis of HCT. Section 4 conducts the

econometric investigation of HCT. Finally, Section 5 provides concluding remarks.

2 Data

The data we use are obtained from several sources. However, the data underlying our main

empirical results are obtained from two sources: fare and itinerary information from a major

online travel agency (OTA) and supplementary airline data from the United States (U.S.)

Department of Transportation (DOT). Section 2.1 describes our primary source of fare and

itinerary data, Section 2.2 the data sources used to construct instrumental variables, and

Section 2.3 the source of our transacted fare data. Finally, Appendix Table A1 provides

summary statistics and a brief description of the variables included in our empirical analysis.
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2.1 Fare and Itinerary Data

Our primary source of fare and itinerary data information comes from a major OTA.9 From

the OTA, one-way economy-class fare quotes for both nonstop and connecting trips were

obtained for flights departing between October 1st, 2019 and February 29th, 2020.10 Our

data encompasses over 100 of the most densely traveled routes in the continental U.S.11 For

each route, the lowest observed economy-class fare for each of the next sixty travel days were

collected. This data collection procedure allows us to track the evolution of economy fares for

an individual flight (or pair of flights for connecting trips) over the sixty-day period before

departure.

To determine if HCT occurs within an airline-route combination on a given day, we

matched the fare for each of our one-stop connecting trips (A-B-C trips) with the corre-

sponding nonstop fare (A-B trips) for the first segment of the connecting trip. Our resulting

dataset contains 772,635 fare observations. The airlines included in our sample include four

full-service carriers (Alaska, American, Delta, and United) and four low-cost carriers (Fron-

tier, JetBlue, Spirit, and Sun Country).12 The total number of A-B routes in our sample is

101. Figure 2 presents a visual representation of the these routes (see Table 2 in Section 3

for the complete list).
9Major OTAs include Expedia, Google Flights, Kayak, and Priceline. Several previous studies have

relied on data from a major OTA. Among others, see Bergantino and Capozza (2015), Bilotkach et al.
(2015), Escobari (2012), Gaggero and Piga (2010), Gaggero and Piga (2011), Koenigsberg et al. (2008), and
Luttmann (2019a).

10Roundtrips are not included because only one-way passengers can take advantage of HCT opportunities.
Because our analysis sample ends on February 29th, 2020, the COVID-19 pandemic has a negligible impact
on our results. In the U.S., COVID-19 was declared a national emergency on March 13th, 2020. Moreover,
California became the first state to issue a statewide stay-at-home order on March 19th, 2020.

11In lieu of collecting published fares for all possible routes in the U.S. market, we relied on the DOT’s
Airline Origin and Destination Survey from the third and fourth quarters of 2018 to identify the major airport-
pairs within the continental U.S. ranked by total passenger traffic. A market in our analysis is defined as a
directional pair of origin and destination airports. Therefore, Los Angeles (LAX)-New York City (JFK) and
JFK-LAX are treated as separate markets.

12Although fare quotes for Southwest Airlines are not available from any of the major OTAs, the presence
of Southwest is accounted for in our empirical analysis when we construct any variable controlling for the
number of carriers serving a given route.
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Figure 2: Hidden-City routes (i.e., A-B routes) in our analysis sample
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2.2 Instrumental Variables

In general, measures of market concentration such as the number of competitors or the

Herfindahl–Hirschman Index are endogenous in analyses of airline pricing. For instance,

markets with high fares may be attractive for new entrants. At the same time, these markets

may be unattractive if high fares are a direct result of entry barriers such as limited slot

or gate access at the endpoint airports. Accordingly, the potential simultaneity bias that

results from an airline’s decision to enter or exit a given route may bias coefficient estimates

in regressions of airline pricing. To correct for this potential endogeneity, we employ an

instrumental variables strategy (see Section 4 for specific details).

To construct our instruments, we rely on data from the U.S. DOT and the U.S. Census
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Bureau. From the U.S. DOT’s T-100 Domestic Segment database, we retrieved the total

number of nonstop passengers on each route and month between October 2018 and Febru-

ary 2019. From the U.S. Census Bureau, we obtained yearly population measures at the

metropolitan statistical area for each endpoint airport in our analysis sample.

2.3 Transacted Fare Data

There exists substantial uncertainty regarding whether passengers actually exploit HCT in

the U.S. domestic market. To demonstrate that a subset of passengers are likely engaging in

HCT, we rely on transacted fare data from the U.S. DOT’s Airline Origin and Destination

Survey (DB1B). These data are released quarterly and represent a 10% random sample of

tickets purchased for domestic air travel. To capture approximately the same time period as

our published fare data, we rely on DB1B data from the fourth quarter of 2019.13

3 Descriptive Analysis

As discussed in Section 2.1, we are able to identify if a HCT opportunity occurs on a given

day by matching an airline’s connecting A-B-C fare with the airline’s nonstop fare for the

first segment of the connecting trip (A-B segment). HCT occurs if the fare for the connecting

A-B-C trip is cheaper than the nonstop fare for the A-B trip on the same airline.

Table 1 displays the probability of observing HCT across the four full-service and four

low-cost carriers in our sample. Across all carriers, HCT occurs 15.4% of the time (23.8%

on full-service carriers and 3.8% on low-cost carriers). This finding is consistent with a U.S.

Government Accountability Office report from 2001. Analyzing fare data for six major U.S.

airlines across 2,302 markets, GAO (2001) found that HCT opportunities occur approxi-

mately 17% of the time.

In Table 1, the three largest full-service carriers (American Airlines, Delta, and United)

are responsible for the majority of HCT, as they jointly account for almost 89% of the
13We excluded the first quarter of 2020 because this quarter includes the entire month of March (i.e., the

beginning of the COVID-19 pandemic in the U.S.).
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instances of HCT observed in our sample. Notably, we find that HCT rarely occurs on

Frontier or JetBlue and almost never occurs on Sun Country (a small low-cost carrier).

Nevertheless, these findings are expected. HCT opportunities are more likely to occur on

carriers that operate large hub-and-spoke networks (e.g., American, Delta, and United) while

they are less likely to occur on carriers that operate point-to-point networks (e.g., Frontier,

JetBlue, Spirit, and Sun Country).

Table 1: Probability of HCT by airline

Airline Type of airline HCT Total observations
Alaska Full-service 2.8% 45,068
American Airlines Full-service 22.3% 193,244
Delta Full-service 32.1% 78,706
Frontier Low-cost 2.6% 35,402
JetBlue Low-cost 2.2% 31,863
Spirit Low-cost 4.2% 254,150
Sun Country Low-cost 0.1% 2,647
United Full-service 28.2% 131,555
Overall Full-service 23.8% 448,573
Overall Low-cost 3.8% 324,062
Overall All carriers 15.4% 772,635

To illustrate how the probability of observing HCT evolves in the sixty-day period before

departure, Figure 3 displays the probability of observing HCT (denoted by a gray bar) and,

when HCT occurs, the average difference between the nonstop A-B fare and the connect-

ing A-B-C fare (denoted by the connected solid blue line). The number above each gray

bar indicates the probability of observing HCT while the number above the solid blue line

indicates the average fare difference. For example, the gray bar at 60 days to departure in

the top panel of Figure 3 indicates that the probability of HCT occurring 60 days before

departure is 14.8% and the solid blue line indicates that the average fare difference is $26.

