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1 Introduction

Optimal taxation in theory is the design of a tax that minimizes inefficiency and distortion due to

deviation from the pre-tax efficient market equilibrium under given economic constraints. Ramsey

(1927) was the first to make a significant contribution to the theory of optimal taxation from

an economic standpoint. He developed a theory for optimal commodity taxes and proposed a

theoretical solution that consumption tax on each good should be "proportional to the sum of

the reciprocals of its supply and demand elasticities". Diamond and Mirrlees (1971) consider

commodity taxation along with the other kinds of taxes. Mirrless (1975) modified the standard

problem by considering simultaneously excise taxes and a poll tax. Diamond (1975) examines

the Ramsey rule for a many-person economy with excise taxes and a poll tax. Atkinson and

Stiglitz (1976) show that with an optimal nonlinear income tax, discriminatory commodity taxes

are only necessary to the extent that individual commodities are not weakly separable from leisure.

In Deaton (1981), rules for optimal differential commodity taxes have been derived for the three

different cases usually studied in the literature: the one consumer economy, the unidimensional

continuum of consumers economy, and the finite number of discrete consumers economy. Lucas

and Stokey (1983) derive a time consistent optimal fiscal policy in an economy without capital

maximizing the consumer welfare subject to the condition that a competitive equilibrium holds in

each time period.

In Judd (1985), the government taxes capital income net of depreciation at a proportional rate,

which is assumed to be constant. Chamley (1986) analyzes the optimal tax on capital income

in general equilibrium models of the second best. Deaton and Stern (1986) show that optimal

commodity taxes for an economy with many households should be at a uniform proportional rate

under certain conditions. Cremer and Gahvari (1993) incorporate tax evasion into Ramsey’s optimal

taxation problem. Cremer and Gahvari (1995) prove that optimal taxation requires a mix of

differential commodity taxes and a uniform lump-sum tax. Naito (1999) shows that imposing a

non-uniform commodity tax can Pareto-improve welfare even under nonlinear income taxation if

the production side of an economy is taken into the consideration. Saez (2002b) shows that a small

tax on a given commodity is desirable if high income earners have a relatively higher taste for this

commodity or if consumption of this commodity increases with leisure.

The quantity taxes are currently more popular in the environmental economics literature, e.g.

Nordhaus (1993) proposes an optimal carbon tax (tax per ton of carbon). Chari, Christiano and

Kehoe (1994) deal with the labor and capital income taxes instead of a quantity tax as in our

model. Ekins (1996) takes into account the secondary benefits of Carbon dioxide abatement for an

optimal carbon tax. Coleman (2000) derives the optimal dynamic taxation of consumption, income

from labor, and income from capital, and estimates the welfare gain that the US could attain
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by switching from its current income tax policy to an optimal dynamic tax policy. Pizer (2002)

explores the possibility of a hybrid permit system and a dynamic optimal policy path in order

to accommodate growth and not because of the adjustment over time to equalize the marginal

benefit and cost. It is implicitly assumed that the marginal cost equals the marginal benefit in

each time period. Following Ramsey, the existing literature on optimal quantity taxation only

compares the pre and the post-tax market equilibriums in order to account for the efficiency losses.

However, when the government imposes a quantity tax on the consumer, the buyer’s price jumps

to the pre-tax equilibrium price plus the amount of the tax, and the supply and the demand of

the taxed commodity then adjust over time to bring the new post-tax market equilibrium. The

existing literature does not take into account the efficiency losses during the adjustment process

while computing the optimal quantity taxes. This paper derives an optimal quantity tax path in

a dynamic setting minimizing the efficiency losses (output and/ or consumption lost) during the

dynamic adjustment process as well as the post-tax market equilibrium.

The remainder of this paper is organized as follows: Section 2 explains how the individual compo-

nents of the market system are joined together to form a dynamic market model. Section 3 provides

the solution of the model with a quantity tax imposed. Section 4 derives an optimal commodity

tax path minimizing the efficiency losses subject to a tax revenue target in a specific time period.

Section 5 summarizes the findings and concludes. Section 6 explains the future research prospects.

Section 7 is the appendix with mathematical details in the paper.

2 The Model

Let’s assume that there is a perfectly competitive market of a single homogeneous commodity in

equilibrium (so our starting point is when the market is already in equilibrium). There are four

types of infinitely-lived agents: a representative -or a unit mass of- producer (that produces a good,

and demand labor and capital), a middleman (who buys the good from firms to sell to consumers,

and possibly accumulating inventories), a representative —or a unit mass of— consumer (who buys

the good, accumulates capital by investing and supplies labor inelastically), and a government. The

role of middleman is motivated by the real world scenario where the producer and the consumer

seldom directly meet for a transaction to take place. The existence of retailers, wholesalers, financial

institutions, educational institutions and the hospitals reflect the presence of middlemen between

producers and consumers in most of the economic activity going on. The producer produces the

goods and supplies those to the middleman, who keeps an inventory of the goods and sells those

to the consumer at the market price. In the model, the middleman plays a key role, as he sets the

selling price p by maximizing the difference between the revenue for selling goods to consumers and

the costs of inventories. The buying price paid to the producer is αp with α < 1, and the producer

is a price taker.
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The price adjustment mechanism is based on the fact that when a shock leads the market out of

equilibrium, the buyers’ and sellers’ decisions are not coordinated at the current prices. An example

can illustrate the working of this market. Consider that the market is initially in equilibrium. The

middleman has an equilibrium stock of inventory. Then, an exogenous demand contraction will

increase the stock of inventory, due to firms’ output could not match with the —now lower— units

demanded by the consumer at the current price. This excess of supply is accumulated in inventory

held by the middleman. The middleman will decrease the price so that the producer will find

optimal to produce a lower level of output. A new equilibrium with a lower price and a lower level

of output is then reached. The equilibrium is defined as follows:

(i) The producer and the middleman maximize their profits and the consumer maximizes utility

subject to the constraints they face (mentioned in their individual dynamic optimization problems

in Section 2).

(ii) The quantity supplied by the producer equals the quantity consumed by the consumer (and

hence the inventory does not change when the market is in equilibrium).

The conditions for the existence of the equilibrium (Routh—Hurwitz stability criterion, which pro-

vides a necessary and sufficient condition for the stability of a linear dynamical system) have been

mentioned in Section 3.

As the set up is for a perfectly competitive market, therefore, the middleman who sells the goods

to the consumer at the market price is a price taker when the market is in equilibrium. When the

market is out of equilibrium, the middleman can change the price along the dynamic adjustment

path until the new equilibrium arrives, where again the middleman becomes a price taker. The

government announces and imposes a commodity tax at the same time (the expectations of the

agents will be taken into account in a future research project when the dates of announcement and

implementation of the tax are different). When a commodity/ quantity tax is imposed, the market

does not suddenly jump to the post-tax market equilibrium, rather the price adjusts over time to

bring the new equilibrium. This adjustment process involves endogenous decision making (in their

own interest) by all the agents in the market, i.e. consumer, producer and the middleman as follows:

Suppose there is a producer in a market who produces a perishable good and sells it to a middleman

who further sells it to a consumer living in a community. The producer and the middleman sell a

quantity exactly equal to the quantity the producer produces in each time period, and the market

stays in equilibrium. If the government announces and imposes a commodity tax on the buyer,

which decreases the demand of this product, some of the production sold to the middleman will

remain unsold to the consumer and be wasted by the end of the time period in which the tax

was imposed. Assuming that the producer and the middleman can change the production and

the price respectively, immediately, had they known the exact pattern of new demand, they would

immediately pick the quantity (by the producer) and the price (by the middleman) to maximize their
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profits and clear the market without wasting the production. However, they lack this information,

so the middleman decreases the price based on his best guess about the new demand (based on

the quantity of the unsold production), driving the market close to the new equilibrium. At the

lower price, the producer produces a lower quantity than before. If in the following time period,

his production sold to the middleman is fully sold out to the consumer, he will know that the new

equilibrium has arrived, however, if a part of his production still remains unsold, the middleman

will reduce the price further (and the producer, the production accordingly) to bring the market

closer to the new equilibrium. The market will eventually settle at the new equilibrium after some

efficiency loss. The resources wasted by the imposition of the tax are those which went into the

unsold production in each time period during the adjustment process. A new equilibrium with

a deadweight loss due to commodity taxation is finally arrived at. The total efficiency loss as a

result of commodity taxation is the loss during the adjustment process plus the loss in the final

equilibrium.

