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Abstract

The paper proposes a method for simultaneously estimating the treatment effects of
a change in a policy variable on a numerable set of interrelated outcome variables
(different moments from the same probability density function). Firstly, it defines
a non-Gaussian probability density function as the outcome variable. Secondly,
it uses a functional regression to explain the density in terms of a set of scalar
variables. From both the observed and the fitted probability density functions,
two sets of interrelated moments are then obtained by simulation. Finally, a set of
difference-in-difference estimators can be defined from the available pairs of moments
in the sample. A stylized application provides a 29-moment characterization of the
direct treatment effects of the Peruvian Central Bank’s forecasts on two sequences
of Peruvian firms’ probability densities of expectations (for inflation −π− and real
growth −g−) during 2004-2015.
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I Introduction

The paper proposes a method for simultaneously estimating a numerable set of treatment
effects (e.g. after a change in a policy variable) associated to the corresponding set of
interrelated moments. Instead of using the temporal sequence of any specific moment
(estimated from a sequence of large cross-sections), the paper uses the temporal sequence
of probability density functions (estimated from such a sequence of large cross-sections).
Therefore, the paper focuses on a single outcome variable, a general probability density
function (not necessarily Gaussian), instead of focusing on many scalar outcome variables
(one moment at a time).

The proposal’s key ingredient is a functional-regression stage allowing to control for
many scalar confounding explanatory variables. This regression substitutes a set of nu-
merable (possibly non-linear) regressions, each explaining one scalar outcome variable.
Then, a simulation stage that converts our useful outcome variable, the probability den-
sity function, into a numerable set of interrelated outcome variables (a set of moments
obtained by simulation from the same probability density function).

The proposal is conceived to fully characterize the anchoring effects of a benevolent
central bank’ forecasts/announcements on private expectations (firms’ or households’)
whenever private expectations consist on a temporal sequence of large cross-sections from
which a temporal sequence of probability density functions can be obtained by non-
parametric methods. As a byproduct, the simulation stage solves a problem inherent
in the functional-regression stage, that the functional coefficients resulting from any func-
tional regression have reduced interpretability.

The availability of such a sequence of large cross-sections (big data) may not be the only
justification for this inquiry. Characterizations in the anchoring expectations literature
usually consider at most two moments of those cross-sections of expectations (non-robust
mean and dispersion) under the unwarranted assumption of Gaussianity.1

Figure 1: Jarque-Bera p-values (null: Gaussianity)

0

0.05

0.1

0.15

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

g-st
g-mt
π-st
π-mt
1%
5%
10%

Figure 1 shows four temporal sequences of Jarque-Bera tests’ p-values for the following
monthly sequences of Peruvian firms’ cross-sections of expectations during 2004-2015:

1The literature has usually provided results considering the mean of expectations without justifying
their tools as useful enough (see [Blinder et al. (2008), Dräger et al. (2016), Filacek & Saxa (2012),
Gürkaynak et al. (2010), Hattori et al. (2016), Kozicki & Tinsley (2005), Kumar et al. (2015),
Neuenkirch (2013), Pereira da Silva (2016), Pedersen (2015), Trabelsi (2016)]). [Filacek & Saxa (2012)]
and then [Barrera (2018)] use both dispersion and distance, which actually belong to different but
related densities.
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short-term (st) and medium-term (mt) real growth (g) expectations as well as st and mt

inflation (π) expectations. The cross-sections hardly comply with Gaussianity!
For non-Gaussian data, an improved characterization of the anchoring effects of Cen-

tral Bank’ forecasts is not only possible from the paper’s proposal, but needed out of the
box. First, a benevolent central bank should care about the impact of its forecast (policy
variable) on mainly robust versions of usual moments like the mean and the dispersion
of firms’ expectations. Second, a benevolent central bank should care about the impact
of its inflation forecast on the probability mass of being in the target range, especially
under the framework of inflation targeting. Interestingly, other moments can enhance the
consistency of the aforementioned ones and thus should be included in a comprehensive
set of moments to be simulated from the probability distribution of firms’ forecasts.

To illustrate the usefulness of the proposal, a stylized application provides a moment
characterization of the ‘direct effects’ of the Peruvian Central Bank’s forecasts on two
sequences of Peruvian firms’ probability densities of expectations (of π and g) during
2004-2015. Main findings are: (i) Short-term π forecasts generates an on-impact increase
in the probability that these expectations are in the target range of [1% 3%]. Short-term
g forecasts generates an on-impact increase in the probability that these expectations
are in the range of [4% 7%], but a one-month-later decrease in this probability. (ii)
Medium-term π forecasts generates no significant changes in the probability that these
expectations are in the target range of [1% 3%]. Medium-term g forecasts generates an
on-impact decrease in the probability that these expectations are in the range of [4% 7%],
but a one-month-later increase in this probability.2

Section II discusses the methodological issues associated to the functional regression
models leading to the new complete-characterization tests. Section III describes the styl-
ized application in terms of the Peruvian data (i.e., the probability density functions as
the outcome variable, the central bank’s forecasts as the treatment variable, as well as
the control/explanatory variables) and the estimation results. Section IV concludes.

II Methodology

The proposal of this paper is closely tied to the difference-in-differences (DiD) approach
and its limits: it is a generalization of DiD whenever important information is available
as large cross-sections. After some preliminary requirements, the details of a recent piece
of work in the literature are described to provide an appropriate context and notation for
describing the paper’s proposal.

II.1 Preliminaries

The difference-in-differences (DiD) approach usually uses ordinary least squares (OLS)
in repeated cross-sections of some measure-y data of grouped individual units which are
either treated or non-treated for several periods. For the sake of clarity, let’s assume a
complete set of T cross-sections is available (instead of just a subsequence of them) for
each group g ∈ Ξ ≡ {1, 2, ..., G}. Every group g’s temporal sequence of cross-sections is
then indexed by t ∈ Υ ≡ {1, 2, ..., T}. Let Ng be the number of individual units in each
group g’s sequence, so individual units are indexed by i ∈ Ψg ≡ {1, 2, ..., Ng}.

Two key assumptions are needed:

(1) The treatment is homogeneous, i.e., it is exactly the same treatment simultaneously
applied to all the treated individual units, groups and time periods.

2The range of 4% - 7% can be taken as containing the long-run growth rate. For the Peruvian
economy, the probability mass of being inside such a range has highly varied over time.
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(2) The homogeneous treatment takes place instantaneously at the beginning of many
periods of time τ ∈ Γ ⊂ Υ, which are the ‘intervention dates’.