Similarly, the gray bar at 29 days to departure in the bottom panel of Figure 3 indicates

that the probability of HCT occurring 29 days before departure is 11.4% and the solid blue

line indicates that the average fare difference is $24.

As depicted in the top panel of Figure 3, the probability of observing HCT is relatively

11



Figure 3: Probability of HCT and average fare difference during the booking period
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Notes: The Average Fare Difference is the difference between the average nonstop fare from A to B and the
average connecting fare from A to C with a connection at B. This difference is computed only under HCT
instances (i.e., when Nonstop FareAB > Connecting FareAC).
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unchanged during the early booking period, ranging from 11.5% to 14.8%. The likelihood of

observing HCT remains relatively stable until two weeks before departure, when the prob-

ability of observing HCT begins to increase monotonically from 11.9% fourteen days before

departure to 36.9% one day before departure.

Similarly, the average fare difference between the nonstop A-B fare and the connecting

A-B-C fare, which is computed only under HCT and depicted by the connected solid blue

line in the figure, is generally constant in the early part of the booking period, hovering

around $24 until three weeks to departure. Then, the average fare difference increases to

$50-$53 between two and three weeks to departure, and continues to increase until reaching

a maximum of $139 three days before departure.

To provide a comprehensive summary of the hidden-city routes in our sample, Table 2

reports each A-B route (first column) with the probability of observing HCT on the route

(second column). The last column of the table, displays the final destination(s) of the A-B-C

tickets sorted in descending order by the percentage of HCT observed for each destination C

on the given A-B route. For example, EWR-MIA, the last entry in the first panel of Table

2, may be the first leg of a connecting trip to Los Angeles (LAX), Orlando (MCO), Chicago

(ORD), or San Francisco (SFO). Considering all fare observations from Newark (EWR) to

one of these four destinations with a connection in Miami (MIA), the probability of observing

HCT on EWR-MIA is 11%. However, if we only consider MCO (i.e., we only select the trips

from EWR to MCO with connection in MIA), the probability of observing HCT is 52%. In

particular, no instances of HCT are observed for connecting trips from EWR via MIA to the

other three destinations of LAX, ORD, and SFO.

The most common hidden-city route in our sample is Chicago O’Hare to Reagan National

in Washington, D.C. (ORD-DCA). HCT occurs 91% of the time on ORD-DCA, and within

this route, Boston is the most likely final destination on a hidden-city ticket. However, this

finding is not entirely surprising considering that DCA is a slot-controlled airport and a hub

for American Airlines.
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Table 2: A-B routes and probability of HCT

A-B routes HCT Final destinations C, sorted by percentage instances of HCT within each final destination in parentheses
ATL-BOS 0% LAS(0%), LAX(0%), LGA(0%)
ATL-FLL 0% MCO(3%), BOS(0%), LGA(0%), LAS(0%), LAX(0%)
ATL-LAS 8% FLL(66%), LAX(8%)
ATL-LAX 52% LAS(52%)
ATL-LGA 40% BOS(40%), FLL(0%)
ATL-MCO 18% FLL(48%), BOS(2%), LGA(1%), LAS(0%), LAX(0%)
BOS-ATL 24% DCA(54%), ORD(53%), RSW(33%), FLL(25%), MIA(22%), MCO(20%), SFO(7%), LAX(2%)
BOS-DCA 14% ORD(44%), MCO(16%), MIA(16%), RSW(10%), LAX(8%), ATL(4%), SFO(2%), FLL(2%)
BOS-FLL 7% ORD(29%), ATL(7%), MCO(6%), SFO(1%), LAX(0%), DCA(0%)
BOS-LAX 29% SFO(29%)
BOS-MCO 13% ORD(21%), FLL(19%), ATL(5%), DCA(0%), LAX(0%)
BOS-MIA 17% ATL(50%), MCO(45%), LAX(0%), SFO(0%)
BOS-ORD 4% RSW(16%), ATL(7%), SFO(5%), FLL(2%), MIA(2%), LAX(1%), MCO(0%)
BOS-RSW 0% ORD(0%)
BOS-SFO 57% LAX(57%)
BWI-FLL 8% MCO(10%), LAS(6%)
BWI-LAS 25% FLL(25%)
BWI-MCO 1% FLL(1%), LAS(0%)
DEN-LAS 5% PHX(15%), LAX(7%), MCO(0%)
DEN-LAX 60% LAS(62%), PHX(45%)
DEN-MCO 0% LAS(0%)
DEN-PHX 45% LAS(54%), LAX(27%)
DFW-LAS 16% LAX(17%), ORD(8%), MCO(4%)
DFW-LAX 19% ORD(73%), LAS(19%), MCO(0%)
DFW-MCO 38% ORD(56%), LAS(0%), LGA(0%)
DFW-ORD 24% LGA(32%), LAS(3%), MCO(1%), LAX(0%)
DTW-FLL 9% MCO(9%), LAS(0%)
DTW-LAS 4% FLL(6%), MCO(0%)
DTW-MCO 1% FLL(1%), LAS(1%)
EWR-FLL 5% MCO(7%), LAX(6%), IAH(5%), ORD(3%), SFO(1%)
EWR-IAH 9% RSW(67%), SFO(30%), MCO(15%), LAX(7%), FLL(2%), ORD(2%), MIA(0%), PBI(0%)
EWR-LAX 15% SFO(15%)
EWR-MCO 5% ORD(15%), FLL(5%), IAH(2%), LAX(0%), SFO(0%)
EWR-MIA 11% MCO(52%), LAX(0%), ORD(0%), SFO(0%)

