Santeramo, Fabio Gaetano and Maccarone, Irene (2022): Analisi storica delle rese agricole e la variabilità del clima: Analisi dei dati italiani sui cereali. Forthcoming in: Italian Review of Agricultural Economics : pp. 1-31.
Preview |
PDF
MPRA_paper_114135.pdf Download (565kB) | Preview |
Abstract
Climate change is impacting on the agricultural sector in several ways, and the effects on yields are generally among the most observable ones. Open fields crops, such as cereals, are very vulnerable to climate change. We study the historical data on yields of main cereals, namely barley, maize, oats, rice, rye, wheat, to conclude on the long run impacts of temperature and precipitation, over the period 1920-2015. Yields are found to be inversely correlated with temperatures and positively with precipitation, in both cases the relationships are non-linear, as expected.
Item Type: | MPRA Paper |
---|---|
Original Title: | Analisi storica delle rese agricole e la variabilità del clima: Analisi dei dati italiani sui cereali |
English Title: | Historical crop yields and climate variability: analysis of Italian cereal data |
Language: | Italian |
Keywords: | Cambiamento climatico, cereali, detrendizzazione |
Subjects: | Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q1 - Agriculture > Q11 - Aggregate Supply and Demand Analysis ; Prices Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q1 - Agriculture > Q18 - Agricultural Policy ; Food Policy Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q5 - Environmental Economics > Q54 - Climate ; Natural Disasters and Their Management ; Global Warming |
Item ID: | 114135 |
Depositing User: | Irene Maccarone |
Date Deposited: | 09 Sep 2022 07:10 |
Last Modified: | 09 Sep 2022 07:10 |
References: | Agnolucci, P., De Lipsis, V. (2019). Long-run trend in agricultural yield and climatic factors in Europe. Climatic Change, 1-21. Doi: https://doi.org/10.1007/s10584-019-02622-3 Avanzini, M., Salvador, I., & Gios, G. (2018). Climate change and variations in mountain pasture values in the central-eastern Italian Alps in the eighteenth and nineteenth centuries. Bio-based and Applied Economics, 7(2), 97-116. Doi: 10.13128/bae-7670 Barnwal, P., Kotani, K. (2013). Climatic impacts across agricultural crop yield distributions: An application of quantile regression on rice crops in Andhra Pradesh, India. Ecological Economics, 87, 95-109. Doi: http://dx.doi.org/10.1016/j.ecolecon.2012.11.024 Black, J. Roy, Stanley R. Thompson. "Some evidence on weather-crop-yield interaction." American Journal of Agricultural Economics 60.3 (1978): 540-543. Doi: https://doi.org/10.2307/1239954 Briche, E., Beltrando, G., Somot, S., & Quénol, H. (2014). Critical analysis of simulated daily temperature data from the ARPEGE-climate model: application to climate change in the Champagne wine-producing region. Climatic change, 123(2), 241-254. Doi: 10.1007/s10584-013-1044-5 Campiglia, E., Mancinelli, R., De Stefanis, E., Pucciarmati, S., & Radicetti, E. (2015). The long-term effects of conventional and organic cropping systems, tillage managements and weather conditions on yield and grain quality of durum wheat (Triticum durum Desf.) in the Mediterranean environment of Central Italy. Field Crops Research, 176, 34-44. Doi: http://dx.doi.org/10.1016/j.fcr.2015.02.021 Cabas, Juan, Alfons Weersink, and Edward Olale. "Crop yield response to economic, site and climatic variables." Climatic change 101.3 (2010): 599-616. Doi: 10.1007/s10584-009-9754-4 Challinor, A. J., Watson, J., Lobell, D. B., Howden, S. M., Smith, D. R., & Chhetri, N. (2014). A meta-analysis of crop yield under climate change and adaptation. Nature Climate Change, 4(4), 287-291. Doi: http://dx.doi.org/10.1038/nclimate2153 Cooper, J., & DelBeCq, B. (2014). A multi-region approach to assessing fiscal and farm level consequences of government support for farm risk management. Bio-Based and Applied Economics