
Munich Personal RePEc Archive

Modeling Path-Dependent State

Transition by a Recurrent Neural

Network

Yang, Bill Huajian

18 August 2022

Online at https://mpra.ub.uni-muenchen.de/114188/

MPRA Paper No. 114188, posted 15 Aug 2022 00:19 UTC

1

 Modeling Path-Dependent State Transition by a Recurrent Neural Network

 BILL HUAJIAN YANG 1

 Abstract

Rating transition models are widely used for credit risk evaluation. It is not uncommon that a time-homogeneous

Markov rating migration model deteriorates quickly after projecting repeatedly for a few periods. This is because the

time-homogeneous Markov condition is generally not satisfied. For a credit portfolio, rating transition is usually

path dependent. In this paper, we propose a recurrent neural network (RNN) model for modeling path-dependent

rating migration. An RNN is a type of artificial neural networks where connections between nodes form a directed

graph along a temporal sequence. There are neurons for input and output at each time-period. The model is informed

by the past behaviours for a loan along the path. Information learned from previous periods propagates to future

periods. Experiments show this RNN model is robust.

Keywords: Path-dependent, rating transition, recurrent neural network, deep learning, Markov property, time-

homogeneity

1. Introduction

Rating transition models are widely used in financial industry for credit risk evaluation, including stress

testing and IFRS 9 expected credit loss evaluation ([11], [12], [16], [17]), under the assumption that rating

transition is a time-homogenous Markov process, depending only on current rating and covariates.

However, it is not uncommon that a Markov model deteriorates quickly after projecting for a few periods.

This is because Markov condition is generally not satisfied. Rating transition for a credit portfolio is

generally path dependent. A test for this assumption is required ([9], [10]) for a use of these Markov

models.

There are various methods for path-dependent credit risk modeling ([8]), including regime-switching

models ([13]) and the conditional methods ([18], [19]). The latter is comparative to a cohort analysis.

In this paper, we propose a recurrent neural network (RNN) model for modeling path-dependent rating

transition. An RNN is a type of artificial neural networks where connections between nodes form a

directed graph along a temporal sequence. There are neurons for input and output at each time-period.

The RNN is informed by past behaviours along the path. Information learned from previous periods

propagates to future periods ([1], [3], [4], [6], [7], [14], [15]).

The network structure for the proposed RNN model is described in section 2 by (2.1)- (2.4). This RNN

model is implemented in Python. Experiments show this RNN model is robust, compared to Markov

transition models. Applications of this RNN model include the following, wherever path-dependence is

relevant:

(a) Path-dependent asset evaluation or credit risk evaluation

(b) Decisioning for account management

(c) Forecasting loss for stress testing, expected credit loss for IFRS 9 projects

(d) Estimating conditional probability of default for survival analysis

The paper is organized as follows: In section 2, we set up the proposed RNN model. In section 3, we

calculate the partial derivatives for the network cost function. In section 4, we present the experiment

1 Please direct all your comments to Bill Huajian Yang at h_y02@yahoo.ca

2

results for this proposed RNN model, benchmarked with the time-homogeneous and time-inhomogeneous

rating transition models.

2. Recurrent neural network models for multiperiod state transition

In this section, we describe, as in (2.1) - (2.4), the proposed recurrent neural network (RNN) model for

modeling path-dependent rating transition. Given an observation horizon with 𝑇 periods:

 0 = 𝑡0 < 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑇 ,
our goal is to estimate at each 𝑖 ≥ 0 the probability transiting to a rating at time 𝑡𝑖+1, given the rating and

covariates at time 𝑡𝑖.
Traditional rating transition models assume the Markov condition, i.e., transition probability depends only

on current rating and covariates. The type of Markov transition models includes:

(a) Time-homogeneous Markov rating transition, represented by one single transition model for all

periods

(b) Time-inhomogeneous Markov rating transition, represented by one transition model for each

period

It is not uncommon that a time-homogeneous Markov model deteriorates quickly after projecting only for

a few periods. This is because the Markov condition is generally not satisfied. Rating transition for a

credit portfolio is generally path dependent.

A recurrent neural network (RNN) is an artificial neural network where connections between nodes form

a directed graph along a temporal sequence. The chart below depicts the structure for an RNN. At the 𝑖𝑡ℎ

time-period of the temporal sequence, the input neurons, the hidden neurons, and the output neurons are

respectively labelled 𝑥(𝑖), ℎ(𝑖), and 𝑦(𝑖):

An RNN shares the advantages of common neural networks that information learned at a point is

propagated back and forward to all periods. It is path dependent.

Let {𝑅𝑖}𝑖=1𝑛 denote the 𝑛 ratings for a credit portfolio. For a loan portfolio, we reserve 𝑅𝑛−1 as the

withdraw rating and 𝑅𝑛 the default ratings. Both default and withdraw ratings are assumed to be absorbed

states, which means, a loan rated by a default or withdraw rating will be excluded from the sample for

future subsequent observations. Rating labels are observable at the beginning and the end of a period.