Continuing
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Table 2 Cont.
A-B routes HCT Final destinations C, sorted by percentage instances of HCT within each final destination in parentheses
EWR-ORD 20% IAH(51%), PBI(43%), RSW(37%), FLL(25%), MCO(16%), MIA(14%), SFO(8%), LAX(5%)
EWR-RSW 17% ORD(17%)
EWR-SFO 15% LAX(15%)
IAH-EWR 25% LAS(25%)
IAH-LAS 1% EWR(1%)
JFK-FLL 0% MCO(0%), LAS(0%), LAX(0%), SFO(0%)
JFK-LAS 26% SFO(40%), LAX(22%)
JFK-LAX 30% LAS(31%), SFO(23%)
JFK-MCO 1% FLL(1%), LAX(1%), LAS(0%)
JFK-MIA 17% MCO(17%), LAS(0%), SFO(0%)
JFK-SFO 13% LAX(18%), LAS(12%)
LAX-ATL 44% DFW(100%), LAS(100%), BOS(82%), EWR(72%), MCO(60%), ORD(49%), JAX(39%), JFK(33%)
LAX-BOS 10% JFK(40%), EWR(0%), JAX(0%), ATL(0%), MCO(0%), ORD(0%)
LAX-DEN 13% DFW(42%), SFO(39%), EWR(20%), BOS(20%), ATL(14%), MCO(10%), ORD(6%), JAX(3%), SEA(2%), LAS(0%), OAK(0%)
LAX-DFW 11% LAS(100%), ORD(39%), BOS(20%), MCO(18%), JFK(16%), ATL(14%), EWR(8%), JAX(7%), DEN(0%), OAK(0%), SEA(0%)
LAX-EWR 53% ORD(100%), ATL(88%), MCO(80%), BOS(52%), JAX(8%)
LAX-JFK 20% BOS(79%), MCO(55%), ATL(50%), JAX(4%)
LAX-LAS 3% OAK(8%), SEA(5%), DFW(4%), JFK(2%), DEN(1%), ORD(1%), JAX(1%), ATL(0%), BOS(0%), EWR(0%), MCO(0%), SFO(0%)
LAX-MCO 6% JFK(13%), ATL(8%), EWR(1%), BOS(0%), DEN(0%), JAX(0%)
LAX-OAK 0% LAS(0%), ORD(0%)
LAX-ORD 23% LAS(100%), DEN(64%), BOS(34%), MCO(30%), ATL(27%), EWR(12%), DFW(9%), JAX(4%), JFK(2%), OAK(0%), SEA(0%)
LAX-SEA 3% ATL(83%), ORD(38%), DEN(34%), MCO(32%), BOS(3%), OAK(0%), DFW(0%), EWR(0%), JFK(0%)
LAX-SFO 4% LAS(39%), DFW(30%), SEA(9%), ATL(3%), ORD(1%), MCO(1%), BOS(0%), EWR(0%), DEN(0%), JAX(0%), JFK(0%)
LGA-ATL 22% MCO(34%), MIA(23%), FLL(10%), ORD(0%)
LGA-FLL 24% ORD(36%), ATL(25%), MCO(20%)
LGA-MCO 10% ORD(57%), FLL(2%), ATL(2%), MIA(0%)
LGA-MIA 28% ATL(31%), MCO(27%), ORD(0%)
LGA-ORD 12% FLL(35%), MCO(15%), MIA(14%), ATL(3%)
MSP-LAS 0% PHX(0%), MCO(0%)
MSP-MCO 13% LAS(13%)
MSP-PHX 23% LAS(23%)
OAK-LAS 2% LAX(3%), SAN(1%), BUR(0%), SNA(0%)
OAK-LAX 2% LAS(2%), SAN(0%)

Continuing
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Table 2 Cont.
A-B routes HCT Final destinations C, sorted by percentage instances of HCT within each final destination in parentheses
ORD-BOS 0% LGA(4%), FLL(0%), DCA(0%), DEN(0%), DFW(0%), LAS(0%), LAX(0%), MCO(0%), MIA(0%), PHX(0%), SFO(0%)
ORD-DCA 91% BOS(99%), LGA(91%), MCO(86%), MIA(85%), FLL(69%), SFO(60%)
ORD-DEN 7% PHX(31%), LAX(13%), MCO(8%), DFW(5%), LAS(4%), MIA(2%), LGA(2%), SFO(1%), DCA(1%), FLL(0%)
ORD-DFW 36% MIA(64%), SFO(55%), LAX(48%), DEN(45%), MCO(43%), LAS(42%), FLL(30%), PHX(14%), BOS(10%), DCA(0%), LGA(0%)
ORD-FLL 10% MCO(13%), BOS(10%), DEN(6%), LGA(4%), DCA(0%), DFW(0%), LAS(0%), LAX(0%), PHX(0%), SFO(0%)
ORD-LAS 18% LAX(22%), PHX(13%), DFW(6%), DEN(6%), FLL(5%), MCO(0%), SFO(0%)
ORD-LAX 13% LAS(18%), PHX(18%), SFO(10%), DFW(0%)
ORD-LGA 36% BOS(77%), MCO(34%), MIA(31%), DCA(29%), DFW(19%), FLL(15%), DEN(0%)
ORD-MCO 13% MIA(41%), DEN(11%), BOS(8%), DCA(6%), FLL(2%), DFW(1%), LAS(0%), LGA(0%), PHX(0%)
ORD-MIA 14% MCO(32%), DCA(0%), DEN(0%), LAS(0%), LGA(0%), PHX(0%), SFO(0%)
ORD-PHX 67% LAX(79%), LAS(72%), SFO(48%), DFW(0%)
ORD-SFO 53% LAS(65%), LAX(39%), PHX(20%), DEN(0%)
PDX-LAS 1% LAX(7%), FLL(0%)
PDX-LAX 5% LAS(23%), FLL(0%)
PHL-FLL 14% MCO(14%)
PHL-MCO 6% FLL(6%), SNA(0%)
SAN-SFO 37% SMF(37%)
SAN-SMF 0% OAK(0%), SJC(0%)
SEA-LAS 8% LAX(14%), SAN(1%), SFO(1%), PHX(0%)
SEA-LAX 65% SAN(81%), LAS(68%), PHX(63%), SFO(37%)
SEA-PHX 27% SAN(36%), SFO(35%), LAS(26%), LAX(7%)
SEA-SAN 0% SFO(0%)
SEA-SFO 46% SAN(53%), PHX(46%), LAX(39%), LAS(38%)
SFO-BOS 24% EWR(27%), JFK(3%), ORD(0%)
SFO-EWR 26% BOS(26%), ORD(0%)
SFO-JFK 23% BOS(23%), ORD(11%)
SFO-LAS 1% SEA(1%), ORD(0%), LAX(0%), BDL(0%), BOS(0%), EWR(0%), JFK(0%), SAN(0%)
SFO-LAX 5% LAS(40%), SAN(8%), SEA(6%), JFK(3%), BDL(1%), BOS(1%), ORD(0%), EWR(0%)
SFO-ORD 24% EWR(52%), BOS(49%), JFK(41%), BDL(13%)
SFO-SAN 0% BDL(0%), BOS(0%), EWR(0%), ORD(0%), SEA(0%)
SFO-SEA 1% ORD(1%), BOS(1%), BDL(0%), EWR(0%), JFK(0%), LAS(0%), SAN(0%)
SJC-SAN 0% SNA(0%)
SMF-SAN 0% BUR(0%), SNA(0%)
SNA-SJC 0% MCO(0%)
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4 Econometric Analysis

We aim to accomplish two primary objectives with our econometric analysis. Foremost,

we wish to understand the main drivers of HCT (Section 4.2). Second, we would like to

determine the possible savings that a passenger gains from HCT, but also the potential loss

that an airline incurs if a passenger engages in HCT (Section 4.3). Before doing so, we first

show that passengers are likely exploiting HCT opportunities in the U.S. market (Section

4.1).14

4.1 Exploitation of HCT

To determine if a subset of U.S. passengers are likely taking advantage of HCT opportunities

during our sample period, we rely upon transacted fare data provided in the DOT’s DB1B

database. As discussed in Section 2.3, these data are released quarterly and represent a 10%

random sample of all airline tickets purchased for travel in the domestic U.S. market. For the

best correspondence of the DB1B with the time period of our published fare and itinerary

data (October 2019–February 2020), we use DB1B data from the fourth quarter of 2019.15

