
Munich Personal RePEc Archive

Modeling Path-Dependent State

Transition by a Recurrent Neural

Network

Yang, Bill Huajian

18 August 2022

Online at https://mpra.ub.uni-muenchen.de/114188/

MPRA Paper No. 114188, posted 15 Aug 2022 00:19 UTC



 

1 

 

           Modeling Path-Dependent State Transition by a Recurrent Neural Network 

                                                  BILL HUAJIAN YANG 1 

                                                                  Abstract 

Rating transition models are widely used for credit risk evaluation. It is not uncommon that a time-homogeneous 

Markov rating migration model deteriorates quickly after projecting repeatedly for a few periods. This is because the 

time-homogeneous Markov condition is generally not satisfied. For a credit portfolio, rating transition is usually 

path dependent.  In this paper, we propose a recurrent neural network (RNN) model for modeling path-dependent 

rating migration. An RNN is a type of artificial neural networks where connections between nodes form a directed 

graph along a temporal sequence. There are neurons for input and output at each time-period. The model is informed 

by the past behaviours for a loan along the path. Information learned from previous periods propagates to future 

periods. Experiments show this RNN model is robust.  

Keywords: Path-dependent, rating transition, recurrent neural network, deep learning, Markov property, time-

homogeneity  

 

1. Introduction  

 

Rating transition models are widely used in financial industry for credit risk evaluation, including stress 

testing and IFRS 9 expected credit loss evaluation ([11], [12], [16], [17]), under the assumption that rating 

transition is a time-homogenous Markov process, depending only on current rating and covariates. 

However, it is not uncommon that a Markov model deteriorates quickly after projecting for a few periods. 

This is because Markov condition is generally not satisfied. Rating transition for a credit portfolio is 

generally path dependent. A test for this assumption is required ([9], [10]) for a use of these Markov 

models.   

There are various methods for path-dependent credit risk modeling ([8]), including regime-switching 

models ([13]) and the conditional methods ([18], [19]). The latter is comparative to a cohort analysis.  

In this paper, we propose a recurrent neural network (RNN) model for modeling path-dependent rating 

transition. An RNN is a type of artificial neural networks where connections between nodes form a 

directed graph along a temporal sequence. There are neurons for input and output at each time-period. 

The RNN is informed by past behaviours along the path. Information learned from previous periods 

propagates to future periods ([1], [3], [4], [6], [7], [14], [15]).  

The network structure for the proposed RNN model is described in section 2 by (2.1)- (2.4). This RNN 

model is implemented in Python. Experiments show this RNN model is robust, compared to Markov 

transition models. Applications of this RNN model include the following, wherever path-dependence is 

relevant: 

(a) Path-dependent asset evaluation or credit risk evaluation  

(b) Decisioning for account management 

(c) Forecasting loss for stress testing, expected credit loss for IFRS 9 projects 

(d) Estimating conditional probability of default for survival analysis 

The paper is organized as follows:  In section 2, we set up the proposed RNN model. In section 3, we 

calculate the partial derivatives for the network cost function. In section 4, we present the experiment 
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results for this proposed RNN model, benchmarked with the time-homogeneous and time-inhomogeneous 

rating transition models.   

 

2. Recurrent neural network models for multiperiod state transition  

 

In this section, we describe, as in (2.1) - (2.4), the proposed recurrent neural network (RNN) model for 

modeling path-dependent rating transition. Given an observation horizon with 𝑇 periods: 

                  0 = 𝑡0 < 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑇 , 
our goal is to estimate at each 𝑖 ≥ 0 the probability transiting to a rating at time 𝑡𝑖+1, given the rating and 

covariates at time 𝑡𝑖.  
Traditional rating transition models assume the Markov condition, i.e., transition probability depends only 

on current rating and covariates. The type of Markov transition models includes: 

(a) Time-homogeneous Markov rating transition, represented by one single transition model for all 

periods 

(b) Time-inhomogeneous Markov rating transition, represented by one transition model for each 

period  

It is not uncommon that a time-homogeneous Markov model deteriorates quickly after projecting only for 

a few periods. This is because the Markov condition is generally not satisfied. Rating transition for a 

credit portfolio is generally path dependent.   

A recurrent neural network (RNN) is an artificial neural network where connections between nodes form 

a directed graph along a temporal sequence. The chart below depicts the structure for an RNN. At the  𝑖𝑡ℎ 

time-period of the temporal sequence, the input neurons, the hidden neurons, and the output neurons are 

respectively labelled 𝑥(𝑖), ℎ(𝑖), and 𝑦(𝑖): 
 

 

An RNN shares the advantages of common neural networks that information learned at a point is 

propagated back and forward to all periods. It is path dependent.  

