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Abstract. This article introduces the xtgranger command in Stata, which imple-
ments the panel Granger non-causality test approach developed by Juodis et al.
(2021). This test offers superior size and power performance to existing tests, which
stems from the use of a pooled estimator that has a faster

√

NT convergence rate.
The test has several other useful properties; it can be used in multivariate systems,
it has power against both homogeneous as well as heterogeneous alternatives, and
it allows for cross-section dependence and cross-section heteroskedasticity.

Keywords: Panel data, Granger causality, Nickell bias, Heterogeneous panels, Half-
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1 Introduction

Predictive (Granger) causality and feedback is an important aspect of applied time series
and panel (longitudinal) data analysis. Granger (1969) developed a statistical concept
of causality between two or more time series variables, according to which, a variable x
“Granger-causes” a variable y, if the variable y can be better predicted using past values
of both x and y, than using solely past values y. The concept of “Granger-causality” has
been widely adopted in economics, medicine, chemistry, physics, biology, engineering,
and beyond.

Granger causality is useful also when the data consist of multiple time series, as in the
case of panel data. Methods on testing for Granger causality using panel data models,
are very well cited and widely available in standard econometric software. Prominent
examples include the GMM approach of Holtz-Eakin et al. (1988), which is valid for
homogeneous panels with a small number of time series observations (T ), and the meth-
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ods of Dumitrescu and Hurlin (2012) and Emirmahmutoglu and Kose (2011), suitable
for heterogeneous, large-T panels. The GMM approach of Holtz-Eakin et al. (1988) has
been implemented in Stata by Abrigo and Love (2016) with the command pvargranger,
whereas the method of Dumitrescu and Hurlin (2012) is available in both EViews and
Stata, see e.g. the Stata command xtgcause by Lopez and Weber (2017).

Recently, Juodis, Karavias, and Sarafidis (2021) developed a new method for testing
the null hypothesis of no Granger causality, which is valid in models with homogeneous
or heterogeneous coefficients. The novelty of their approach lies in the fact that un-
der the null hypothesis, the Granger-causality parameters equal zero and thus they are
homogeneous. This allows the use of a pooled fixed effects-type estimator for these pa-
rameters only, which guarantees a

√
NT convergence rate, where N denotes the number

of cross-sectional units in the panel and T denotes the number of time series observa-
tions in the panel.1 To account for the so-called “Nickell bias” of the pooled estimator,
their testing procedure makes use of the Half Panel Jackknife (HPJ) method of Dhaene
and Jochmans (2015). The resulting approach works very well under circumstances
that are empirically relevant: many cross-section units, a moderate time dimension,
heterogeneous nuisance parameters, and high persistence.

The method of Juodis et al. (2021) has a number of advantages relative to exist-
ing approaches. In particular, the GMM approach of Holtz-Eakin et al. (1988) is not
appealing when T is (even moderately) large. This is due to the well-known problem
of using too many instruments, which often renders the usual GMM-based inference
highly inaccurate, see e.g. Bun and Sarafidis (2015) and Remark 8 in Juodis and
Sarafidis (2021). Moreover, when feedback based on past own values is heterogeneous
(i.e. the autoregressive parameters vary across individuals), inferences may not be valid
even asymptotically. On the other hand, while the method of Dumitrescu and Hurlin
(2012) accommodates heterogeneous slopes under both null and alternative hypotheses,
their test statistic is theoretically justified only for sequences where N/T 2 → 0. This
implies that when T is sufficiently smaller than N , i.e. T << N , this method can
suffer from substantial size distortions. In an extended Monte Carlo experiment, Juodis
et al. (2021) show that their method outperforms the method of Dumitrescu and Hurlin
(2012), in terms of power.

The present paper introduces a new Stata command, xtgranger, which implements
the Granger non-causality test of Juodis et al. (2021). The command reports the Wald
test statistic and its p-value, the null and the alternative hypothesis, as well as regres-
sion results with respect to the HPJ bias-corrected pooled estimator. The command
offers options for both manual and automatic lag-length selection, using a BIC crite-
rion. The command further allows for cross-sectional dependence and cross-sectional
heteroskedasticity in the errors. Finally, the command can test for Granger-causality in
equations with multiple relevant variables.2 The panel must be balanced.