Although the DB1B does not provide information on the specific date each ticket was

purchased and, more importantly, the actual flight(s) each passenger boarded, it is still

possible to test for potential exploitation of HCT by passengers. Specifically, we assume that

a passenger cannot exploit HCT on a roundtrip ticket, since failure to show up for the second

leg of the outbound portion of the trip typically results in cancellation of the rest of the

roundtrip ticket. Therefore, to exploit HCT, a roundtrip passenger would need to purchase

two separate one-way tickets.
14We are grateful to Jan Brueckner for this insightful suggestion.
15We do not include the first quarter of 2020 because this time period includes March 2020, where the nor-

mal practices of airline pricing are drastically altered by the outbreak of COVID-19 (Gaggero and Luttmann,
2022). Moreover, to prevent outliers from affecting results, we exclude tickets with prices below the 5th and
above the 95th percentiles.
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Based on this idea, we estimate the following regression,

HCT%rca = β0 + β1 · AveragePriceDifferencerca + δa + ϵrca (1)

where the main independent variable of interest is the average price difference (AveragePriceD-

ifferencerca), computed as the difference between the average one-way nonstop fare on route r

and airline a (i.e., A-B routes) and airline a’s average one-way connecting fare that uses route

r to a given final destination c (i.e., A-B-C routes).16 The dependent variable (HCT%rca) is

the percentage of tickets on route r, airline a, and final destination c that were purchased on

a one-way basis, so as to exploit HCT.17 Note that a positive coefficient on β1 would indicate

that an increase in the difference between the average one-way nonstop fare and the average

one-way connecting fare is associated with an increase in the number of tickets purchased on

a one-way basis (i.e., an increase in the number of passengers potentially exploiting HCT).

Airline fixed effects (δa) are included as controls.18

The results of estimating equation (1) are reported in Table 3. The first column displays

ordinary least squares (OLS) estimates while the second column displays fractional logit

estimates. Because the dependent variable is a percentage that is bounded between zero and

one, our preferred estimates are the fractional logit estimates in column (2).

The positive and statistically significant coefficient on AveragePriceDifference in both

Table 3 columns indicate that passengers are likely exploiting HCT in the U.S. domestic mar-

ket. Furthermore, consistent with our Table 1 findings, the positive coefficients on American,
16For example, ORD-DCA-BOS and ORD-DCA-MIA trips on American constitute two separate observa-

tions. In this example, ORD-DCA is the “A-B” route (i.e., route r) and ORD-DCA-BOS and ORD-DCA-MIA
are two separate “A-C” routes that use route r (i.e., rc routes). Because AveragePriceDifference is intended
to measure the savings from HCT, AveragePriceDifference is set to zero in the case of negative values (i.e.,
when HCT does not occur).

17Specifically, HCT%rca = One−Way Ticketsrca
(One−Way Ticketsrca+ One−Way Ticketsra)

.
18The coefficient on the AveragePriceDifference may suffer from simultaneity bias. However, any resulting

bias will decrease the magnitude of the AveragePriceDifference coefficient (i.e., we would underestimate the
effect of the average price difference on the fraction of tickets purchased on a one-way basis). Additionally,
we are only interested in the correlation between AveragePriceDifference and HCT%. We are not attempting
to make any causal statements.
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Table 3: Test for exploitation of HCT with DB1B data

(1) (2)
Estimator: OLS Fractional Logit
Dependent variable: HCT% HCT%
Average Price Difference 0.0003*** 0.004***

(0.000) (0.000)
Alaska -0.016*** -0.506***

(0.006) (0.172)
American Airlines 0.025*** 0.533***

(0.006) (0.154)
Delta 0.022*** 0.498***

(0.006) (0.150)
Hawaiian -0.015*** -0.533***

(0.006) (0.191)
United 0.004 0.172

(0.006) (0.154)
Frontier -0.019*** -0.705***

(0.005) (0.155)
JetBlue -0.026*** -1.048***

(0.006) (0.210)
Spirit -0.022*** -0.855***

(0.005) (0.153)
Southwest -0.012** -0.348**

(0.005) (0.149)
Allegiant -0.018*** -0.682***

(0.005) (0.159)
R2 or Pseudo-R2 0.081 0.031
Observations 162,889 162,889

Notes: Data are from the DOT’s DB1B database for the fourth quarter of 2019. Sun Country is the omitted
airline fixed effect. Standard errors are clustered at the route A-B level. Constant is included but not
reported. *** Significant at the 1 percent level, ** Significant at the 5 percent level, * Significant at the 10
percent level.

19



Delta, and United indicate that HCT typically arises on full-service carriers that operate large

hub-and-spoke networks (although the coefficient on United is statistically insignificant).19

Having established that passengers are likely exploiting HCT opportunities, we now turn

our attention to examining the main drivers of HCT in Section 4.2 and the potential savings

that passengers may obtain from engaging in HCT in Section 4.3.

4.2 Determinants of HCT

4.2.1 Probability of Observing HCT

To determine how various route and ticket characteristics affect the prevalence of HCT op-

portunities, we model the probability of observing HCT as a function of route-level com-

petition (both on A-B and A-C routes), advance-purchase requirements, ticketing carrier,

and other itinerary-specific characteristics such as the month-of-departure, day-of-the-week-

of-departure, and the time-of-day-of-departure.

Specifically, we estimate equation (2) below,

Pr(HCTircdat = 1) = f(CompetitionA-Bird, CompetitionA-Cicd, DaysToDepartureit, Airlineia, δid)

(2)

where the subscript i indexes the itinerary, r the A-B route, c the final destination for

the itinerary that uses route r (i.e., the A-C route), d the departure date, a the airline,

and t the time dimension, measured in the number of days to departure (i.e., how far in

advance the itinerary is booked). Competition on A-B and A-C routes (CompetitionA-B

and CompetitionA-C) are measured by the number of nonstop carriers serving the route

on the itinerary’s departure date. To account for nonlinear fare changes that occur during

the booking period, we follow Gaggero and Luttmann (2020, 2022) and split the days to

departure variable into five categories: 1 to 2, 3 to 6, 7 to 13, 14 to 20, and 21 to 60; the

indicator for 21 to 60 days to departure serves as the reference category. The ticketing carrier

for each itinerary is represented by a separate indicator (Airline) with Sun Country serving
19The omitted airline fixed effect is Sun Country, a small low-cost carrier.
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as the reference category (Table 1 indicates that HCT opportunities are least prevalent on

Sun Country). Finally, δ is a matrix of fixed effects that control for each itinerary’s month-

of-departure, day-of-week-of-departure, and time-of-departure.

We recognize that there may exist some unobserved factor that is correlated with both the

number of carriers serving A-B and/or A-C routes and the prevalence of HCT opportunities.

To correct for the possible endogeneity of CompetitionA-B and CompetitionA-C, we employ

a two-stage least squares (2SLS) approach with six instruments: (i) the number of nonstop

passengers on route A-B during the same month of the previous year, (ii) the number of

nonstop passengers on route A-C during the same month of the previous year, (iii) the natural

logarithm of the arithmetic mean of the metropolitan statistical area (MSA) populations of

the endpoint cities on route A-B, (iv) the natural logarithm of the arithmetic mean of the

MSA populations of the endpoint cities on route A-C, (v) the natural logarithm of the

geometric mean of the MSA populations of the endpoint cities on route A-B, and (vi) the

natural logarithm of the geometric mean of the MSA populations of the endpoint cities on

route A-C. These instruments are similar to those used in Gerardi and Shapiro (2009) and

Dai et al. (2014).