For the mathematical treatment, the objective of each of the three market agents is maximized

through the first order conditions of their objective functions and to capture the collective result

of their individual actions, the equations representing their individual actions are solved simul-

taneously. For simplification, we assume that after the imposition of the quantity tax, the new

equilibrium is not too far from the initial equilibrium. This assumption makes the linearization of

supply and demand curves quite reasonable. Please look at figure 1 (the time axis is not shown).

Linearization seems to be a good approximation when we move from point a to b, whereas it is not

a good approximation when we move from point a to c. For modeling the movement of the market

from point a to c, we need to model a non-linear dynamical system (which is not covered under

the scope of this paper).

2.1 Middleman

The middleman purchases goods from the producer and sells those to the consumer for profit.

As happens in the real world, the middleman does not buy and sell exactly the same quantity

at all points in time, thus he holds an inventory of the goods purchased to be sold subsequently.

Inventory is an intermediary stage between supply and demand which reflects the quantum of

difference between supply and demand of the goods in the market. If the inventory remains the

same, it implies that demand and supply rates are the same. An increase or decrease in inventory

implies a change in supply, demand or both at different rates.

Please look at figure 2 to understand the link between inventory, supply, demand and prices. When

the supply curve shifts to the right (while demand remains the same), the inventory in the market

increases at the initial price, and the new equilibrium brings the price down. Similarly, when the

demand curve shifts to the right (while supply remains constant), the inventory depletes from the

4



market at the previous price and the new equilibrium brings the price up. This shows that there is

an inverse relationship between an inventory change and a price change (all else the same). If both

the supply and demand curves shift by the same magnitude such that the inventory does not change,

then price will also remain the same. Inventory unifies the supply and demand shocks in the sense

that they are both affecting the same factor, i.e. inventory and are basically the faces of the same

coin. Therefore, each kind of shock is in fact just an inventory shock. From the above mentioned

discussion, we have seen that there is an inverse relationship between an inventory change and a

price change.

Now let’s discuss the mechanism which brings about such a change. Consider a market of homo-

geneous goods where the middlemen, such as whole salers, retailers, etc. hold inventories, incur

some cost for holding those, and sell products to the consumers to make profits. The cost is a

positive function of the size of an inventory, i.e. a larger inventory costs more to hold as compared

to a smaller inventory. In the absence of an exogenous shock, if the supply and demand rates are

equal then the system is in equilibrium and the price does not vary with time. Suppose that a

technological advancement decreases the marginal cost of production and increases the supply rate,

whereas the demand rate remains the same. As the demand and supply rates are no longer equal,

therefore the difference will appear somewhere in the economy in the form of piled up inventories.

As the production flows from the producer to the consumer through the middleman, therefore it

is reasonable to assume that the middleman will be holding the net difference (Explanation: The

piled up inventories can also be in the form of producers’ inventories of finished goods, which does

not change the key point that a difference of supply and demand rates directly affect the invento-

ries in the economy). The economy will not be able to sustain this situation indefinitely, and the

middlemen will have to think of some means of getting rid of piled up inventories. The only resort

they have is to decrease the price which brings the demand up along the demand curve.

In a perfectly competitive market, the price will eventually come down to equalize the new marginal

cost, however the adjustment path depends on how the middlemen react to the change in their

inventories. Notice that the marginal cost of production has decreased but the marginal cost of

holding an extra unit of inventory for the middleman has increased. This is an intuitive explanation

which is theoretically consistent with the demand, supply, utility and profit maximization by a

consumer and a producer respectively. In the real world, we see examples of this behavior of

middlemen, e.g. as consumers, we enjoy the end of year sales, offers such as buy one get one free,

gift offers if you buy above a certain quantity threshold, etc. For a mathematical treatment, we

need to consider the profit maximization problem of the middleman as follows:
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2.1.1 Short-run Problem

Let’s first consider the short-run problem (Explanation: The middleman’s objective is myopic

rather than doing dynamic optimization. In a discrete analog, this is a one period analysis, which

is presented for an intuitive purpose as an anticipation of the (more complicated) dynamic problem

in section 2.1.2) of the middleman as follows:

Π = pq(p)− ς(m(p, e)), (1)

where

Π = profit,

p = market price,

q(p) = quantity sold at price p,

m = inventory (total number of goods held by the middleman),

e = other factors which influence inventory other than the market price including the middleman’s

purchase price from the producer,

ς(m(p, e)) = cost as a function of inventory (increasing in inventory).

The first order condition (with respect to price) is as follows:

p
.
q(p) + q(p)− .

ς(m(p, e))
.
m1(p, e) = 0, (2)

The middleman has an incentive to change the price only during the adjustment process and

will incur losses by deviating from the price (equal to the marginal cost) when the market is

in equilibrium. During the adjustment process, the demand does not equal the supply and the

market drifts toward the new equilibrium (however, the price cannot move automatically and it is

reasonable to assume that some economic agent moves the price in his own benefit), therefore a

price change by the middleman in the direction of bringing the new equilibrium is not against the

market forces, so he does not lose business by changing price on the adjustment path unlike when

the market is in equilibrium and where the middleman faces an infinitely elastic demand as follows:

p
.
q(p) + q(p) =

.
ς(m(p, e))

.
m1(p, e),

p

[
1 +

1

demand elasticity

]
=

.
ς(m(p, e))

.
m1(p, e)
.
q(p)

,

demand elasticity = p

.
q(p)

q(p)
.

The right hand side of the above expression is the marginal cost which equals the price when

the middleman faces an infinitely elastic demand. Suppose that as a result of a supply shock, the

marginal cost of production decreases, and the supply curve shifts downwards. Now the competitive
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market is out of equilibrium as the demand does not equal the supply at the previous equilibrium

price. The price must eventually decrease to bring the new equilibrium, however, the price will not

jump to equalize the demand and supply, and rather the middleman will continue charging a price

higher than the new marginal cost until the market forces make him realize that the supply has

increased and he needs to lower the price to satisfy the profit maximizing condition. The similar

is the case of a reverse supply shock, where the price must eventually increase to bring the new

equilibrium. In this case, the middleman will continue charging a price lower than the marginal

cost until the market forces make him increase the price, in which case it is the consumer who

is the short term beneficiary. Again, the consumer will be paying a price less than the marginal

cost only during the adjustment process and only until the middleman increases the price. The

equilibrium price is equal to the marginal cost of production plus the marginal cost of storage (i.e.

the total marginal cost) in the absence of any kind of a tax, so neither does the middleman earn

any economic rent, nor does the consumer benefit by paying a price less than the marginal cost

when the competitive market is in equilibrium.