 

Let {𝑅𝑖}𝑖=1𝑛  denote the 𝑛 ratings for a credit portfolio. For a loan portfolio, we reserve 𝑅𝑛−1 as the 

withdraw rating and 𝑅𝑛 the default ratings. Both default and withdraw ratings are assumed to be absorbed 

states, which means, a loan rated by a default or withdraw rating will be excluded from the sample for 

future subsequent observations. Rating labels are observable at the beginning and the end of a period. 
 

     

 
                        

                       Figure 1. An RNN for rating transition      
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Let 𝑟𝑗(𝑖)
 denote the indicator with value 1 if the rating for a loan at the end of 𝑖𝑡ℎ period is 𝑅𝑗 and 0 

otherwise. Let 𝑛𝑝 denote the number of non-absorbed ratings. An input at 𝑖𝑡ℎ period is denoted as: 

 

                 𝑥(𝑖) = (𝑥1(𝑖), 𝑥2(𝑖), … , 𝑥𝑚(𝑖)) 

 

where the first (𝑚 − 𝑛𝑝) input components (𝑥1(𝑖), 𝑥2(𝑖), … , 𝑥𝑚−𝑛𝑝(𝑖)
) denote the covariates observable at the 

beginning of the 𝑖𝑡ℎperiod, and the remaining 𝑛𝑝 components are the rating indicators for non-absorbed 

ratings observed at the end of (𝑖 − 1)𝑡ℎ period:  
 

              𝑥𝑗(𝑖) = 𝑟𝑗(𝑖−1), 𝑚 − 𝑛𝑝 + 1 ≤ 𝑗 ≤ 𝑚.   
 

That is, non-absorbed rating observed at the end of (𝑖 − 1)𝑡ℎ period is used as the input for the next 

period. The output at 𝑖𝑡ℎ period is denoted as: 

 

             𝑦(𝑖) = (𝑦1(𝑖), 𝑦2(𝑖), … , 𝑦𝑛(𝑖)
) 

             

where  

             𝑦𝑗(𝑖) = 𝑟𝑗(𝑖), 1 ≤ 𝑗 ≤ 𝑛. 
 

The structure for this RNN is described as in (2.1) - (2.4) below. Initially, at the first period, we have:  
 

(a) Input: 𝑥(1) = (𝑥1(1), 𝑥2(1), … , 𝑥𝑚(1)); 

(b) Output: 𝑦(1)=(𝑦1(1), 𝑦2(1), … , 𝑦𝑛(1)), a unit vector (all components are zero except for one with 

value 1), which is a random realization generated by the multinomial probability 𝑝1 = (𝑝11, 𝑝12, … , 𝑝1𝑛), where: 

 

         𝑝1𝑗 = exp(𝑣𝑗(1))exp(𝑣1(1))+exp(𝑣2(1))+⋯+exp(𝑣𝑛(1)),                                                                (2.1) 

and  
 

         𝑣𝑗(1) =  𝑎𝑗1(1)𝑥1(1) + 𝑎𝑗2(1)𝑥2(1) + ⋯ + 𝑎𝑗𝑚(1)𝑥𝑚(1)
.                                                       (2.2) 

 

Vector (𝑣1(1), 𝑣2(1), … , 𝑣𝑛(1)) in (2.1) and (2.2) represents the information learned at 1st period, 

which is stored at hidden neurons ℎ(1) = (ℎ1(1), ℎ2(1), … , ℎ𝑛(1)) in the 1st period.    

In general, given vector (𝑣1(𝑖−1), 𝑣2(𝑖−1), … , 𝑣𝑛(𝑖−1)) at (𝑖 − 1)𝑡ℎ period (𝑖 ≥ 2), we have, at 𝑖𝑡ℎ period: 

(c) Input  𝑥(𝑖) = (𝑥1(𝑖), 𝑥2(𝑖), … , 𝑥𝑚(𝑖)); 

(d) Output: 𝑦(𝑖) = (𝑦1(𝑖), 𝑦2(𝑖), … , 𝑦𝑛(𝑖)
), a unit vector, which is a random realization generated by 

multinomial probability 𝑝𝑖 = (𝑝𝑖1, 𝑝𝑖2, … , 𝑝𝑖𝑛), where: 
 

