
Munich Personal RePEc Archive

Three Remarks On Asset Pricing

Olkhov, Victor

Independent

14 August 2022

Online at https://mpra.ub.uni-muenchen.de/114185/

MPRA Paper No. 114185, posted 15 Aug 2022 00:17 UTC



 1 

Three Remarks On Asset Pricing 

Victor Olkhov 

Moscow, Russia 

victor.olkhov@gmail.com 

ORCID: 0000-0003-0944-5113 

 

Abstract 

We consider well-known consumption-based asset pricing theory and regard the choice of the 

time interval Δ used for averaging the market price time-series as the key factor of asset 

pricing. We show that the explicit usage of the averaging interval Δ allows expand investor’s 

utility into Taylor series and derive successive approximations of the basic asset pricing 

equation. For linear and quadratic Taylor series approximations of the basic pricing equation 

we derive new expressions of the mean price, mean payoff, their volatilities, skewness and 

amount of asset ξmax that delivers max to investor’s utility. The treatment of the market price 

as a coefficient between the trade value and volume prohibits independent definition of the 

trade value, volume and price probabilities. We introduce price n-th statistical moments 

p(t;n) as generalization of the well-known definition of volume weighted average price 

(VWAP). We demonstrate that usage of VWAP causes zero correlations between price and 

trade volume. Usage of price n-th statistical moments causes zero correlations between n-th 

power of price pn
 and trade volume Un

, but don’t causes statistical independence. As 

example, we derive expression for correlation between price p and squares of trade volume 

U2
. Any predictions of the market-based price probability at horizon T should match forecasts 

of finite number of n-th statistical moments of the trade value C(t;n) and volume U(t;n) at the 

same horizon T. The new definition of the market-based asset price probability emphasizes 

its direct dependence on random properties of the market trade. 
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1. Introduction 

Predictions of the asset prices define the main desires of investors, traders and all the 

participants of financial markets. Last decades give a great progress in the asset price 

valuation and setting. Starting with Hall and Hitch (1939) many researchers investigate the 

price theory (Friedman, 1990; Heaton and Lucas, 2000) and the factors those impact markets 

(Fama, 1965), equilibrium economy (Sharpe, 1964), fluctuations (Mackey, 1989) 

macroeconomics (Cochrane and Hansen, 1992) and business cycles (Mills, 1946; Campbell, 

1998). Muth (1961) initiated studies on the dependence of asset pricing on the expectations 

and numerous scholars developed his ideas further (Lucas, 1972; Malkiel and Cragg, 1980; 

Campbell and Shiller, 1988; Greenwood and Shleifer, 2014). Many researchers describe the 

price dynamics and references (Goldsmith and Lipsey, 1963; Campbell, 2000; Cochrane and 

Culp, 2003; Borovička and Hansen, 2012; Weyl, 2019) give only a small part of them. 

Asset pricing depends on price fluctuations and volatility. The mean price trends and the 

price volatility are the most important issues that impact investors’ expectation. Description 

of volatility is inseparable from price modeling (Hall and Hitch, 1939; Fama, 1965; Stigler 

and Kindahl, 1970; Tauchen and Pitts, 1983; Schwert, 1988; Mankiw, Romer and Shapiro, 

1991; Brock and LeBaron, 1995; Bernanke and Gertler, 1999; Andersen et.al., 2001; Poon 

and Granger, 2003; Andersen et.al., 2005). The list of references can be continued as 

hundreds and hundreds of articles describe different faces of the price-volatility puzzle.  

Simple and practical advises on the price modeling and forecasting among the most 

demanded by investors. Different price models were developed to satisfy and saturate 

investors’ desires. We refer only some pricing models (Ferson et.al., 1999; Fama and French, 

2015) and studies on Capital Asset Pricing Model (CAPM) (Sharpe, 1964; Merton, 1973; 

Cochrane, 2001; Perold, 2004). Cochrane (2001) shows that CAPM includes different 

versions of asset pricing as ICAPM and consumption-based pricing model (Campbell, 2002) 

are CAPM variations. Further we consider Cochrane (2001) as clear and consistent 

presentation of CAPM basis, problems and achievements. Resent study (Cochrane, 2021) 

complements the rigorous asset price description with deep and justified general 

considerations of the nature, problems and possible directions for further research.  

Despite the fact that asset pricing, risk, uncertainties and financial markets were studied with 

a great accuracy and solidity there are still “some” problems left. We assume that the core 

economic difficulties and the fundamental economic relations may still impede further 

significant development of the price theory. To explain the nature of the existing economic 
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obstacles that may hamper price forecasting we consider three interrelated remarks that 

impact asset pricing.  

We outline that any averaging of economic and financial variables presented by time-series is 

performed during some time interval Δ. The choice of Δ allows derive Taylor series of the 

basic pricing equation for variables averaged during Δ. Linear and quadratic approximations 

by price and payoff variations during Δ give simple equations on mean price and payoff, their 

volatilities, skewness and other factors that define CAPM. The core factor of any asset price 

model is the price probability measure. We present the reasons those support substitution of 

the conventional price probability P(p) proportional to the frequency of trades at price p 

during an interval Δ by a different price probability measure entirely determined by the 

probability measures of the market trade value and volume time-series during Δ. Indeed, 

price p(ti) of any particular trade at moment ti is a coefficient between the trade value C(ti) 

and the trade volume U(ti) 𝐶(𝑡𝑖) = 𝑝(𝑡𝑖)𝑈(𝑡𝑖)     (1.1) 

Time-series of market trade value C(ti) and volume U(ti) during Δ determine the market value 

and volume probabilities proportional to the frequency of trades at particular value and 

volume. It impossible independently define probabilities of three variable - trade value C(ti), 

volume U(ti) and price p(ti) – those match equation (1.1). For any given Δ and probabilities of 

the trade value and volume, price probability must be result of equation (1.1). We define a 

market-based price probability measure that match (1.1) as function of probability measures 

of the market trade value and volume time-series during Δ. The market-based price 

probability measure reflects randomness of the market trades and prediction of the price 

probability at horizon T equals forecasting the market probability measures at same horizon.   

It is convenient consider asset pricing having the single reference that describes almost all 

extensions and model variations within the uniform frame. We propose that readers are 

familiar with Cochrane (2001) and refer this monograph for any notions and clarifications. 

In Sec.2 we remind main CAPM notions. In Sec.3 we consider remarks on the time scales 

and introduce the averaging interval Δ of the market trade and price time-series. In Sec.4 we 

discuss remarks on Taylor series generated by the averaging interval Δ. We expand the utility 

functions by Taylor series and in linear and quadratic approximations by the price and payoff 

variations we consider the idiosyncratic risk, the utility max conditions and the impact of 

price-volume correlations. In Sec.5 we introduce the new market-based price probability 

measure and briefly consider its implications on asset pricing. Sec.7 – Conclusion. In App.A 
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we collect some calculations that define maximum of investor’s utility. In App.B we present 

simple approximations of the price characteristic function.  

Equation (4.5) means equation 5 in the Sec. 4 and (A.2) – notes equation 2 in Appendix A. 

We assume that readers are familiar with basic notions of probability, statistical moments, 

characteristic functions and etc. 

2. Brief CAPM Assumptions 

The general frame that determines all CAPM versions and extensions states: “All asset 

pricing comes down to one central idea: the value of an asset is equal to its expected 

discounted payoff” (Cochrane, 2001; Cochrane and Culp, 2003; Hördahl and Packer, 2007; 

Cochrane, 2021). Let's follow (Cochrane, 2001) and briefly consider CAPM notions and 

assumptions. The basic consumption-based equation has form: 𝑝 = 𝐸[𝑚 𝑥]     (2.1) 

In (2.1) p denotes the asset price at date t, x=pt+1+dt+1 – payoff, pt+1 - price and dt+1 - 

dividends at date t+1, m - the stochastic discount factor and E – mathematical expectation at 

day t+1 made by the forecast under the information available at date t. Cochrane (2001) 

considers relations (2.1) in various forms to show that almost all models of asset pricing 

united by the title CAPM can be described by the similar equations. We shall consider (2.1) 

and refer (Cochrane, 2001) for all CAPM extensions. For convenience we briefly reproduce 

consumption-based derivation of (2.1). Cochrane “models investors by a utility function 

defined over current ct and future ct+1 values at date t of consumption. ct and ct+1 denote 

consumption at date t and t+1.”  𝑈(𝑐𝑡;  𝑐𝑡+1) = 𝑢(𝑐𝑡) + 𝛽𝐸[𝑢(𝑐𝑡+1)]    (2.2) 𝑐𝑡 = 𝑒𝑡 − 𝑝𝜉   ;      𝑐𝑡+1 = 𝑒𝑡+1 + 𝑥𝜉    (2.3) 𝑥 = 𝑝𝑡+1 + 𝑑𝑡+1      (2.4) 

Here (2.3) et and et+1 “denotes original consumption level (if the investor bought none of the 

asset), and ξ denotes the amount of the asset he chooses to buy” (Cochrane, 2001). A payoff x 