For the mathematical treatment, suppose that as a result of a supply shock (while demand remains

the same) such as a technological advancement which reduces the marginal cost of production and

increases the supply by the producers, if the middleman wants to hold an extra unit of inventory,

his marginal cost of holding an extra unit i.e.
.
ς(m(p, e))

.
m1(p,e)
.
q(p)

is higher at the previous price,

because the term
.
ς(m(p, e)) is higher at the previous price. This might be on account of higher

storage charges because of increased demand of warehouses, godowns, etc. after increased supply

in the market. The second term, i.e.
.
m1(p,e)
.
q(p)

is a function of price, and is the same as before as

the price has not changed yet (we are assuming that the middleman’s purchase price is the same

as before as the producer is a price taker during the adjustment process as well and always charges

a fixed fraction of the market price to the middleman). A discrete analog of this scenario is that

the middleman maximizes profits in each time period without considering the future time periods,

and in each time period he takes the purchase price from the producer as given and only chooses

the sale price. This implies that on the previous price, now the middleman faces

∂Π

∂p
= p

.
q(p) + q(p)− .

ς(m(p, e))
.
m1(p, e) < 0, (3)

which means that the middleman must decrease the price to hold an extra unit of inventory to satisfy

the profit maximizing condition after the supply shock. Please notice that in this static scenario,

the short term gains accrued from the decreased marginal cost of production will be reaped by

the producer, as his marginal cost has decreased but he charges the same price to the middleman

until the middleman changes the price. If we plot together various profit maximizing combinations

of inventories and the respective prices chosen by a middleman, we will get a downward sloping

inventory curve with the price on the y-axis and the inventory on the x-axis. This is analogous
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to the concept of supply and demand curves for the profit maximizing producers and the utility

maximizing consumers respectively.

2.1.2 Dynamic Problem

Now let’s consider the dynamic problem of the middleman. In a dynamic setting, the middleman

maximizes the present discounted value of the future stream of profits, and his present value at

time zero is as follows:

V (0) =
∞∫
0

[pq(p)− ς(m(p, e))] e−rtdt, (4)

r denotes the discount rate. p(t) is the control variable and m(t) the state variable. The maximiza-

tion problem can be written as

Max
{p(t)}

V (0) =
∞∫
0

[pq(p)− ς(m(p, e))] e−rtdt,

subject to the constraints that
.
m(t) =

.
m1(p(t), e(p(t), z))

.
p(t) +

.
m2(p(t), e(p(t), z))

.
e1(p(t), z)

.
p(t) (state equation, describing how

the state variable changes with time; z are exogenous factors),

m(0) = ms (initial condition),

m(t) ≥ 0 (non-negativity constraint on state variable),
m(∞) free (terminal condition).
The current-value Hamiltonian for this case is

H̃ = p(t)q(p(t))− ς(m(p(t), e(p(t), z))) + µ(t) .p(t)
[ .
m1(p(t), e(p(t), z)) +

.
m2(p(t), e(p(t), z))∗

.
e1(p(t), z)

]
.

(5)

Now the maximizing conditions are as follows:

(i) p∗(t) maximizes H̃ for all t: ∂H̃
∂p
= 0,

(ii)
.
µ− rµ = −∂H̃

∂m
,

(iii)
.
m
∗
= ∂H̃

∂µ
(this just gives back the state equation),

(iv) lim
t→∞

µ(t)m(t)e−rt = 0 (the transversality condition).

The first two conditions are as follows:

∂H̃

∂p
= 0, (6)

and

.
µ− rµ = −∂H̃

∂m
=

.
ς(m(p(t), e(p(t), z))). (7)
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When the market is in equilibrium,
.
p(t) = 0, and the expression ∂H̃

∂p
boils down to the following

(see appendix):

p(t)

[
1 +

1

demand elasticity

]
=

.
ς(m(p(t), e(p(t), z)))

{ .
m1(p(t), e(p(t), z))

.
q(p(t))

+

.
m2(p(t), e(p(t), z))

.
e1(p(t), z)

.
q(p(t))

}
,

suggesting that the price equals the marginal cost (the right hand side of the above expression is

the marginal cost in a dynamic setting, which is different from that in a static problem on account

of the fact that in a dynamic setting the middleman also takes into account the impact of price

chosen on his purchase price from the producer) when the demand is infinitely elastic. Now suppose

that as a result of a supply shock, if the middleman wants to hold an extra unit of inventory, then

the marginal cost of holding an extra unit is higher because the term
.
ς(m(p(t), e(p(t), z))) is higher

at the previous price at that point in time. The term in parentheses in the expression of the

marginal cost, i.e.
.
m1(p(t),e(p(t),z))

.
q(p(t))

+
.
m2(p(t),e(p(t),z))

.
e1(p(t),z)

.
q(p(t))

is a function of price and is the same at

the previous price. This implies that on the previous price, now the middleman faces

∂H̃

∂p
< 0.

Therefore in order to satisfy the condition of dynamic optimization, the middleman must decrease

the price for an increase in inventory. This implies a negative relationship between price and

inventory. The concept of inventory unifies the market supply and demand. If the supply and

demand rates are equal, the market is in a steady state equilibrium. If a difference of finite

magnitude is created between the supply and demand rates and the consumer and the producer

do not react to a price change induced by a difference in the supply and demand rates, the price

will continue changing until the system saturates. This behavior can be depicted by the following

formulation:

Price change ∝ change in market inventory.
P = price change.

M = m−ms = change in inventory in the market,

m = inventory at time t,

ms = inventory in steady state equilibrium.

Input − output = dm

dt
=
d(m−ms)

dt
=
dM

dt
,

or M =
∫
(input − output) dt.

Price change ∝
∫
(supply rate − demand rate) dt, or

P = −Km
∫
(supply rate − demand rate) dt,
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where Km is the proportionality constant; supply and demand rate is the supply and demand per

unit time respectively. A negative sign indicates that when (supply rate − demand rate) is positive,
then P is negative (i.e. price decreases). The above equation can be re-arranged as follows:

∫
(supply rate − demand rate) dt = − P

Km
, or

∫
(wi − w0) dt = −

P

Km
, (8)

wi = supply rate,

w0 = demand rate,

Km = dimensional constant.

Let at time t = 0, supply rate = demand rate (market is in a steady state equilibrium), then eq.

(8) can be written as

∫
(wis − w0s) dt = 0. (9)

The subscript s indicates the steady state equilibrium and P = 0 in steady state. Subtracting eq.

(9) from eq. (8), we get:

∫
(wi − wis) dt−

∫
(w0 − w0s) dt = −

P

Km
, or

∫
(Wi −W0) dt = −

P

Km
, (10)

where wi − wis =Wi = change in supply rate,

w0 − w0s =W0 = change in demand rate.

P, Wi and W0 are deviation variables, which indicate deviation from the steady state equilibrium.

The initial values of the deviation variables are zero. Eq. (10) may also be written as follows:

P = −Km
∫
Wdt = −KmM, (11)

where W = Wi −W0. If P gets a jump as a result of some factor other than an inventory change,

such as imposition of a tax on consumer, that is considered as a separate input and can be added

to eq. (11) as follows:
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P = −Km
∫
Wdt+B = −KmM +B. (11a)

Similarly, there can be an exogenous shock in inventory other than the price feedback.