         𝑝𝑖𝑗 = exp(𝑣𝑗(𝑖))exp(𝑣1(𝑖))+exp(𝑣2(𝑖))+…+exp(𝑣𝑛(𝑖)).                                                                      (2.3) 
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and  

        

                 𝑣𝑗(𝑖) =  𝑎𝑗1(𝑖)𝑥1(𝑖) + 𝑎𝑗2(𝑖)𝑥2(𝑖) + ⋯ + 𝑎𝑗𝑚(𝑖)𝑥𝑚(𝑖)
+ 𝑏𝑗1(𝑖)𝑣1(𝑖−1) + 𝑏𝑗2(𝑖)𝑣2(𝑖−1) + ⋯ + 𝑏𝑗𝑛(𝑖)𝑣𝑛(𝑖−1)

.   (2.4) 

As observed, 𝑣𝑗(𝑖)
 consists of two parts, one from current input, the other from history, i.e., 

(𝑣1(𝑖−1), 𝑣2(𝑖−1), … , 𝑣𝑛(𝑖−1)), the information learned up to (𝑖 − 1)𝑡ℎ period. Similarly, vector 

(𝑣1(𝑖), 𝑣2(𝑖), … , 𝑣𝑛(𝑖)) represent the information learned so far up to 𝑖𝑡ℎ period, which is stored at 

hidden neurons ℎ(𝑖) = (ℎ1(𝑖), ℎ2(𝑖), … , ℎ𝑛(𝑖)).   

 This RNN model works, at 𝑖𝑡ℎ stage, in the way as described below: 

1) Collects input 𝑥(𝑖), and information ℎ(𝑖−1) learned up to the end of (𝑖 − 1)𝑡ℎ 

2) Learns from 𝑥(𝑖) and ℎ(𝑖−1)and stores the learned information at hidden neurons ℎ(𝑖)  
3) Derive multinomial probability (𝑝𝑖1, 𝑝𝑖2, … , 𝑝𝑖𝑛), where 𝑝𝑖𝑗 is the probability for the event 

transiting to 𝑗𝑡ℎ rating. 

4) Output: 𝑦(𝑖) is a random multinomial realization, given the multinomial probability distribution (𝑝𝑖1, 𝑝𝑖2, … , 𝑝𝑖𝑛).  
 

Remark 2.1. Formulation of (2.4) does not come with a bias (i.e., intercept). An intercept can be inserted 

by adding a covariate with a constant value 1, whenever necessary. 

 
 

3. Training the RNN rating transition model  

 
Let 𝑦(𝑘) = (𝑦1(𝑘), 𝑦2(𝑘), … , 𝑦𝑛(𝑘)) be the observed outcome at 𝑘𝑡ℎ period. The cost function at 𝑘𝑡ℎ period is 

denoted by 𝐿𝑘, which is given as (for one single data point): 
 

 

            𝐿𝑘 = −∑𝑗=1𝑛 𝑦𝑗(𝑘)log (𝑝𝑘𝑗).                                                                                          (3.1) 
 

This is the negative log-likelihood for observing multinomial outcome (𝑦1(𝑘), 𝑦2(𝑘), … , 𝑦𝑛(𝑘)). The total cost 

function to be minimized for this recurrent neural network is: 
 

 

           𝐿 = 𝐿1 + 𝐿2 + ⋯ + 𝐿𝑇 ,                                                                                                 (3.2) 
 

summing over entire training sample. 

 

3.1. Partial derivatives of  𝑳 with respect to network weights 
 

Training a neural network involves a series of gradient descent searches. Evaluation of partial derivatives 

is essential. In this sub-section, we calculate the partial derivatives for the network cost function with 

respect to network weights. 
 

Partial derivatives of  𝑳𝒌 with respect to 𝒗𝒊(𝒌−𝒓)
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Let 𝑑𝑖(𝑘,𝑟)
 denote the partial derivative of 𝐿𝑘 with respect to 𝑣𝑖(𝑘−𝑟)

,  0 ≤ 𝑟 ≤ 𝑘 − 1. By (2.1) and (2.3), 

we have the partial derivative  
𝜕𝑝𝑘𝑖𝜕𝑣𝑗(𝑘)  as: 

          
𝜕𝑝𝑘𝑖𝜕𝑣𝑗(𝑘) = {𝑝𝑘𝑖(1 − 𝑝𝑘𝑖), 𝑖 = 𝑗,−𝑝𝑘𝑖𝑝𝑘𝑗, 𝑖 ≠ 𝑗.                                                                                      (3.3)