 Figure 1. An RNN for rating transition

3

Let 𝑟𝑗(𝑖)
 denote the indicator with value 1 if the rating for a loan at the end of 𝑖𝑡ℎ period is 𝑅𝑗 and 0

otherwise. Let 𝑛𝑝 denote the number of non-absorbed ratings. An input at 𝑖𝑡ℎ period is denoted as:

 𝑥(𝑖) = (𝑥1(𝑖), 𝑥2(𝑖), … , 𝑥𝑚(𝑖))

where the first (𝑚 − 𝑛𝑝) input components (𝑥1(𝑖), 𝑥2(𝑖), … , 𝑥𝑚−𝑛𝑝(𝑖)
) denote the covariates observable at the

beginning of the 𝑖𝑡ℎperiod, and the remaining 𝑛𝑝 components are the rating indicators for non-absorbed

ratings observed at the end of (𝑖 − 1)𝑡ℎ period:

 𝑥𝑗(𝑖) = 𝑟𝑗(𝑖−1), 𝑚 − 𝑛𝑝 + 1 ≤ 𝑗 ≤ 𝑚.

That is, non-absorbed rating observed at the end of (𝑖 − 1)𝑡ℎ period is used as the input for the next

period. The output at 𝑖𝑡ℎ period is denoted as:

 𝑦(𝑖) = (𝑦1(𝑖), 𝑦2(𝑖), … , 𝑦𝑛(𝑖)
)

where

 𝑦𝑗(𝑖) = 𝑟𝑗(𝑖), 1 ≤ 𝑗 ≤ 𝑛.

The structure for this RNN is described as in (2.1) - (2.4) below. Initially, at the first period, we have:

(a) Input: 𝑥(1) = (𝑥1(1), 𝑥2(1), … , 𝑥𝑚(1));

(b) Output: 𝑦(1)=(𝑦1(1), 𝑦2(1), … , 𝑦𝑛(1)), a unit vector (all components are zero except for one with

value 1), which is a random realization generated by the multinomial probability 𝑝1 = (𝑝11, 𝑝12, … , 𝑝1𝑛), where:

 𝑝1𝑗 = exp(𝑣𝑗(1))exp(𝑣1(1))+exp(𝑣2(1))+⋯+exp(𝑣𝑛(1)), (2.1)

and

 𝑣𝑗(1) = 𝑎𝑗1(1)𝑥1(1) + 𝑎𝑗2(1)𝑥2(1) + ⋯ + 𝑎𝑗𝑚(1)𝑥𝑚(1)
. (2.2)

Vector (𝑣1(1), 𝑣2(1), … , 𝑣𝑛(1)) in (2.1) and (2.2) represents the information learned at 1st period,

which is stored at hidden neurons ℎ(1) = (ℎ1(1), ℎ2(1), … , ℎ𝑛(1)) in the 1st period.

In general, given vector (𝑣1(𝑖−1), 𝑣2(𝑖−1), … , 𝑣𝑛(𝑖−1)) at (𝑖 − 1)𝑡ℎ period (𝑖 ≥ 2), we have, at 𝑖𝑡ℎ period:

(c) Input 𝑥(𝑖) = (𝑥1(𝑖), 𝑥2(𝑖), … , 𝑥𝑚(𝑖));

(d) Output: 𝑦(𝑖) = (𝑦1(𝑖), 𝑦2(𝑖), … , 𝑦𝑛(𝑖)
), a unit vector, which is a random realization generated by

multinomial probability 𝑝𝑖 = (𝑝𝑖1, 𝑝𝑖2, … , 𝑝𝑖𝑛), where:

 𝑝𝑖𝑗 = exp(𝑣𝑗(𝑖))exp(𝑣1(𝑖))+exp(𝑣2(𝑖))+…+exp(𝑣𝑛(𝑖)). (2.3)

4

and

 𝑣𝑗(𝑖) = 𝑎𝑗1(𝑖)𝑥1(𝑖) + 𝑎𝑗2(𝑖)𝑥2(𝑖) + ⋯ + 𝑎𝑗𝑚(𝑖)𝑥𝑚(𝑖)
+ 𝑏𝑗1(𝑖)𝑣1(𝑖−1) + 𝑏𝑗2(𝑖)𝑣2(𝑖−1) + ⋯ + 𝑏𝑗𝑛(𝑖)𝑣𝑛(𝑖−1)

. (2.4)

As observed, 𝑣𝑗(𝑖)
 consists of two parts, one from current input, the other from history, i.e.,

(𝑣1(𝑖−1), 𝑣2(𝑖−1), … , 𝑣𝑛(𝑖−1)), the information learned up to (𝑖 − 1)𝑡ℎ period. Similarly, vector

(𝑣1(𝑖), 𝑣2(𝑖), … , 𝑣𝑛(𝑖)) represent the information learned so far up to 𝑖𝑡ℎ period, which is stored at

hidden neurons ℎ(𝑖) = (ℎ1(𝑖), ℎ2(𝑖), … , ℎ𝑛(𝑖)).