2.2 Producer

The producer maximizes the present discounted value of the future stream of profits, and his present

value at time zero is as follows:

V (0) =
∞∫
0

[αp(t)F (K (t) , L (t))− w(t)L (t)−<(t)I(t)] e−rtdt, (12)

α is the fraction of the market price the producer charges to the middleman. r denotes the discount

rate. L(t) (labor) and I(t) (level of investment) are the control variables andK(t) the state variable.

The maximization problem can be written as

Max
{L(t),I(t)}

V (0) =
∞∫
0

[αp(t)F (K (t) , L (t))− w(t)L (t)−<(t)I(t)] e−rtdt,

subject to the constraints that
.

K(t) = I(t)− δK(t) (state equation, describing how the state variable changes with time),
K(0) = K0 (initial condition),

K(t) ≥ 0 (non-negativity constraint on state variable),
K(∞) free (terminal condition).
The current-value Hamiltonian for this case is

H̃ = αp(t)F (K (t) , L (t))− w(t)L (t)−<(t)I(t) + µ(t) [I(t)− δK(t)] . (13)

Now the maximizing conditions are as follows:

(i) L∗(t) and I∗(t) maximize H̃ for all t: ∂H̃
∂L
= 0 and ∂H̃

∂I
= 0,

(ii)
.
µ− rµ = −∂H̃

∂K
,

(iii)
.

K
∗
= ∂H̃

∂µ
(this just gives back the state equation),

(iv) lim
t→∞

µ(t)K(t)e−rt = 0 (the transversality condition).

The first two conditions are as follows:

∂H̃

∂L
= 0, (14)

∂H̃

∂I
= 0, (15)

and
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.
µ− rµ = −∂H̃

∂K
. (16)

In order to satisfy the condition of dynamic optimization after the price increase, the producer

must increase the production level (see appendix). Let p = market price, c = a reference price

(such as the retail price which includes the production cost, profit of producer and profit of the

middleman). c is a parameter which may vary with time or be kept fixed for a limited time period,

e.g. the cost of a product may vary over time or can also remain constant for a while. It is the

reference point with respect to which the variation in p is considered by the producer for decision

making.

Wm = Change in production due to change in price,

(p− c) acts as an incentive for the producer to produce more. We can write:

Wm ∝ α(p− c), or

Wm = Ks(p− c). (17)

When the market is in equilibrium, then Wm = 0, or

0 = Ks(ps − cs). (18)

Ks is the proportionality constant. ps and cs are the steady state equilibrium values. Subtracting

eq. (18) from eq. (17), we get:

Wm = Ks [(p− ps)− (c− cs)] = −Ks (C − P ) = −Ksε, (19)

where Wm, C and P are deviation variables.

2.3 Consumer

The consumer maximizes the present discounted value of the future stream of utilities, and his

present value at time zero is as follows:

V (0) =
∞∫
0

U(x(t))e−ρtdt, (20)

ρ denotes the discount rate and x(t) is the control variable. The maximization problem can be

written as

12



Max
{x(t)}

V (0) =
∞∫
0

U(x(t))e−ρtdt,

subject to the constraints that
.
a(t) = R(t)a(t) + w(t) − p(t)x(t) (state equation, describing how the state variable changes with
time). a(t) is asset holdings (a state variable) and w(t) and R(t) are exogenous time path of wages

and return on assets.

a(0) = as (initial condition),

a(t) ≥ 0 (non-negativity constraint on state variable),
a(∞) free (terminal condition).
The current-value Hamiltonian for this case is

H̃ = U(x(t)) + µ(t) [R (t) a (t) + w (t)− p (t)x (t)] . (21)

Now the maximizing conditions are as follows:

(i) x∗(t) maximizes H̃ for all t: ∂H̃
∂x
= 0,

(ii)
.
µ− ρµ = −∂H̃

∂a
,

(iii)
.
a
∗
= ∂H̃

∂µ
(this just gives back the state equation),

(iv) lim
t→∞

µ(t)a(t)e−ρt = 0 (the transversality condition).

The first two conditions are as follows:

∂H̃

∂x
=

.

U(x (t))− µ(t)p(t) = 0, (22)

and

.
µ− ρµ = −∂H̃

∂a
= −µ(t)R(t). (23)

If the price of good x goes up, the consumer faces (at the previous level of consumption)

∂H̃

∂x
=

.

U(x (t))− µ(t)p(t) < 0.

Therefore in order to satisfy the condition of dynamic optimization after the price increase, the

consumer must decrease the consumption of good x. Let the change in demand be proportional to

the change in price, i.e. P . Then we can write:

Change in demand ∝ P, or

Wd = −KdP. (24)

Wd is the change in demand due to P ; when P is positive Wd is negative.

13



3 Solution of the Model with a Quantity Tax

The solution of the model can be written as follows:

dP (t)

dt
+Km(Ks +Kd)P (t) = KmKsC(t). (25)

If C(t) = T , i.e. the government imposes a per unit tax on producer at t = 0, then the above

differential equation becomes as follows:

dP (t)

dt
+Km(Ks +Kd)P (t) = KmKsT. (26)

The Routh—Hurwitz stability criterion (which provides a necessary and sufficient condition for

stability of a linear dynamical system) for the stability of the above differential equation isKm(Ks+

Kd) > 0, which holds as Km, Ks and Kd are all defined to be positive. This ensures that, away

from a given initial equilibrium, every adjustment mechanism will lead to another equilibrium. Now

let’s look at the dynamics of the price if the quantity tax is imposed on the buyer instead. The

market price is the buyer’s price as before, however, the producer will be taking into account the

price before tax for his/ her production decisions. Therefore,

ε(t) = T − P (t). (27)

This implies that

dP (t)

dt
+Km(Ks +Kd)P (t) = KmKsT,

which is the same as eq. (26). The solution of the above differential equation with initial conditions

of a buyer’s tax is as follows: The solution has the form

P (t) = C1 + C2e
−[Km(Ks+Kd)]t. (28)

Substituting the values of C1 and C2 in eq. (28), we get:

P (t) =
KsT

Ks +Kd
+

KdT

Ks +Kd
e−[Km(Ks+Kd)]t. (29)

When t = 0, P (0) = T (the initial condition), and when t = ∞, P (∞) = KsT
Ks+Kd

(the final steady

state equilibrium value). In the final equilibrium, the quantity demanded must equal the quantity

supplied, which holds (see appendix).
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4 An Optimal Quantity Tax Path

The efficiency loss as a result of a tax, generally mentioned in the economics literature is the dead

weight loss as a result of comparisons of the pre and post tax market equilibriums. However, the

dynamic picture shows that there is some efficiency loss on the dynamic adjustment path to the

new equilibrium as well after the tax. After the imposition of the tax, the price jumps to a price

equal to the previous equilibrium price plus the tax. The price then adjusts over time to bring the

new equilibrium price which is higher than the previous equilibrium price and less than the price

at the time the tax was imposed depending on the elasticity of demand and supply schedules. A

pile up of inventory indicates a higher supply than demand, and a depletion of inventory occurs

when demand is higher than the supply in a given time period. When the demand and supply

again become equal, the new equilibrium has arrived. If the demand and supply are different, the

output and/ or consumption is being lost at that point in time. Furthermore, some production is

being wasted in comparison with that in the previous equilibrium. Therefore if we sum up either

the consumption lost or the production lost (which are both equivalent), we get the total efficiency

loss in terms of quantity, which is as follows:

EL = −
∞∫

0

Wd(t)dt =M(t)−
∞∫

0

Wm(t)dt. (30)

The efficiency gain per unit consumption/ production in terms of value is as follows:

Efficiency gain = (willingness to pay − consumer price) + (tax ) +
(producer price − factors of production cost) + (factors of production cost − natural resources).
= willingness to pay − natural resources.
' willingness to pay.