(2.4) is determined by a price pt+1 and a dividend dt+1 of asset at date t+1. Cochrane calls β as 

“subjective discount factor that captures impatience of future consumption”. E[...] in (2.2) 

denotes mathematical expectation of the random utility due to the random payoff x (2.4) 

made at date t+1 by forecast on base of information available at date t. The first-order 

maximum condition for (2.2) by amount of asset ξ is fulfilled by putting derivative of (2.2) 

by ξ equals zero (Cochrane, 2001): max𝜉 𝑈(𝑐𝑡;  𝑐𝑡+1)  ↔  𝜕𝜕𝜉 𝑈(𝑐𝑡;  𝑐𝑡+1) = 0   (2.5) 
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From (2.2-2.5) it is obvious that:  𝑝 = 𝛽𝐸 [ 𝑢′(𝑐𝑡+1)𝑢′(𝑐𝑡)  𝑥] = 𝐸[𝑚𝑥]      ;     𝑚 = 𝛽 𝑢′(𝑐𝑡+1)𝑢′(𝑐𝑡)    ;   𝑑𝑑𝑐 𝑢(𝑐) = 𝑢′(𝑐)  (2.6) 

and (2.6) reproduces (2.1) for m (2.6). This completes the brief derivation of the basic 

equation (2.1; 2.6) and we refer Cochrane (2001) for any further details.  

3. Remarks on Time Scales  

We start with simple remarks on averaging procedure and time scales. Any averaging of the 

market trade time-series delivers the mean values during some time interval Δ. The averaging 

procedure can be different but any such procedure aggregates the time-series during an 

interval Δ. The choice of the averaging interval Δ defines the internal time scale of the 

problem under consideration. Prediction of asset price at time-horizon T at “the next day” t+1 

= t+T defines the external time scale of the problem. Relations between the internal Δ and 

external T scales determine evolution of the averaged variables, sustainability and accuracy 

of the model description. Financial variables – price, volatility, beta – averaged during the 

interval Δ can behave irregular or randomly on time scales T for T>> Δ. This effect 

mentioned, for example, by Cochrane (2021): “Another great puzzle is how little we know 

about betas. In continuous-time diffusion theory, 10 seconds of millisecond data should be 

enough to measure betas with nearly infinite precision. In fact, betas are hard to measure and 

unstable over time”. It’s clear, that averaging of time-series during the interval Δ smooth 

perturbations with scales less than Δ. If factors that disturb the market have a time scale d > Δ 

then variables averaged during Δ will demonstrate irregular or random properties during the 

term T. It is clear that the price, payoff and discount factor are under impact of the disturbing 

factors with different time scales. Eventually, the choice of the averaging interval Δ is 

important for asset pricing, but sadly it is not the main trouble. 

As we note, the averaging interval Δ defines the internal time scale of the problem. In 

simplest case averaging of the price time-series during the interval Δ that equals 1 min, 1 

hour, 1 day, 1 week establish the least time divisions of  “the Clocks” of the problem under 

consideration that equal 1 min, 1 hour, 1 day, 1 week and moments of time t(k) of the model 

after averaging during Δ take form  𝑡(𝑘) = 𝑡(0) + 𝑘 ∆   ;     𝑘 = 0, +−  1, +−  2, …   (3.1) 

Here t0 can be the moment “to-day”. It is reasonable use the same time scale divisions “to-

day” at moment t and the “next-day” at t+1. Indeed, time scale divisions can’t be measured 

“to-day” in hours and “next-day” in weeks. The utility (2.2) “to-day” at moment t and the 
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“next-day” at t+1 should have the same time divisions. Averaging of any time-series at the 

“next-day” at t+1 during the interval Δ undoubtedly implies averaging “to-day” at date t 

during same time interval Δ and vise-versa. Thus, if the utility (2.2) is averaged at t+1 during 

the interval Δ, then the utility (2.2) also should be averaged at date t during Δ and take form: 𝑈(𝑐𝑡;  𝑐𝑡+1) = 𝐸𝑡[𝑢(𝑐𝑡)] + 𝛽𝐸[𝑢(𝑐𝑡+1)]    (3.2) 

We denote Et[..] in (3.2) as mathematical expectation “to-day” at date t during Δ. It does not 

matter how one considers the price time-series “to-day” – as random or as irregular. 

Mathematical expectation Et[..] performs smoothing of the random or irregular time-series 

via aggregating data during Δ under particular probability measure. Mathematical 

expectations Et[..] and E[..] within identical averaging intervals Δ establish identical time 

division of the problem at dates t and t+1 in (3.2). Hence, relations similar to (2.5; 2.6) 

should derive modification of the basic pricing equation in the form: 𝐸𝑡[𝑝 𝑢′(𝑐𝑡)] = 𝛽𝐸 [𝑥 𝑢′(𝑐𝑡+1)]    (3.3) 

Cochrane (2001) takes “subjective discount factor” β as non-random and we follow the same 

assumption. Mathematical expectation in the left side Et[…] assesses mean price p at moment 

t during Δ. In the right side E[xu’(ct+1)] forecasts the average of xu’(ct+1) at date t+1 within 

the same averaging interval Δ on base of data available at date t. 

Brief resume 1. The choice of the averaging time interval Δ, transition to time divisions (3.1) 

and analysis of dependence of mean variables on duration of Δ establish the key problems of 

any economic or financial model that describes relations between averaged variables. 

4. Remarks on Taylor series 

Relation (2.5) presents first-order condition at point ξmax that delivers maximum to investor’s 

utility (2.2) or (3.2). Let us choose the averaging interval Δ and take the price p at date t 

during the interval Δ and the payoff x at date t+1 during the interval Δ as: 𝑝 =  𝑝0 + 𝛿𝑝 ;     𝑥 = 𝑥0 + 𝛿𝑥    (4.1) 𝐸𝑡[𝑝] = 𝑝0 ;  𝐸[𝑥] = 𝑥0 ;  𝐸𝑡[𝛿𝑝] = 𝐸[𝛿𝑥] = 0 ;  𝜎2(𝑝) = 𝐸𝑡[𝛿2𝑝]  ;   𝜎2(𝑥) = 𝐸[𝛿2𝑥]  (4.2) 

The relations (4.1; 4.2) give the average price p0 and its volatility σ2(p) at date t and the 

average payoff x0 its volatility σ2(x) at date t+1. We underline, that we consider averaging 

during Δ as averaging of a random or as smoothing of an irregular variable. Thus Et[p] – at 

date t smooth random or irregular price p during Δ and E[x] – averages the random payoff x 

during Δ at date t+1. We call both procedures as mathematical expectations. We present the 

derivatives of utility functions in (3.3) by Taylor series in a linear approximation by δp and 

δx during Δ:  
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𝑢′(𝑐𝑡) = 𝑢′(𝑐𝑡;0) − 𝜉𝑢′′(𝑐𝑡;0)𝛿𝑝    ;   𝑢′(𝑐𝑡+1) = 𝑢′(𝑐𝑡+1;0) + 𝜉𝑢′′(𝑐𝑡+1;0)𝛿𝑥  (4.3) 𝑐𝑡;0 = 𝑒𝑡 − 𝑝0𝜉   ;      𝑐𝑡+1;0 = 𝑒𝑡+1 + 𝑥0𝜉 

Now substitute (4.3) into (3.3) and obtain equation (4.4): 𝑢′(𝑐𝑡;0)𝑝0 − 𝜉𝑢′′(𝑐𝑡;0)𝜎2(𝑝) = 𝛽𝑢′(𝑐𝑡+1;0)𝑥0 + 𝛽𝜉𝑢′′(𝑐𝑡+1;0)𝜎2(𝑥)  (4.4) 

Taylor series are simplest entry-level mathematical tools like as ordinary derivatives and we 

see no sense refer any studies those also use Taylor or ordinary derivatives in asset pricing. 

However, Cochrane (2001) uses Taylor expansions. We underline: Taylor series and (4.1-4.4) 

are determined by the duration of the averaging interval Δ. The change of Δ implies change of 

the mean price p0, the mean payoff x0 and their volatilities σ2(p), σ2(x) (4.2). Equation (4.4) is 

a linear approximation by the price and payoff fluctuations of the first-order max conditions 

(2.5) and assesses the root ξmax that delivers maximum to the utility U(ct;ct+1) (3.2)  𝜉𝑚𝑎𝑥 = 𝑢′(𝑐𝑡;0)𝑝0−𝛽𝑢′(𝑐𝑡+1;0)𝑥0𝑢′′(𝑐𝑡;0)𝜎2(𝑝)+𝛽𝑢′′(𝑐𝑡+1;0) 𝜎2(𝑥)    (4.5) 

We note that (4.5) is not an “exact” equation on ξmax as utilities u’
 and u” 

 also depend on
 ξmax 

as it follows from (4.3). However, (4.5) gives an assessment of ξmax in a linear approximation 

by Taylor series δp and δx averaged during Δ. Let underline that the ξmax (4.5) depends on the 

price volatility σ2(p) at date t and on the payoff volatility σ2(x) at date t+1 (4.2).  