These assumptions allow, for the whole sample across {i, g, t}, to label many periods
as ‘before’ (τ − 1), ‘after’ (τ) and even ‘another period after’ (τ + 1) with respect to any
specific ‘intervention date’.3 This setup leads to the equation that is usually estimated to
obtain the DiD estimator:

yigt = β1treatigt + β2postigt + β3(treatigtpostigt) + β4Xigt + α0 + αg + ωt + ϵigt (1)

where treatigt = 1 corresponds to treated individual units (treatigt = 0, to non-treated
individual units); postigt = 1 corresponds to periods ‘after’ treatment (postigt = 0, to
periods ‘before’ treatment); Xigt are explanatory variables not related to the homogeneous
treatment; α0 is the intercept; αg is the group g’s fixed effect; ωt is either the period t’s
fixed effect (if the available number of periods is small) or the product of a linear trend
coefficient and t (if that is not the case); and ϵigt is the error term.

By defining
ỹigt ≡ yigt − (β4Xigt + α0 + αg + ωt) (2)

equation (1) can be re-written

ỹigt = β1treatigt + β2postigt + β3(treatigtpostigt) + ϵigt (3)

Thus, provided that E[ϵigt|treatigt, postigt] = 0, the following expectations are obtained

E[ỹigt|treatigt = 1, postigt = 1] = β1 + β2 + β3

E[ỹigt|treatigt = 1, postigt = 0] = β1

E[ỹigt|treatigt = 0, postigt = 1] = β2

E[ỹigt|treatigt = 0, postigt = 0] = 0

(4)

and by arranging them in the archetypical 2x2 matrix

Table 1: DiD estimator

Pre (B) Post (A) (A-B) diff.
Treatment (T) β1 β1 + β2 + β3 β2 + β3

Control (C) 0 β2 β2

(T-C) diff. β1 β1 + β3 β3

β3, the causal effect, becomes the DiD’s key parameter to be estimated. β2 could be
thought as the placebo effect. However, while a psychological effect is not negligible
when investigating the effects of a drug treatment, it should be negligible whenever the
‘patient’ who receives the placebo (i) does not know he/she is receiving it, and (ii) does
not care about what kind of drugs the ‘patient next door’ is receiving. Since this is
actually the case in our non-experimental discipline, an economist may consider β2 + β3

as the direct effect (a key component of a causal effect) whenever there is no data about
individuals (‘patients’) not receiving any ‘treatment’. To see this, consider that equation
(1) becomes yigt = (β2+β3)postigt+β4Xigt+α0+αg +ωt+ ϵigt and equation (3) becomes
ỹigt = (β2 + β3)postigt + ϵigt: this equation foreshadows equation (10) in subsection II.2.

3Set Γ is not just a subset of Υ: with just one period after treatment, its definition is Γ ≡ {τ |τ ∈
Υ ∧ τ − 1 ∈ Υ}. With monthly data, having two periods after treatment allows the construction of
‘experimental quarters’, which imply an additional restriction in Γ’s definition.
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In addition to estimating all the parameters in equation (1) by OLS, the researcher
can also run the following OLS regression

yigt = β̄4Xigt + ᾱ0 + ᾱg + ω̄t + εigt (5)

and then use the estimated coefficients to get the estimated residuals, which can be
interpreted as a corrected response (free of confounders), just like ỹigt in equation (2). Note
that although ỹigt estimates include the true errors in equation (1), they correspond to the
full sample and thus an appropriate division is required: divide all these ‘residuals’ in four
sets: before-the-treatment (τ − 1) residuals for treated individual units, τ − 1 residuals
for non-treated individual units, after-the-treatment (τ) residuals for treated individual
units, and τ residuals for non-treated individual units.4 Then, by a direct application of
the Frisch-Waugh-Lovell (FWL) theorem, there are two equivalent procedures to obtain
both an estimate of the treatment effect and a test for its significance:

(i) run an OLS regression of the corresponding 4-type panel on the same explanatory
dummies as in equation (3), and then use the estimate of β3 and the corresponding
standard error to built the t-test.

(ii) compute the corresponding sample means (fill the table above) as well as the sample
variances E[ỹigt|treatigt = a, postigt = b], a, b ∈ {0, 1}, and then use all these
sample moments to build the t-test for the significance of β3. However, this solution
assumes all treatments are made ‘simultaneously’ to all treated individual units,
thus it is feasible to suppose a placebo treatment was simultaneously made to the
non-treated individual units.

These details provide a framework for interpreting the literature. [Bertrand et al. (2004)]
(BDM from now onwards) is a milestone in the literature on DiD approach for under-
lining severely biased standard errors because of neglected serial-correlation problems.
These authors propose three techniques to solve such a problem for large sample sizes,
from which the most simple one consists in ignoring the time series component in the
estimation5 when computing the standard errors. BDM show there are two versions of
this specific technique bringing correct rejection rates and relatively high power:

(a) average the data ‘before’ and ‘after’ the treatment and then run equation (1) on the
resulting averaged outcome variable as a two-period panel.6

(b) obtain the residuals from an auxiliary regression excluding all dummy variables as-
sociated to the treatment and divide the residuals of the treated groups only in two
sets: before-the-treatment residuals and after-the-treatment residuals. Then proceed
with an OLS regression of this two-period panel on and ‘after’ dummy.7

Note version (b) is similar to the procedure (ii) above because now it is not feasible
to suppose a placebo treatment was simultaneously made to the non-treated individual

4Do not forget the ‘experimental quarters’ in the case of monthly data: there also exist τ+1 residuals
for treated individual units and τ + 1 residuals for non-treated individual units.

5As an example, not ignoring such a component would be equivalent to postulate a common AR(1)
model for each group g in equation (1), which affects the estimation strategy for all the other parameters
therein.

6BDM note this solution works well only for treatments that are ‘simultaneously’ applied to all the
treated groups. If the treatment occurs at different times for some of those groups, ‘before’ and ‘after’ are
not the same for all groups and a modification is needed.

7BDM note this solution works as well as (a) for treatments that are ‘simultaneously’ applied to all
the treated groups. Moreover, it works well when the treatments occurs at different times for some of the
treated groups.
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units, thus it is not possible to use the counterfactual information provided by non-treated
individual units. Besides, there is their emphasis on treated groups, which will be clarified
next.