Based upon the above concept, the efficiency loss in terms of value is as follows:

EL = −
∞∫

0

[
1

2
{new price(t)− old equilibrium price(t)}+ {old equilibrium price(t)}

]
Wd(t)dt

= −
∞∫

0

[
1

2
P (t) + ps

]
Wd(t)dt.

The above expression can be written as
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EL =

∞∫

0

KdP (t)

[
1

2
P (t) + ps

]
dt, (30a)

where ps is the initial equilibrium price. The efficiency loss in terms of value is minimized when the

efficiency loss in terms of quantity gets minimized. As the problem of minimizing the quantity loss

is more tractable as compared to that of minimizing the value efficiency loss, therefore we choose

to minimize the quantity efficiency loss to get the optimal quantity tax.

The initial value of −Wd(t), i.e. −Wd(0) = KdT (the decrease in demand because of tax at t = 0

from eq. (56)). Please look at figure 3, where the consumption difference jumps to KdT , i.e. the

decrease in demand because of tax at t = 0. The demand does not equal the supply any longer,

and the market forces come into play. The demand along with the price adjusts over time and

the new equilibrium arrives, i.e. Wd(∞). The shaded area is the efficiency loss (the amount of
consumption lost) during the adjustment process. The area between the lines −Wd(t) = 0, and

−Wd(t) = −Wd(∞) is the efficiency loss resulting from a difference in pre and post tax market

equilibriums. The expression for the tax revenue is as follows:

TR = T [wid(0)−KdP (t)] . (31)

If we want to minimize the efficiency loss subject to the constraint that tax revenue generated is

greater than or equal to G in a given time period, our problem is as follows:

min
T
EL s.t. TR ≥ G.

The choice variable is the tax rate, and the constraint is binding. The Lagrangian for the above

problem is as follows:

L = −
∞∫

0

Wd(t)dt+ λ [G− T [wid(0)−KdP (t)]]

=

∞∫

0

KdP (t)dt+ λ [G− T [wid(0)−KdP (t)]]

=

∞∫

0

Kd

[
KsT

Ks +Kd
+

KdT

Ks +Kd
e−[Km(Ks+Kd)]t

]
dt

+ λ

[
G− T

[
wid(0)−Kd

{
KsT

Ks +Kd
+

KdT

Ks +Kd
e−[Km(Ks+Kd)]t

}]]
.

Taking the first order condition with respect to T , we get:
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T =

λwid(0)−
∞∫

0

Kd

[
Ks

Ks+Kd
+ Kd

Ks+Kd
e−[Km(Ks+Kd)]t

]
dt

2λKd

[
Ks

Ks+Kd
+ Kd

Ks+Kd
e−[Km(Ks+Kd)]t

] . (32)

Taking the first order condition with respect to λ, we get:

G− T
[
wid(0)−Kd

{
KsT

Ks +Kd
+

KdT

Ks +Kd
e−[Km(Ks+Kd)]t

}]
= 0. (33)

Eq. (32) can also be written as

T =
λwid(0)− J

2λQ
. (34)

Substituting the value of λ into eq. (34), we get:

T =
wid(0)−

√
w2id(0)− 4QG
2Q

. (35)

A negative optimal tax is an optimal subsidy. The second order condition for minimization has

been checked (see appendix). Suppose that the government wants to generate a revenue of $1000

by imposing tax on a certain good. The initial equilibrium quantity of that good is 100, and the

value of each one of Km, Ks and Kd is equal to one. Substituting these values in eq. (35) yields

T =
100−

√
10000− 4000
2

= 11.27,

where Q = 0.5+0.5e−2t, and at t = 0, Q = 1. The tax revenue generated is TR = T [wid(0)−QT ] =
1000. Therefore optimal quantity taxation is that government should impose a tax rate of $11.27

per unit quantity.

5 Conclusion

When a government imposes a quantity/commodity tax on consumer, price jumps to the pre-tax

equilibrium price plus the amount of tax. The demand and supply adjust over time to bring new

post-tax equilibrium. As a result of a tax, there are efficiency losses during the adjustment process

as well as the new post-tax equilibrium as compared to the pre-tax efficient equilibrium. It is

important to take into consideration efficiency losses during the adjustment process as well while

deriving an optimal tax rate. Eq. (35) gives an optimal quantity tax which satisfies the tax revenue

constraint at any given point in time considering the adjustment of demand and supply over time.

The expression is a function of slopes of demand, supply and inventory curves, and initial pre-tax

equilibrium quantity. The expression is much more complex as compared to optimal tax expression

of Ramsey, where he takes into account efficiency losses just in final equilibrium.
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6 Future Research Prospects

Potential future research areas are as follows:

Dynamic welfare analysis: A complete dynamic welfare analysis against various governmental

policies, such as value added tax, income tax, toll tax, corporate tax, environmental tax, etc.

can be carried out and the optimal governmental policy instruments can be derived following the

methodology developed in this paper.

7 Appendix:

7.1 Dynamic Problem of the Middleman

In a dynamic setting, the middleman maximizes the present discounted value of the future stream
of profits, and his present value at time zero is as follows:

V (0) =
∞∫
0

[pq(p)− ς(m(p, e))] e−rtdt, (36)

r denotes the discount rate. p(t) is the control variable and m(t) the state variable. The maximiza-
tion problem can be written as

Max
{p(t)}

V (0) =
∞∫
0

[pq(p)− ς(m(p, e))] e−rtdt,

subject to the constraints that
.
m(t) =

.
m1(p(t), e(p(t), z))

.
p(t) +

.
m2(p(t), e(p(t), z))

.
e1(p(t), z)

.
p(t) (state equation, describing how

the state variable changes with time; z are exogenous factors),
m(0) = ms (initial condition),
m(t) ≥ 0 (non-negativity constraint on state variable),
m(∞) free (terminal condition).
The current-value Hamiltonian for this case is

H̃ = p(t)q(p(t))− ς(m(p(t), e(p(t), z))) + µ(t) .p(t)
[ .
m1(p(t), e(p(t), z)) +

.
m2(p(t), e(p(t), z))∗

.
e1(p(t), z)

]
.

(37)
Now the maximizing conditions are as follows:

(i) p∗(t) maximizes H̃ for all t: ∂H̃
∂p
= 0,

(ii)
.
µ− rµ = −∂H̃

∂m
,

(iii)
.
m
∗
= ∂H̃

∂µ
(this just gives back the state equation),

(iv) lim
t→∞

µ(t)m(t)e−rt = 0 (the transversality condition).

The first two conditions are as follows:
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∂H̃

∂p
= q(p(t)) + p(t)

.
q(p(t))− .

ς(m(p(t), e(p(t), z)))

{ .
m1(p(t), e(p(t), z)) +

.
m2(p(t), e(p(t), z))∗

.
e1(p(t), z)

}

+ µ(t)
.
p(t) ∗




..
m11(p(t), e(p(t), z)) +

..
m12(p(t), e(p(t), z))

.
e1(p(t), z)+

..
m21(p(t), e(p(t), z))

.
e1(p(t), z) +

..
m22(p(t), e(p(t), z))

.
e
2
1(p(t), z)+

.
m2(p(t), e(p(t), z))

..
e11(p(t), z)




= 0, (38)

and

.
µ− rµ = −∂H̃

∂m
=

.
ς(m(p(t), e(p(t), z))). (39)

When the market is in equilibrium,
.
p(t) = 0, and the expression ∂H̃

∂p
boils down to the following:

q(p(t)) + p(t)
.
q(p(t))− .