In our baseline specification, we estimate equation (2) using 2SLS with standard errors

that are clustered at the A-B route level. However, because our dependent variable is a binary

indicator taking the values of zero or one, we also estimate equation (2) using instrumental

variables (IV) probit.

The regression results are reported in Table 4. To ensure that the linear estimates of

columns (1) and (2) are directly comparable with the output from the probit regressions,

columns (3) and (4) report the marginal effects. The corresponding probit coefficients are

reported in Appendix Table A2. The last two columns of Table A2 also report the first-stage

estimates for CompetitionA-B and CompetitionA-C, respectively.20

20The first-stage regressions for the 2SLS and IV probit models are identical (i.e., linear first-stage estimated
by OLS with the same six instruments).
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Table 4: Probability of observing HCT

(1) (2) (3) (4)
Estimator: OLS 2SLS Probit IV-Probit
Dependent variable: HCT HCT HCT HCT

Estimated Estimated Marginal Marginal
coefficients coefficients effects effects

Competition A-B -0.022** -0.035** -0.023** -0.002
(0.009) (0.016) (0.011) (0.015)

Competition A-C 0.031*** 0.036*** 0.030*** 0.016**
(0.008) (0.008) (0.007) (0.007)

DaysToDeparture 1-2 0.199*** 0.197*** 0.195*** 0.198***
(0.049) (0.048) (0.037) (0.037)

DaysToDeparture 3-6 0.088** 0.088** 0.086** 0.085**
(0.043) (0.043) (0.037) (0.037)

DaysToDeparture 7-13 0.018 0.018 0.021 0.019
(0.026) (0.026) (0.023) (0.023)

DaysToDeparture 14-20 -0.020 -0.021 -0.017 -0.017
(0.016) (0.016) (0.014) (0.014)

Alaska 0.058* 0.067 0.033** 0.036**
(0.034) (0.043) (0.017) (0.018)

American Airlines 0.231*** 0.234*** 0.212*** 0.204***
(0.048) (0.051) (0.034) (0.030)

Delta 0.359*** 0.369*** 0.366*** 0.370***
(0.089) (0.095) (0.104) (0.093)

United 0.271*** 0.271*** 0.244*** 0.253***
(0.053) (0.054) (0.040) (0.045)

Frontier 0.020 0.033 0.019*** 0.019***
(0.033) (0.043) (0.004) (0.006)

JetBlue 0.046 0.054 0.023 0.017
(0.039) (0.047) (0.017) (0.014)

Spirit 0.061** 0.066** 0.047*** 0.048***
(0.027) (0.033) (0.008) (0.009)

R2 0.148 0.146
Observations 772,635 772,635 772,635 772,635

Notes: All specifications include month-of-year, day-of-week, and time-of-day-of-departure fixed effects. Sun
Country is the omitted airline fixed effect. Columns (3) and (4) report the marginal effects for the Probit
regressions. Probit coefficient estimates are reported in Appendix Table A2. The endogenous variables in
columns (2) and (4) are Competition A-B and Competition A-C and the corresponding first-stage regressions
are reported in Appendix Table A2. Standard errors are clustered at the route A-B level. Constant is included
but not reported. *** Significant at the 1 percent level, ** Significant at the 5 percent level, * Significant at
the 10 percent level.
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As the Table 4 results indicate, competition is one of the primary drivers of HCT, es-

pecially on A-C routes. An additional nonstop carrier serving the A-C route increases the

likelihood of HCT by 3.1%-3.6% under the linear estimates and by 1.6%-3.0% under the

probit estimates. The effect of CompetitionA-B on HCT is slightly less pronounced, as

the marginal effect is statistically insignificant in column (4). Considering only the statisti-

cally significant estimates, an additional nonstop carrier serving the A-B route decreases the

likelihood of HCT by 2.2%-3.5% in the linear model and by 0.2% in the probit model.

The signs on both competition variables are consistent across all Table 4 specifications

and in line with expectations of a negative effect of CompetitionA-B and a positive effect

of CompetitionA-C on the likelihood of observing HCT. For instance, standard economic

theory predicts that additional competition should result in lower market prices. Because

HCT occurs when FareAB > FareAC, additional competition on A-C reduces FareAC, thereby

increasing the likelihood that this inequality holds (expected positive sign on CompetitionA-

C). In contrast, additional competition on A-B reduces FareAB, decreasing the likelihood

that FareAB > FareAC holds (expected negative sign on CompetitionA-B).

Using the IV-Probit estimates, Figure 4 depicts the predicted probability of HCT as com-

petition increases on A-B routes (left diagram) and A-C routes (right diagram). The bars

stemming from the point estimates represent the 95% confidence interval. As the figure illus-

trates, the predicted probability of HCT monotonically increases as the number of nonstop

carriers serving route A-C increases, in line with expectations. In contrast, as the number

nonstop carriers serving the A-B route increases, the overall probability of HCT decreases.

However, the slope of the line connecting the predicted probabilities is not very steep, point-

ing towards a relatively lower impact of CompetitionA-B on HCT, as already suggested by

column (4) of Table 4.

The coefficient on the airline fixed effects are consistent with the findings in Table 1, where

HCT opportunities were found to be more prevalent on American, Delta, and United, the

major full-service carriers in the U.S. domestic market. Relative to Sun Country, the omitted

23



Figure 4: Predicted probability of HCT as competition increases with 95% conf. interval
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airline fixed effect in the regressions, HCT opportunities are approximately 21% more likely

on American, 37% more likely on Delta, and 25% more likely on United. A smaller effect is

found for Alaska. However, our sample excludes routes to Alaska (see Figure 2). In addition,

Alaska’s hubs are confined to cities on the west coast instead of being dispersed across the

continental U.S. like the hub networks for American, Delta, and United.21

We believe the dispersed hub-and-spoke network structure of the three major full-service

carriers provides passengers with more opportunities to exploit HCT. In contrast, HCT op-

portunities are less likely on low-cost carriers because their business models do not involve

operating large connecting hubs. Consistent with this story, the coefficients for the low-cost

carriers (Frontier, JetBlue, and Spirit) are substantially lower in magnitude (and statistical

significance) than the coefficients for American, Delta, and United.

Finally, the coefficients on the DaysToDeparture variables indicate that HCT oppor-
21Alaska currently has hubs at Anchorage (ANC), Los Angeles (LAX), Portland (PDX), San Francisco

(SFO), and Seattle (SEA).
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tunities are more prevalent in the last week before departure, consistent with the pattern

previously displayed in Figure 3. The coefficients in Table 4 indicate that, relative to trips

booked 21 to 60 days in advance, the likelihood of observing HCT increases by 9% between

three and six days before departure, and by about 20% in the last two days to departure.

This finding may result from different pricing patterns of A-B and A-C fares as the depar-

ture date approaches, with a possible steeper trajectory for A-B fares. We investigate this

presumption further in the next subsection.