  

Hence, by (3.1) and (3.3), we have, for 1 ≤ 𝑖 ≤ 𝑛: 

         𝑑𝑖(𝑘,0) = 𝜕𝐿𝑘/𝜕𝑣𝑖(𝑘)
=−∑𝑗=1𝑛 𝑦𝑗(𝑘) ∂[log(𝑝𝑘𝑗)]/𝜕𝑣𝑖(𝑘)

 

                = −𝑦𝑖(𝑘)(1 − 𝑝𝑘𝑖) + ∑𝑗≠𝑖𝑛 𝑦𝑗(𝑘)𝑝𝑘𝑖  =− (𝑦𝑖(𝑘) − 𝑝𝑘𝑖),                                            (3.4)                                               

where equation  ∑𝑗=1𝑛 𝑦𝑗(𝑘) = 1 is used.  

Given 𝑑𝑗(𝑘,0), 1 ≤ 𝑗 ≤ 𝑛, we can calculate 𝑑𝑖(𝑘,1)
 from top-down for 𝑘 > 1 and 1 ≤ 𝑖 ≤ 𝑛, by using (2.4):         

        𝑑𝑖(𝑘,1) = 𝜕𝐿𝑘𝜕𝑣𝑖(𝑘−1) 
                = ∑𝑗=1 𝑛  ( 𝜕𝐿𝑘𝜕𝑣𝑗(𝑘)) ( 𝜕𝑣𝑗(𝑘)𝜕𝑣𝑖(𝑘−1)) = ∑𝑗=1 𝑛    𝑏𝑗𝑖(𝑘)𝑑𝑗(𝑘,0)

. 

Inductively, we have, for 𝑘 > 𝑟  and 0 ≤ 𝑖 ≤ 𝑛: 

          𝑑𝑖(𝑘,𝑟) = 𝜕𝐿𝑘𝜕𝑣𝑖(𝑘−𝑟)                                               
                 = ∑𝑗=1 𝑛  ( 𝜕𝐿𝑘𝜕𝑣𝑗(𝑘−𝑟+1)) (𝜕𝑣𝑗(𝑘−𝑟+1)𝜕𝑣𝑖(𝑘−𝑟) )       

                 = ∑𝑗=1 𝑛    𝑏𝑗𝑖(𝑘−𝑟+1)𝑑𝑗(𝑘,𝑟−1).                                                                               (3.5)                                                          

 

Partial derivatives of  𝑳 = ∑𝒌=𝟏 𝑻  𝑳𝒌 with respect to 𝒗𝒊(𝒓)
  

We will use the fact: 

               
𝜕𝑳𝒌𝝏𝑣𝑗(𝑖) = 0 if 𝑘 < 𝑖.                                                                                                 (3.6)                                      

Let 𝐷𝑖𝑇−𝑟 denote the partial derivative of 𝐿 with respect to 𝑣𝑖(𝑇−𝑟)
. Given {𝑑𝑖(𝑘,0)| 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑘 ≤ 𝑇}, 

we can calculate {𝐷𝑖𝑇−𝑟|  1 ≤ 𝑖 ≤ 𝑛, 0 ≤ 𝑟 < 𝑇} top-down. Initially, at the top period, we have by (3.6): 

           𝐷𝑖𝑇 = 𝜕𝑳𝝏𝑣𝑖(𝑇) = 𝜕𝑳𝑻𝝏𝑣𝑖(𝑇) = 𝑑𝑖(𝑇,0). 
Next, backward from the top period, we have 𝐷𝑖𝑇−1for 𝑇 > 1 and 1 ≤ 𝑖 ≤ 𝑛 as follows:  
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           𝐷𝑖𝑇−1 = 𝜕𝐿𝜕𝑣𝑖(𝑇−1) = 𝜕(𝐿𝑇+𝐿𝑇−1)𝜕𝑣𝑖(𝑇−1)  

                     = 
𝜕𝐿𝑇𝜕𝑣𝑖(𝑇−1) + 𝜕𝐿𝑇−1𝜕𝑣𝑖(𝑇−1)  = ∑𝑗=1 𝑛 𝜕𝐿𝑇𝜕𝑣𝑗(𝑇) 𝜕𝑣𝑗(𝑇)𝜕𝑣𝑖(𝑇−1) + 𝑑𝑖(𝑇−1,0)   

                     = ∑𝑗=1 𝑛 𝑏𝑗𝑖(𝑇) 𝜕𝐿𝜕𝑣𝑗(𝑇)     + 𝑑𝑖(𝑇−1,0)
   