It is clear that sequential iterations may give more accurate approximations of ξmax. 

Nevertheless, our approach and (4.5) give a new look on the basic equation (2.6; 3.3). If one 

follows the standard derivation of (2.6) (Cochrane, 2001) and neglects the averaging at date t 

in the left side (3.3), then (2.6; 4.5) give  𝜉𝑚𝑎𝑥 = 𝑢′(𝑐𝑡)𝑝−𝛽𝑢′(𝑐𝑡+1;0)𝑥0𝛽𝑢′′(𝑐𝑡+1;0)𝜎2(𝑥)      (4.6) 

Relations (4.6) show that even the standard form of the basic equation (2.6) hides dependence 

of ξmax on the payoff volatility σ2(x) at date t+1. If one has the independent assessment of ξmax 

then can use it to present (4.6) in a way alike to the basic equation (2.6):  𝑝 = 𝑢′(𝑐𝑡+1;0)𝑢′(𝑐𝑡) 𝛽𝑥0 + 𝜉𝑚𝑎𝑥 𝑢′′(𝑐𝑡+1;0)𝑢′(𝑐𝑡) 𝛽𝜎2(𝑥)   (4.7) 

One can transform (4.7) alike to (2.6): 𝑝 = 𝑚0𝑥0 + 𝜉𝑚𝑎𝑥𝑚1𝜎2(𝑥)     (4.8) 𝑚0 = 𝑢′(𝑐𝑡+1;0)𝑢′(𝑐𝑡) 𝛽  ;   𝑚1 = 𝑢′′(𝑐𝑡+1;0)𝑢′(𝑐𝑡) 𝛽    (4.9) 

For the given ξmax equation (4.8) in a linear approximation by Taylor series describes 

dependence of the price p at date t (3.1) on the mean discount factors m0 and m1 (4.9), the 

mean payoff x0 (4.1) and the payoff volatility σ2(x) during Δ. Let underline that while the 
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mean discount factor m0>0, the mean discount factor m1<0 because the utility u’(ct)>0 and 

u”(ct)<0 for all t. Hence, for (4.8) valid:  𝑝 < 𝑚0𝑥0   ;    𝜉𝑚𝑎𝑥𝑚1𝜎2(𝑥) < 0 

We underline that (4.6-4.9) have sense for the given value of ξmax. Equation (4.8) in a linear 

approximation by Taylor series δx during the interval Δ describes the modified CAPM 

statement: the value of an asset is equal the mean payoff x0 discounted by the mean factor m0 

minus payoff volatility σ2(x) discounted by factor |m1| and multiplied by the amount of asset 

ξmax that delivers maximum to the investor’s utility (2.2). As the price p in (4.8) should be 

positive hence ξmax should obey inequality (4.10): 0 < 𝜉𝑚𝑎𝑥 < − 𝑢′(𝑐𝑡+1;0)𝑢′′(𝑐𝑡+1;0)  𝑥0𝜎2(𝑥)     (4.10) 

Taking into account (4.3) it is easy to show for (4.10) that for the conventional power utility 

(Cochrane, 2001) (A.2): 𝑢(𝑐) = 11 − 𝛼 𝑐1−𝛼   ;    𝑢′(𝑐)𝑢′′(𝑐) =  − 𝑐𝛼    ;    0 < 𝛼 ≤ 1 

inequality (4.10) valid always if 𝛼 𝜎2(𝑥) <  𝑥02  
For this approximation (4.10) limits the value of ξmax. If one takes (4.5) then obtains 

equations similar to (4.8; 4.9): 𝑚0 = 𝑢′(𝑐𝑡+1;0)𝑢′(𝑐𝑡;0) 𝛽 > 0 ;   𝑚1 = 𝑢′′(𝑐𝑡+1;0)𝑢′(𝑐𝑡;0) 𝛽 < 0 ;  𝑚2 = 𝑢′′(𝑐𝑡;0)𝑢′(𝑐𝑡;0) < 0  (4.11) 𝑝0 = 𝑚0𝑥0 + 𝜉𝑚𝑎𝑥[𝑚1𝜎2(𝑥) + 𝑚2𝜎2(𝑝)]   (4.12) 

We use the same notions m0, m1 to denote the discount factors taking into account 

replacement of u’(ct) in (4.9) by u’(ct;0) in (4.11; 4.12). Modified basic equation (4.12) at date 

t describes dependence of the price p0 on the price volatility σ2(p) at date t, the mean payoff 

x0 and payoff volatility σ2(x) at date t+1 averaged during same interval Δ.  

Equation (4.15) illustrates well-known practice that high volatility σ2(p) of the price at date t 

and high forecast of payoff volatility σ2(x) at date t+1 may cause decline of the mean price p0 

at date t. We leave the detailed analysis of (4.5-4.12) for the future. 

4.1 The Idiosyncratic Risk 

Here we briefly consider the case of the idiosyncratic risk for which the payoff x in (2.6) is 

not correlated with the discount factor m at moment t+1 (Cochrane, 2001):  𝑐𝑜𝑣(𝑚, 𝑥) = 0     (4.13) 

In this case equation (2.6) takes form:  
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𝑝 = 𝐸[𝑚𝑥] = 𝐸[𝑚]𝐸[𝑥] + 𝑐𝑜𝑣(𝑚, 𝑥) =  𝐸[𝑚]𝑥0 = 𝑥0𝑅𝑓  (4.14) 

The risk-free rate Rf
 in (4.14) is known ahead (Cochrane, 2001). Taking into account (4.3) in 

a linear approximation by δx Taylor series for derivative of the utility u’(ct+1): 𝑢′(𝑐𝑡+1) = 𝑢′(𝑐𝑡+1;0) + 𝑢′′(𝑐𝑡+1;0)𝜉𝛿𝑥   (4.15) 

Hence, the discount factor m (2.6) takes form: 𝑚 = 𝛽 𝑢′(𝑐𝑡+1)𝑢′(𝑐𝑡) = 𝛽𝑢′(𝑐𝑡) [𝑢′(𝑐𝑡+1;0) + 𝑢′′(𝑐𝑡+1;0)𝜉𝛿𝑥] 
𝐸[𝑚] = �̅� = 𝛽 𝑢′(𝑐𝑡+1;0)𝑢′(𝑐𝑡)   

𝛽𝐸 [𝑢′(𝑐𝑡+1)𝑢′(𝑐𝑡) ] 𝑥0 = 𝑥0𝑅𝑓      ;     𝐸[𝑢′(𝑐𝑡+1)𝑥] = 0  
and  𝛿𝑚 = 𝑚 − �̅� = 𝛽𝑢′(𝑐𝑡) 𝑢′′(𝑐𝑡+1;0)𝜉𝛿𝑥 

Hence, (4.13) implies: 𝑐𝑜𝑣(𝑚, 𝑥) = 𝐸[𝛿𝑚𝛿𝑥] = 𝛽 𝑢′′(𝑐𝑡+1;0)𝑢′(𝑐𝑡) 𝜉𝑚𝑎𝑥𝜎2(𝑥) = 0  (4.16) 

That causes zero payoff volatility σ2(x)=0. Of course zero payoff volatility does not model 

market reality but (4.16) reflects restrictions of the linear approximation (4.15). To overcome 

this discrepancy let take into account Taylor series up to the second degree by δ2x: 𝑢′(𝑐𝑡+1) = 𝑢′(𝑐𝑡+1;0) + 𝑢′′(𝑐𝑡+1;0)𝜉𝛿𝑥 + 𝑢′′′(𝑐𝑡+1;0)𝜉2𝛿2𝑥  (4.17) 𝑚 = 𝛽 𝑢′(𝑐𝑡+1)𝑢′(𝑐𝑡) = 𝛽𝑢′(𝑐𝑡) [𝑢′(𝑐𝑡+1;0) + 𝑢′′(𝑐𝑡+1;0)𝜉𝛿𝑥 + 𝑢′′′(𝑐𝑡+1;0)𝜉2𝛿2𝑥] (4.18) 

For this case the mean discount factor E[m] takes form: 𝐸[𝑚] = �̅� = 𝛽𝑢′(𝑐𝑡) [𝑢′(𝑐𝑡+1;0) + 𝑢′′′(𝑐𝑡+1;0)𝜉2𝜎2(𝑥)]  (4.19) 

and variations of the discount factor δm: 𝛿𝑚 = 𝑚 − �̅� = 𝛽𝑢′(𝑐𝑡) [𝑢′′(𝑐𝑡+1;0)𝜉𝛿𝑥 + 𝑢′′′(𝑐𝑡+1;0)𝜉2{𝛿2𝑥 − 𝜎2(𝑥)} 