4.2.2 Fare Regressions

To test the conjecture that the increased probability of observing HCT closer to the depar-

ture date is due to the steeper increase of nonstop A-B fares relative to connecting A-C fares,

we regress the natural logarithm of fare on the same set of regressors deployed in the HCT

regressions (i.e., we estimate equation (2) with the natural logarithm of fare as the depen-

dent variable). Because the dependent variable is in logs, the estimated coefficients on the

DaysToDeparture dummies represent the percentage change in fare relative to DaysToDe-

parture 21-60, the omitted days to departure category in the regressions.22

Due to the potential endogeneity of the competition variables (see Section 2.2), we es-

timate our fare regressions using 2SLS with the same set of instruments used in equation

(2). Table 5 reports results when the natural logarithm of the A-B fare (column 1) and

A-C fare (column 2) are the dependent variables. Comparing the DaysToDeparture 1-2 and

DaysToDeparture 3-6 coefficients across columns, both coefficients are larger in magnitude

when log(FareAB) is the dependent variable. This finding implies that A-B fares increase at

a higher rate than A-C fares, supporting the presumption that the increased likelihood of

observing HCT in the last week before departure is driven by a steeper growth rate of the

nonstop A-B fare relative to the connecting A-C fare.
22Since the dependent variable is in logs and the DaysToDeparture variables are indicators, marginal

effects are interpreted as the 100× (eβ − 1)% change in fare.
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Table 5: Fare regressions

(1) (2)
Estimator: 2SLS 2SLS
Dependent variable: log(FareAB) log(FareAC)
Competition A-B -0.090*** 0.010

(0.024) (0.017)
Competition A-C -0.056*** -0.127***

(0.020) (0.017)
DaysToDeparture 1-2 0.924*** 0.769***

(0.051) (0.039)
DaysToDeparture 3-6 0.536*** 0.497***

(0.058) (0.031)
DaysToDeparture 7-13 0.217*** 0.239***

(0.051) (0.026)
DaysToDeparture 14-20 0.048** 0.080***

(0.023) (0.016)
Alaska 0.365*** 0.625***

(0.097) (0.111)
American Airlines 0.546*** 0.359***

(0.073) (0.088)
Delta 0.854*** 0.412***

(0.200) (0.099)
United 0.611*** 0.398***

(0.084) (0.104)
Frontier 0.097 0.223**

(0.096) (0.089)
JetBlue 0.497*** 0.406***

(0.130) (0.125)
Spirit 0.024 0.094

(0.093) (0.098)
R2 0.496 0.448
Observations 772,635 772,635

Notes: All specifications include month-of-year, day-of-week, and time-of-day-of-departure fixed effects. Sun
Country is the omitted airline fixed effect. The endogenous variables in columns (1) and (2) are Competition
A-B and Competition A-C. Standard errors are clustered at the route A-B level. Constant is included but
not reported. *** Significant at the 1 percent level, ** Significant at the 5 percent level, * Significant at the
10 percent level.

26



Two additional findings emerge from Table 5. First, fares on full-service carriers are

generally higher than on low-cost carriers, with the exception that JetBlue fares are similar to

full-service carrier fares. In contrast, the statistically insignificant Spirit coefficients indicate

that Spirit fares are similar to Sun Country fares, the excluded airline fixed effect in Table 5.

Since Spirit and Sun Country are both ultra-low-cost carriers, this result is consistent with

expectations.

Second, in addition to the expected result that additional competition on route A-B (A-C)

decreases A-B (A-C) fares, we observe that CompetitionA-B is statistically insignificant in the

log(FareAC) regression, while CompetitionA-C is negative and significant in the log(FareAB)

regression. We believe that A-C fares are less directly related to the extent of competition on

A-B routes than the A-B fare is to competition on A-C routes. The rationale is that the effect

of A-B competition on the A-C fare should be minimal, because the relevant competition

measure for A-C routes is broader, not only involving route A-B, but all other routes that

start in A, terminate at C, and connect at airports other than B.

4.3 Savings from HCT

The analysis thus far has shown when and why HCT is more likely to occur. Our next step

is to examine the price differential due to HCT, which represents the possible savings that a

passenger may accrue from engaging in HCT, or, alternatively, the airline’s potential revenue

loss from a HCT passenger. To do so, we construct a new variable, PriceDifference, which is

set equal to the difference between FareAB and FareAC. If this difference is negative (i.e., HCT

does not occur), PriceDifference is set equal to zero. Because PriceDifference is nonnegative

and censored at zero, we estimate a Tobit model. We use the same set of regressors described

in equation (2), as well as the same set of instruments to correct for the potential endogeneity

of the competition variables. In other words, we estimate equation (2) using a Tobit model

with PriceDifference as the dependent variable.
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Table 6: Determinants of PriceDifference

(1) (2)
Estimator: Tobit IV-Tobit
Dependent variable: PriceDifference PriceDifference
Competition A-B -10.713 -20.856**

(7.413) (9.599)
Competition A-C 13.507*** 17.336***

(3.441) (3.599)
DaysToDeparture 1-2 117.948*** 117.878***

(32.893) (32.932)
DaysToDeparture 3-6 88.265*** 89.176***

(31.762) (32.025)
DaysToDeparture 7-13 33.192* 34.348*

(19.576) (20.217)
DaysToDeparture 14-20 1.192 1.230

(13.645) (13.782)
Alaska 154.976*** 157.429***

(35.382) (35.038)
American Airlines 275.971*** 273.871***

(43.386) (41.422)
Delta 353.732*** 358.961***

(83.333) (87.751)
United 288.400*** 285.703***

(43.522) (42.465)
Frontier 119.926*** 128.512***

(24.072) (25.189)
JetBlue 134.274*** 136.522***

(42.243) (39.627)
Spirit 175.078*** 176.564***

(31.992) (31.068)
Observations 772,635 772,635

Notes: The dependent variable (PriceDifference) is equal to max(0, FareAB−FareAC). All specifications
include month-of-year, day-of-week, and time-of-day-of-departure fixed effects. Sun Country is the omitted
airline fixed effect. The endogenous variables in column (2) are Competition A-B and Competition A-C.
Standard errors are clustered at the route A-B level. Constant is included but not reported. *** Significant
at the 1 percent level, ** Significant at the 5 percent level, * Significant at the 10 percent level.
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The Tobit results are presented in Table 6. The signs on the competition variables are

consistent with expectations. In the same manner that additional competition on A-B routes

decreases the likelihood of HCT, additional competition on A-B routes also decreases the

price difference due to HCT. Furthermore, consistent with how additional competition on

A-C routes increases the likelihood of HCT, additional A-C competition also increases the

HCT price difference.

Considering the estimates in column (2) of Table 6, an additional nonstop carrier on route

A-C increases the average price difference by more than $17, while an additional nonstop

carrier on route A-B decreases the average price difference by almost $21. In addition, the

price difference due to HCT is higher on the major full-service carriers: Delta has the largest

average price difference, followed by United, and then American.

The magnitude on the DaysToDeparture indicators are also plausible because the HCT

price difference increases as the departure date approaches. Consistent with Figure 3, the

peak of the price difference occurs in the last two days to departure. Relative to trips booked

21 to 60 days in advance, the HCT price difference increases by almost $118 in the last two

days to departure.

Finally, a robustness check based on a different dependent variable (the percentage price

difference) and model (fractional logit) yield similar qualitative results to Table 6. These

results are not reported here, but are available in Appendix Table A3.

5 Conclusion

This article has offered a comprehensive empirical analysis of hidden-city ticketing (HCT),

which, to the best of our knowledge has never been conducted before. HCT is a pricing

phenomenon that occurs when the fare for a nonstop trip from A to B (i.e., A-B routes) is

more expensive than a connecting trip from A to C that connects at B (i.e., the “hidden city”).