II.2 Single-group tests & single-unit tests

Even though DiD approach has been pervasive in the economics literature on policy eval-
uation, it is not quite immune to criticism when used with observational data. Wherever
the experimental setup does not hold, some drastic adaptations should be made. In gen-
eral, the internal validity of model in equation (1) depends on having exactly the same
treatment across different treated individual units. In the case of BDM, they explicitly
take groups as states and treatment/intervention as passed laws (so that individual units
may be thought as firms and the measure y, as their profits). If the law is passed in some
states but not in others, then all firms in the former states will be treated and all firms in
the latter states will be non-treated (by default). The model in equation (1) must then
be modified as

yigt = β1treatgt + β2postgt + β3(treatgtpostgt) + β4Xigt + α0 + αg + ωt + ϵigt (6)

where the emphasis of the treatment has changed from individual unit i to groups g:
the treated groups must be indexed by g′ ∈ Ψ ⊂ Ξ. The internal validity of model in
equation (6) now depends on having exactly the same passed law across different treated
states/countries (groups). Otherwise, the model should be written as

yigt =
∑

g′∈Ψ

β1g′treatg′t+β2postgt+
∑

g′∈Ψ

β3g′(treatg′tpostgt)+β4Xigt+α0+αg+ωt+ϵigt (7)

where the assumption of simultaneous treatments still holds! This possibility is surpris-
ingly not covered by BDM, because in their setup the analysis of state-tailored laws passed
inside different states (say) should also be a reference model.8

The case under scrutiny here is related to both the qualitative and quantitative re-
sources used for the diffusion of central banks’ official forecasts. Many central
banks are interested on how to use these announced forecasts to benevolently affect the
private sector’s expectations inside their countries, in particular those under the frame-
work of inflation targeting or in the path towards passing the charter law with a clear
mandate enforcing such a framework. Under these circumstances, no matter how large is
the sample of ‘experimental quarters’, the model in equation (7) is the right setup. How-
ever, it does preclude the whole DiD approach because there is no clear counterfactual
for each treated group g ∈ Ψ.9 This is why the researcher is better served by a ‘specific’
model for each treated group g ∈ Ψ,10

ygit = βg
2postgt + βg

4X
g
it + α0 + ωt + ϵgit

∀g ∈ Ψ
(8)

8BDM do make their reader note their two versions (a) and (b) of their most simple technique do
poorly when the number of groups is small and it is important to mention this for our case is group g = 1!
However, it will soon be shown that BDM’s simulations are built with respect to both a model and a
parameter which is different from the one this paper emphasizes.

9For the sake of a simplified notation, g′ is abandoned from here on.
10Treated state in BDM or treated country in [Barrera (2018)].
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from which the single-group tests for a singleton group11 can be obtained by defining

ỹgit = ygit − (βg
4X

g
it + α0 + ωt)

∀g ∈ Ψ
(9)

or by running the associated OLS regression with the whole sample for cleaning the data
from the confounders’ effects (an alternative analogous to the one described from equation
(5) on). Then, two versions of the following equation

ỹgit = βg
2postgt + ϵgit

∀g ∈ Ψ
(10)

can be run for each treated group g: one for comparing the τ residuals with the τ − 1
residuals and one for comparing the τ + 1 residuals with the τ − 1 residuals.

Thus, provided that E[ϵgit|postgt ] = 0, the following expectations are obtained

E[ỹgit|postgt = 1] = βg
2

E[ỹgit|postgt = 0] = 0
(11)

and by arranging them in a 1x2 matrix

Table 2: Single-group estimator

Pre (B) Post (A) (A-B) diff.
Treatment (T) 0 βg

2 βg
2

βg
2 becomes the single-group parameter to be estimated.

There are few steps left for reaching either the procedure in [Barrera (2018)] or the
proposal in this paper: first, without information specific to firm i allowing to explain
ygit, its expectation for either real growth (g) or inflation (π), Xg

it should be replaced by
aggregate information, Xg

t ; by the same token, the ygit data can then be collapsed in terms
of a particular moment of the cross-section indexed by i, say, the dispersion of the cross-
section of firms’ expectations in country g. The single-group tests become the single-unit

tests.12

II.3 Proposal

The proposal here is to collapse the ygit cross-sectional data in terms of a functional
response, a probability density function, which then will allow the researcher to obtain a
comprehensive list of moments by means of simulations. Specifically, the proposal requires

• to use the temporal sequence of available long-cross-sections to obtain ft, the asso-
ciated sequence of kernel-based densities;

• to use functional regressions to explain the evolution of the densities and to
control for relevant ‘confounders’ (e.g., a temporal trend);

• to simulate from both the observed (ft) and estimated (f̂t) densities to obtain the
difference in moment r at time t, ∆mr

t ≡ mr
t (ft) −mr

t (f̂t), a ; all moments mr are
available for us to select!

11Since α0 and αg are the the coefficients associated to the same column of ones, only α0 remains.
12The nonlinear regressions in [Barrera (2018)] were proposed for modeling a non-zero response such

as the dispersion of expectations.
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• to calculate all available differences between any ∆mr
t after a policy intervention

(‘treatment’) and its corresponding pre-treatment, ∆mr
t−∆t. Then, built the corre-

sponding t-tests.13

The literature about functional regressions provides two ways of modeling functions,
that is, explaining a sequence of functions (a special variable) by means of two or more
sequences of scalars (variables). The proposal uses the fully-fledged functional ap-

proach ([Ramsay & Silverman (1997), Ramsay & Silverman (2005)]) and the reader is
referred to these books. A little warning is due here: the (alternative) longitudinal ap-

proach is useful when modeling sequences of continuous sections of demand or supply
(say) at the cost of not being possible to abandon the firms’ dimension i.

For illustrating the proposal above, the stylized application belongs to the litera-
ture about anchoring expectations (see footnote 1). In fact, the proposal above has
[Barrera (2018)]’s methodology as its ancestor. Motivated by [Filacek & Saxa (2012)],
[Barrera (2018)] used few specific scalar criteria (two robust moments) of the small cross-
sections of Consensus professional forecasters’ expectations to gauge the direct effects of
Banco Central de Reserva del Peru (BCRP) forecasts. The first stage of [Barrera (2018)]’s
methodology was to explain these robust moments by a relevant set of explanatory vari-
ables not related to BCRP forecasts (a set of confounders) and then use the estimated er-

rors from those non-linear (NL) regressions14 as the outcome variables supposedly affected
by BCRP forecasts. Its second stage considered the chronology of BCRP forecasts to de-
fine ‘experimental quarters’ made by pre-treatment months (s = 1), and post-treatment
months of two types: on-impact months (s = 2) and more-than-1-month-later month
(s = 3), so all estimated errors of type (s = 3) were compared with those of type (s = 1)
to detect significant average changes of type ({s = 3|s = 1}) by means of t-tests (Ha); the
analogous procedure was followed with estimated errors of type (s = 2) to detect signifi-
cant average changes of type ({s = 2|s = 1}). Besides, from the discussion in sub-sections
II.1 and II.2, a direct effect is a gross effect, while the causal effect provided by DiD ap-
proach is a net effect; in general, these two effects are different, but in a non-experimental
discipline such as Economics, these two effects can be considered the same.

While gauging the direct effects of BCRP forecasts on private expectations, it is
possible to consider a different setup: a survey with large cross-sections. In the case
of Peru, this data is available from EEM. For this case, our proposal offers a complete
characterization of the direct effects of the availability of Central Bank’s forecasts, that
is, in terms of a comprehensive set of moments. For them to be consistent with each
other, they should be made available from the same probability density associated to each
month’s cross-section. This idea naturally leads to modeling the sequence of probability
densities (obtained by kernel methods) by means of a functional regression, which by
following the analogy with previous paragraph, should then consider a relevant set of
(scalar) explanatory variables not related to Central Bank’s forecasts, etc.