In this case  𝑐𝑜𝑣(𝑚, 𝑥) = 𝐸[𝛿𝑚𝛿𝑥] =  [𝑢′′(𝑐𝑡+1;0)𝜉𝜎2(𝑥) + 𝑢′′′(𝑐𝑡+1;0)𝜉2 𝛾3(𝑥) ] = 0 (4.20)  𝛾3(𝑥) = 𝐸[𝛿3𝑥]     ;      𝑆𝑘(𝑥) = 𝛾3(𝑥)𝜎3(𝑥)     (4.21) 

Sk(x) – denotes normalized payoff skewness at date t+1 treated as the measure of asymmetry 

of the probability distribution during Δ. For approximation (4.18) from (4.20; 4.21) obtain 

relations on the skewness Sk(x) and ξmax:  
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𝜉𝑚𝑎𝑥 𝑆𝑘(𝑥)𝜎(𝑥) = − 𝑢′′(𝑐𝑡+1;0)𝑢′′′(𝑐𝑡+1;0)    (4.22) 

For the conventional power utility (A.2) and (4.3) relations (4.22) take form 𝜉𝑚𝑎𝑥 =  𝑒𝑡+1(1+𝛼)𝑆𝑘(𝑥)𝜎(𝑥)−𝑥0     (4.23) 

It is assumed that second derivative of utility u’’(ct+1)<0 always negative and third derivative 

u’’’(ct+1)>0 is positive and hence the right side in (4.22) is positive. Hence to get positive ξmax 

for (4.23) for the power utility (A.2) the payoff skewness Sk(x) should obey inequality (4.24) 

that defines the lower limit of the payoff skewness Sk(x): 𝑆𝑘(𝑥) > 𝑥0(1+𝛼)𝜎(𝑥)     (4.24) 

In (4.14) Rf denotes known risk-free rate. Hence, (4.19; 4.22; 4.24) define relations: 𝛽𝑢′(𝑐𝑡) [𝑢′(𝑐𝑡+1;0) + 𝑢′′′(𝑐𝑡+1;0)𝜉𝑚𝑎𝑥2𝜎2(𝑥)] = 1𝑅𝑓  𝜉𝑚𝑎𝑥2𝜎2(𝑥) = 1𝛽𝑅𝑓  𝑢′(𝑐𝑡)𝑢′′′(𝑐𝑡+1;0)   − 𝑢′(𝑐𝑡+1;0)𝑢′′′(𝑐𝑡+1;0)  𝑆𝑘2(𝑥) = 𝑅𝑓1−𝑚0𝑅𝑓 𝑚12𝑚3 > 𝑥02(1+𝛼)2𝜎2(𝑥)   ;    𝑚0 < 1/𝑅𝑓  

𝜎2(𝑥)𝑥02  >  𝑚3𝑚12  1−𝑚0𝑅𝑓(1+𝛼)2𝑅𝑓     (4.25) 

Inequality (4.25) establishes the lower limit on the payoff volatility σ2(x) normalized by the 

square of the mean payoff x0
2
. The lower limit in the right side of (4.25) is determined by the 

discount factors (4.26), the risk-free rate Rf and the conventional power utility factor α (A.2).  𝑚0 =  𝛽 𝑢′(𝑐𝑡+1;0)𝑢′(𝑐𝑡)   ;  𝑚1 = 𝛽 𝑢′′(𝑐𝑡+1;0)𝑢′(𝑐𝑡)   ;    𝑚3 = 𝛽 𝑢′′′(𝑐𝑡+1;0)𝑢′(𝑐𝑡)   (4.26) 

The coefficients in (4.26) differ a little from (4.1) as (4.26) takes the denominator u’(ct) 

instead of u’(ct;0) in (4.11) but we use the same letters to avoid extra notations. The similar 

calculations for (3.2; 3.3) describe both the price volatility σ2(p) and the skewness Sk(p) at 

date t and the payoff volatility σ2(x) and the skewness Sk(x) at date t+1. Further 

approximations by Taylor series of the utility derivative u’(ct) up to δ3p and u’(ct+1) up to δ3x 

similar to (4.17) give assessments of kurtosis of the price probability at date t and kurtosis of 

the payoff probability at date t+1 estimated during interval Δ. We leave these exercises for 

future.  

4.2 The Utility Maximum 

The relations (2.5) define the first-order condition that determines the amount of asset ξmax 

that delivers the max to the utility U(ct; ct+1) (2.2; 3.2). To confirm that function U(ct; ct+1) 

has max at ξmax , the first order condition (2.5) must be supplemented by condition:   
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𝜕2𝜕𝜉2 𝑈(𝑐𝑡;  𝑐𝑡+1) < 0      (4.27) 

Usage of (4.27) gives interesting consequences. From (2.2–2.4) and (4.27) obtain: 𝑝2 > − 𝛽𝑢′′(𝑐𝑡) 𝐸[𝑥2 𝑢′′(𝑐𝑡+1) ]    (4.28) 

Take the linear Taylor series expansion of the second derivative of the utility u’’(ct+1) by δx 𝑢′′(𝑐𝑡+1) = 𝑢′′(𝑐𝑡+1;0) + 𝑢′′′(𝑐𝑡+1;0)𝜉𝛿𝑥 

Then (4.28) takes form: 𝑝2 > −𝛽 𝑢′′(𝑐𝑡+1;0)𝑢′′(𝑐𝑡) [𝑥02 + 𝜎2(𝑥)] − 𝛽 𝑢′′′(𝑐𝑡+1;0)𝑢′′(𝑐𝑡) 𝜉𝑚𝑎𝑥  [2𝑥0𝜎2(𝑥) + 𝛾3(𝑥)]  (4.29) 

For the power utility (A.2) simple calculations (see App.A) give relations on (4.27; 4.29). If 

the payoff volatility σ2(x) multiplied by factor (1+2α) is less then mean payoff x0
2
 (4.30; A.5)   (1 + 2𝛼)𝜎2(𝑥) < 𝑥02        ;          13 ≤ 11+2𝛼 < 1   (4.30) 

Then (4.29) is always valid. If payoff volatility σ2(x) is high (A.6)  (1 + 2𝛼)𝜎2(𝑥) >  𝑥02 

Then (4.29) valid only for ξmax (A.6): 𝜉𝑚𝑎𝑥 <  𝑒𝑡+1[𝑥02 + 𝜎2(𝑥)]𝑥0 [(1 + 2𝛼)𝜎2(𝑥) − 𝑥02] 
However, this upper limit for ξmax can be high enough. The same but more complex 

considerations can be presented for (3.2). 𝐸𝑡[𝑝2𝑢′′(𝑐𝑡)] < −𝐸[𝛽𝑥2 𝑢′′(𝑐𝑡+1) ] 
Brief resume 2. Different asset pricing, financial and economic models describe relations 

between averaged or smoothed variables. Similar usage of Taylor series determined by the 

averaging interval Δ can help develop successive approximations determined by linear, 

quadratic, etc., perturbations of the random variables and their further averaging during Δ. 

5. Remarks on the Price Probability Measure  

As usual the problems that are the most common and “obvious” hide the most difficulties. 

The price probability measure is exactly the case of such hidden complexity.  

All asset pricing models assume that it is possible forecast the probability of random price p 

and payoff x at horizon T. Let us consider the choice and forecasting of the price probability 

measure as most interesting and complex problem of finance.  

The usual treatment of the price p probability “is based on the probabilistic approach and 

using A. N. Kolmogorov’s axiomatic of probability theory, which is generally accepted now” 

(Shiryaev, 1999). The conventional definition of the price probability is based on the 
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frequency of trades at a price p during the averaging interval Δ. The economic ground of such 

choice is simple: it is assumed that each trade of N trades during Δ has equal probability ~ 

1/N. If there are m(p) trades at the price p then probability P(p) of the price p during Δ equals 

m(p)/N. The frequency of the particular event is absolutely correct, general and conventional 

approach to the probability definition. The conventional frequency-based approach to the 

price probability uses different assumptions on form of the price probability measure and 

checks how almost all standard probability measures (Walck, 2007; Forbes et.al., 2011) fit 

the market random price. Parameters that define standard probabilities permit calibrate each 

in a manner that increase the plausibility and consistency with the observed market price 

time-series. For different assets, options and markets different standard probabilities are 

tested and applied to fit and predict the random price dynamics as well as possible.  

However, one may ask a simple question: does the conventional frequency-based approach to 

the price probability fit the random market pricing? The asset price is a result of the market 

trade and it seems reasonable that the market trade randomness conducts the price 

stochasticity. We propose the new market-based price probability measure that is different 

from the conventional frequency-based probability and is entirely determined by the 

probability measures of the market trades values and volumes. 

Let note that almost 30 years ago the volume weighted average price (VWAP) was 

introduced and is widely used now (Berkowitz et.al., 1988; Buryak and Guo, 2014; Busseti 

and Boyd, 2015; Duffie and Dworczak, 2018; CME Group, 2020). Some notations of the 

current Section can differ from the previous Sections, but we hope that readers adopt both. 