Notably, by construction xtgranger is computationally faster than xtgcause, es-

1. The autoregressive parameters and intercepts (fixed effects) are still allowed to be heterogeneous.
2. The command does not consider Granger-causal relations that only exist more than one periods

ahead, see e.g. Dufour and Renault (1998).
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pecially so when N is relatively large. This is because the former is based on a single,
pooled regression, whereas the latter runs N individual regressions and retrieves N
individual-specific Wald test statistics, which are subsequently averaged over i.3

The xtgranger command is applied to a real dataset from the U.S. banking industry,
where we perform Granger non-causality tests to examine the type of temporal relation
between profitability, cost inefficiency and asset quality. Our results show that past
values of inefficiency contain information that helps to predict profitability, while this
is not the case for asset quality.

The remainder of the article is organized as follows. In Section 2, we briefly outline
the Wald-test approach developed by Juodis et al. (2021). Section 3 describes the syntax
of the xtgranger command. Section 4 illustrates the command using a real data set.
Section 5 concludes.

2 A bias-corrected test for Granger non-causality

We consider the following linear dynamic panel data model:

yi,t = φ0,i +
P

∑

p=1

φp,iyi,t−p +
P

∑

p=1

βp,ixi,t−p + εi,t, (1)

for i = 1, . . . , N and t = 1, . . . , T . Without loss of generality and for ease of exposition,
xi,t is assumed to be a scalar. The parameters φ0,i denote the individual-specific effects,
εi,t are the errors, φp,i denote the heterogeneous autoregressive coefficients, p = 1, . . . , P ,
and βp,i are the heterogeneous feedback coefficients, or Granger causality parameters.

The restriction that the number of lags of yi,t is the same as that of xi,t has the
benefit of a minimal computational cost when it comes to lag length selection. Such
restriction is also imposed by xtgcause and pvargranger.

The null hypothesis that xi,t does not Granger-cause yi,t can be formulated as a set
of linear restrictions on the parameters in Eq. (1):

H0 : βp,i = 0, for all i and p. (2)

The alternative hypothesis is:

H1 : βp,i 6= 0 for some i and p. (3)

Failure to reject the null hypothesis can be interpreted as xi,t does not Granger-cause
yi,t.

4 The same applies when xi,t consists of multiple relevant variables and is a k × 1
vector of regressors.

3. To provide some indication of the likely computational gains of our method, in the application of
this paper (N = 450, T = 56) we note that when the maximum number of lags equals 5, xtgranger

requires roughly one second to test the null hypothesis, whereas xtgcause takes about 33 seconds.
4. Obviously, non-trivial power of the test requires that there exist sufficiently many individuals with

non-zero coefficients.
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The main feature of the above setup, utilised in the Granger non-causality test pro-
posed by Juodis et al. (2021), is that under the null hypothesis βp,i = 0, for all i and p.
In other words, the model is homogeneous in the feedback coefficients. This allows the
use of a pooled estimator for {βp,i}N

i=1
. Pooled estimators have a faster,

√
NT , rate of

convergence, which means that they benefit from a larger value of both N and T . How-
ever, they are subject to the so-called “Nickel bias”. Juodis et al. (2021) propose that
this bias is corrected using the half-panel jackknife method of Dhaene and Jochmans
(2015). Although bias corrections have been previously shown to reduce the power of
tests (Karavias and Tzavalis 2016, 2017), Juodis et al. (2021) demonstrate that this test
has very good power in empirically relevant scenarios.

The above arguments are demonstrated as follows. First, rewrite Eq. (1) as:

yi,t = z′

i,tφi + x′

i,tβi + εi,t, (4)

where zi,t = (1, yi,t−1, . . . , yi,t−p)′, xi,t = (xi,t−1, . . . , xi,t−p)′, φi = (φ0,i, . . . , φp,i)
′ and

βi = (β1,i, . . . , βp,i)
′. Stacking Eq. (4) over time yields:

yi = Ziφi + Xiβi + εi, (5)

where yi = (yi,1, . . . , yi,T )′, Zi = (zi,1, . . . , zi,T )′, Xi = (xi,1, . . . , xi,T )′ and εi =
(εi,1, . . . , εi,T )′. Under the null hypothesis, βi = β = 0. The pooled least squares
estimator of β is defined as follows:

β̂ =
N

∑

i=1

X′

iMZi
Xi

)−1 N
∑

i=1

X′

iMZi
yi

)

. (6)

where MZi
= IT − Zi (Z′

iZi)
−1

Z′

i. Fernández-Val and Lee (2013) show that under
general conditions, and as N, T → ∞ with N/T → κ2 ∈ [0; ∞), we have

√
NT

(

β̂ − β
0

)

→ J−1N (−κB, V) , (7)

where J = plimN,T →∞(NT )−1
∑N

i=1
X′

iMZi
Xi, V denotes the variance-covariance ma-

trix and B is the bias arising from the fact that N and T are of the same order.