 This RNN model works, at 𝑖𝑡ℎ stage, in the way as described below:

1) Collects input 𝑥(𝑖), and information ℎ(𝑖−1) learned up to the end of (𝑖 − 1)𝑡ℎ

2) Learns from 𝑥(𝑖) and ℎ(𝑖−1)and stores the learned information at hidden neurons ℎ(𝑖)
3) Derive multinomial probability (𝑝𝑖1, 𝑝𝑖2, … , 𝑝𝑖𝑛), where 𝑝𝑖𝑗 is the probability for the event

transiting to 𝑗𝑡ℎ rating.

4) Output: 𝑦(𝑖) is a random multinomial realization, given the multinomial probability distribution (𝑝𝑖1, 𝑝𝑖2, … , 𝑝𝑖𝑛).

Remark 2.1. Formulation of (2.4) does not come with a bias (i.e., intercept). An intercept can be inserted

by adding a covariate with a constant value 1, whenever necessary.

3. Training the RNN rating transition model

Let 𝑦(𝑘) = (𝑦1(𝑘), 𝑦2(𝑘), … , 𝑦𝑛(𝑘)) be the observed outcome at 𝑘𝑡ℎ period. The cost function at 𝑘𝑡ℎ period is

denoted by 𝐿𝑘, which is given as (for one single data point):

 𝐿𝑘 = −∑𝑗=1𝑛 𝑦𝑗(𝑘)log (𝑝𝑘𝑗). (3.1)

This is the negative log-likelihood for observing multinomial outcome (𝑦1(𝑘), 𝑦2(𝑘), … , 𝑦𝑛(𝑘)). The total cost

function to be minimized for this recurrent neural network is:

 𝐿 = 𝐿1 + 𝐿2 + ⋯ + 𝐿𝑇 , (3.2)

summing over entire training sample.

3.1. Partial derivatives of 𝑳 with respect to network weights

Training a neural network involves a series of gradient descent searches. Evaluation of partial derivatives

is essential. In this sub-section, we calculate the partial derivatives for the network cost function with

respect to network weights.

Partial derivatives of 𝑳𝒌 with respect to 𝒗𝒊(𝒌−𝒓)

5

Let 𝑑𝑖(𝑘,𝑟)
 denote the partial derivative of 𝐿𝑘 with respect to 𝑣𝑖(𝑘−𝑟)

, 0 ≤ 𝑟 ≤ 𝑘 − 1. By (2.1) and (2.3),

we have the partial derivative
𝜕𝑝𝑘𝑖𝜕𝑣𝑗(𝑘) as:

𝜕𝑝𝑘𝑖𝜕𝑣𝑗(𝑘) = {𝑝𝑘𝑖(1 − 𝑝𝑘𝑖), 𝑖 = 𝑗,−𝑝𝑘𝑖𝑝𝑘𝑗, 𝑖 ≠ 𝑗. (3.3)

Hence, by (3.1) and (3.3), we have, for 1 ≤ 𝑖 ≤ 𝑛:

 𝑑𝑖(𝑘,0) = 𝜕𝐿𝑘/𝜕𝑣𝑖(𝑘)
=−∑𝑗=1𝑛 𝑦𝑗(𝑘) ∂[log(𝑝𝑘𝑗)]/𝜕𝑣𝑖(𝑘)

 = −𝑦𝑖(𝑘)(1 − 𝑝𝑘𝑖) + ∑𝑗≠𝑖𝑛 𝑦𝑗(𝑘)𝑝𝑘𝑖 =− (𝑦𝑖(𝑘) − 𝑝𝑘𝑖), (3.4)

where equation ∑𝑗=1𝑛 𝑦𝑗(𝑘) = 1 is used.

Given 𝑑𝑗(𝑘,0), 1 ≤ 𝑗 ≤ 𝑛, we can calculate 𝑑𝑖(𝑘,1)
 from top-down for 𝑘 > 1 and 1 ≤ 𝑖 ≤ 𝑛, by using (2.4):

 𝑑𝑖(𝑘,1) = 𝜕𝐿𝑘𝜕𝑣𝑖(𝑘−1)
 = ∑𝑗=1 𝑛 (𝜕𝐿𝑘𝜕𝑣𝑗(𝑘)) (𝜕𝑣𝑗(𝑘)𝜕𝑣𝑖(𝑘−1)) = ∑𝑗=1 𝑛 𝑏𝑗𝑖(𝑘)𝑑𝑗(𝑘,0)

.