The definition of the VWAP p(t;1) that match (1.1) during the interval Δ is follows. Let take 

that during Δ (5.3) there are N market trades at moments ti, i=1,…N. Let denote E[…] as 

mathematical expectation. Then the VWAP p(t;1) (5.1) that match (1.1) during Δ (5.3) at 

moment t equals  𝑝(𝑡; 1) = 𝐸[𝑝(𝑡𝑖)] = 1∑ 𝑈(𝑡𝑖)𝑁𝑖=1  ∑ 𝑝(𝑡𝑖)𝑈(𝑡𝑖)𝑁𝑖=1 = 𝐶Σ(𝑡;1)𝑈Σ(𝑡;1)   (5.1) 𝐶Σ(𝑡; 1) = ∑ 𝐶(𝑡𝑖) =𝑁𝑖=1  ∑ 𝑝(𝑡𝑖)𝑁𝑖=1 𝑈(𝑡𝑖)   ;    𝑈Σ(𝑡; 1) = ∑ 𝑈(𝑡𝑖)𝑁𝑖=1  (5.2) ∆= [𝑡 − ∆2  , 𝑡 + ∆2]   ;   𝑡𝑖 ∈ ∆ , 𝑖 = 1, … 𝑁    (5.3) 

We consider time-series of the trade value C(ti), volume U(ti) and price p(ti) as random 

variables during the averaging interval Δ (5.3). Relations (1.1) at moment ti define the price 

p(ti) of trade value C(ti) and volume U(ti). The sum CΣ(t;1) of values C(ti) (5.2) and sum 

UΣ(t;1) of volumes U(ti) (5.2) of N trades during Δ (5.3) define the VWAP p(1) (5.1).  
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We hope that our readers able distinguish the difference between notations of consumption ct 

(2.2; 2.3) and utility U (2.2) in Sections 2-4 and trade value C(ti) and volume U(ti) (5.1) in 

current Section.  

It is obvious, that VWAP (5.1) can be equally determined (5.4) by the mean value C(t;1) 

(5.5) and the mean volume U(t;1) (5.6) of N trades during Δ: 𝐶(𝑡; 1) = 𝑝(𝑡; 1) 𝑈(𝑡; 1)    (5.4) 

The mean trade value C(t;1) and volume U(t;1) during Δ (5.3) are determined by the 

conventional frequency-based probabilities:  𝐶(𝑡; 1) = 𝐸[𝐶(𝑡𝑖)] = 1𝑁  ∑ 𝐶(𝑡𝑖)𝑁𝑖=1     (5.5)  𝑈(𝑡; 1) = 𝐸[𝑈(𝑡𝑖)] = 1𝑁  ∑ 𝑈(𝑡𝑖)𝑁𝑖=1     (5.6) 

The mean VWAP price p(t;1) (5.4) is a coefficient between the mean value C(t;1) (5.5) and 

the mean volume U(t;1) (5.6).  

However, it is obvious that probabilities of trade value C(ti), volume U(ti) and price p(ti) 

time-series that match equations (1.1) cannot be determined independently. Forecast of asset 

price probability that is independent from predictions of the market trade value and volume 

probabilities has almost no economic sense. Given probabilities of trade value C(ti) and 

volume U(ti) time-series during Δ that match (1.1) should determine the price probability 

measure. Asset pricing should follow the market trade probabilities of the trade value C(ti) 

and volume U(ti) time-series. However, VWAP p(t;1) and relations (5.1-5.6) are not 

sufficient to define all random properties of price during Δ (5.3). Probability measures of the 

market trade value and volume are unknown. To describe properties of the market trade value 

and volume and price as random variables during Δ (5.3) one could assess n-th statistical 

moments of the trade value C(t;n) and volume U(t;n) and price p(t;n). Statistical moments of 

the trade value C(t;n) and volume U(t;n) take form:  𝐶(𝑡; 𝑛) = 𝐸[𝐶𝑛(𝑡𝑖)] = 1𝑁  ∑ 𝐶𝑛(𝑡𝑖)𝑁𝑖=1     (5.7)  𝑈(𝑡; 1) = 𝐸[𝑈𝑛(𝑡𝑖)] = 1𝑁  ∑ 𝑈𝑛(𝑡𝑖)𝑁𝑖=1     (5.8) 

Let us mention that n-th power of (1.1) for each particular trade at moment ti gives: 𝐶𝑛(𝑡𝑖) = 𝑝𝑛(𝑡𝑖)𝑈𝑛(𝑡𝑖)  ;    𝑛 = 1, 2, …   (5.9) 

We use (5.7-5.9) to determine n-th price statistical moments p(t;n) for n=1,2,3,… via n-th 

statistical moments of the trade value C(t;n) (5.7)  and volume U(t;n) (5.8). That should 

completely determine price as random variable during Δ (5.3). To do that we extend 
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definition of the VWAP and introduce n-th price statistical moment p(t;n) as n-th power 

volume averaged: 𝑝(𝑡; 𝑛) = 𝐸[𝑝𝑛(𝑡𝑖)] = 1∑ 𝑈𝑛(𝑡𝑖)𝑁𝑖=1  ∑ 𝑝𝑛(𝑡𝑖)𝑈𝑛(𝑡𝑖)𝑁𝑖=1 = 𝐶Σ(𝑡;𝑛)𝑈Σ(𝑡;𝑛) = 𝐶(𝑡;𝑛)𝑈(𝑡;𝑛)  (5.10) 𝐶Σ(𝑡; 𝑛) = ∑ 𝐶𝑛(𝑡𝑖) =𝑁𝑖=1  ∑ 𝑝𝑛(𝑡𝑖)𝑈𝑛(𝑡𝑖)𝑁𝑖=1    ;    𝑈Σ(𝑡; 𝑛) = ∑ 𝑈𝑛(𝑡𝑖)𝑁𝑖=1   (5.11) 

We underline that definitions (5.10) use relations (5.9) and that results in equal expression of 

price n-th statistical moments p(t;n) through n-th statistical moments of the market trade 

value C(t;n) and volume U(t;n): 

 𝐶(𝑡; 𝑛) = 𝑝(𝑡; 𝑛)𝑈(𝑡; 𝑛)    (5.12) 

Definitions of price n-th statistical moments p(t;n) (5.10; 5.12) for all n=1,2,… match 

relations for n-th power of price pn(ti) at time ti during Δ (5.3) determined by (5.9). It is 

important that price n-th statistical moments p(t;n) (5.10; 5.12) for all n=1,2,… completely 

determine properties of market price considered as random variable during Δ (5.3).  

Let us outline important unnoticed consequence of the VWAP p(t;1) (5.1) and similar 

consequences of our definition of price n-th statistical moments p(t;n) (5.10; 5.12).  

Definition of VWAP p(t;1) (5.1) result in zero correlations between time-series of price p(ti) 

and market trade volume U(ti) during Δ (5.3). Indeed, from (1.1; 5.1; 5.5; 5.6) obtain: 𝐸[𝐶(𝑡𝑖)] = 1𝑁  ∑ 𝐶(𝑡𝑖)𝑁𝑖=1 ≡ 𝐸[𝑝(𝑡𝑖)𝑈(𝑡𝑖)] ≡ 1𝑁  ∑ 𝑝(𝑡𝑖)𝑈(𝑡𝑖)𝑁𝑖=1 ≡    ≡ 1∑ 𝑈(𝑡𝑖)𝑁𝑖=1  ∑ 𝑝(𝑡𝑖)𝑈(𝑡𝑖)𝑁𝑖=1 ∙ 1𝑁 ∑ 𝑈(𝑡𝑖)𝑁𝑖=1 ≡  𝐸[𝑝(𝑡𝑖)]𝐸[𝑈(𝑡𝑖)]  (5.13) 

Hence, from (5.13) obtain for correlation corr{p(ti)U(ti)} between time-series of price p(ti) 

and market trade volume U(ti) during Δ (5.3) 𝑐𝑜𝑟𝑟{𝑝(𝑡𝑖)𝑈(𝑡𝑖)} = 𝐸[𝑝(𝑡𝑖)𝑈(𝑡𝑖)] − 𝐸[𝑝(𝑡𝑖)]𝐸[𝑈(𝑡𝑖)] = 0  (5.14) 

Zero correlations (5.14) between price-volume time-series impact many results those 

“observe” positive or negative correlations between price and trading value (Tauchen and 

Pitts, 1983; Karpoff, 1987; Gallant et.al., 1992; Campbell et.al., 1993; Llorente et.al., 2001; 

DeFusco et.al., 2017). Actually, above researchers ignore the trivial equation (1.1) that 

prohibits independent definitions of price probabilities. Assessments of correlations between 

any time-series should always follow definitions of their averaging procedures. Usage of 

VWAP states no correlations between trade volume and price and many papers on price-

volume relations should be reconsidered.  