ς(m(p(t), e(p(t), z)))

{ .
m1(p(t), e(p(t), z)) +

.
m2(p(t), e(p(t), z))∗

.
e1(p(t), z)

}

= 0,

p(t)
.
q(p(t)) + q(p(t)) =

.
ς(m(p(t), e(p(t), z)))

{ .
m1(p(t), e(p(t), z)) +

.
m2(p(t), e(p(t), z))∗

.
e1(p(t), z)

}
,

p(t)

[
1 +

1

demand elasticity

]
=

.
ς(m(p(t), e(p(t), z)))

{ .
m1(p(t), e(p(t), z))

.
q(p(t))

+

.
m2(p(t), e(p(t), z))

.
e1(p(t), z)

.
q(p(t))

}
,

suggesting that the price equals the marginal cost (the right hand side of the above expression is
the marginal cost in a dynamic setting, which is different from that in a static problem on account
of the fact that in a dynamic setting the middleman also takes into account the impact of price
chosen on his purchase price from the producer) when the demand is infinitely elastic. Now suppose
that as a result of a supply shock, if the middleman wants to hold an extra unit of inventory, then
the marginal cost of holding an extra unit is higher because the term

.
ς(m(p(t), e(p(t), z))) is higher

at the previous price at that point in time. The term in parentheses in the expression of the

marginal cost, i.e.
.
m1(p(t),e(p(t),z))

.
q(p(t))

+
.
m2(p(t),e(p(t),z))

.
e1(p(t),z)

.
q(p(t))

is a function of price and is the same at

the previous price. This implies that on the previous price, now the middleman faces

∂H̃

∂p
= q(p(t)) + p(t)

.
q(p(t))− .

ς(m(p(t), e(p(t), z)))

{ .
m1(p(t), e(p(t), z)) +

.
m2(p(t), e(p(t), z))∗

.
e1(p(t), z)

}

+ µ(t)
.
p(t) ∗




..
m11(p(t), e(p(t), z)) +

.
m12(p(t), e(p(t), z))

.
e1(p(t), z)+

.
m21(p(t), e(p(t), z))

.
e1(p(t), z) +

.
m22(p(t), e(p(t), z))

.
e
2
1(p(t), z)+

.
m2(p(t), e(p(t), z))

..
e11(p(t), z)




< 0.
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Therefore in order to satisfy the condition of dynamic optimization, the middleman must decrease
the price for an increase in inventory. This implies a negative relationship between price and
inventory. The concept of inventory unifies the market supply and demand. If the supply and
demand rates are equal, the market is in a steady state equilibrium. If a difference of finite
magnitude is created between the supply and demand rates and the consumer and the producer
do not react to a price change induced by a difference in the supply and demand rates, the price
will continue changing until the system saturates. This behavior can be depicted by the following
formulation:

Price change ∝ change in market inventory.
P = price change.

M = m−ms = change in inventory in the market,

m = inventory at time t,

ms = inventory in steady state equilibrium.

Input − output = dm

dt
=
d(m−ms)

dt
=
dM

dt
,

or M =
∫
(input − output) dt.

Price change ∝
∫
(supply rate − demand rate) dt, or

P = −Km
∫
(supply rate − demand rate) dt,

whereKm is the proportionality constant. A negative sign indicates that when (supply rate − demand rate)
is positive, then P is negative (i.e. price decreases). The above equation can be re-arranged as
follows:

∫
(supply rate − demand rate) dt = − P

Km
, or

∫
(wi − w0) dt = −

P

Km
, (40)

wi = supply rate,

w0 = demand rate,

Km = dimensional constant.

Let at time t = 0, supply rate = demand rate (market is in a steady state equilibrium), then eq.
(40) can be written as

∫
(wis − w0s) dt = 0. (41)

The subscript s indicates the steady state equilibrium and P = 0 in steady state. Subtracting eq.
(41) from eq. (40), we get:

∫
(wi − wis) dt−

∫
(w0 − w0s) dt = −

P

Km
, or
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∫
(Wi −W0) dt = −

P

Km
, (42)

where wi − wis =Wi = change in supply rate,

w0 − w0s =W0 = change in demand rate.

P, Wi and W0 are deviation variables, which indicate deviation from the steady state equilibrium.
The initial values of the deviation variables are zero. Eq. (42) may also be written as follows:

P = −Km
∫
Wdt = −KmM, (43)

where W = Wi −W0. If P gets a jump as a result of some factor other than an inventory change,
such as imposition of a tax on consumer, that is considered as a separate input and can be added
to eq. (43) as follows:

P = −Km
∫
Wdt+B = −KmM +B. (43a)

Similarly, there can be an exogenous shock in inventory other than the price feedback.

7.2 Producer

The producer maximizes the present discounted value of the future stream of profits, and his present
value at time zero is as follows:

V (0) =
∞∫
0

[αp(t)F (K (t) , L (t))− w(t)L (t)−<(t)I(t)] e−rtdt, (44)

α is the fraction of the market price the producer charges to the middleman. r denotes the discount
rate. L(t) (labor) and I(t) (level of investment) are the control variables andK(t) the state variable.
The maximization problem can be written as

Max
{L(t),I(t)}

V (0) =
∞∫
0

[αp(t)F (K (t) , L (t))− w(t)L (t)−<(t)I(t)] e−rtdt,

subject to the constraints that
.

K(t) = I(t)− δK(t) (state equation, describing how the state variable changes with time),
K(0) = K0 (initial condition),
K(t) ≥ 0 (non-negativity constraint on state variable),
K(∞) free (terminal condition).
The current-value Hamiltonian for this case is

H̃ = αp(t)F (K (t) , L (t))− w(t)L (t)−<(t)I(t) + µ(t) [I(t)− δK(t)] . (45)

Now the maximizing conditions are as follows:

(i) L∗(t) and I∗(t) maximize H̃ for all t: ∂H̃
∂L
= 0 and ∂H̃

∂I
= 0,

(ii)
.
µ− rµ = −∂H̃

∂K
,
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(iii)
.

K
∗
= ∂H̃

∂µ
(this just gives back the state equation),

(iv) lim
t→∞

µ(t)K(t)e−rt = 0 (the transversality condition).

The first two conditions are as follows:

∂H̃

∂L
= αp(t)

.

F2 (K (t) , L (t))− w(t) = 0, (46)

∂H̃

∂I
= −<(t) + µ(t) = 0, (47)

and

.
µ− rµ = −∂H̃

∂K
= −

[
αp(t)

.

F1 (K (t) , L (t))− δµ(t)
]
. (48)

Substituting the value of
.
µ and µ from eq. (47) into eq. (48) yields

αp(t)
.

F1 (K (t) , L (t))− (r + δ)<(t) +
.

<(t) = 0.
If the price, i.e. p(t) goes up, (at the previous level of investment and labor) the producer faces

αp(t)
.

F2 (K (t) , L (t))− w(t) > 0,
αp(t)

.

F1 (K (t) , L (t))− (r + δ)<(t) +
.

<(t) > 0.

Therefore in order to satisfy the condition of dynamic optimization after the price increase, the
producer must increase the production level. Let p = market price, c = a reference price (such as
the retail price which includes the production cost, profit of producer and profit of the middleman).
c is a parameter which may vary with time or be kept fixed for a limited time period, e.g. the cost
of a product may vary over time or can also remain constant for a while. It is the reference point
with respect to which the variation in p is considered by the producer for decision making.