                      = ∑𝑗=1 𝑛    𝑏𝑗𝑖(𝑇)𝐷𝑗𝑇 + 𝑑𝑖(𝑇−1,0)
,  

where (3.6) is used for 2nd and 5𝑡ℎequality signs. Inductively, we have 𝐷𝑖𝑇−𝑟 for 𝑇 > 𝑟 and 1 ≤ 𝑖 ≤ 𝑛 

from top-down as follows:  

           𝐷𝑖𝑇−𝑟 = 𝜕𝐿𝜕𝑣𝑖(𝑇−𝑟) = 𝜕(𝐿𝑇+𝐿𝑇−1+⋯+𝐿𝑇−𝑟+1)𝜕𝑣𝑖(𝑇−𝑟) + 𝜕𝐿𝑇−𝑟𝜕𝑣𝑖(𝑇−𝑟),                                                  (3.7)    

                     = ∑𝑗=1 𝑛 𝜕(𝐿𝑇+𝐿𝑇−1+⋯+𝐿𝑇−𝑟+1)𝜕𝑣𝑗(𝑇−𝑟+1) 𝜕𝑣𝑗(𝑇−𝑟+1)𝜕𝑣𝑖(𝑇−𝑟) + 𝑑𝑖(𝑇−𝑟,0)        
                      = ∑𝑗=1 𝑛 𝜕𝐿𝜕𝑣𝑗(𝑇−𝑟+1) 𝜕𝑣𝑗(𝑇−𝑟+1)𝜕𝑣𝑖(𝑇−𝑟) + 𝑑𝑖(𝑇−𝑟,0)

  

                     = ∑𝑗=1 𝑛    𝑏𝑗𝑖(𝑇−𝑟+1)𝐷𝑗(𝑇−𝑟+1) + 𝑑𝑖(𝑇−𝑟,0)
, 

where (3.6) is used for 2nd and 4𝑡ℎ equality signs.                                                          

 

Partial derivatives of  𝑳 = ∑𝒌=𝟏 𝑻  𝑳𝒌 with respect to 𝒂𝒊𝒋(𝒓)
 and 𝒃𝒊𝒋(𝒓)

  

Given {𝐷𝑖𝑟}, i.e., the partial derivatives of cost function 𝐿 with respect to 𝑣𝑖(𝑟), we can now find the partial 

derivatives of 𝐿 with respect network weights 𝑎𝑖𝑗(𝑟)
 and 𝑏𝑖𝑗(𝑟)

 as defined in (2.2) and (2.4). 

Let 𝛿𝑖𝑗𝑟  and 𝜎𝑖𝑗𝑟  denote respectively the partial derivatives of 𝐿 with respect to 𝑎𝑖𝑗(𝑟)
 and 𝑏𝑖𝑗(𝑟). By (2.4), at 

the top time-period 𝑟 = 𝑇, we have: 

                  𝛿𝑖𝑗𝑇 = 𝜕𝐿𝜕𝑎𝑖𝑗(𝑇) = 𝜕𝐿𝜕𝑣𝑖(𝑇) 𝜕𝑣𝑖(𝑇)𝜕𝑎𝑖𝑗(𝑇) =  𝑥𝑗(𝑇)𝐷𝑖𝑇 , 
                  𝜎𝑖𝑗𝑇 = 𝜕𝐿𝜕𝑏𝑖𝑗(𝑇) = 𝜕𝐿𝜕𝑣𝑖(𝑇) 𝜕𝑣𝑖(𝑇)𝜕𝑏𝑖𝑗(𝑇) =    𝑣𝑗(𝑇−1)𝐷𝑖𝑇 .  
If general, we have: 

       𝛿𝑖𝑗𝑇−𝑟 =    𝑥𝑗(𝑇−𝑟)𝐷𝑖𝑇−𝑟 ,                                                                                   (3.8)      

       𝜎𝑖𝑗𝑇−𝑟 =    𝑣𝑗(𝑇−𝑟−1)𝐷𝑖𝑇−𝑟 .                                                                                (3.9)    
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3.2.  Initialization of network weights 

A good initialization of the network weights 𝑎𝑖𝑗(𝑟)
 and 𝑏𝑖𝑗(𝑟) speeds up the convergence for the network 

training. In this subsection, we propose an algorithm for initializing the network weights.  