Journal, 3(1050-2016-85763), 205-227. Doi: http://dx.doi.org/10.22004/ag.econ.196654 Cordier, J., & Santeramo, F. (2020). Mutual funds and the Income Stabilisation Tool in the EU: Retrospect and Prospects. EuroChoices, 19(1), 53-58. Doi: 10.1111/1746-692X.1221 Diffenbaugh, N. S., Davenport, F. V., & Burke, M. (2021). Historical warming has increased US crop insurance losses. Environmental Research Letters, 16(8), 084025. Doi: https://doi.org/10.1088/1748-9326/ac1223 Ferrara, R. M., Trevisiol, P., Acutis, M., Rana, G., Richter, G. M., & Baggaley, N. (2010). Topographic impacts on wheat yields under climate change: two contrasted case studies in Europe. Theoretical and Applied Climatology, 99(1), 53-65. Doi: 10.1007/s00704-009-0126-9 Finger, Robert. "Evidence of slowing yield growth–the example of Swiss cereal yields." Food Policy 35.2 (2010): 175-182. Doi: https://doi.org/10.1016/j.foodpol.2009.11.004 Fletcher, A. L., Chen, C., Ota, N., Lawes, R. A., & Oliver, Y. M. (2020). Has historic climate change affected the spatial distribution of water-limited wheat yield across Western Australia?. Climatic Change, 1-18. Doi: https://doi.org/10.1007/s10584-020-02666-w. Furuya, J., Koyama, O. (2005). Impacts of climatic change on world agricultural product markets: estimation of macro yield functions. Japan Agricultural Research Quarterly: JARQ, 39(2), 121-134. Doi: http://www.jircas.affrc.go.jp Gaudin, Amélie CM, et al. "Increasing crop diversity mitigates weather variations and improves yield stability." PloS one 10.2 (2015): e0113261. Doi: https://doi.org/10.1371/journal.pone.0113261 Hennessy, David A. "Crop yield skewness and the normal distribution." Journal of Agricultural and Resource Economics (2009): 34-52. Doi: https://www.jstor.org/stable/41548400 ISTAT (2019). Agricoltura: nel 2018 +0,6% produzione e +0,9% valore aggiunto, ma i margini calano. Disponibile al sito: (accesso: 06/12/2021) ISTAT (2021). In calo le superfici cerealicole, ma previsioni in crescita per il 2021. Disponibile al sito: (accesso: 10/12/2021) Kahil, M. T., & Albiac, J. (2013). Greenhouse gases mitigation policies in the agriculture of Aragon, Spain. Bio-based and Applied Economics Journal, 2(1050-2016-85745), 49-72. Doi: http://dx.doi.org/10.22004/ag.econ.149222 Kim, H., Moschini, G. (2018). The dynamics of supply: US corn and soybeans in the biofuel era. Land Economics, 94(4), 593-613. Doi: 10.3368/le.94.4.593 Ker, Alan P., Barry K. Goodwin. "Nonparametric estimation of crop insurance rates revisited." American Journal of Agricultural Economics 82.2 (2000): 463-478.16. Doi: https://doi.org/10.1111/0002-9092.00039 Kolstad, C. D., and Moore, F. C. (2020). Estimating the economic impacts of climate change using weather observations. Review of Environmental Economics and Policy. Doi: https://doi.org/10.1093/reep/rez024 Lamonaca, E., Santeramo, F. G., & Seccia, A. (2021). Climate changes and new productive dynamics in the global wine sector. Bio-based and Applied Economics, 10(2), 123-135. Doi: 10.36253/bae-967 Leng, Guoyong, and Maoyi Huang. "Crop yield response to climate change varies with crop spatial distribution pattern." Scientific Reports 7.1 (2017): 1-10. Doi: 10.1038/s41598-017-01599-2 Lobell, David B., Marshall B. Burke. "On the use of statistical models to predict crop yield responses to climate change." Agricultural and forest meteorology 150.11 (2010): 1443-1452. Doi: https://doi.org/10.1016/j.agrformet.2010.07.008 Lu, Junyu, Gregory J. Carbone, Peng Gao. "Detrending crop yield data for spatial visualization of drought impacts in the United States, 1895–2014." Agricultural and forest meteorology 237 (2017): 196-208. Doi: https://doi.org/10.1016/j.agrformet.2017.02.001 Mereu, V., Gallo, A., Trabucco, A., Carboni, G., & Spano, D. (2021). Modeling high-resolution climate change impacts on wheat and maize in Italy. Climate Risk Management, 33, 100339. Doi: https://doi.org/10.1016/j.crm.2021.100339 