Inductively, we have, for 𝑘 > 𝑟 and 0 ≤ 𝑖 ≤ 𝑛:

 𝑑𝑖(𝑘,𝑟) = 𝜕𝐿𝑘𝜕𝑣𝑖(𝑘−𝑟)
 = ∑𝑗=1 𝑛 (𝜕𝐿𝑘𝜕𝑣𝑗(𝑘−𝑟+1)) (𝜕𝑣𝑗(𝑘−𝑟+1)𝜕𝑣𝑖(𝑘−𝑟))

 = ∑𝑗=1 𝑛 𝑏𝑗𝑖(𝑘−𝑟+1)𝑑𝑗(𝑘,𝑟−1). (3.5)

Partial derivatives of 𝑳 = ∑𝒌=𝟏 𝑻 𝑳𝒌 with respect to 𝒗𝒊(𝒓)

We will use the fact:

𝜕𝑳𝒌𝝏𝑣𝑗(𝑖) = 0 if 𝑘 < 𝑖. (3.6)

Let 𝐷𝑖𝑇−𝑟 denote the partial derivative of 𝐿 with respect to 𝑣𝑖(𝑇−𝑟)
. Given {𝑑𝑖(𝑘,0)| 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑘 ≤ 𝑇},

we can calculate {𝐷𝑖𝑇−𝑟| 1 ≤ 𝑖 ≤ 𝑛, 0 ≤ 𝑟 < 𝑇} top-down. Initially, at the top period, we have by (3.6):

 𝐷𝑖𝑇 = 𝜕𝑳𝝏𝑣𝑖(𝑇) = 𝜕𝑳𝑻𝝏𝑣𝑖(𝑇) = 𝑑𝑖(𝑇,0).
Next, backward from the top period, we have 𝐷𝑖𝑇−1for 𝑇 > 1 and 1 ≤ 𝑖 ≤ 𝑛 as follows:

6

 𝐷𝑖𝑇−1 = 𝜕𝐿𝜕𝑣𝑖(𝑇−1) = 𝜕(𝐿𝑇+𝐿𝑇−1)𝜕𝑣𝑖(𝑇−1)

 =
𝜕𝐿𝑇𝜕𝑣𝑖(𝑇−1) + 𝜕𝐿𝑇−1𝜕𝑣𝑖(𝑇−1) = ∑𝑗=1 𝑛 𝜕𝐿𝑇𝜕𝑣𝑗(𝑇) 𝜕𝑣𝑗(𝑇)𝜕𝑣𝑖(𝑇−1) + 𝑑𝑖(𝑇−1,0)

 = ∑𝑗=1 𝑛 𝑏𝑗𝑖(𝑇) 𝜕𝐿𝜕𝑣𝑗(𝑇) + 𝑑𝑖(𝑇−1,0)

 = ∑𝑗=1 𝑛 𝑏𝑗𝑖(𝑇)𝐷𝑗𝑇 + 𝑑𝑖(𝑇−1,0)
,

where (3.6) is used for 2nd and 5𝑡ℎequality signs. Inductively, we have 𝐷𝑖𝑇−𝑟 for 𝑇 > 𝑟 and 1 ≤ 𝑖 ≤ 𝑛

from top-down as follows:

 𝐷𝑖𝑇−𝑟 = 𝜕𝐿𝜕𝑣𝑖(𝑇−𝑟) = 𝜕(𝐿𝑇+𝐿𝑇−1+⋯+𝐿𝑇−𝑟+1)𝜕𝑣𝑖(𝑇−𝑟) + 𝜕𝐿𝑇−𝑟𝜕𝑣𝑖(𝑇−𝑟), (3.7)

 = ∑𝑗=1 𝑛 𝜕(𝐿𝑇+𝐿𝑇−1+⋯+𝐿𝑇−𝑟+1)𝜕𝑣𝑗(𝑇−𝑟+1) 𝜕𝑣𝑗(𝑇−𝑟+1)𝜕𝑣𝑖(𝑇−𝑟) + 𝑑𝑖(𝑇−𝑟,0)
 = ∑𝑗=1 𝑛 𝜕𝐿𝜕𝑣𝑗(𝑇−𝑟+1) 𝜕𝑣𝑗(𝑇−𝑟+1)𝜕𝑣𝑖(𝑇−𝑟) + 𝑑𝑖(𝑇−𝑟,0)

 = ∑𝑗=1 𝑛 𝑏𝑗𝑖(𝑇−𝑟+1)𝐷𝑗(𝑇−𝑟+1) + 𝑑𝑖(𝑇−𝑟,0)
,

where (3.6) is used for 2nd and 4𝑡ℎ equality signs.

Partial derivatives of 𝑳 = ∑𝒌=𝟏 𝑻 𝑳𝒌 with respect to 𝒂𝒊𝒋(𝒓)
 and 𝒃𝒊𝒋(𝒓)

Given {𝐷𝑖𝑟}, i.e., the partial derivatives of cost function 𝐿 with respect to 𝑣𝑖(𝑟), we can now find the partial

derivatives of 𝐿 with respect network weights 𝑎𝑖𝑗(𝑟)
 and 𝑏𝑖𝑗(𝑟)

 as defined in (2.2) and (2.4).