Let 𝑤𝑗(𝑟)
 denote the vector of weights in (2.4) for 𝑣𝑗(𝑟) at 𝑟𝑡ℎ time-period, i.e.,   

              𝑤𝑗(𝑟) = (𝑎𝑗1(𝑟), 𝑎𝑗2(𝑟), … , 𝑎𝑗𝑚(𝑟), 𝑏𝑗1(𝑟), 𝑏𝑗2(𝑟), … , 𝑏𝑗𝑛(𝑟))𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒 ,                            (3.10A) 

for 𝑟 > 1, and for 𝑟 = 1, 
               𝑤𝑗(1) = (𝑎𝑗1(1), 𝑎𝑗2(1), … , 𝑎𝑗𝑚(1))𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒,                                                          (3.10B) 

Then the weight matrix for the network at 𝑟𝑡ℎ time-period is given by  

               𝑤(𝑟) = (𝑤1(𝑟), 𝑤2(𝑟), … , 𝑤𝑛(𝑟)), 1 ≤ 𝑟 ≤ 𝑇.                                                        (3.11) 

 

 Algorithm 3.1 (Initialization). Initialize network weights 𝑎𝑖𝑗(𝑟)
 and 𝑏𝑖𝑗(𝑟)

 as follows, step-by-step, starting 

from the first time-period: 

(a) Find 𝑤𝑗(1), 1 ≤ 𝑗 ≤ 𝑛,  by running a linear (or a logistic if more sensitivity is required for some 𝑦𝑗(1)′𝑠) regression against the binary target 𝑦𝑗(1)
 with 𝑥(1) as the explanatory variables. Derive 𝑣𝑗(1)

 by (2.2). 

(b) Given 𝑥(2) = (𝑥1(2), 𝑥2(2), …, 𝑥𝑚(2)), and 𝑣(1) = (𝑣1(1), 𝑣2(1), … , 𝑣𝑛(1)), find 𝑤𝑗(2), 1 ≤ 𝑗 ≤ 𝑛, by 

running a linear (or a logistic if more sensitivity is required for some 𝑦𝑗(2)′𝑠) regression against 𝑦𝑗(2)
 with components of 𝑥(2) and 𝑣(1) as explanatory variables. Derive 𝑣𝑗(2)

 by (2.4). 

(c) Repeat (b) to obtain the initial weights for 𝑤𝑗(𝑟)
 at 𝑟𝑡ℎ time-period for 1 ≤ 𝑗 ≤ 𝑛 and 1 ≤ 𝑟 ≤𝑇.   

 

 

3.3. Training the recurrent neural network  

 

Given initial weights, network training involves a series of gradient descent searches, as described in the 

next algorithm. Let 𝑤(𝑟) be the weight matrix as in (3.11) for the network at 𝑟𝑡ℎ time-period, i.e.:  

               𝑤(𝑟) = (𝑤1(𝑟), 𝑤2(𝑟), … , 𝑤𝑛(𝑟)), 1 ≤ 𝑟 ≤ 𝑇.                                                                              
 

Algorithm 3.2 (Network training). Update network weights 𝑤(𝑟), 1 ≤ 𝑟 ≤ 𝑇, step-by-step, as described 

below:  

(a) Forward scoring: Randomly select a small batch of examples (1-10 loan accounts, for example) 

from the time series of training sample, calculate 𝑝𝑟𝑗 by (2.3) using the current weights for 1 ≤ 𝑟 ≤𝑇 and 1 ≤ 𝑗 ≤ 𝑛. 
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(b) Select a time-period 𝑟, from 1 to 𝑇 in sequence. At 𝑟𝑡ℎtime-period, find the partial derivatives of 𝐿 

with respect to 𝑎𝑖𝑗(𝑟)
 and 𝑏𝑖𝑗(𝑟)

 by (3.8) and (3.9), then calculate Δ𝑤𝑗(𝑟)
 as: 

 

             Δ𝑤𝑗(𝑟) = 𝑎𝑣𝑔 ( 𝜕𝐿𝜕𝑎𝑗1(𝑟) , 𝜕𝐿𝜕𝑎𝑗2(𝑟) , . . . , 𝜕𝐿𝜕𝑎𝑗𝑚(𝑟) , 𝜕𝐿𝜕𝑏𝑗1(𝑟) , 𝜕𝐿𝜕𝑏𝑗2(𝑟) , . . . , 𝜕𝐿𝜕𝑏𝑗𝑛(𝑟))𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒 , 1 ≤ 𝑗 ≤ 𝑇,   
            the average of the partial derivatives of 𝐿 over the batch, hence, obtain the weight matrix: 

              Δ𝑤(𝑟) = (Δ𝑤1(𝑟), Δ𝑤2(𝑟), . . . , Δ𝑤𝑛(𝑟)).  