Orlandi, F., Rojo, J., Picornell, A., Oteros, J., Pérez-Badia, R., & Fornaciari, M. (2020). Impact of climate change on olive crop production in Italy. Atmosphere, 11(6), 595. Doi: 10.3390/atmos11060595 Peltonen-Sainio, P., Jauhiainen, L., Trnka, M., Olesen, J. E., Calanca, P., Eckersten, H., ... & Orlandini, S. (2010). Coincidence of variation in yield and climate in Europe. Agriculture, ecosystems & environment, 139(4), 483-489. Doi: https://doi.org/10.1016/j.agee.2010.09.006 Popp, Michael, Margot Rudstrom, and Patrick Manning. "Spatial yield risk across region, crop and aggregation method." Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie 53.2‐3 (2005) : 103-115. Doi: https://doi.org/10.1111/j.1744-7976.2005.00408.x Ray, Deepak K., et al. "Climate variation explains a third of global crop yield variability." Nature communications 6.1 (2015): 1-9. Doi: 10.1038/ncomms6989 Rowhani, P., Lobell, D. B., Linderman, M., & Ramankutty, N. (2011). Climate variability and crop production in Tanzania. Agricultural and forest meteorology, 151(4), 449-460. Doi: https://doi.org/10.1016/j.agrformet.2010.12.002 Sarker, M. A. R., Alam, K., Gow, J. (2012). Exploring the relationship between climate change and rice yield in Bangladesh: An analysis of time series data. Agricultural Systems, 112, 11-16. Doi: https://doi.org/10.1016/j.agsy.2012.06.004 Santeramo F.G., Di Gioia L. (2018). La gestione del rischio in agricoltura. Assicurazioni, credito e strumenti finanziari per lo sviluppo rurale. Edgricole – New Business Media. Santeramo, F. G. (2019). I learn, you learn, we gain experience in crop insurance markets. Applied Economic Perspectives and Policy, 41(2), 284-304. Doi: https://doi.org/10.1093/aepp/ppy012 Santeramo, F. G., & Russo, I. (2021). Behavioural aspects in crop insurance uptakes: the Italian market. Italian Review of Agricultural Economics, 76(2), 73-90. Doi: 10.36253/rea-12186 Setiyono, T. D., Quicho, E. D., Gatti, L., Campos-Taberner, M., Busetto, L., Collivignarelli, F., ... & Holecz, F. (2018). Spatial rice yield estimation based on MODIS and Sentinel-1 SAR data and ORYZA crop growth model. Remote Sensing, 10(2), 293. Doi: https://doi.org/10.3390/rs10020293 Schlenker, Wolfram, Michael J. Roberts. "Nonlinear effects of weather on corn yields." Review of agricultural economics 28.3 (2006): 391-398. Doi: https://doi.org/10.1073/pnas.0906865106 Tappi, M., Nardone, G., & Santeramo, F. (2022). On the relationships among durum wheat yields and weather conditions: evidence from Apulia region, Southern Italy. Bio-Based and Applied Economics. 11(2). Forthcoming. Thornton, P. K., Jones, P. G., Alagarswamy, G., & Andresen, J. (2009). Spatial variation of crop yield response to climate change in East Africa. Global environmental change, 19(1), 54-65. Doi: https://doi.org/10.1016/j.gloenvcha.2008.08.005 Trnka, M., Olesen, J. E., Kersebaum, K. C., Rötter, R. P., Brázdil, R., Eitzinger, J., ... & Rajdl, K. (2016). Changing regional weather crop yield relationships across Europe between 1901 and 2012. Climate Research, 70(2-3), 195-214. Doi: https://doi.org/10.3354/cr01426 Turvey, C. G., Zhao, J. (1999). Parametric and non-parametric crop yield distributions and their effects on all-risk crop insurance premiums (No. 1620-2016-134858). Doi: http://dx.doi.org/10.22004/ag.econ.34129 Ye, T., Nie, J., Wang, J., Shi, P., & Wang, Z. (2015). Performance of detrending models of crop yield risk assessment: evaluation on real and hypothetical yield data. Stochastic environmental research and risk assessment, 29(1), 109-117. Doi: 10.1007/s00477-014-0871-x Zhu, X., Moriondo, M., van Ierland, E. C., Trombi, G., & Bindi, M. (2016). A model-based assessment of adaptation options for Chianti wine production in Tuscany (Italy) under climate change. Regional Environmental Change, 16(1), 85-96. Doi: 10.1007/s10113-014-0622-z |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/114135 |