Wm = Change in production due to change in price,

(p− c) acts as an incentive for the producer to produce more. We can write:

Wm ∝ α(p− c), or

Wm = Ks(p− c). (49)

When the market is in equilibrium, then Wm = 0, or

0 = Ks(ps − cs). (50)

Ks is the proportionality constant. ps and cs are the steady state equilibrium values. Subtracting
eq. (50) from eq. (49), we get:

Wm = Ks [(p− ps)− (c− cs)] = −Ks (C − P ) = −Ksε, (51)

where Wm, C and P are deviation variables.
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7.3 Consumer

The consumer maximizes the present discounted value of the future stream of utilities, and his
present value at time zero is as follows:

V (0) =
∞∫
0

U(x(t))e−ρtdt, (52)

ρ denotes the discount rate and x(t) is the control variable. The maximization problem can be
written as

Max
{x(t)}

V (0) =
∞∫
0

U(x(t))e−ρtdt,

subject to the constraints that
.
a(t) = R(t)a(t) + w(t) − p(t)x(t) (state equation, describing how the state variable changes with
time). a(t) is asset holdings (a state variable) and w(t) and R(t) are exogenous time path of wages
and return on assets.
a(0) = as (initial condition),
a(t) ≥ 0 (non-negativity constraint on state variable),
a(∞) free (terminal condition).
The current-value Hamiltonian for this case is

H̃ = U(x(t)) + µ(t) [R (t) a (t) + w (t)− p (t)x (t)] . (53)

Now the maximizing conditions are as follows:

(i) x∗(t) maximizes H̃ for all t: ∂H̃
∂x
= 0,

(ii)
.
µ− ρµ = −∂H̃

∂a
,

(iii)
.
a
∗
= ∂H̃

∂µ
(this just gives back the state equation),

(iv) lim
t→∞

µ(t)a(t)e−ρt = 0 (the transversality condition).

The first two conditions are as follows:

∂H̃

∂x
=

.

U(x (t))− µ(t)p(t) = 0, (54)

and

.
µ− ρµ = −∂H̃

∂a
= −µ(t)R(t). (55)

If the price of good x goes up, the consumer faces (at the previous level of consumption)

∂H̃

∂x
=

.

U(x (t))− µ(t)p(t) < 0.

Therefore in order to satisfy the condition of dynamic optimization after the price increase, the
consumer must decrease the consumption of good x. Let the change in demand be proportional to
the change in price, i.e. P . Then we can write:
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Change in demand ∝ P, or

Wd = −KdP. (56)

Wd is the change in demand due to P ; when P is positive Wd is negative.

7.4 Solution of the Model with a Quantity Tax

From eqs. (11a), (19) and (24) we have the following expressions:

dP (t)

dt
= −KmW (t),

Wm(t) = −Ksε(t),
ε(t) = C(t)− P (t),

Wd(t) = −KdP (t),

and

W (t) =Wm(t)−Wd(t),

if there is no exogenous change in supply and demand. From the above equations, we can write

dP (t)

dt
= −Km [Wm(t)−Wd(t)]

= −Km [−Ksε(t) +KdP (t)]
= −Km [−KsC(t) + (Ks +Kd)P (t)] .

The above expression can be rearranged as follows:

dP (t)

dt
+Km(Ks +Kd)P (t) = KmKsC(t). (57)

If C(t) = T , i.e. the government imposes a per unit tax on producer at t = 0, then the above
differential equation becomes as follows:

dP (t)

dt
+Km(Ks +Kd)P (t) = KmKsT. (58)

Now let’s look at the dynamics of the price if the quantity tax is imposed on the buyer instead. We
start from the same expressions as we did for a producer’s tax, i.e.

dP (t)

dt
= −Km [Wm(t)−Wd(t)] ,

Wm(t) = −Ksε(t),
Wd(t) = −KdP (t).
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The market price is the buyer’s price as before, however, the producer will be taking into account
the price before tax for his/her production decisions. Therefore,

ε(t) = T − P (t). (59)

This implies that

dP (t)

dt
= −Km [Ks {P (t)− T}+KdP (t)] ,

dP (t)

dt
+Km(Ks +Kd)P (t) = KmKsT,

which is the same as eq. (58). In order to solve the above differential equation with initial conditions
of a buyer’s tax, we proceed as follows:
The characteristic function of the differential equation is as follows:

x+Km(Ks +Kd) = 0.

The characteristic function has a single root given by:

x = −Km(Ks +Kd).
Thus the complementary solution is

Pc(t) = C2e
−[Km(Ks+Kd)]t.

The particular solution has the form

Pp(t) = C1.

Thus the solution has the form

P (t) = C1 + C2e
−[Km(Ks+Kd)]t. (60)

The constant C1 is determined by substitution into the differential equation as follows:

−Km(Ks +Kd)C2e−[Km(Ks+Kd)]t +Km(Ks +Kd)C1 +Km(Ks +Kd)C2e
−[Km(Ks+Kd)]t = KmKsT,

C1 =
KsT

Ks +Kd
.

C2 is determined by the initial condition as follows:
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P (0) =
KsT

Ks +Kd
+ C2 = T,

C2 = T −
KsT

Ks +Kd

=
KsT +KdT −KsT

Ks +Kd

=
KdT

Ks +Kd
.

Substituting the values of C1 and C2 in eq. (60), we get:

P (t) =
KsT

Ks +Kd
+

KdT

Ks +Kd
e−[Km(Ks+Kd)]t. (61)

When t = 0, P (0) = T (the initial condition), and when t = ∞, P (∞) = KsT
Ks+Kd

(the final steady
state equilibrium value). In the final equilibrium, the quantity demanded must equal the quantity
supplied. In order to verify that this holds, we proceed as follows: From eq. (56), the change in
demand due to a change in price after the tax is as follows:

Wd(t) = −KdP (t),
or wnd(t)− wid(0) = −KdP (t),

where wid(0) is the initial demand and wnd(t) is the new demand after tax, because Wd(t) is a
deviation variable, i.e. deviation from the initial equilibrium value. Similarly from eq. (51), for the
supply

Wm(t) = −Ksε(t),
wnm(t)− wim(0) = −Ks [T − P (t)] .

In the final equilibrium

wnm(∞) = wnd(∞), or
wim(0)−Ks [T − P (∞)] = wid(0)−KdP (∞),

which holds as in the initial equilibrium, the quantity demanded equals the quantity supplied, i.e.

wim(0) = wid(0).
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7.5 An Optimal Quantity Tax Path

The efficiency loss as a result of a tax, generally mentioned in the economics literature is the dead
weight loss as a result of comparisons of the pre and post tax market equilibriums. However, the
dynamic picture shows that there is some efficiency loss on the dynamic adjustment path to the
new equilibrium as well after the tax. After the imposition of the tax, the price jumps to a price
equal to the previous equilibrium price plus the tax. The price then adjusts over time to bring the
new equilibrium price which is higher than the previous equilibrium price and less than the price
at the time the tax was imposed depending on the elasticity of demand and supply schedules. A
pile up of inventory indicates a higher supply than demand, and a depletion of inventory occurs
when demand is higher than the supply in a given time period. When the demand and supply
again become equal, the new equilibrium has arrived. If the demand and supply are different, the
output and/ or consumption is being lost at that point in time. Furthermore, some production is
being wasted in comparison with that in the previous equilibrium. Therefore if we sum up either
the consumption lost or the production lost (which are both equivalent), we get the total efficiency
loss in terms of quantity, which is as follows:

EL = −
∞∫

0

Wd(t)dt =M(t)−
∞∫

0

Wm(t)dt. (62)

The efficiency gain per unit consumption/ production in terms of value is as follows:

Efficiency gain = (willingness to pay − consumer price) + (tax ) +
(producer price − factors of production cost) + (factors of production cost − natural resources).
= willingness to pay − natural resources.
' willingness to pay.