    

(c) Select a learning rate 𝜂 from a grid of values such that the update of 𝑤(𝑟) by: 
 

                          𝑤(𝑟) ⇐ 𝑤(𝑟) + 𝜂(Δ𝑤(𝑟)),                                                             (3.12) 
 

gives rise to the biggest decrease for cost function (3.2) over the entire training sample. Execute the 

update for 𝑤(𝑟) by (3.12). 
 

(d) Steps (a)-(c) are repeated until no material improvement is possible.  
 

With the partial derivatives being evaluated over only one small batch of examples, these partial 

derivatives are called the mini-batch stochastic gradient for the cost function. This gradient can go off in a 

direction far from the batch gradient (i.e., the gradient over the entire training sample). Nevertheless, this 

noisiness is what we need for non-convex optimization ([2], [5]) to escape from saddle points or local 

minima (Theorem 6 in [5]). The disadvantage is that more iterations are required to reach a good solution. 

Remark 3.3.  For step (c) in Algorithm 3.2, there are better approaches for selecting a value for learning 

rate 𝜂, rather than exhausting all possible values in the grid. For example, let 𝜂𝑖 be the 𝑖𝑡ℎvalue in the grid 

from 1 downward, assume that currently 𝜂𝑖 is the best learning rate so far, and it leads to a decrease for 

the cost function, stop the search for the learning rate and use 𝜂𝑖 as the best learning rate, if 𝜂𝑖+1 does not 

lead to a bigger decrease for the cost function than 𝜂𝑖.  
 

4. Experiment results 

 

In this section, we present the experiment results for the proposed RNN model, benchmarked with two 

other Markov rating transition models.  

The data we used is a synthetic sample, simulating a commercial loan portfolio with 7 ratings {𝑅𝑖}𝑖=17  over 7 quarters (periods). At the end of each quarter, accounts are rated by one of 7 ratings, with 

ratings 𝑅6 and 𝑅7 being, respectively, the withdraw and default ratings.  Both default and withdraw 

ratings are absorbed ratings and will be excluded from later quarters for observation. For simplicity, we 

include only three covariates, which simulate the following drivers for a loan:  

(a) Debt service coverage ratio 

(b) Debt to tangible net worth ratio   

(c) Current ratio 

The sample contains 10,000 accounts. It splits by 50:50 into training and validation. We focus on the 

following three models:  
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1. Model 1 - The proposed RNN rating transition model 

2. Model 2 – Time-inhomogeneous Markov transition model, with one separate transition model for 

each period 

3. Model 3 – Time-homogeneous Markov transition model, with one single transition model for all 

periods 

All three model use the same covariates.  

Let 𝑦𝑗 denote a binary variable for a loan with value 1 if the loan has the rating 𝑅𝑗 at the quarter end and 

is 0 otherwise. Let (𝑝1, 𝑝2, … , 𝑝7) be the multinomial probabilities for a loan estimated by a rating 

transition model at the beginning of a quarter, with 𝑝𝑗 being the probability transiting to 𝑅𝑗 at the quarter 

end. 

Tables 1 and 2 below show the Gini coefficients, over the training and validation samples respectively, 

for each of the above three models for ranking each of these 7 ratings individually. For example, in Table 

1, for the RNN transition model over the training sample, it has a Gini of 0.84 for ranking rating 𝑅1. This 

Gini is calculated by using 𝑝1 to predicted 𝑦1over the entire training sample. Results shown in these two 

tables demonstrate a strong performance for the RNN transition model over the other two models.  

          

In the remaining of this section, we focus on the robustness of a model in predicting the default event, the 

quality of using 𝑝7 to predict 𝑦7, the default indicator. Tables 3 and 4 below show the Gini coefficients 

period by period, over the training and validation samples respectively, for ranking default indicator over 

each of 7 periods. Again, the RNN transition model significantly outperforms other two benchmark model 

across all periods.    

            

The following six tables show the actual and predicted default rates for each model by decile over the 

training and validation samples.  For example, Table 5 shows the actual and predicted default rates over 

the training sample for the RNN rating transition model. These values in a table are calculated by first 

sorting 𝑝7 ascendingly, then dividing the sample into 10 buckets, each is about 10%. Averages of the 

actual and predicted default rates over each bucket are taken. 