Our definitions of price n-th statistical moments p(t;n) (5.7-5.12) for all n=1,2,3,.. cause zero 

correlations corr{pn(ti)U
n(ti)} between time-series of n-th power of price pn(ti) and volume 

Un(ti) during Δ (5.3). One can easy reproduce (5.13; 5.14) for any n=1,2,3,…: 
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𝐸[𝐶𝑛(𝑡𝑖)] = 1𝑁  ∑ 𝐶𝑛(𝑡𝑖)𝑁𝑖=1 ≡ 𝐸[𝑝𝑛(𝑡𝑖)𝑈𝑛(𝑡𝑖)] ≡ 1𝑁  ∑ 𝑝𝑛(𝑡𝑖)𝑈𝑛(𝑡𝑖)𝑁𝑖=1 ≡   ≡ 1∑ 𝑈𝑛(𝑡𝑖)𝑁𝑖=1  ∑ 𝑝𝑛(𝑡𝑖)𝑈𝑛(𝑡𝑖)𝑁𝑖=1 ∙ 1𝑁 ∑ 𝑈𝑛(𝑡𝑖)𝑁𝑖=1 ≡  𝐸[𝑝𝑛(𝑡𝑖)]𝐸[𝑈𝑛(𝑡𝑖)] (5.15) 𝑐𝑜𝑟𝑟{𝑝𝑛(𝑡𝑖)𝑈𝑛(𝑡𝑖)} = 𝐸[𝑝𝑛(𝑡𝑖)𝑈𝑛(𝑡𝑖)] − 𝐸[𝑝𝑛(𝑡𝑖)]𝐸[𝑈𝑛(𝑡𝑖)] = 0 (5.16) 

Thus, our definition of price n-th statistical moments p(t;n) (5.7-5.12) results in zero 

correlations between time-series of n-th power of price pn(ti) and volume Un(ti) during Δ 

(5.3). However, one can easy obtain that it doesn’t imply statistical independence between 

time series of p(ti) and volume U(ti) during Δ (5.3). For example we derive correlation 

corr{p(ti)U
2(ti)} between time-series of price p(ti) and squares of trade volume U2(ti) during Δ 𝐸[𝑝(𝑡𝑖)𝑈2(𝑡𝑖)] ≡ 𝐸[𝐶(𝑡𝑖)𝑈(𝑡𝑖)] = 𝐸[𝐶(𝑡𝑖)]𝐸[𝑈(𝑡𝑖)] + 𝑐𝑜𝑟𝑟{𝐶(𝑡𝑖)𝑈(𝑡𝑖)} 𝐸[𝑝(𝑡𝑖)𝑈2(𝑡𝑖)] = 𝐸[𝑝(𝑡𝑖)]𝐸[𝑈2(𝑡𝑖)] + 𝑐𝑜𝑟𝑟{𝑝(𝑡𝑖)𝑈2(𝑡𝑖)} 

Thus, from above one easy obtains: 𝑐𝑜𝑟𝑟{𝑝(𝑡𝑖)𝑈2(𝑡𝑖)} = 𝑐𝑜𝑟𝑟{𝐶(𝑡𝑖)𝑈(𝑡𝑖)} − 𝑝(𝑡; 1)𝜎2(𝑈)  (5.17) 𝜎2(𝑈) = 𝑈(𝑡; 2) − 𝑈2(𝑡; 1)    (5.18) 

It is obvious that price statistical moments p(t;n) (5.10; 5.12) differ from statistical moments 

π(t;n) generated by frequency-based price probability P(p) ~ m(p)/N during Δ (5.3): 𝜋(𝑡; 𝑛) = 1𝑁 ∑ 𝑝𝑛(𝑡𝑖)𝑁𝑖=1      (5.19) 𝜋(𝑡; 𝑛) = 1𝑁 ∑ 𝑝𝑛(𝑡𝑖)𝑁𝑖=1 = 1𝑁 ∑ 𝐶𝑛(𝑡𝑖)𝑈𝑛(𝑡𝑖)𝑁𝑖=1  ≠  ∑ 𝐶𝑛(𝑡𝑖)𝑁𝑖=1∑ 𝑈𝑛(𝑡𝑖)𝑁𝑖=1 = 𝐶Σ(𝑡;𝑛)𝑈Σ(𝑡;𝑛) = 𝐶(𝑡;𝑛)𝑈(𝑡;𝑛) = 𝑝(𝑡; 𝑛)  (5.20) 

The difference between the frequency-based π(t;n) and market-based p(t;n) price statistical 

moments determine the distinctions between two approaches to definition of the price 

probability. Only if during Δ (5.3) all trade volumes equal unit U(ti)=1 then price statistical 

moments p(t;n) equal statistical moments of market value C(t;n) and for this special case the 

market trade price stochasticity is described by usual frequency-based probability.  

Let us explain economic meaning and importance of n-th statistical moments of the trade 

value C(t;n) (5.7), volume U(t;n) (5.8) and price p(t;n) (5.10; 5.12) for any asset-pricing 

models. Indeed, n-th statistical moments of value C(t;n) and volume U(t;n) describe average 

state of market trading taking into account different proportions between high and low values 

and volumes of market transactions. Actually, at moments ti during interval Δ agents perform 

N trades at different values C(ti), volumes U(ti) and price p(ti) (1.1). Mean value C(t;1) (5.5) 

and volume U(t;1) (5.6) are not the only assessments of “mean” properties of N trades. Mean 

value C(t;1) and volume U(t;1) are complemented by the set of n-th mean values and 

volumes determined as n-th roots of n-th statistical moments C(t;n) (5.7) and U(t;n)  (5.8):   𝐶(𝑡; 1/𝑛) = [𝐶(𝑡; 𝑛)]1/𝑛          ;             𝑈(𝑡; 1/𝑛) = [𝑈𝑚(𝑛)]1/𝑛  (5.21) 
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So, one obtains the sequence of the mean values C(t;1/n) and volumes U(t;1/n) (5.21). With 

increasing n the mean values C(t;1/n) and volumes U(t;1/n) (5.21) more and more take into 

account contribution of trades with large values and volumes and decreases impact of trades 

performed at a low values. So, with increasing n relations (5.10; 5.12) describe n-th statistical 

moments of price p(t;n) and price mean n-th root 𝑝(𝑡; 1/𝑛) 𝑝(𝑡; 1/𝑛) = [𝑝(𝑡; 𝑛)]1/𝑛    (5.22) 

that reflect increasing impact of large value and volume transactions on market trade price 

(5.22). Any forecast of price probability should assess the finite set of price statistical 

moments p(t;n) (5.8) it predicts. Thus any price probability forecast should estimate the 

proportion of impact of large value and volume market trades described by high n-th 

statistical moments and minor market trades with small volume. The choice of proportion of 

large and minor market trades determines economic meaning of any asset pricing model and 

economic sense of any price probability forecast. 

Random variable can be equally described by probability measure, characteristic function and 

by set of n-th statistical moments. The set of price n-th statistical moments p(t;n) (5.10; 5.12) 

for all n=1,2,3,… determines Taylor series of the price characteristic function F(t;x) 

(Shephard, 1991; Shiryaev, 1999; Klyatskin, 2005; 2015):  𝐹(𝑡; 𝑥) = 1 + ∑ 𝑖𝑛𝑛!∞𝑖=1 𝑝(𝑡; 𝑛) 𝑥𝑛    (5.23) 

However, any econometric records of the market trade during Δ (5.3) allow assess only finite 

number of statistical moments of the trade value C(t;n) (5.7) and volume U(t;n) (5.8) Hence, 

one can assess only finite number of price statistical moments p(t;n) (5.10; 5.12). In App.B 

we consider simple successive approximations of the price characteristic function Fk(t;x) that 

takes into account finite number k members of the Taylor series (5.23) and corresponding 

approximations of the price probability measures ηk(t;p) derived as Fourier transforms of 

characteristic functions: 𝜂𝑘(𝑡; 𝑝) = ∫ 𝑑𝑥 𝐹𝑘(𝑡; 𝑥) exp(−𝑖𝑥𝑝)    (5.24) 

Relations (5.24) define successive approximations of the price probability measures ηk(t;p). 

In (5.24) we omit factor (2π) for brevity. Observation of finite number of the market trade 

and price statistical moments cause that one can forecast only approximations of price 

characteristic function or price probability measure those match finite number k of price 

statistical moments p(t;n) (5.10; 5.12). 𝑝(𝑡; 𝑛) =  𝑑𝑛(𝑖)𝑛𝑑𝑥𝑛 𝐹𝑘(𝑡; 𝑥)|𝑥=0 = ∫ 𝑑𝑝 𝜂𝑘(𝑡; 𝑝)𝑝𝑛   (5.25) 
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Any hypothesis on the form of the price probability measure ηk(t;p) during Δ (5.3) and any 

predictions of the price probability measure at horizon T should match relations (5.10; 5.12; 

5.25) at t+T during Δ. Thus one should predict k statistical moments of the trade value C(t;n) 

(5.7) and volume U(t;n) (5.8) at t+T during Δ for n≤k. That equals prediction of the k-

approximations of the market trade probability measures at horizon T during Δ. For example, 

consider the market-based price volatility σ2(t;p) (Olkhov, 2020): 𝜎2(𝑡; 𝑝) = 𝐸𝑡 [(𝑝(𝑡𝑖) − 𝑝(𝑡; 1))2] = 𝑝(𝑡; 2) − 𝑝2(𝑡; 1) = 𝐶(𝑡;2)𝑈(𝑡;2) − 𝐶2(𝑡;1)𝑈2(𝑡;1) (5.26) 

From (5.7; 5.8; 5.11) one can express based price volatility σ2(t;p) as: 𝜎2(𝑡; 𝑝) = 𝐶(𝑡;2)𝑈(𝑡;2) − 𝐶2(𝑡;1)𝑈2(𝑡;1) =  𝐶Σ(𝑡;2)𝑈Σ(𝑡;2) − 𝐶Σ2(𝑡;1)𝑈Σ2(𝑡;1)    (5.27) 

Prediction of the price volatility σ2(t;p) at horizon T during Δ requires forecasts of the market 

trade statistical moments C(t;1), C(t;2) (5,7) and U(t;1), U(t;2) (5.8) at the same horizon T. 