Let 𝛿𝑖𝑗𝑟 and 𝜎𝑖𝑗𝑟 denote respectively the partial derivatives of 𝐿 with respect to 𝑎𝑖𝑗(𝑟)
 and 𝑏𝑖𝑗(𝑟). By (2.4), at

the top time-period 𝑟 = 𝑇, we have:

 𝛿𝑖𝑗𝑇 = 𝜕𝐿𝜕𝑎𝑖𝑗(𝑇) = 𝜕𝐿𝜕𝑣𝑖(𝑇) 𝜕𝑣𝑖(𝑇)𝜕𝑎𝑖𝑗(𝑇) = 𝑥𝑗(𝑇)𝐷𝑖𝑇 ,
 𝜎𝑖𝑗𝑇 = 𝜕𝐿𝜕𝑏𝑖𝑗(𝑇) = 𝜕𝐿𝜕𝑣𝑖(𝑇) 𝜕𝑣𝑖(𝑇)𝜕𝑏𝑖𝑗(𝑇) = 𝑣𝑗(𝑇−1)𝐷𝑖𝑇 .
If general, we have:

 𝛿𝑖𝑗𝑇−𝑟 = 𝑥𝑗(𝑇−𝑟)𝐷𝑖𝑇−𝑟 , (3.8)

 𝜎𝑖𝑗𝑇−𝑟 = 𝑣𝑗(𝑇−𝑟−1)𝐷𝑖𝑇−𝑟 . (3.9)

7

3.2. Initialization of network weights

A good initialization of the network weights 𝑎𝑖𝑗(𝑟)
 and 𝑏𝑖𝑗(𝑟) speeds up the convergence for the network

training. In this subsection, we propose an algorithm for initializing the network weights.

Let 𝑤𝑗(𝑟)
 denote the vector of weights in (2.4) for 𝑣𝑗(𝑟) at 𝑟𝑡ℎ time-period, i.e.,

 𝑤𝑗(𝑟) = (𝑎𝑗1(𝑟), 𝑎𝑗2(𝑟), … , 𝑎𝑗𝑚(𝑟), 𝑏𝑗1(𝑟), 𝑏𝑗2(𝑟), … , 𝑏𝑗𝑛(𝑟))𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒 , (3.10A)

for 𝑟 > 1, and for 𝑟 = 1,
 𝑤𝑗(1) = (𝑎𝑗1(1), 𝑎𝑗2(1), … , 𝑎𝑗𝑚(1))𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒, (3.10B)

Then the weight matrix for the network at 𝑟𝑡ℎ time-period is given by

 𝑤(𝑟) = (𝑤1(𝑟), 𝑤2(𝑟), … , 𝑤𝑛(𝑟)), 1 ≤ 𝑟 ≤ 𝑇. (3.11)

 Algorithm 3.1 (Initialization). Initialize network weights 𝑎𝑖𝑗(𝑟)
 and 𝑏𝑖𝑗(𝑟)

 as follows, step-by-step, starting

from the first time-period:

(a) Find 𝑤𝑗(1), 1 ≤ 𝑗 ≤ 𝑛, by running a linear (or a logistic if more sensitivity is required for some 𝑦𝑗(1)′𝑠) regression against the binary target 𝑦𝑗(1)
 with 𝑥(1) as the explanatory variables. Derive 𝑣𝑗(1)

 by (2.2).

(b) Given 𝑥(2) = (𝑥1(2), 𝑥2(2), …, 𝑥𝑚(2)), and 𝑣(1) = (𝑣1(1), 𝑣2(1), … , 𝑣𝑛(1)), find 𝑤𝑗(2), 1 ≤ 𝑗 ≤ 𝑛, by

running a linear (or a logistic if more sensitivity is required for some 𝑦𝑗(2)′𝑠) regression against 𝑦𝑗(2)
 with components of 𝑥(2) and 𝑣(1) as explanatory variables. Derive 𝑣𝑗(2)

 by (2.4).

(c) Repeat (b) to obtain the initial weights for 𝑤𝑗(𝑟)
 at 𝑟𝑡ℎ time-period for 1 ≤ 𝑗 ≤ 𝑛 and 1 ≤ 𝑟 ≤𝑇.

3.3. Training the recurrent neural network

Given initial weights, network training involves a series of gradient descent searches, as described in the

next algorithm. Let 𝑤(𝑟) be the weight matrix as in (3.11) for the network at 𝑟𝑡ℎ time-period, i.e.:

 𝑤(𝑟) = (𝑤1(𝑟), 𝑤2(𝑟), … , 𝑤𝑛(𝑟)), 1 ≤ 𝑟 ≤ 𝑇.