Table 1. Gini by rating on training Table 2. Gini by rating on validation

Rating Rating

Model 1 2 3 4 5 6 7 Avg Model 1 2 3 4 5 6 7 Avg

1 0.84 0.69 0.62 0.48 0.54 0.50 0.68 0.62 1 0.82 0.68 0.60 0.46 0.45 0.34 0.66 0.57

2 0.73 0.45 0.39 0.24 0.37 0.37 0.55 0.44 2 0.74 0.45 0.39 0.24 0.28 0.36 0.54 0.43

3 0.53 0.33 0.19 0.15 0.20 0.32 0.53 0.32 3 0.52 0.34 0.18 0.12 0.28 0.32 0.51 0.33

Table 3. Gini by period for default rating on training Table 4. Gini by period for default rating on validation

Period Period

Model 1 2 3 4 5 6 7 Avg Model 1 2 3 4 5 6 7 Avg

1 0.66 0.63 0.61 0.62 0.57 0.67 0.51 0.61 1 0.64 0.62 0.58 0.55 0.46 0.55 0.53 0.56

2 0.66 0.07 0.43 0.37 0.33 0.21 0.16 0.32 2 0.64 0.05 0.35 0.28 0.25 0.04 0.20 0.26

3 0.66 0.31 0.22 0.27 0.33 0.21 0.16 0.31 3 0.64 0.27 0.11 0.18 0.25 0.04 0.20 0.24
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These results demonstrate a significant improvement for the RNN model over the other two models, 

either on training or validation.  

Conclusion. Rating transition for a credit portfolio is generally path dependent. A Markov rating 

transition model, either homogeneous or inhomogeneous, usually does not perform well after projecting 

for a few periods. The RNN model proposed in this paper provides a solution for modeling state transition 

under non-Markov settings. This RNN is informed by the information history along the path. Experiments 

show this proposed RNN model significantly outperform Markov models where path-dependence is 

relevant.  

Acknowledgements: The author thanks Biao Wu for many valuable discussions in the past 3 years in 

deep machine learning, Python financial engineering, as well as his insights and comments. Thanks also 

go to Felix Kan for many valuable comments, to Zunwei Du, Kaijie Cui, and Glenn Fei for many valuable 

conversations.  

 

 

 

Table 5. RNN on training (Gini-68%) Table 6. RNN on validation (Gini - 66%)

Decile Actual Pred Decile Actual Pred

0 3.62% 3.20% 0 4.53% 3.17%

1 4.90% 4.33% 1 4.89% 4.31%

2 4.97% 4.59% 2 4.53% 4.57%

3 5.33% 5.63% 3 8.49% 6.45%

4 21.16% 19.68% 4 24.73% 20.65%

5 23.79% 23.24% 5 24.03% 23.49%

6 36.43% 35.62% 6 34.46% 36.65%

7 42.47% 44.20% 7 45.04% 45.87%

8 61.72% 62.25% 8 61.44% 63.57%

9 81.19% 82.85% 9 81.09% 84.49%
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Table 7. One migration matrix per period on training (Gini-55%) Table 8. One migration matrix per period on validation (Gini-54%)

Dec Actual Pred Dec Actual Pred

0 11.29% 1.46% 0 11.87% 1.52%

1 12.50% 5.04% 1 14.89% 5.16%

2 4.55% 5.84% 2 5.25% 5.97%

3 7.03% 6.19% 3 8.42% 6.36%

4 23.01% 8.20% 4 22.65% 8.58%

5 26.99% 15.54% 5 26.40% 16.22%

6 38.99% 24.29% 6 39.86% 24.82%

7 32.67% 49.62% 7 34.39% 51.71%

8 50.14% 73.66% 8 51.80% 76.60%

9 78.42% 95.73% 9 77.71% 96.29%
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Table 9. One single migration matrix on training (Gini-53%) Table 10. One single migration matrix on validation (Gini-51%)

Dec Actual Pred Dec Actual Pred

0 19.11% 2.52% 0 21.30% 2.52%

1 4.90% 5.36% 1 5.90% 5.49%

2 12.93% 6.20% 2 14.46% 6.35%

3 4.97% 6.71% 3 4.53% 6.87%

4 19.03% 9.82% 4 19.41% 10.39%

5 29.05% 21.95% 5 29.06% 22.60%

6 27.70% 25.37% 6 29.50% 25.81%

7 39.28% 35.67% 7 39.64% 37.94%

8 50.07% 75.51% 8 52.09% 78.29%

9 78.57% 96.46% 9 77.35% 96.97%
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