Thus, the sequence of Epanechnikov -kernel estimated densities {ft(a)} is considered
as as sequence of data observed without measurement noise. ft(a) is the period-t density
function with domain a ∈ A ≡ {a, a} ⊂ ℜ, ∀t ∈ {1, 2, ..., T} (e.g., a ≡ π). These densities
are modeled as the functional responses of a set of explanatory (scalar) variables in matrix
Z, f(a) = Z ∗ β(a) + ϵ(a), ∀a ∈ A:

(i) the forecasting horizon,

(ii) the level & variability of the observed variable a,

13One can consider two cases: a-month-after intervention effect and an on-impact intervention effect
(i.e., just on time to be considered ‘post-treatment’). Therefore, some special care must be taken in terms
of the chronology of events. See Appendix A.

14One NL regression for each expectational variable (g and π) or even for each family of forecasting
horizons in the available data (short-term and medium-term horizons, say).
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(iii) (a lag of) the level & variability of the nominal exchange rate (FX),

(iv) the robust mean & robust standard deviation of the Consensus professional fore-
casters’ (insiders’) forecasts, and

(v) a time trend.

Explanatory variable i) is mandatory: all π & g forecasts are fixed-event forecasts as
they refer to the end of either the current year or the next year (specific dates only). Also
note application of simplified DiD approach requires not including the BCRP forecasts.
For the sake of comparability, Appendix C reports the results in [Barrera (2018)] for two
scalar output variables obtained from EEM cross-sections, the robust dispersions Sn and
Qn.

However, the key problem is to escape from the obviously mistaken analogy of using
the estimated errors from those functional regressions for obtaining interpretable treat-
ment effects. The FWL theorem can be invoked for least-squares estimation procedures
of functional regressions.15 Its strict application will lead to treatment effects expressed
in terms of functional regression coefficients, with reduced interpretability. The solution
is to use the close relationship between a general probability density and all the set of
moments that can be obtained from sampling from such a density: the needed estimated
errors become the differences (deltas) between the simulated moments from the observed
probability densities and the simulated moments from the estimated probability densi-
ties.16 Appendix B provides detailed information about the comprehensive list of moments
used in the paper.

III Stylized Application

III.1 Data

To fully characterize the effects of Central Reserve Bank of Peru (BCRP)’s forecasts on
Peruvian firms’ expectations for real growth (g) and inflation (π), three different sources
of forecasts are considered in the paper. Firstly, BCRP gauges private firms’ expecta-
tions with a survey, the Macroeconomic Expectations Survey (Encuesta de Expectativas

Macroeconómicas or EEM). It consists of an increasing sample of Peruvian firms who
provide their forecasts for {g, π, ...} to the BCRP ’s Department of Production Activity
on a monthly basis (EEM surveys’ closing date is the end of the month). The EEM cross-
sections of forecasts are large enough for the corresponding sequence of densities {ft(a)}
to be non-parametrically estimated with the Epanechnikov kernel and immediately taken
as observed data. Each element of this sequence, ft(a), is the density function of period
t with domain a ∈ A ≡ {a, a} ⊂ ℜ, ∀t ∈ {1, 2, ..., T} (e.g., a ≡ π).

Secondly, BCRP forecasts for both variables are available from the BCRP ’s Inflation

Reports (IR), whose disclosure (publication and media diffusion) is made every three or
four months. The IR publication defines the treatment (dichotomous) variable (the same
for either π or g, one at a time) because IR publication dates define the ‘experimental
quarters’ behind the quasi-experimental testing of the treatment effects (exact dates cor-
respond to the press releases; see Appendix A). Single-unit t-tests for the treatment effects

15See [Davidson & MacKinnon (1993)]. FWL theorem can only approximately hold for other estima-
tion procedures (e.g., generalized least squares).

16By simulation, there usually exists a functional relationship between any moment and the probability
density function from which it comes. By formulae, we require the existence of a probability density
function, its moment-generating function and even the moments. Then, a simple example of such a
relationship would be the (robust) mean: it would be the (weighted) integral of such a probability
density function. This simple idea usually holds for any (existing) moment, so the FWL theorem holds
for both the functional regression and those simulated moments.
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of BCRP forecasts on EEM probability density functions (BCRP →EEM) only use the
observations inside ‘experimental quarters’, which are build after such an assignment of
dates: ’experimental quarters’ must begin with the month previous to the IR publication
month (press release). Given that EEM surveys’ closing dates follow Consensus surveys’,
assignment of dates for BCRP →EEM single-unit t-tests is almost the same (differing
only for a triad of months: August 2003, March 2010 and April 2014).17

Finally, other explanatory variables are the robust location (median) and robust dis-
persions (Sn and Qn) calculated from Consensus Forecasts ’ small cross-sections of profes-
sional forecasters’ expectations about π and g in Peru.18 Consensus Economics, Inc. asks
a small sample of professional forecasters or ‘insiders’ (as they will be called from now on)
to provide forecasts for π and g on a monthly basis. Since the closing dates of Consensus

Forecasts ’ surveys is every month’s 3rd Monday, Appendix A defines the due precedence
of BCRP forecasts with respect to Consensus Forecasts ’ explanatory variables (robust lo-
cation and dispersions). Since EEM surveys’ closing date is the end of the month, the due
precedence of BCRP forecasts with respect to EEM Epanechnikov probability densities
is also assured.

Besides the data and its chronology, four additional data issues need to be controlled
for. Firstly, all forecasts under study are fixed-event forecasts because all of them consider
two fixed events (with fixed dates): either the end of the current calendar year or the end
of next calendar year. Since the maximum forecasting horizon is H = 24 months, the full
sample of forecasts can be split into two separate sub-samples: the short-term forecasts
(h ≤ 12) and the medium-term forecasts (12 < h ≤ 24).

The common sample of forecasts is January 2004 - December 2015. Given their fixed-
event nature, this sample can only include the forecasts for the end of 2004 which were
generated during the year 2004 (medium-term forecasts for the end of 2004 generated
during the year 2003 are ‘not available’). Similarly, this sample can only include the
forecasts for the end of 2015 which were generated during the year 2015 (medium-term
forecasts for the end of 2016 generated during the year 2015 are ‘not available’).