Algorithm 3.2 (Network training). Update network weights 𝑤(𝑟), 1 ≤ 𝑟 ≤ 𝑇, step-by-step, as described

below:

(a) Forward scoring: Randomly select a small batch of examples (1-10 loan accounts, for example)

from the time series of training sample, calculate 𝑝𝑟𝑗 by (2.3) using the current weights for 1 ≤ 𝑟 ≤𝑇 and 1 ≤ 𝑗 ≤ 𝑛.

8

(b) Select a time-period 𝑟, from 1 to 𝑇 in sequence. At 𝑟𝑡ℎtime-period, find the partial derivatives of 𝐿

with respect to 𝑎𝑖𝑗(𝑟)
 and 𝑏𝑖𝑗(𝑟)

 by (3.8) and (3.9), then calculate Δ𝑤𝑗(𝑟)
 as:

 Δ𝑤𝑗(𝑟) = 𝑎𝑣𝑔 (𝜕𝐿𝜕𝑎𝑗1(𝑟) , 𝜕𝐿𝜕𝑎𝑗2(𝑟) , . . . , 𝜕𝐿𝜕𝑎𝑗𝑚(𝑟) , 𝜕𝐿𝜕𝑏𝑗1(𝑟) , 𝜕𝐿𝜕𝑏𝑗2(𝑟) , . . . , 𝜕𝐿𝜕𝑏𝑗𝑛(𝑟))𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒 , 1 ≤ 𝑗 ≤ 𝑇,
 the average of the partial derivatives of 𝐿 over the batch, hence, obtain the weight matrix:

 Δ𝑤(𝑟) = (Δ𝑤1(𝑟), Δ𝑤2(𝑟), . . . , Δ𝑤𝑛(𝑟)).

(c) Select a learning rate 𝜂 from a grid of values such that the update of 𝑤(𝑟) by:

 𝑤(𝑟) ⇐ 𝑤(𝑟) + 𝜂(Δ𝑤(𝑟)), (3.12)

gives rise to the biggest decrease for cost function (3.2) over the entire training sample. Execute the

update for 𝑤(𝑟) by (3.12).

(d) Steps (a)-(c) are repeated until no material improvement is possible.

With the partial derivatives being evaluated over only one small batch of examples, these partial

derivatives are called the mini-batch stochastic gradient for the cost function. This gradient can go off in a

direction far from the batch gradient (i.e., the gradient over the entire training sample). Nevertheless, this

noisiness is what we need for non-convex optimization ([2], [5]) to escape from saddle points or local

minima (Theorem 6 in [5]). The disadvantage is that more iterations are required to reach a good solution.

Remark 3.3. For step (c) in Algorithm 3.2, there are better approaches for selecting a value for learning

rate 𝜂, rather than exhausting all possible values in the grid. For example, let 𝜂𝑖 be the 𝑖𝑡ℎvalue in the grid

from 1 downward, assume that currently 𝜂𝑖 is the best learning rate so far, and it leads to a decrease for

the cost function, stop the search for the learning rate and use 𝜂𝑖 as the best learning rate, if 𝜂𝑖+1 does not

lead to a bigger decrease for the cost function than 𝜂𝑖.

4. Experiment results

In this section, we present the experiment results for the proposed RNN model, benchmarked with two

other Markov rating transition models.

The data we used is a synthetic sample, simulating a commercial loan portfolio with 7 ratings {𝑅𝑖}𝑖=17 over 7 quarters (periods). At the end of each quarter, accounts are rated by one of 7 ratings, with

ratings 𝑅6 and 𝑅7 being, respectively, the withdraw and default ratings. Both default and withdraw

ratings are absorbed ratings and will be excluded from later quarters for observation. For simplicity, we

include only three covariates, which simulate the following drivers for a loan:

(a) Debt service coverage ratio

(b) Debt to tangible net worth ratio

(c) Current ratio

The sample contains 10,000 accounts. It splits by 50:50 into training and validation. We focus on the

following three models:

9

1. Model 1 - The proposed RNN rating transition model

2. Model 2 – Time-inhomogeneous Markov transition model, with one separate transition model for

each period

3. Model 3 – Time-homogeneous Markov transition model, with one single transition model for all

periods

All three model use the same covariates.

Let 𝑦𝑗 denote a binary variable for a loan with value 1 if the loan has the rating 𝑅𝑗 at the quarter end and

is 0 otherwise. Let (𝑝1, 𝑝2, … , 𝑝7) be the multinomial probabilities for a loan estimated by a rating

transition model at the beginning of a quarter, with 𝑝𝑗 being the probability transiting to 𝑅𝑗 at the quarter

end.

Tables 1 and 2 below show the Gini coefficients, over the training and validation samples respectively,

for each of the above three models for ranking each of these 7 ratings individually. For example, in Table

1, for the RNN transition model over the training sample, it has a Gini of 0.84 for ranking rating 𝑅1. This

Gini is calculated by using 𝑝1 to predicted 𝑦1over the entire training sample. Results shown in these two

tables demonstrate a strong performance for the RNN transition model over the other two models.