To remove the bias of the pooled estimator, we employ the half-panel jackknife
estimator of Dhaene and Jochmans (2015), which is defined as follows:

β̃ = β̂ +

(

β̂ − 1

2

(

β̂
1/2

+ β̂
2/1

)

)

= β̂ + T −1B̂. (8)

The bias-corrected estimator then forms the basis of a Wald test for Granger non-
causality. In particular, under mild regularity assumptions reported in Juodis et al.
(2021), as N, T → ∞ with N/T → κ2 ∈ [0, ∞), we have:

ŴHP J = NT β̃
′
(

Ĵ−1V̂Ĵ−1

)

−1

β̃ → χ2(P ), (9)
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where Ĵ = (NT )−1
∑N

i=1
X′

iMZi
Xi.

When the errors are assumed to be homoskedastic along both time and cross-
sectional dimensions, then

V̂ = σ̂2Ĵ, (10)

with the variance estimator given by

σ̂2 =
1

N(T − 1 − P ) − P

N
∑

i=1

(

yi − Xiβ̂
)

′

MZi

(

yi − Xiβ̂
)

. (11)

On the other hand, if the errors are cross-sectionally heteroskedastic,

V̂ =
1

N(T − 1 − P ) − P

N
∑

i=1

X′

iMZi
ε̂iε̂

′

iMZi
Xi. (12)

The model in (1) can allow for weak cross-section dependence as in Sarafidis and Wans-
beek (2012) and Dumitrescu and Hurlin (2012). Under weak cross-sectional dependence,
the HPJ estimator β̃ remains consistent but V̂ in the above equations is not. In this
case, an estimator for V̂ is obtained by using the pairs bootstrap as in Gonçalves and
Kaffo (2015). Unreported Monte Carlo simulations show that this approach works well
in finite samples.

3 The xtgranger command

3.1 Syntax

xtgranger depvar
[

indepvars
] [

if
] [

in
] [

, options
]

Data must be xtset before using xtgranger. The panel must be balanced.

3.2 Options

lags(#) specifies the number of lags of of dependent and independent variables to be
added to the regression. If lags(#) is not specified, the default is lags(1).

maxlags(#) specifies the upper bound of lags. The BIC criterion is used to select the
number of lags that provides the best model fit.

het allows for cross-sectional heteroskedasticity.

nodfc does not apply the degrees of freedom correction in Eq. (11) and Eq. (12). This
option is mostly useful under cross-sectional heteroskedasticity.

bootstrap employs a bootstrap variance estimator in the HPJ Wald statistic with the
current seed and 100 repetitions. This is useful in the presence of weak cross-sectional
dependence.
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bootstrap(reps, seed(seed ) employs a bootstrap variance estimator in the HPJ
Wald statistic with the custom set seed and reps repetitions.

sum presents results on the sum of the estimated feedback coefficients. This option can
be useful when P > 1.

3.3 Stored results

Scalars
e(N) number of units
e(T) number of time periods
e(p) number of lags
e(BIC) BIC values
e(W_HPJ) the Wald statistic
e(pvalue) p-value for the HPJ Wald test

Matrices
e(b_HPJ) the HPJ coefficient estimator
e(Var_HPJ) the variance-covariance matrix of the HPJ estimator
e(b_Sum_HPJ) sum of the HPJ estimates of the feedback coefficients
e(Var_Sum_HPJ) the variance of the sum of the HPJ estimators

3.4 Postestimation commands

predict can be used after xtgranger. The syntax for predict is:

predict newvar
[

if
] [

in
] [

, residuals xb
]

residuals calculates the residuals.

xb calculates the linear prediction on the partialled out variables.