Exploiting a unique panel of over 772 thousand fares collected over a seven-month period
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(flights in our sample depart between October 2019 and February 2020), we find that HCT

opportunities arise approximately 15% of the time. In particular, the major U.S. carriers

that operate large hub-and-spoke networks (i.e, American, Delta, and United) account for

the majority of HCT.

Analyzing the determinants of HCT, we find that competition is one of the primary

drivers, especially on A-C routes. An additional nonstop carrier on route A-C increases the

likelihood of HCT by 1.6%-3.6% while an additional nonstop carrier on route A-B decreases

the likelihood of HCT by 3.5%. These findings are consistent with standard economic theory

that predicts that additional competition results in lower market prices. Because HCT oc-

curs when FareAB > FareAC, additional competition on A-C should reduce FareAC, thereby

increasing the likelihood that FareAB > FareAC holds. Conversely, additional competition on

A-B reduces FareAB, decreasing the likelihood that FareAB > FareAC holds.

We also find that advance-purchase requirements are another key driver of HCT, with

HCT opportunities more likely closer to the date of departure. In particular, HCT is more

prevalent in the last week to departure because nonstop A-B fares increase at a higher rate

than connecting A-C fares during this period. One possible interpretation of this finding is re-

lated to the heterogeneity of passengers during the booking period. Because early purchasers

are typically price-sensitive passengers with low search costs, they are more likely to seek out

HCT opportunities. Accordingly, airlines may respond by ensuring that HCT opportunities

are rare during the early booking period. In contrast, most passengers purchasing tickets

a few days before departure are price-insensitive customers with high search costs (i.e., late

purchasers who are less likely to seek out HCT opportunities). For this reason, airlines may

decide to extract additional surplus by raising nonstop A-B fares at a higher rate than con-

necting A-C fares in the final week because they are less concerned about passengers taking

advantage of HCT opportunities during this period.

In addition to examining the determinants of HCT, we also quantify the savings that a

passenger receives from engaging in HCT. We find that an additional nonstop carrier serving
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the A-B (A-C) route leads to a $21 reduction ($17 increase) in average savings. Moreover,

average savings from HCT increase by $89 and $118 for trips purchased three to six and one

to two days before departure, respectively.

As internet search engines become more sophisticated, they are increasingly helping con-

sumers quickly identify HCT opportunities. However, HCT is clearly detrimental to airline

operations and profits. In addition to the revenue loss that results from lower fares paid by

HCT passengers, HCT may also delay the departure of the B-C flight if the airline waits in

vain for HCT passengers (Skorupski and Wierzbińska, 2015). There is also an opportunity

cost associated with reserving a seat on the B-C flight for a HCT passenger when that seat

could instead be sold to another customer.

It is also worth mentioning that if all connecting A-C passengers were HCT passengers

at connecting city B, the B-C flight would fly empty. This is obviously an extreme and

unlikely outcome, but it clearly demonstrates that HCT could have important environmental

consequences that should be considered by regulators (Kang et al., 2022). In other words,

HCT passengers are unnecessary polluters that should not only be discouraged by airlines,

but also discouraged by regulatory authorities.

An interesting extension to the analysis presented in this article would be to examine

whether airlines attempt to circumvent HCT by applying differential pricing for one-ways

and roundtrips that connect through attractive intermediate cities. To circumvent HCT, it is

expected that the usual one-way premium would be higher for trips connecting at attractive

destinations (e.g., Los Angeles, New York, Miami) than for trips connecting at relatively

unattractive destinations (e.g., Atlanta, Houston, or Phoenix). In other words, airlines may

raise one-way fares that connect in attractive cities, so that the gain from exploiting HCT

on these routes is diminished.

More generally, future research could extend the present analysis to other countries or

continents. The U.S. domestic market is quite consolidated, but elsewhere it is not. For

example, the airline industry is at an earlier stage of consolidation in Europe, with almost
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every European country having its own flag carrier and few steps taken towards consolida-

tion (e.g., the Air France/KLM merger in 2004 and the British Airways/Iberia merger in

2011). The European market is characterized by differences in airline network structures,

with full-service carriers spatially operating around a small number of central hubs and

low-cost carriers evenly spreading flights across their networks (Bubalo and Gaggero, 2021).

Given these differences, it would be interesting to test whether the results we find on route

competition also extend to the European airline market.

Furthermore, the present analysis could be extended to other industries that, like airlines,

operate using hub-and-spoke networks. Examples include passenger rail and long-distance

bus, to see if these industries, which started applying rudimentary yield management tech-

niques by offering discounted fares to early purchasers, has HCT opportunities. Other can-

didate industries include cargo, container shipping, freight, and warehousing since a large

number of companies in these sectors employ hub-and-spoke networks to distribute their

goods.
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Appendix Tables
Table A1: Summary statistics and a brief description of the variables included in the analysis

Description Mean Std. Dev. Min Max
DEPENDENT VAR.
HCT%† One−Way Ticketsrca

(One−Way Ticketsrca+ One−Way Ticketsra)
0.055 0.094 0.000 0.907

HCT Dummy=1 in case of Hidden-City Ticket-
ing

0.154 0.361 0.000 1.000

log(FareAB) Fare A-B, nonstop flight, in logs 4.644 0.633 2.708 7.955
log(FareAC) Fare A-C with layover in B, in logs 5.081 0.536 3.555 7.901
PriceDifference max(0, FareAB− FareAC) 9.342 40.049 0.000 2,277
PriceDifference% max

(
0, FareAB − FareAC

FareAB

)
0.034 0.105 0.000 0.880

REGRESSORS
AveragePriceDifference† max(0, Average FareAB− Average FareAC) 30.905 60.011 0.000 600.000
Competition A-B Number of nonstop carriers serving route

A-B on the flight’s day of departure
3.921 1.320 1.000 8.000

Competition A-C Number of nonstop carriers serving route
A-C on the flight’s day of departure

2.493 1.638 0.000 8.000

DaysToDeparture 1-2 Dummy=1 if DaysToDeparture ∈ [1, 2] 0.044 0.205 0.000 1.000
DaysToDeparture 3-6 Dummy=1 if DaysToDeparture ∈ [3, 6] 0.095 0.294 0.000 1.000
DaysToDeparture 7-13 Dummy=1 if DaysToDeparture ∈ [7, 13] 0.141 0.348 0.000 1.000
DaysToDeparture 14-20 Dummy=1 if DaysToDeparture ∈ [14, 20] 0.118 0.322 0.000 1.000
DaysToDeparture 21-60 Dummy=1 if DaysToDeparture ∈ [21, 60],

omitted category in the regressions
0.602 0.489 0.000 1.000

Alaska Dummy=1 for Alaska 0.058 0.234 0.000 1.000
American Airlines Dummy=1 for American Airlines 0.250 0.433 0.000 1.000
Delta Dummy=1 for Delta 0.102 0.302 0.000 1.000
United Dummy=1 for United 0.170 0.376 0.000 1.000
Frontier Dummy=1 for Frontier 0.046 0.209 0.000 1.000
JetBlue Dummy=1 for JetBlue 0.041 0.199 0.000 1.000
Spirit Dummy=1 for Spirit 0.329 0.470 0.000 1.000
Sun Country Dummy=1 for Sun Country, omitted cat-

egory in the regressions
0.003 0.058 0.000 1.000

INSTRUMENTS
Passengers A-B Monthly number of nonstop passengers on

route A-B, in thousands
84.206 31.805 19.194 168.542

Passengers A-C Monthly number of nonstop passengers on
route A-C, in thousands

49.482 33.049 0.000 168.542

log
(√

PopA ∗ PopB
)