Secondly, there exists an important number of ‘not available’ data for each EEM
individual firm along the monthly sample: firms can abandon the survey and then may re-
enter the survey. Then, all cross-section computations (for either the EEM Epanechnikov

densities or the EEM sample moments) only consider the available numbers, provided
that EEM cross-sections are large (a similar pattern occurs for the individual insiders
who provide forecasts to Consensus Economics, Inc.). The list of firms surveyed at least
once has been growing fast: in January 2004, it included 432 firms, which were kept
without change by January 2006; in January 2009, the list included 917 firms; in January
2012, the list included 959 firms; in March 2012, it reached 1003 firms; finally, in December
2015, the list included 1278 firms. The number of firms’ plausible answers used to estimate
the Epanechnikov densities has then been increasing, belonging to an approximated range
of [300 500], though.

Thirdly, the EEM data first received was pre-depurated and well organized, but barely
covered the last two years (2014-2015). Since the study was supposed to go back as far as
January 2002, the author had to deal with non-depurated data beginning in January 2004
and ending in December 2015. The advantages of such a trade are obvious: the outlier
depuration was made conservatively and homogeneously, leading to the ranges [-10 15]
and [-2 15] for short-term and medium-term π expectations, respectively, and [-3 15] and

17Note that it is always possible to use a continuous monthly series of BCRP forecasts (one for π
and another for g) by defining the BCRP forecasts as ‘outstanding’ (the most recently published BCRP

forecast). This simple information-set-based strategy transforms a quarterly series into a monthly series
and, in the case of the literature on mixed sampling frequencies, it provides a model which becomes a
simple alternative to the Kalman filter model with missing observations in the low-frequency series (see
[Foroni (2012)] and references therein).

18See Appendix B for the definitions of the moments used in the paper.
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[-1 15] for short-term and medium-term g expectations, respectively. In spite of this
conservative and homogeneous data depuration, the Epanechnikov densities still have fat
tails, so robust location (median) and dispersions (Sn and Qn) must be considered since
their means and variances may become not-well-defined in the population.

Figure 2 shows a sub-sequence of EEM densities, this time obtained from Peruvian
financial entities’ and analysts’ short-term π (pre-depurated) expectations. This sub-
sequence corresponds to an upsurge of the nominal exchange rate (FX) in Peru (beginning
in August 2014). Clearly, π expectations react to nominal depreciation: the probability
mass moves towards ranges of higher inflation expectations.19 This kind of evolution
clearly justifies the inclusion of (lagged) FX variables into the set of explanatory variables
for the EEM

19The range of these economists’ expectations is narrower than the ranges of the firms’ expectations,
which may be related to the pre-depurations made.
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Figure 2: Peruvian economists’ short-term π expectations during 2015
(a) February (b) April
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(c) June (d) August
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(e) October (f) December
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Note: Bi-monthly sequence of Epanechnikov kernel densities (continuous line) and Gaussian densities
(dotted line). The graphs illustrate a recent episode of nominal FX upsurge. Besides, Epanechnikov
densities are not close to their Gaussian peers (the latter densities used the sample mean and standard
deviation of the same data used for obtaining the former densities).
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densities of Peruvian firms’ π forecasts: the monthly average and the ln(1000(standard de-
viation) of end-of-period daily FX interbank quotations. Lagged FX variables are needed
to avoid some conceptual problems related to having two proxies of central bank credibil-
ity, one on each side of any relationship. Particular moments of these EEM densities (for
instance, robust dispersions) are actually proxies of central bank credibility with respect
to price stability (see [Bordo & Siklos (2015)]), and so are those FX variables.

III.2 Results

The results from short-term-horizon g expectations show that the publication of short-
term g forecasts generates on-impact increases in the skewness, the two robust measures
of kurtosis, and the probability that these expectations are in the long-run-growth-rate
range of [4% 7%]. All these on-impact increases are consistent with on-impact decreases
in the percentile 95, a measure of the left tail’s probability mass and a measure of the
right tail’s probability mass. However, the on-impact change in the probability that these
expectations are in the range has a sign opposite to the the one-month-later change in this
probability. This one-month-later change is consistent with a one-month-later decrease
in the mode and the one-month-later increases in the kurtosis, the robust measure of
skewness and a measure of the left tail’s probability mass. See Table D1 in Appendix D.

The results from short-term-horizon π expectations show that the publication of short-
term π forecasts generates on-impact increases in robust and non-robust measures of
location (trimmed means and median), as well as in the two robust measures of dispersion,
the percentiles 5, 10, 15, 20, 80 & 85, and the probability that these expectations are in
the target range of [1% 3%]. All these on-impact increases are consistent with on-impact

decreases in the two measures of the left tail’s probability mass and the percentile 95.
However, some of the one-month-later changes have signs opposite to those on-impact

changes (e.g., trimmed means, median, percentile 85). All these one-month-later decreases
are consistent with a one-month-later increase in the skewness and a one-month-later

decrease in the mean. See Table D2 in Appendix D.
The results from medium-term-horizon g expectations show that the publication of

medium-term g forecasts generates on-impact increases in the two robust measures of
dispersion, the percentiles 90 & 95, and the robust measure of skewness. All these on-

impact increases are consistent with on-impact decreases in the percentile 15 and the
probability that these expectations are in the long-run-growth-rate range of [4% 7%].
However, the on-impact change in the probability that these expectations are in the
target range has a sign opposite to the the one-month-later change in this probability.
This one-month-later change is consistent with a one-month-later decrease in the robust
measure of skewness and a one-month-later increase in the non-robust measure of kurtosis.
See Table E1 in Appendix E.

The results from medium-term-horizon π expectations show that the publication of
medium-term π forecasts generates on-impact increases in robust and non-robust measures
of location (mean, trimmed means, median and mode), as well as in the two robust
measures of dispersion, the percentiles 5, 10, 15, 80 & 85, the robust measure of skewness
and the two robust measures of kurtosis. All these on-impact increases are consistent with
on-impact decreases in the two measures of the left tail’s probability mass coupled with
on-impact increases in a measure of the right tail’s probability mass. However, some of
the one-month-later changes have signs opposite to those on-impact changes (e.g., some
location measures, percentiles 5 & 80, and the robust measure of skewness). All these
one-month-later decreases are consistent with one-month-later increases in one of the
robust measures of kurtosis as well as in the measure of the right tail’s probability mass.
Surprisingly, there are no significant changes in the probability that these expectations
are in the target range of [1% 3%]. See Table E2 in Appendix E.
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All these results contrast with the non-significant results from updated single-moment
NL-regression-based t-tests (the robust measures of dispersion, Qn & Sn). See Tables C1
and C2 in Appendix C.

IV Conclusions

The experimental setup and its requirements impose severe restrictions to applications
where the researcher wants not only to discover whether a particular treated group g
becomes significantly affected by some kind of treatment but also to explore the treated
group g’ conditions under which such a treatment maximizes its benevolent impact, as well
as to determine specific ways to manage the treatment in the most effective way. For this
kind of questions, the conditions associated to the other treated groups can bias the treat-
ment effect because in reality there does not exist an homogeneous treatment (including
their specific conditions) across treated groups (countries in our desired application).