Accuracy of the price probability forecast determined by accuracy of the market trade 

probabilities forecasts. In simple words: to predict price probability one should predict 

market trade probabilities. Dependence of the market price probability measure on the market 

trade probabilities expresses the famous phrase: “You can’t beat the market”. 

Current economic theory model evolution of macroeconomic variables determined by sums 

of the 1-st degree variables like sums of the trade value CΣ(t;1) and volume UΣ(t;1). 

However, price volatility σ2(p) (5.26; 5.27) is a sample of the 2-d degree variable, because it 

depends on sums of squares of trade values value CΣ(t;2) and volume UΣ(t;2) during Δ. 

Description of the 2-d degree macro variables as well as description of CΣ(t;2) and UΣ(t;2) 

requires development of the 2-d order economic theory (Olkhov, 2021a). Moreover, 

description of the price skewness Sk(t;p) (B.9) requires 3-d statistical moments of price p(t;3) 

determined by 3- statistical moments on trade value C(t;3)  and volume U(t;3) 𝐶(𝑡; 3) = 𝑝(𝑡; 3)𝑈(𝑡; 3)         ;       𝐶Σ(𝑡; 3) = 𝑝(𝑡; 3)𝑈Σ(𝑡; 3) 

Hence, predictions of the price skewness Sk(p) requires forecasts of C(t;3) and U(t;3). That 

need development of the 3-d order economic theory that models sums of the 3-d power of the 

market trade values CΣ(t;3) and volumes UΣ(t;3). Forecasts of price kurtosis (B.11) require 

development of the 4-th order economic theory and so on.    

However, above considerations don’t determine the choice between correct and incorrect 

treatment of the price probability measure. Economics is a social science and investors are 

free in their trade decisions, expectations, habits, beliefs, financial and social “myths & 

legends”. Investors are free to choose any definition of the price probability they prefer.  
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Brief resume 3. Approximations of the market-based price probability measure are 

determined by finite number of n-th statistical moments of the market trade value C(t;n) and 

volume U(t;n) during the interval Δ. Any forecasts of the price probability at horizon T 

should match predictions at the same horizon T of the finite number of n-th statistical 

moments of the market trade value and volume averaged during Δ.  

6. Conclusion 

1. We derive modification of the basic pricing equation (3.3) that takes into account 

averaging of investor’s utility during Δ at moment t and t+1. The choice of Δ and description 

of the dependence of the mean price, payoff, volatilities and etc., on duration of Δ are 

important for any asset-pricing model. 

2. Taylor series expansions of the common (2.6) and modified (3.3) basic pricing equations 

permit derive successive approximations of the mean price, payoff, their volatilities, 

skewness and etc. As example of linear Taylor series expansion of (3.3) we mention (4.12) 𝑝0 = 𝑚0𝑥0 + 𝜉𝑚𝑎𝑥[𝑚1𝜎2(𝑥) + 𝑚2𝜎2(𝑝)] 
that describes the mean price p0 at t as function of the mean payoff x0 and payoff volatility 

σ2(x) at t+1, price volatility σ2(p) at t and the amount of assets ξmax that delivers max to 

investor’s utility and equals the root of the equation (3.3). Other new results present Taylor 

series expansions generated by the averaging interval Δ. Similar relations can be considered 

for any asset pricing models, economic and financial models those describe relations between 

averaged variables. Taylor series expansions can be applied to any financial models those 

consider mean price, payoff or other averaged variables. In particular, for the consumption-

based asset pricing model Taylor series help derive relations on price and payoff 

autocorrelations (Olkhov, 2022a). Linear, quadratic or higher expansions of Taylor series 

give successive approximations of the mean variables, their volatilities and etc. 

3. We introduce new market-based price probability measure through definition of all price 

n-th statistical moments p(t;n) (5.10; 5.12). Price statistical moments p(t;n) are determined by 

n-th statistical moments of the trade value C(t;n) (5.7) and volume U(t;n) (5.8). Market trade 

records permit assess only finite number k of trade statistical moments. First n≤k n-th   

statistical moments of trade value C(t;n) (5.7) and volume U(t;n) (5.8) determine k-

approximations of market price probability measures. Any predictions of price probability at 

horizon T should match forecasts of n≤k n-th trade statistical moments at the same horizon T. 

Our definition of price statistical moments p(t;n) (5.10; 5.12) extends definition of VWAP 

(5.1). We outline important consequences of VWAP (5.1) and definitions (5.10; 5.12): usage 
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of price statistical moments p(t;n) (5.1; 5.10; 5.12) results in zero correlations 

corr{pn(ti)U
n(ti)}=0 (5.14; 5.16) between time series of n-th power of price pn(ti) and trade 

volume Un(ti) averaged during Δ (5.3). In particular, use of VWAP causes zero correlations 

(5.14) between time-series of price p(ti) and volume. That impact numerous studies on price-

volume correlations those use other definition of the mean price. Most results should be 

reconsidered. Zero correlations (5.16) between n-th power of price pn(ti) and trade volume 

Un(ti) don’t cause statistical independence between price and volume random variables 

during Δ (5.3). We derive expression for correlation corr{p(ti)U
2(ti)} (5.17) between price 

and squares of volume during Δ (5.3). 

New market-based price probability uncovers tough problems for the effective usage of the 

well known Value-at-Risk (Olkhov, 2021b); reassessment of the classical Black-Scholes 

option pricing shows the need of two-dimensional space (Olkhov, 2021c). Taylor series 

expansions help derive new representations of the market-based price autocorrelation 

(Olkhov, 2022a; 2022b).  

The price probability depends upon the set of n-th statistical moments of trade value and 

volume. For different n the market price n-th statistical moments p(t;n) (5.10; 5.12) describe 

impact of different proportions of major deals at high trade values and volumes and minor 

deals at low trade volumes. With growing n the impact of large transactions on market price 

grows up. Development of economic models with different proportion between of high and 

low trade volumes is a necessary condition for correct prediction of the price probability.  

The trinity – explicit usage of the averaging interval, Taylor series and similar assessment of 

the probability measures can provide successive approximations for other versions of asset 

pricing, financial and economic models.  
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Appendix A 

Max of Utility 𝑝2 > −𝛽 𝑢′′(𝑐𝑡+1;0)𝑢′′(𝑐𝑡) [𝑥02 + 𝜎2(𝑥)] − 𝛽 𝑢′′′(𝑐𝑡+1;0)𝑢′′(𝑐𝑡) 𝜉𝑚𝑎𝑥  [2𝑥0𝜎2(𝑥) + 𝛾3(𝑥)]  (A.1) 

If the right side is negative then it is valid always. If the right side is positive – then there 

exist a lower limit on the price p. For simplicity, neglect term γ3(x) to compare with 2x0σ2(x) 

and take the conventional power utility u(c) (Cochrane, 2001) as: 𝑢(𝑐) = 11−𝛼 𝑐1−𝛼     (A.2) 

Let us consider the case with negative right side for (A.1). Simple but long calculations give:  −𝛽 𝑢′′(𝑐𝑡+1;0)𝑢′′(𝑐𝑡) [𝑥02 + 𝜎2(𝑥)] < 𝛽 𝑢′′′(𝑐𝑡+1;0)𝑢′′(𝑐𝑡) 𝜉𝑚𝑎𝑥 2𝑥0𝜎2(𝑥) 

𝜉𝑚𝑎𝑥 2𝑥0𝜎2(𝑥) < − 𝑢′′′(𝑐𝑡+1;0)𝑢′′(𝑐𝑡+1;0)  [𝑥02 + 𝜎2(𝑥)]    (A.3) 

Let us take into account (A.2) and for (A.3) obtain: 𝑢′′(𝑐)𝑢′′′(𝑐) = −𝛼𝑐−𝛼−1𝛼(1 + 𝛼)𝑐−𝛼−2 = − 𝑐1 + 𝛼     ;    𝜉𝑚𝑎𝑥  2𝑥0𝜎2(𝑥) <  𝑒𝑡+1 + 𝑥0𝜉𝑚𝑎𝑥1 + 𝛼   [𝑥02 + 𝜎2(𝑥)] 𝜉𝑚𝑎𝑥𝑥0 [(1 + 2𝛼)𝜎2(𝑥) − 𝑥02] <  𝑒𝑡+1[𝑥02 + 𝜎2(𝑥)]   (A.4) 

Inequality (A.4) determines that the right side (A.1) is negative in two cases. 