4 Example

4.1 Estimation of the determinants of banks’ capital adequacy ratios

To illustrate the xtgranger command, we perform Granger non-causality tests and
examine the type of temporal relation between profitability, cost efficiency and asset
quality in the U.S. banking industry. We draw a random sample of 450 U.S. bank
holding companies (BHC), each one observed over 56 time periods, namely 2006:Q1-
2019:Q4. The data are publicly available and they have been downloaded from the
Federal Deposit Insurance Corporation (FDIC) website.5

5. See https://www.fdic.gov/.
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We focus on the following model:

ROAi,t = φ0,i +
P

∑

p=1

φp,iROAi,t−p +
P

∑

p=1

β1,p,iINEFFICIENCYi,t−p

+
P

∑

p=1

β2,p,iQUALITYi,t−p + εi,t, (13)

for i = 1, . . . , N(= 450) and t = P + 1, . . . , T (= 56).

ROAi,t stands for the “Return on Assets”, and is used as a measure of profitability;
in particular, it is defined as annualized net income expressed as a percentage of average
total assets. INEFFICIENCYi,t−p presents a measure of cost inefficiency, which has
been constructed from a stochastic cost frontier model using a translog function form.6

Finally, QUALITYi,t−p represents the quality of banks’ assets and is computed as the
total amount of loan loss provisions expressed as a percentage of assets. Thus, a higher
level of loan loss provisions indicates lower quality.

We start by testing if the pair of INEFFICIENCY and QUALITY Granger-
causes ROA. Subsequently, we consider univariate tests, by modelling ROA as a func-
tion of INEFFICIENCY and QUALITY separately. Throughout, we allow for a
maximum of 4 lags of the dependent variable and the covariates. The following results
are obtained:

. xtset cert time

. xtgranger roa inefficiency quality, maxlags(4) het

Juodis, Karavias and Sarafidis (2021) Granger non-causality Test
------------------------------------------------------------------------------
Number of units= 450 Obs. per unit (T) = 55
Number of lags = 1 BIC = -34257.34
------------------------------------------------------------------------------
JKS non-causality test

H0: Selected covariates do not Granger-cause roa.
H1: H0 is violated.

HPJ Wald test : 30.2387
p-value : 0.0000
------------------------------------------------------------------------------
BIC selection:

lags = 1, BIC = -34257.336*
lags = 2, BIC = -33371.195
lags = 3, BIC = -32727.595
lags = 4, BIC = -32715.923

------------------------------------------------------------------------------
Results for the Half-Panel Jackknife estimator

Cross-sectional heteroskedasticity-robust variance estimation

Coefficient Std. err. z P>|z| [95% conf. interval]

inefficiency
L1. .2562039 .0572807 4.47 0.000 .1439358 .368472

6. See Section 5 in Juodis et al. (2021) for more details.
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quality
L1. -.0162294 .0444754 -0.36 0.715 -.1033996 .0709409

As we can see, the null hypothesis that cost inefficiency and asset quality do not
Granger-cause profitability is rejected at the 5% level of significance. The optimal
number of lags equals 1 according to the BIC criterion.7 The option het requests
computing cross-sectional heteroskedasticity-robust standard errors.

In addition to the Wald test statistic, the command also reports regression results
with respect to the HPJ bias-corrected pooled estimator. The regression output above
indicates that the test outcome may be driven by INEFFICIENCY . To shed some
light on this issue, we test for Granger non-causality for each variable separately using
univariate tests. We obtain the following output:

. xtgranger roa inefficiency, maxlags(4) het

Juodis, Karavias and Sarafidis (2021) Granger non-causality Test
------------------------------------------------------------------------------
Number of units= 450 Obs. per unit (T) = 55
Number of lags = 1 BIC = -33295.8
------------------------------------------------------------------------------
JKS non-causality test

H0: inefficiency does not Granger-cause roa.
H1: inefficiency does Granger-cause roa for at least one panelvar.

HPJ Wald test : 24.3174
p-value : 0.0000
------------------------------------------------------------------------------
BIC selection:

lags = 1, BIC = -33295.799*
lags = 2, BIC = -32170.227
lags = 3, BIC = -31112.604
lags = 4, BIC = -30724.676

------------------------------------------------------------------------------
Results for the Half-Panel Jackknife estimator

Cross-sectional heteroskedasticity-robust variance estimation

Coefficient Std. err. z P>|z| [95% conf. interval]

inefficiency
L1. .2549723 .0517052 4.93 0.000 .1536319 .3563127

. xtgranger roa quality, maxlags(4) het

Juodis, Karavias and Sarafidis (2021) Granger non-causality Test
------------------------------------------------------------------------------
Number of units= 450 Obs. per unit (T) = 55
Number of lags = 1 BIC = -33816.06

7. Assuming that the maximum number of lags is 4, we tested the residuals for remaining serial
correlation of order up to 3 using the community contributed Stata command xtqptest by Wursten
(2018). We did not find evidence of residual serial correlation (p-value=0.089). The commands for
getting these results are:
predict epsilonres, residuals and xtqptest epsilonres, lags(3) force.
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------------------------------------------------------------------------------
JKS non-causality test

H0: quality does not Granger-cause roa.
H1: quality does Granger-cause roa for at least one panelvar.