From these problems, we build on BDM’s (implicit) solution of disregarding any coun-
terfactual. The paper provides an extension to such a solution, which allows a complete
and consistent characterization of the direct effects from treatment (on-impact changes
& one-month-later changes). The stylized application takes advantage from the avail-
ability of large cross-sections in EEM surveys to Peruvian firms. Benevolent effects from
Peruvian Central Bank’s forecasts are found for EEM firms’ π expectations.

The perspectives from the empirical side are related to considering (i) the Ha single-
unit t-tests for the short-term sample, as well as to the hypothesis of useful effects com-
ing from Consensus forecasts, (ii) the complementary convergence data considered in
[Barrera (2018)], that is, the gap between the EEM expectations and the previous BCRP

forecasts as a new probability density function to be affected by the current BCRP fore-
casts, and (iii) the non-linear functional regressions, which will be useful for addressing
relevant questions about the different direct effects of BCRP forecasts being above (be-
low) the maximum (minimum) inflation allowed by the target range or just inside this
range.

The perspectives from the methodological side are related to the possibility of a well-
defined homogeneous and simultaneous treatment that would lead to a control set of
densities (a counterfactual). In this case, a fully-fledged DiD approach will be feasible and
our proposal will provide full characterization of causal effects of a treatment (if and only
if the specific application does not allow to consider a direct effect as being the same as
a causal effect). Such availability of data in terms of densities for many countries (say)
would be named huge data instead of just big data.
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Table A1: Assignment of BCRP forecasts to Consensus Economics Inc.’s surveys ∗/
Return to Section III.1 or Subsection II.3
Dates associated with Peru’s IRs

Number IR Press IR tentative assignment LACF Survey Date close IR final assignment
Release from LACF survey 1/ to the Press Release 2/ from LACF survey 1/

Aug03 29aug03 (Sep03) 18aug03 (Sep03)
1 Jan04 06feb04 Feb04 16feb04 Feb04
2 May04 04jun04 Jun04 21jun04 Jun04
3 Aug04 10sep04 Sep04 20sep04 Sep04
4 Jan05 04feb05 Feb05 21feb05 Feb05
5 May05 03jun05 Jun05 20jun05 Jun05
6 Aug05 02sep05 Sep05 19sep05 Sep05
7 Jan06 03feb06 Feb06 20feb06 Feb06
8 May06 02jun06 Jun06 19jun06 Jun06
9 Sep06 06oct06 Oct06 16oct06 Oct06
10 Jan07 09feb07 Feb07 19feb07 Feb07
11 May07 08jun07 Jun07 18jun07 Jun07
12 Sep07 05oct07 Oct07 15oct07 Oct07
13 Jan08 08feb08 Feb08 18feb08 Feb08
14 May08 13jun08 Jun08 16jun08 Jun08
15 Sep08 10oct08 Oct08 20oct08 Oct08
16 Mar09 13mar09 Mar09 16mar09 Mar09
17 Jun09 12jun09 Jun09 15jun09 Jun09
18 Sep09 18sep09 Oct09 21sep09 Sep09
19 Dec09 18dec09 Jan10 14dec09 Jan10
20 Mar10 26mar10 Apr10 15mar10 Apr10
21 Jun10 18jun10 Jul10 21jun10 Jun10
22 Sep10 17sep10 Oct10 20sep10 Sep10
23 Dec10 17dec10 Jan11 13dec10 Jan11
24 Mar11 18mar11 Apr11 21mar11 Mar11
25 Jun11 17jun11 Jul11 20jun11 Jun11
26 Sep11 16sep11 Oct11 19sep11 Sep11
27 Dec11 16dec11 Jan12 19dec11 Dec11
28 Mar12 23mar12 Apr12 19mar12 Apr12
29 Jun12 15jun12 Jun12 18jun12 Jun12
30 Sep12 14sep12 Sep12 17sep12 Sep12
31 Dec12 14dec12 Dec12 17dec12 Dec12
32 Mar13 22mar13 Apr13 18mar13 Apr13
33 Jun13 21jun13 Jul13 17jun13 Jul13
34 Sep13 20sep13 Oct13 16sep13 Oct13
35 Dec13 20dec13 Jan14 16dec13 Jan14
36 Apr14 25apr14 May14 22apr14 May14
37 Jul14 18jul14 Aug14 21jul14 Jul14
38 Oct14 17oct14 Nov14 20oct14 Oct14
39 Jan15 23jan15 Feb15 19jan15 Feb15
40 May15 22may15 Jun15 18may15 Jun15
41 Sep15 18sep15 Oct15 14sep15 Oct15
42 Dec15 18dec15 Jan16 14dec15 Jan16

∗/ Consensus survey’s closing date is always before EEM’s (the end of the month).

1/ Consensus Economics Inc. carries out the Latin-American-country survey every month’s 3
th Monday ([Consensus (2015)]). A

tentative assignment of the central bank IR forecasts to the Consensus Economics Inc. surveys considers that these forecasts

will surely affect the survey’s forecasts from the very month of an IR publication (until they become affected by the following

IR’s forecasts) if the IR publication date falls before or at the 14th day of that month; otherwise, they will surely affect the

survey from the following month to the publication month (until they become affected by the following IR’s). The final

assignment uses the closing date of the corresponding Consensus Economics Inc.’s survey.

2/ For the case of the effects upon the EEM ’s forecasts, both Consensus Economics Inc.’s dates and IR Press Releases’ dates

indicate that these two types of forecasts will contemporaneously affect the EEM ’s forecasts (except maybe for March 2010’s

IR). While the frequency of Consensus Economics Inc.’s forecasts is monthly (allowing a direct use of the auxiliary regression),

Central Bank’s IR forecasts still require a specially-tailored ‘assignment’ similar to the one used in the previous paper.
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B Moments

The simulations are obtained from each estimated density corresponding to period t ∈ {1, 2, ..., T},
thus allowing to obtain a comprehensive set of scalar moments for each estimated density:

1. First-order moments: mean; 5%- and 10%-trimmed means;20 median (percentile {50});
and mode.

2. Second-order moments: standard deviation; robust dispersion estimators Qn and Sn pro-
posed by [Rousseeuw & Croux (1993)].21

3. Higher-order moments: skewness, SK2; kurtosis, KR2, KR4;

4. Other moments: Pr(range),22 its confidence interval and its variability coefficient; Per-
centiles {5, 10, 15, 20, 80, 85, 90, 95}; LQW s and LQW b left tails (s = 0.125 and b = 0.250);
RQW s and RQW b right tails (s = 0.875 and b = 0.750).