1. The left side in (A.4) is negative and  (1 + 2𝛼)𝜎2(𝑥) <  𝑥02     ;       13 ≤ 11+2𝛼 < 1    (A.5) 

Inequality (A.5) describes small payoff volatility σ2(x). In this case the right side of (A.1) is 

negative for all ξmax and all price p and hence (4.27) that defines max of utility (2.5) is valid.  

2. The left side in (A.4) is positive and (1 + 2𝛼)𝜎2(𝑥) >  𝑥02       ;       𝜉𝑚𝑎𝑥 <  𝑒𝑡+1[𝑥02+𝜎2(𝑥)]𝑥0 [(1+2𝛼)𝜎2(𝑥)−𝑥02]        (A.6) 

This case describes high payoff volatility and the upper limit on ξmax to utility (2.5). Take the 

positive right side in (A.1). Then (A.4) is replaced by the opposite inequality 𝜉𝑚𝑎𝑥𝑥0 [(1 + 2𝛼)𝜎2(𝑥) − 𝑥02] >  𝑒𝑡+1[𝑥02 + 𝜎2(𝑥)]   (A.7) 

It is valid for (A.6) only. (A.7) determines a lower limit on ξmax to utility (2.5):  𝜉𝑚𝑎𝑥 >  𝑒𝑡+1[𝑥02+𝜎2(𝑥)]𝑥0 [(1+2𝛼)𝜎2(𝑥)−𝑥02]  
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Appendix B 

Approximations of the price characteristic function and probability measure 

Taylor series expansions of market price characteristic function help derive successive 

approximations of characteristic function. Derivation of approximations is a self-standing 

research and here we present simple examples of such approximations only. 

We consider the approximations of price characteristic function Fk(t;x) and price probability 

measure ηk(t;p) Δ (5.3) those fit simple condition. As such we require that approximation 

Fk(t;x) of the price characteristic function F(t;x) (5.23) and probability measure ηk(t;p) 

determined by Fourier transform (5.24) define first k price statistical moments p(t;n) (5.25) 

during Δ (5.3) those match (B.1):   𝑝(𝑡; 𝑛) = 𝐶(𝑡;𝑛)𝑈(𝑡;𝑛)  =  𝑑𝑛(𝑖)𝑛𝑑𝑥𝑛 𝐹𝑘(𝑡; 𝑥)|𝑥=0 = ∫ 𝑑𝑝 𝜂𝑘(𝑡; 𝑝)𝑝𝑛 ;   𝑛 ≤ 𝑘 (B.1) 

Statistical moments determined by Fk(t;x) for n>k will be different from price statistical 

moments p(t;n) (5.10; 5.12) but first k moments will be equal to p(t;n) (5.10; 5.12; 5.23).     

We suggest approximation Fk(t;x) of price characteristic function F(t;x) (5.23) as   𝐹𝑘(𝑡; 𝑥) = exp {∑ 𝑖𝑚𝑚!𝑘𝑚=1  𝑎𝑚 𝑥𝑚 − 𝑏 𝑥2𝑛}   ;   𝑘 = 1, 2, … ;  𝑘 < 2𝑛 ;  𝑏 > 0 (B.2) 

For each approximation Fk(t;x) terms am in (B.2) depend on price statistical moments p(t;m), 

m≤k and match relations (B.1). The term bx2n
, b>0, 2n>k doesn’t impact relations (B.1) but 

guarantees existence of the price probability measures ηk(t;p) as Fourier transforms (5.24). 

Uncertainty and variability of the coefficient b>0 and power 2n>k in (B.2) underlines well-

known fact that first k statistical moments don’t explicitly and exactly determine 

characteristic function and probability measure of a random variable. Relations (B.2) describe 

the set of characteristic functions Fk(t;x) with different b>0 and 2n>k and corresponding set 

of probability measures ηk(t;p) those match (B.1; 5.24). 

For k=1 the approximate price characteristic function F1(t;x) and measure η1(t;p) are trivial: 𝐹1(𝑡; 𝑥) = exp{𝑖 𝑎1𝑥}  ;  𝑝(𝑡; 1) = −𝑖 𝑑𝑑𝑥 𝐹1(𝑡; 𝑥)|𝑥=0 = 𝑎1   (B.3) 𝜂1(𝑡; 𝑝) = ∫ 𝑑𝑥 𝐴1(𝑥𝑡; ) 𝑒𝑥𝑝 −𝑖𝑝𝑥 = δ(𝑝 −  𝑝(𝑡; 1))   (B.4) 

For k=2 approximation F2(t;x) describes the Gaussian probability measure η2(t;p): 𝐹2(𝑥𝑡; ) = exp {𝑖 𝑝(𝑡; 1)𝑥 − 𝑎22 𝑥2}    (B.5) 

It is easy to show that  𝑝2(𝑡; 2) = − 𝑑2𝑑𝑥2 𝐹2(𝑡; 𝑥)|𝑥=0 = 𝑎2 + 𝑝2(𝑡; 1) = 𝑝(𝑡; 2)     

Hence:  
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𝑎2 = 𝑝(𝑡; 2) − 𝑝2(𝑡; 1) = 𝜎2(𝑡; 𝑝)    (B.6) 

Coefficient a2 equals price volatility σ2(t;p) (5.26) and Fourier transform (5.24) for F2(t;x) 

gives Gaussian price probability measure η2(t;p): 𝜂2(𝑝𝑡; ) =  1(2𝜋)12𝜎(𝑝) exp {− (𝑝−𝑝(𝑡;1))22𝜎2(𝑡;𝑝) }    (B.7) 

For k=3 approximation F3(t;x) has form: 𝐹3(𝑡; 𝑥) = exp {𝑖 𝑝(𝑡; 1)𝑥 − 𝜎2(𝑡;𝑝)2 𝑥2 − 𝑖 𝑎36 𝑥3}   (B.8) 

𝑝3(𝑡; 3) = 𝑖 𝑑3𝑑𝑥3 𝐹3(𝑡; 𝑥)|𝑥=0 = 𝑎3 + 3𝑝(𝑡; 1)𝜎2(𝑡; 𝑝) +  𝑝3(𝑡; 1) = 𝑝(𝑡; 3) 𝑎3 = 𝑝(𝑡; 3) − 3𝑝(𝑡; 2)𝑝(𝑡; 1) + 2 𝑝3(𝑡; 1) = 𝐸 [(𝑝 − 𝑝(𝑡; 1))3] = 𝑆𝑘(𝑡; 𝑝)𝜎3(𝑡; 𝑝)  (B.9) 

Coefficient a3 (B.9) depends on price skewness Sk(t;p) that describe asymmetry of the price 

probability from normal distribution. For k=4 approximation F4(t;x) during Δ (5.3) depends 

on choice of b>0 and degree 2n>4: 𝐹4(𝑡; 𝑥) = exp {𝑖 𝑝(𝑡; 1)𝑥 − 𝜎2(𝑡;𝑝)2 𝑥2 − 𝑖 𝑎36 𝑥3 + 𝑎424 𝑥4 − 𝑏𝑥2𝑛} ; 2𝑛 > 4  (B.10) 

Simple, but long calculations give: 𝑎4 = 𝑝(𝑡; 4) − 4𝑝(𝑡; 3)𝑝(𝑡; 1) + 12𝑝(𝑡; 2)𝑝2(𝑡; 1) − 6𝑝4(𝑡; 1) − 3𝑝2(𝑡; 2) 𝑎4 = 𝐸 [(𝑝(𝑡𝑖) − 𝑝(𝑡; 1))4] − 3𝐸2 [(𝑝(𝑡𝑖) − 𝑝(𝑡; 1))2] 

Price kurtosis Ku(p) (B.11) describes how the tails of the price probability measure ηk(t;p) 

differ from the tails of a normal distribution. 𝐾𝑢(𝑝)𝜎𝑝4(𝑡; 𝑝) = 𝐸 [(𝑝(𝑡𝑖) − 𝑝(𝑡; 1))4]   (B.11) 𝑎4 = [𝐾𝑢(𝑝) − 3]𝜎𝑝4(𝑡; 𝑝) 

Even simplest Gaussian approximation F2(t;x), η2(t;p) (B.5; B.7) uncovers direct dependence 

of price volatility σ2(t;p) (B.6; 5.26) on 2-d statistical moments of the trade value C(t;2) and 

volume U(t;2). Thus, prediction of price volatility σ2(t;p) for Gaussian measure η2(t;p) (B.9) 

should follow non-trivial forecasting of the statistical moments of the market trade value 

C(t;2) and volume U(t;2).   
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