Geometric mean of population of A and
B, in logs

15.699 0.445 14.480 16.588

log
(√

PopA ∗ PopC
)

Geometric mean of population of A and
C, in logs

15.619 0.470 14.480 16.588

log
(
PopA+PopB

2

)
Arithmetic mean of population of A and
B, in logs

15.805 0.451 14.687 16.606

log
(
PopA+PopC

2

)
Arithmetic mean of population of A and
C, in logs

15.778 0.451 14.687 16.606

Notes: Number of observations is 772,635, except 162,889 for the variables marked with † (DB1B data).
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Table A2: Estimated probit coefficients and first-stage regressions for Table 4

(1) (2) (3) (4)
Estimator: Probit IV-Probit OLS OLS
Dependent variable: HCT HCT Comp. A-B Comp. A-C
Competition A-B -0.121** -0.190**

(0.057) (0.077)
Competition A-C 0.155*** 0.200***

(0.037) (0.037)
DaysToDeparture 1-2 0.806*** 0.792*** -0.040 0.102*

(0.135) (0.131) (0.039) (0.059)
DaysToDeparture 3-6 0.404*** 0.400*** -0.020 -0.045

(0.154) (0.151) (0.036) (0.040)
DaysToDeparture 7-13 0.108 0.109 0.035 -0.030

(0.116) (0.118) (0.027) (0.028)
DaysToDeparture 14-20 -0.098 -0.100 -0.004 0.025

(0.085) (0.084) (0.016) (0.017)
Alaska 1.441*** 1.432*** -0.962** -1.432***

(0.270) (0.263) (0.476) (0.415)
American Airlines 2.544*** 2.495*** -0.752 -1.371***

(0.175) (0.157) (0.455) (0.428)
Delta 3.031*** 3.050*** -0.581 -1.331***

(0.299) (0.322) (0.559) (0.438)
United 2.656*** 2.591*** -0.690 -0.623

(0.180) (0.155) (0.520) (0.480)
Frontier 1.191*** 1.206*** -0.384 -1.003**

(0.171) (0.148) (0.547) (0.501)
JetBlue 1.269*** 1.272*** -0.137 -1.570***

(0.358) (0.339) (0.542) (0.443)
Spirit 1.611*** 1.591*** -0.642 -1.105**

(0.150) (0.119) (0.453) (0.457)
Passengers A-B 0.026*** 0.000

(0.004) (0.002)
Passengers A-C 0.002 0.041***

(0.002) (0.002)
log

(√
PopA ∗ PopB

)
-5.706*** 0.793**
(1.293) (0.363)

log
(√

PopA ∗ PopC
)

-0.670 0.030
(0.418) (0.450)

log
(
PopA+PopB

2

)
4.678*** -0.344
(1.266) (0.358)

log
(
PopA+PopC

2

)
0.814* -0.554
(0.448) (0.416)

R2 0.656 0.659
Wald χ2 test 12.691***
Observations 772,635 772,635 772,635 772,635

Notes: All specifications include month-of-year, day-of-week, and time-of-day-of-departure fixed effects. Sun
Country is the omitted airline fixed effect. Standard errors are clustered at the route A-B level. Constant
is included but not reported. *** Significant at the 1 percent level, ** Significant at the 5 percent level, *
Significant at the 10 percent level.



Online Appendix
As a robustness check, we replicate the analysis reported in Table 6 using, in place of PriceD-
ifference, the price difference in percentage, i.e., PriceDifference%= max

(
0, FareAB − FareAC

FareAB

)
.

We then estimate a fractional logit model (see Table A3).
The potential endogeneity of the competition variables is accounted for using a control

function approach described in Wooldridge (2001), where each endogenous variable (i.e.,
Competition A-B and Competition A-C) is first regressed on the instruments and the exoge-
nous variables to obtain the residuals, v̂AB and v̂AC , which are then included as additional
regressors in fractional logit model to produce unbiased estimates.23

23Because the residuals are used as regressors in the second-stage, standard errors are bootstrapped.
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Table A3: Determinants of PriceDifference%

(1) (2)
Estimator Fractional logit Fractional logit
Dependent variable PriceDifference% PriceDifference%

Estimated Marginal Estimated Marginal
coefficients effects coefficients effects

Competition A-B -0.185 -0.006 -0.320*** -0.010***
(0.168) (0.005) (0.004) (0.000)

Competition A-C 0.226** 0.007** 0.294*** 0.009***
(0.089) (0.003) (0.003) (0.000)

DaysToDeparture 1-2 1.379*** 0.056*** 1.373*** 0.056***
(0.266) (0.017) (0.012) (0.001)

DaysToDeparture 3-6 1.239*** 0.047*** 1.242*** 0.047***
(0.276) (0.016) (0.009) (0.000)

DaysToDeparture 7-13 0.686*** 0.020** 0.692*** 0.020***
(0.257) (0.010) (0.011) (0.000)

DaysToDeparture 14-20 0.064 0.001 0.060*** 0.001***
(0.329) (0.007) (0.013) (0.000)

Alaska 4.458*** 0.005** 4.517 0.005***
(0.744) (0.002) (3.543) (0.000)

American Airlines 6.659*** 0.044*** 6.667* 0.042***
(0.621) (0.011) (3.544) (0.000)

Delta 7.577*** 0.100** 7.732** 0.109***
(0.719) (0.046) (3.543) (0.001)

United 6.832*** 0.052*** 6.821* 0.049***
(0.598) (0.012) (3.544) (0.000)

Frontier 3.986*** 0.003*** 4.125 0.004***
(0.673) (0.001) (3.541) (0.000)

JetBlue 3.771*** 0.003 3.863 0.003***
(0.865) (0.002) (3.542) (0.000)

Spirit 4.753*** 0.007*** 4.812 0.007***
(0.588) (0.001) (3.543) (0.000)

v̂AB 0.312***
(0.005)

v̂AC -0.153***
(0.004)

Pseudo-R2 0.155 0.159
Observations 772,635 772,635

Notes: The dependent variable (PriceDifference%) is equal to max
(
0, FareAB − FareAC

FareAB

)
. All specifications

include month-of-year, day-of-week, and time-of-day-of-departure fixed effects. Sun Country is the omitted
airline fixed effect. Model (1) originates from a standard fractional logit regression. Model (2) originates from
a fractional logit regression with a control function approach, where each endogenous variable (Competition
A-B and Competition A-C) is first regressed on the instruments and the exogenous variables to obtain the
residuals, v̂AB and v̂AC , which are then included as additional controls in the fractional logit model to produce
unbiased estimates (Wooldridge, 2001). Standard errors are clustered at the route A-B level in Model (1)
and bootstrapped in Model (2). Constant is included but not reported. *** Significant at the 1 percent level,
** Significant at the 5 percent level, * Significant at the 10 percent level.