Some clarifications are due regarding some ‘other moments’. Traditional standardized mo-
ments such as skewness (SK)23 and kurtosis (KR)24 actually depend upon other traditional
moments like the mean or the variance, which may not exist in the population’s distribution.
Sample counterparts are always computable, but their values will then display an erratic behav-
ior; see [Bonato (2011)]. Corresponding robust measures SK2, KR2 and KR4 are preferred,

SK2 ≡
Q3 +Q1 − 2Q2

Q3 −Q1

KR2 ≡
(E7 − E5) + (E3 − E1)

E6 − E2

KR4 ≡
F−1(0.975)− F−1(0.025)

F−1(0.750)− F−1(0.250)

where Qi is the i-th quartile,25 and Ei is the i-th octile, that is, Ei ≡ F−1(i/8) for i ∈ {1, 2, ..., 7};
see [Bonato (2011)]. Before continuing with the specificities of the simulations, note KR, KR2

and KR4 have two statistical disadvantages: (i) they are really measuring not only the tail
heaviness but also the peakedness of a distribution, and (ii) their tail-heaviness interpretation is
restricted to symmetric distributions. [Brys et al. (2006)] recommend the use of robust measures
of left and right tails, the left quantile weight (LQW p), and the right quantile weight RQW q

(for 0 < p < 1
2

and 1
2
< q < 1, respectively).

LQW p ≡
F−1(1−p

2
) + F−1(p

2
)− 2F−1(0.250)

F−1(1−p
2
)− F−1(p

2
)

20The p% trimmed mean of n sampled values {x1, x2, ..., xn} is the mean of those values excluding the
highest and lowest q data values, where q = n ∗ (p/100)/2.

21Given a sample of n points, {x1, x2, ..., xn}, Sn ≡ smpsmgmedi{medj{|xi − xj |}} and Qn ≡

qmpqmg{|xi − xj |; i < j}(k), k ≡
(

h

2

)

, h ≡ ⌊n/2⌋+ 1, where {yi}(k) refers to the k-th order statistic

obtained from the data set {yi};
(

a

b

)

, to the combinations of a elements taken in groups of b elements;
and ⌊c⌋ ≡ max{d ∈ Z|d ≤ c}, to the maximum integer of c. smg and qmg are the adjustment factors
compensating for the (asymptotic) large-sample bias with respect to a normal distribution, and smp and
qmp, the adjustment factors compensating for the small-sample bias; see [Croux & Rousseeuw (1992)].

22The scalar criterion Pr(range) is the probability that the variable defining the support of the den-
sities (functional responses in the functional regression model) happens to be inside the ‘range’. This
range is [4 7] for g forecasts and [1 3] for π forecasts.

23If SK is positive [negative], the long tail is to the right [left].
24If KR is regarded as a measure of tail heaviness, a positive [negative] KR means a symmetric

distribution has heavier tails [lighter tails] than a normal distribution’s tails.
25Given a process of n points, {x1, x2, ..., xn}, and assuming that the xj ’s are independent and iden-

tically distributed with cumulative distribution function F , Q1 ≡ F−1(0.25), Q2 ≡ F−1(0.50), and
Q3 ≡ F−1(0.75)
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RQW p ≡
F−1(1+q

2
) + F−1(1− q

2
)− 2F−1(0.750)

F−1(1+q
2
)− F−1(1− q

2
)
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C Ha t-tests for BCRP →EEM

Table C1: Tests with Qn dispersion of EEM forecasts
Return to Section III.2

Variable

Current vs. Previous Next vs. Previous
({s = 2|s = 1}) ({s = 3|s = 1})

Model/d.f. Tcal p1 Tcal p2
(p− value) (p− value)

Short-term sample (h ≤ 12)
GDP growth Add.trend/32 -0.275 0.393 -0.262 0.398
CPI inflation Add.trend/32 0.226 0.411 -0.692 0.247

Medium-term sample (h > 12)
GDP growth Add.trend/31 0.186 0.427 -0.052 0.479
CPI inflation Add.trend/31 0.049 0.480 -0.023 0.491
See [Barrera (2018)]’s Online Appendix, Table E.1.

Table C2: Tests with Sn dispersion of EEM forecasts
Return to Section III.2

Variable

Current vs. Previous Next vs. Previous
({s = 2|s = 1}) ({s = 3|s = 1})

Model/d.f. Tcal p1 Tcal p2
(p− value) (p− value)

Short-term sample (h ≤ 12)
GDP growth Add.trend/32 -1.193 0.121 -0.515 0.305
CPI inflation Add.trend/32 -0.372 0.356 -0.792 0.217

Medium-term sample (h > 12)
GDP growth Add.trend/31 0.254 0.401 -0.045 0.482
CPI inflation Add.trend/31 -0.260 0.398 -0.147 0.442
See [Barrera (2018)]’s Online Appendix, Table D.1.
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D Ha t-tests for BCRP →EEM (moment-simulated

deltas)

Table D1: BCRP →EEM (g)
Return to Section III.2

Ha t-tests for EEM -moment-simulated deltas (m1, short-term sample, h ≤ 12)

Variable
Simulated Current vs. Previous Next vs. Previous

Scalar ({s = 2|s = 1}) ({s = 3|s = 1})
Criteria Tcal p1 Tcal p2

(moments) 34 d.f. (p− value) 34 d.f. (p− value)

GDP growth Mean 1.000 0.162 -1.000 0.162
Trimmean5 -0.737 0.233 -0.520 0.303
Prctile50 -0.431 0.335 -0.455 0.326
Mode * -0.406 0.344 -1.762 0.044
Std.Dev. -1.000 0.162 1.000 0.162
Skewness 1.771 0.043 -0.381 0.353
Kurtosis -0.960 0.172 1.728 0.047
Prctile5 0.928 0.180 -1.148 0.130
Prctile10 0.563 0.289 -1.231 0.114
Prctile15 -0.157 0.438 -1.267 0.107
Prctile20 -0.430 0.335 -0.929 0.180
Prctile80 0.019 0.492 0.840 0.204
Prctile85 -0.645 0.262 0.855 0.199
Prctile90 -1.165 0.126 0.971 0.169
Prctile95 -1.347 0.094 0.994 0.164

Trimmean10 -0.556 0.291 -0.659 0.257
SK2 0.740 0.232 1.319 0.098
KR2 1.909 0.033 1.300 0.101
KR4 1.379 0.089 0.820 0.209
LQW s 0.906 0.186 1.527 0.068
LQW b -1.475 0.075 0.686 0.249
RQW s 0.656 0.258 -0.512 0.306
RQW b -1.774 0.043 0.983 0.166
Qn 0.819 0.209 0.629 0.267
Sn 0.951 0.174 0.595 0.278

ub{Pr(.)} ‡ 5.149 0.000 -1.769 0.043
Pr(range) † 5.134 0.000 -1.753 0.045
lb{Pr(.)} ‡ 5.119 0.000 -1.737 0.046
cv{Pr(.)} -4.180 0.000 -1.781 0.042