In the remaining of this section, we focus on the robustness of a model in predicting the default event, the

quality of using 𝑝7 to predict 𝑦7, the default indicator. Tables 3 and 4 below show the Gini coefficients

period by period, over the training and validation samples respectively, for ranking default indicator over

each of 7 periods. Again, the RNN transition model significantly outperforms other two benchmark model

across all periods.

The following six tables show the actual and predicted default rates for each model by decile over the

training and validation samples. For example, Table 5 shows the actual and predicted default rates over

the training sample for the RNN rating transition model. These values in a table are calculated by first

sorting 𝑝7 ascendingly, then dividing the sample into 10 buckets, each is about 10%. Averages of the

actual and predicted default rates over each bucket are taken.

Table 1. Gini by rating on training Table 2. Gini by rating on validation

Rating Rating

Model 1 2 3 4 5 6 7 Avg Model 1 2 3 4 5 6 7 Avg

1 0.84 0.69 0.62 0.48 0.54 0.50 0.68 0.62 1 0.82 0.68 0.60 0.46 0.45 0.34 0.66 0.57

2 0.73 0.45 0.39 0.24 0.37 0.37 0.55 0.44 2 0.74 0.45 0.39 0.24 0.28 0.36 0.54 0.43

3 0.53 0.33 0.19 0.15 0.20 0.32 0.53 0.32 3 0.52 0.34 0.18 0.12 0.28 0.32 0.51 0.33

Table 3. Gini by period for default rating on training Table 4. Gini by period for default rating on validation

Period Period

Model 1 2 3 4 5 6 7 Avg Model 1 2 3 4 5 6 7 Avg

1 0.66 0.63 0.61 0.62 0.57 0.67 0.51 0.61 1 0.64 0.62 0.58 0.55 0.46 0.55 0.53 0.56

2 0.66 0.07 0.43 0.37 0.33 0.21 0.16 0.32 2 0.64 0.05 0.35 0.28 0.25 0.04 0.20 0.26

3 0.66 0.31 0.22 0.27 0.33 0.21 0.16 0.31 3 0.64 0.27 0.11 0.18 0.25 0.04 0.20 0.24

10

These results demonstrate a significant improvement for the RNN model over the other two models,

either on training or validation.

Conclusion. Rating transition for a credit portfolio is generally path dependent. A Markov rating

transition model, either homogeneous or inhomogeneous, usually does not perform well after projecting

for a few periods. The RNN model proposed in this paper provides a solution for modeling state transition

under non-Markov settings. This RNN is informed by the information history along the path. Experiments

show this proposed RNN model significantly outperform Markov models where path-dependence is

relevant.

Acknowledgements: The author thanks Biao Wu for many valuable discussions in the past 3 years in

deep machine learning, Python financial engineering, as well as his insights and comments. Thanks also

go to Felix Kan for many valuable comments, to Zunwei Du, Kaijie Cui, and Glenn Fei for many valuable

conversations.

Table 5. RNN on training (Gini-68%) Table 6. RNN on validation (Gini - 66%)

Decile Actual Pred Decile Actual Pred

0 3.62% 3.20% 0 4.53% 3.17%

1 4.90% 4.33% 1 4.89% 4.31%

2 4.97% 4.59% 2 4.53% 4.57%

3 5.33% 5.63% 3 8.49% 6.45%

4 21.16% 19.68% 4 24.73% 20.65%

5 23.79% 23.24% 5 24.03% 23.49%

6 36.43% 35.62% 6 34.46% 36.65%

7 42.47% 44.20% 7 45.04% 45.87%

8 61.72% 62.25% 8 61.44% 63.57%

9 81.19% 82.85% 9 81.09% 84.49%

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6 7 8 9

Default Rate: Actual vs. Predicted

Actual Pred

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10

Default Rate: Actual vs. Predicted

Actual Pred

Table 7. One migration matrix per period on training (Gini-55%) Table 8. One migration matrix per period on validation (Gini-54%)

Dec Actual Pred Dec Actual Pred

0 11.29% 1.46% 0 11.87% 1.52%

1 12.50% 5.04% 1 14.89% 5.16%

2 4.55% 5.84% 2 5.25% 5.97%

3 7.03% 6.19% 3 8.42% 6.36%

4 23.01% 8.20% 4 22.65% 8.58%

5 26.99% 15.54% 5 26.40% 16.22%

6 38.99% 24.29% 6 39.86% 24.82%

7 32.67% 49.62% 7 34.39% 51.71%

8 50.14% 73.66% 8 51.80% 76.60%

9 78.42% 95.73% 9 77.71% 96.29%

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6 7 8 9

Default Rate: Actual vs. Predicted

Actual Pred

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10

Default Rate: Actual vs. Predicted

Actual Pred

Table 9. One single migration matrix on training (Gini-53%) Table 10. One single migration matrix on validation (Gini-51%)