Based upon the above concept, the efficiency loss in terms of value is as follows:

EL = −
∞∫

0

[
1

2
{new price(t)− old equilibrium price(t)}+ {old equilibrium price(t)}

]
Wd(t)dt

= −
∞∫

0

[
1

2
P (t) + ps

]
Wd(t)dt.

The above expression can be written as

EL =

∞∫

0

KdP (t)

[
1

2
P (t) + ps

]
dt, (62a)

where ps is the initial equilibrium price. The efficiency loss in terms of value is minimized when the
efficiency loss in terms of quantity gets minimized. As the problem of minimizing the quantity loss
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is more tractable as compared to that of minimizing the value efficiency loss, therefore we choose
to minimize the quantity efficiency loss to get the optimal quantity tax.
The initial value of −Wd(t), i.e. −Wd(0) = KdT (the decrease in demand because of tax at t = 0
from eq. (56)). Please look at figure 3, where the consumption difference jumps to KdT , i.e. the
decrease in demand because of tax at t = 0. The demand does not equal the supply any longer,
and the market forces come into play. The demand along with the price adjusts over time and
the new equilibrium arrives, i.e. Wd(∞). The shaded area is the efficiency loss (the amount of
consumption lost) during the adjustment process. The area between the lines −Wd(t) = 0, and
−Wd(t) = −Wd(∞) is the efficiency loss resulting from a difference in pre and post tax market
equilibriums. From eq. (56), the change in demand due to a change in price after the tax is as
follows:

Wd(t) = −KdP (t),
or wnd(t)− wid(0) = −KdP (t),

where wid(0) is the initial demand and wnd(t) is the new demand after tax, because Wd(t) is a
deviation variable, i.e. deviation from the initial equilibrium value. Therefore the expression for
the tax revenue is as follows:

TR = T [wid(0)−KdP (t)] . (63)

If we want to minimize the efficiency loss subject to the constraint that tax revenue generated is
greater than or equal to G in a given time period, our problem is as follows:

min
T
EL s.t. TR ≥ G.

The choice variable is the tax rate, and the constraint is binding. The Lagrangian for the above
problem is as follows:

L = −
∞∫

0

Wd(t)dt+ λ [G− T [wid(0)−KdP (t)]]

=

∞∫

0

KdP (t)dt+ λ [G− T [wid(0)−KdP (t)]]

=

∞∫

0

Kd

[
KsT

Ks +Kd
+

KdT

Ks +Kd
e−[Km(Ks+Kd)]t

]
dt

+ λ

[
G− T

[
wid(0)−Kd

{
KsT

Ks +Kd
+

KdT

Ks +Kd
e−[Km(Ks+Kd)]t

}]]
.

Taking the first order condition with respect to T , we get:
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∞∫

0

Kd

[
Ks

Ks +Kd
+

Kd

Ks +Kd
e−[Km(Ks+Kd)]t

]
dt

− λ
[
wid(0)− TKd

{
Ks

Ks +Kd
+

Kd

Ks +Kd
e−[Km(Ks+Kd)]t

}]

+λTKd

[
Ks

Ks +Kd
+

Kd

Ks +Kd
e−[Km(Ks+Kd)]t

]
= 0.

This implies that

∞∫

0

Kd

[
Ks

Ks +Kd
+

Kd

Ks +Kd
e−[Km(Ks+Kd)]t

]
dt

+ 2λTKd

[
Ks

Ks +Kd
+

Kd

Ks +Kd
e−[Km(Ks+Kd)]t

]

= λwid(0),

or

T =

λwid(0)−
∞∫

0

Kd

[
Ks

Ks+Kd
+ Kd

Ks+Kd
e−[Km(Ks+Kd)]t

]
dt

2λKd

[
Ks

Ks+Kd
+ Kd

Ks+Kd
e−[Km(Ks+Kd)]t

] . (64)

Taking the first order condition with respect to λ, we get:

G− T
[
wid(0)−Kd

{
KsT

Ks +Kd
+

KdT

Ks +Kd
e−[Km(Ks+Kd)]t

}]
= 0. (65)

Substituting the value of T from eq. (64) into (65), we get:
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G = wid(0).

λwid(0)−
∞∫

0

Kd

[
Ks

Ks+Kd
+ Kd

Ks+Kd
e−[Km(Ks+Kd)]t

]
dt

2λKd

[
Ks

Ks+Kd
+ Kd

Ks+Kd
e−[Km(Ks+Kd)]t

]

−Kd
{

Ks

Ks +Kd
+

Kd

Ks +Kd
e−[Km(Ks+Kd)]t

}

∗




λwid(0)−
∞∫

0

Kd

[
Ks

Ks+Kd
+ Kd

Ks+Kd
e−[Km(Ks+Kd)]t

]
dt

2λKd

[
Ks

Ks+Kd
+ Kd

Ks+Kd
e−[Km(Ks+Kd)]t

]




2

,

or 4λ2QG = 2λ2w2id(0)− 2λwid(0)J − λ2w2id(0)− J2 + 2λwid(0)J,

where Q = Kd

{
Ks

Ks +Kd
+

Kd

Ks +Kd
e−[Km(Ks+Kd)]t

}
,

J =

∞∫

0

Kd

[
Ks

Ks +Kd
+

Kd

Ks +Kd
e−[Km(Ks+Kd)]t

]
dt

=

∞∫

0

Qdt.

This implies that

{
w2id(0)− 4QG

}
λ2 − J2 = 0.

λ =
J√

w2id(0)− 4QG
.

Eq. (64) can also be written as

T =
λwid(0)− J

2λQ
. (66)

Substituting the value of λ into eq. (66), we get:

T (t) =

wid(0)J√
w2
id
(0)−4QG

− J
2QJ√

w2
id
(0)−4QG

,

T (t) =
wid(0)−

√
w2id(0)− 4QG
2Q

. (67)
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A negative optimal tax is an optimal subsidy. In order to check the second order condition for
minimization, we proceed as follows: The Lagrangian can be written as

L = JT + λ [G− T (wid(0)−QT )] .
The Bordered Hessian matrix of the Lagrange function is as follows:

BH =

[
0 wid(0)− 2QT

wid(0)− 2QT 2QJ√
w2
id
(0)−4QG

]
,

the determinant of which is negative as − (wid(0)− 2QT )2 < 0, which implies that the efficiency
loss is minimized.
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Nordhaus, W. D.: (1993), Rolling the ŚdiceŠ: an optimal transition path for controlling greenhouse
gases, Resource and Energy Economics 15(1), 27—50.

32



Pizer, W. A.: (2002), Combining price and quantity controls to mitigate global climate change,
Journal of public economics 85(3), 409—434.

Ramsey, F. P.: (1927), A contribution to the theory of taxation, The Economic Journal 37(145), 47—
61.

Saez, E.: (2002b), The desirability of commodity taxation under non-linear income taxation and
heterogeneous tastes, Journal of Public Economics 83(2), 217—230.

33



Figure 1: When is Linearity a Reasonable Assumption?
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Figure 2: Movement of Price with Inventory.
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Figure 3: Dynamic Efficiency Loss because of a Quantity Tax.

36