* Not simulated. †g & π ranges: [4 7] & [1 3]. ‡Pr(range)’s 95% CI.
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Table D2: BCRP →EEM (π)
Return to Section III.2

Ha t-tests for EEM -moment-simulated deltas (m1, short-term sample, h ≤ 12)

Variable
Simulated Current vs. Previous Next vs. Previous

Scalar ({s = 2|s = 1}) ({s = 3|s = 1})
Criteria Tcal p1 Tcal p2

(moments) 32 d.f. (p− value) 31 d.f. (p− value)

CPI inflation Mean 1.067 0.147 -1.552 0.065
Trimmean5 3.516 0.001 -2.436 0.010
Prctile50 1.342 0.095 -1.815 0.044
Mode * -0.037 0.485 -1.179 0.124
Std.Dev. 0.000 0.500 1.129 0.134
Skewness -1.253 0.110 1.661 0.053
Kurtosis 0.976 0.168 -0.690 0.248
Prctile5 2.338 0.013 -0.219 0.414
Prctile10 3.608 0.001 -0.609 0.273
Prctile15 2.097 0.022 -0.877 0.194
Prctile20 1.699 0.050 -1.081 0.144
Prctile80 4.085 0.000 -1.046 0.152
Prctile85 2.858 0.004 -1.510 0.071
Prctile90 0.566 0.288 -1.104 0.139
Prctile95 -1.866 0.036 -1.127 0.134

Trimmean10 3.832 0.000 -2.226 0.017
SK2 1.225 0.115 -0.394 0.348
KR2 -0.417 0.340 -0.065 0.474
KR4 -0.989 0.165 0.267 0.396
LQW s -1.386 0.088 0.197 0.422
LQW b -3.897 0.000 0.788 0.218
RQW s 0.381 0.353 -0.270 0.394
RQW b 1.006 0.161 -1.307 0.100
Qn 1.603 0.059 0.099 0.461
Sn 2.672 0.006 0.174 0.431

ub{Pr(.)} ‡ 2.405 0.011 0.818 0.210
Pr(range) † 2.419 0.011 0.819 0.210
lb{Pr(.)} ‡ 2.433 0.010 0.820 0.209
cv{Pr(.)} -0.600 0.276 -0.021 0.492

* Not simulated. †g & π ranges: [4 7] & [1 3]. ‡Pr(range)’s 95% CI.
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E Ha t-tests for BCRP →EEM (moment-simulated

deltas)

Table E1: BCRP →EEM (g)
Return to Section III.2

Ha t-tests for EEM -moment-simulated deltas (m2, medium-term sample, h > 12)

Variable
Simulated Current vs. Previous Next vs. Previous

Scalar ({s = 2|s = 1}) ({s = 3|s = 1})
Criteria Tcal p1 Tcal p2

(moments) 37 d.f. (p− value) 37 d.f. (p− value)

GDP growth Mean 0.583 0.282 0.753 0.228
Trimmean5 0.381 0.353 0.274 0.393
Prctile50 0.168 0.434 -0.276 0.392
Mode * 0.427 0.336 -0.562 0.289
Std.Dev. -0.207 0.418 1.116 0.136
Skewness 0.640 0.263 -0.632 0.266
Kurtosis -0.891 0.189 1.925 0.031
Prctile5 -0.064 0.475 0.935 0.178
Prctile10 -1.061 0.148 0.445 0.329
Prctile15 -1.353 0.092 0.085 0.466
Prctile20 -1.179 0.123 -0.295 0.385
Prctile80 1.074 0.145 -0.241 0.405
Prctile85 1.236 0.112 -0.154 0.439
Prctile90 1.622 0.057 -0.775 0.222
Prctile95 2.316 0.013 -1.153 0.128

Trimmean10 0.241 0.406 0.055 0.478
SK2 -1.452 0.077 -1.664 0.052
KR2 0.048 0.481 -0.592 0.279
KR4 -0.948 0.175 0.135 0.447
LQW s -1.010 0.160 0.982 0.166
LQW b -0.950 0.174 -0.665 0.255
RQW s 1.153 0.128 -1.029 0.155
RQW b 1.119 0.135 0.495 0.312
Qn 2.164 0.019 0.717 0.239
Sn 2.079 0.022 0.902 0.187

ub{Pr(.)} ‡ -1.320 0.097 1.568 0.063
Pr(range) † -1.326 0.096 1.576 0.062
lb{Pr(.)} ‡ -1.333 0.095 1.583 0.061
cv{Pr(.)} 1.694 0.049 -1.752 0.044

* Not simulated. †g & π ranges: [4 7] & [1 3]. ‡Pr(range)’s 95% CI.
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Table E2: BCRP →EEM (π)
Return to Section III.2

Ha t-tests for EEM -moment-simulated deltas (m2, medium-term sample, h > 12)

Variable
Simulated Current vs. Previous Next vs. Previous

Scalar ({s = 2|s = 1}) ({s = 3|s = 1})
Criteria Tcal p1 Tcal p2

(moments) 35 d.f. (p− value) 34 d.f. (p− value)

CPI inflation Mean 3.907 0.000 0.959 0.172
Trimmean5 3.750 0.000 -1.760 0.044
Prctile50 2.268 0.015 -1.326 0.097
Mode * 1.262 0.108 0.105 0.458
Std.Dev. 0.346 0.366 -0.960 0.172
Skewness 1.119 0.135 0.268 0.395
Kurtosis -0.114 0.455 -0.867 0.196
Prctile5 1.783 0.042 -2.684 0.006
Prctile10 1.906 0.032 -0.966 0.171
Prctile15 1.686 0.050 -1.146 0.130
Prctile20 1.115 0.136 -0.957 0.173
Prctile80 4.276 0.000 -1.475 0.075
Prctile85 2.595 0.007 -1.289 0.103
Prctile90 -0.278 0.391 -1.434 0.080
Prctile95 -0.869 0.195 -1.715 0.048

Trimmean10 3.996 0.000 -1.571 0.063
SK2 1.738 0.046 -1.894 0.033
KR2 1.918 0.032 2.313 0.013
KR4 2.214 0.017 -0.114 0.455
LQW s -2.344 0.012 0.098 0.461
LQW b -1.706 0.048 -0.415 0.340
RQW s 1.000 0.162 0.376 0.355
RQW b 1.747 0.045 2.033 0.025
Qn 2.289 0.014 -0.850 0.201
Sn 2.774 0.004 -0.868 0.196

ub{Pr(.)} ‡ -1.012 0.159 1.090 0.142
Pr(range) † -1.016 0.158 1.084 0.143
lb{Pr(.)} ‡ -1.020 0.157 1.079 0.144
cv{Pr(.)} -0.003 0.499 -0.283 0.390

* Not simulated. †g & π ranges: [4 7] & [1 3]. ‡Pr(range)’s 95% CI.
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