Dec Actual Pred Dec Actual Pred

0 19.11% 2.52% 0 21.30% 2.52%

1 4.90% 5.36% 1 5.90% 5.49%

2 12.93% 6.20% 2 14.46% 6.35%

3 4.97% 6.71% 3 4.53% 6.87%

4 19.03% 9.82% 4 19.41% 10.39%

5 29.05% 21.95% 5 29.06% 22.60%

6 27.70% 25.37% 6 29.50% 25.81%

7 39.28% 35.67% 7 39.64% 37.94%

8 50.07% 75.51% 8 52.09% 78.29%

9 78.57% 96.46% 9 77.35% 96.97%

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10

Default Rate: Actual vs. Predicted

Actual Pred

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10

Default Rate: Actual vs. Predicted

Actual Pred

11

References

[1] Abiodun, Oludare Isaac; Jantan, Aman; Omolara, Abiodun Esther; Dada, Kemi Victoria; Mohamed,

Nachaat Abdelatif; Arshad, Humaira. (2018). State-of-the-art in artificial neural network applications:

A survey. Heliyon. 4 (11): e00938. doi:10.1016/j.heliyon.2018.e00938.

[2] Bottou, L. (2010). Large-scale machine learning with stochastic gradient descent. In Proceedings of

COMPSTAT'2010 (pp. 177-186). Physica-Verlag HD.

[3] Dupond, Samuel. (2019). A thorough review on the current advance of neural network structures.

Annual Reviews in Control. 14: 200–230.

[4] Elman, Jeffrey L. (1990). Finding Structure in Time. Cognitive Science. 14 (2): 179–211.

doi:10.1016/0364-0213(90)90002-E.

[5] Ge, R., Huang, F., Jin, C., & Yuan, Y. (2015, June). Escaping From Saddle Points-Online Stochastic

Gradient for Tensor Decomposition. In COLT (pp. 797-842).

[6] Graves, Alex; Liwicki, Marcus; Fernandez, Santiago; Bertolami, Roman; Bunke, Horst; Schmidhuber,

Jürgen. (2009). A Novel Connectionist System for Improved Unconstrained Handwriting Recognition.

IEEE Transactions on Pattern Analysis and Machine Intelligence. 31 (5): 855–868.

doi:10.1109/tpami.2008.137.

[7] Hyötyniemi, Heikki. (1996). Turing machines are recurrent neural networks. Proceedings of STeP

'96/Publications of the Finnish Artificial Intelligence Society: 13–724.

[8] Juhasz, Peter; Varadi, Kata; Vidovics-Dancs, Agnes; and Szaz, Janos. (2017). Measuring Path

Dependency. Special issue, UTMS Journal of Economics 8 (1): 29–37.

[9] Kiefer, Nicholas M.; Larson, C. Erik. (2014). Testing Simple Markov Structures for Credit Rating

Transitions. OCC Economics Working Paper 2004-3

[10] Kiefer, Nicholas M.; Larson, C. Erik. (2007). A simulation estimator for testing the time

homogeneity of credit rating transitions. Journal of Empirical Finance, Elsevier, vol. 14(5), pages

818-835

[11] Miu, P.; Ozdemir, B. (2009). Stress testing probability of default and rating migration rate with

respect to Basel II requirements. Journal of Risk Model Validation, Vol. 3 (4), 3-38

[12] Reis, G. dos; Pfeuffer, M.; Smith, G. (2020). Capturing model risk and rating momentum in the

estimation of probabilities of default and credit rating migrations, Quantitative Finance, 20:7, 1069-

1083, DOI: 10.1080/14697688.2020.1726439

[13] Russo, Emilio. (2020). Discrete-Time Approach to Evaluate Path-Dependent Derivatives in a

Regime-Switching Risk Model, Risks 2020, 8(1), 9; doi:10.3390/risks8010009

[14] Schmidhuber, Jürgen. (2015). Deep Learning in Neural Networks: An Overview. Neural Networks.

61: 85–117.

[15] Tealab, Ahmed. (2018). Time series forecasting using artificial neural networks methodologies: A

systematic review. Future Computing and Informatics Journal. 3 (2): 334–340.

doi:10.1016/j.fcij.2018.10.003. ISSN 2314-7288.

12

[16] Yang, B. H.; Zunwei Du. (2016). Rating Transition Probability Models and CCAR Stress Testing.

Journal of Risk Model Validation 10 (3), 1-19

[17] Yang, B. H. (2017). Forward ordinal models for point-in-time probability of default term structure.

Journal of Risk Model Validation, Vol 11 (3), 1-18

[18] Yang, B. H. (2017). Point-in-time PD term structure models for multi-period scenario loss

projection. Journal of Risk Model Validation, Vol 11 (1), 73-94

[19] Zhu, Steven; Lomibao, Dante. (2005). A Conditional Valuation Approach for Path-Dependent

Instruments. August 2005SSRN Electronic Journal. DOI: 10.2139/ssrn.806704