HPJ Wald test : 0.2090
p-value : 0.6476
------------------------------------------------------------------------------
BIC selection:

lags = 1, BIC = -33816.061*
lags = 2, BIC = -32649.24
lags = 3, BIC = -31479.433
lags = 4, BIC = -30607.217

------------------------------------------------------------------------------
Results for the Half-Panel Jackknife estimator

Cross-sectional heteroskedasticity-robust variance estimation

Coefficient Std. err. z P>|z| [95% conf. interval]

quality
L1. -.0201426 .0440637 -0.46 0.648 -.1065059 .0662207

The output on the top (bottom) corresponds to the Granger non-causality univariate
test of the relationship between profitability and cost inefficiency (asset quality). The
null hypothesis that INEFFICIENCY does not Granger-cause ROA is rejected at the
5% level of significance. This implies that past values of INEFFICIENCY contain
information that helps to predict ROA over and above the information contained in
past values of ROA. On the other hand, one fails to reject the null hypothesis that
QUALITY does not Granger-cause ROA.

In order to illustrate further options of the xtgranger command, we split the sample
into two groups according to their asset size, where the partitioning is determined based
on the kmeans clustering algorithm available in Stata. Subsequently, we test for Granger
non-causality for the smallest banks in the sample, using data from 2011:Q1 onwards,
which corresponds to Quarter 1 of the first year following the enactment of the Dodd-
Frank Wall Street Reform and Consumer Protection Act of 2010.8 We obtain the
following results:

. xtgranger roa inefficiency quality, maxlags(4) het sum, if cluster==2 & time>20

Juodis, Karavias and Sarafidis (2021) Granger non-causality Test
------------------------------------------------------------------------------
Number of units= 183 Obs. per unit (T) = 34
Number of lags = 2 BIC = -10307.93
------------------------------------------------------------------------------
JKS non-causality test

H0: Selected covariates do not Granger-cause roa.

8. The Dodd-Frank Act (DFA) is a US federal law enacted during 2010, aiming “to promote the
financial stability of the United States by improving accountability and transparency in the fi-
nancial system, to end “too big to fail”, to protect the American taxpayer by ending bailouts,
to protect consumers from abusive financial services practices, and for other purposes”; see
https://www.cftc.gov/LawRegulation/DoddFrankAct/index.htm. In a nutshell, the DFA has insti-
tuted a new failure-resolution regime, which seeks to ensure that losses resulting from bad decisions
by managers are absorbed by equity and debt holders, thus potentially reducing moral hazard.
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H1: H0 is violated.

HPJ Wald test : 36.3572
p-value : 0.0000
------------------------------------------------------------------------------
BIC selection:

lags = 1, BIC = -10249.44
lags = 2, BIC = -10307.934*
lags = 3, BIC = -9788.8299
lags = 4, BIC = -9963.9685

------------------------------------------------------------------------------
Sum of Half-Panel Jackknife coefficients across lags (lags>1)
Cross-sectional heteroskedasticity-robust variance estimation

Coefficient Std. err. z P>|z| [95% conf. interval]

inefficiency .4906756 .2405474 2.04 0.041 .0192113 .9621398
quality -.1765458 .1235961 -1.43 0.153 -.4187897 .0656981

As before, the null hypothesis that INEFFICIENCY and QUALITY do not
Granger-cause ROA is rejected at the 5% level of significance. Note that the optimal
number of lags equals 2. The option sum requests reporting the sum of the lags of the
regression coefficients, for each variable.

5 Concluding Remarks

xtgranger implements the Granger non-causality test of Juodis, Karavias, and Sarafidis
(2021). The command reports the Wald test statistic and its p-value, the null and
the alternative hypotheses, as well as regression results with respect to the HPJ bias-
corrected pooled estimator. The command offers options for both manual and automatic
lag-length selection, using a BIC criterion. Moreover, the command allows for cross-
section dependence and cross-section heteroskedasticity in the errors.
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