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Abstract

This paper analyses a two-period model in which a consumer faces a future income risk but is

uncertain about its probability distribution. We derive three sets of su¢cient conditions under

which a consumer with generalised recursive smooth ambiguity (GRSA) preferences will save

more under ambiguity than in a deterministic environment. Our results show how precautionary

saving is jointly determined by attitudes toward atemporal risk, ambiguity and intertemporal

substitution. We also �nd a close connection between risk prudence under non-expected utility

and precautionary saving under GRSA preferences.
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1 Introduction

Precautionary saving refers to the tendency to save more due to the presence of risk or ambiguity.1

Since the early contributions of Leland (1968), Sandmo (1970) and Kimball (1990), there has been

an extensive literature that studies consumers� precautionary saving behaviour under pure risks.

Such behaviour has become known as risk prudence.2 By comparison, research on precautionary

saving under ambiguity is still in its burgeoning stage.3 The present study contributes to this

literature by o¤ering new insights into four fundamental questions: First, under what conditions

on preferences will a consumer facing an ambiguous risk (i.e., a random variable with an unknown

probability distribution) choose to save more than in a deterministic environment? For reasons

explained below, we refer to this type of saving behaviour as mixed prudence. Second, how does

ambiguity in itself a¤ect saving decisions? More speci�cally, will (or when will) the introduction

of ambiguity induce a consumer to save more than when she faces a pure risk? Such behaviour

is referred to as ambiguity prudence. Third, what is the relation (if any) among mixed prudence,

ambiguity prudence and risk prudence? Finally, what are the separate importance of risk attitudes,

ambiguity attitudes and preferences for intertemporal substitution in generating precautionary

saving under ambiguity?

To address these questions, we focus on the consumption-saving problem faced by a single

consumer in a two-period setup that is commonly used in the precautionary saving literature. The

consumer receives a random income in the second (or future) period, which is the only source

of risk and ambiguity. There is a single risk-free asset that can be used to smooth consumption

over time. Due to imperfect knowledge, the consumer is uncertain about the true probability

distribution of future income. Hence, she has to rely on her own subjective beliefs when making

the saving decision. As in Klibano¤ et al. (2005), these beliefs are captured by a set of plausible,

�rst-order probability distributions of future income, and a second-order probability distribution

which describes how likely that a given �rst-order distribution is the true one. At the centre of

our analysis are the assumptions on consumer preferences. Following Hayashi and Miao (2011)

1Risk (or pure risk) refers to random variables with a known probability distribution. Ambiguity arises when
there is insu¢cient kowledge to determine the probability distribution of the random variables in question. In this
study, we will use the terms �ambiguity� and �uncertainty� interchangeably.

2Baiardi et al. (2020) provide a selective survey of the theoretical literature on risk prudence. In particular, they
focus on studies that adopt a two-period model with a single expected-utility maximiser. A textbook treatment of
risk prudence can be found in Gollier (2001a, Chapters 16 and 20). There is also a separate but related literature
that studies precautionary saving behaviour in the Bewley-Aiyagari-Huggett model, which involves a longer planning
horizon, incomplete markets and general equilibrium analysis. We do not consider this type of model in this study.

3See for instance Osaki and Schlesinger (2014), Berger (2014), Baillon (2016), Peter (2019) and André et al.
(2021).
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and Ju and Miao (2012), we assume that the consumer has generalised recursive smooth ambiguity

(GRSA) preferences. One major advantage of GRSA preferences is that it allows for the separation

of attitudes toward risk, ambiguity and intertemporal substitution. Similar to the Selden/Kreps-

Porteus (SKP) utility function, atemporal risk preferences are represented by a von Neumann-

Morgenstern (vNM) utility function u (�), while preferences regarding intertemporal substitution

are represented by a time aggregator function. In addition to these, the GRSA preferences also

feature a second vNM utility function v (�) : This function is central to our results, hence it deserves

a more detailed explanation. When deciding how much to save in the presence of risk and/or

ambiguity, the consumer needs to form ex ante evaluation about future consumption or future

utility in order to assess the bene�ts of saving. In the current setting, these evaluations are

formed in the following manner: For any given level of saving and for any �rst-order distribution

of future income, the consumer can compute the certainty equivalent of future consumption using

u (�),4 and the expected future value of u (�) : Both measures are contingent on a particular �rst-

order distribution, hence they are ex ante random in the presence of ambiguity. The function

v (�) captures the consumer�s attitudes toward the randomness in the certainty equivalents. In

particular, a concave v (�) means that the consumer dislikes any mean-preserving spread in the

distribution of these certainty equivalents.5 On the other hand, the composite function � (�) �

v � u�1 (�) captures the consumer�s attitudes toward the uncertainty in the expected future value

of u (�) [Klibano¤ et al. (2005, Proposition 1)]. Following the convention in this literature, we refer

to a consumer with a concave � (�) as ambiguity-averse.

A second major advantage of GRSA preferences is that it admits several forms of preferences as

special cases, including expected-utility (EU) preferences, Selden/Kreps-Porteus (SKP) preferences

and the recursive smooth ambiguity preferences of Klibano¤ et al. (2009).6 Depending on the

speci�cation of the time aggregator function, GRSA preferences can be either time-separable or

non-time-separable. This generality makes it possible to unify and compare several groups of

precautionary saving models (both with and without ambiguity) under one single framework. This

in turn allows us to draw upon and extend the insights gained from the risk prudence literature.

We begin with a detailed analysis of mixed prudence using the time-separable version of GRSA

4This certainty equivalent is referred to as a second-order act in Klibano¤ et al. (2005, p.1857).
5Throughout this paper, all mentions regarding curvature (concave, convex), quantity comparison (more, less,

greater than, less than, positive, negative, etc.) and monotonicity (increasing, decreasing) should be understood as
weak inequalities. Similarly, �risk-averse� and �ambiguity-averse� have the same meaning as �non-risk-loving� and
�non-ambiguity-loving,� respectively. Strict inequalities will be stated explicitly.

6As mentioned in Hayashi and Miao (2011, p.425-426), the GRSA preferences also encompass the risk-sensitivity
model of Hansen and Sargent (2001) and the recursive multiple-prior model of Epstein and Schneider (2003) as
special cases. We do not consider these cases in this paper.
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preferences, which involves a per-period felicity function V (�) and a constant subjective discount

factor.7 The consumer�s willingness to substitute intertemporally is now captured by the curva-

ture of V (�) : Using the time-separable formulation, we are able to identify three di¤erent sets

of conditions under which optimal saving under ambiguity is higher than that in a deterministic

environment. These results are formally stated in Theorems 1-3. The �rst two are closely related

to the risk prudence results in Gollier (2001a, p.300-302) and Kimball and Weil (2009), hence a

quick review of these results is warranted. Both of them concern a single risk-averse consumer

with SKP preferences who faces a pure income risk in the future period. SKP preferences corre-

spond to the special case of GRSA preferences in which either the consumer is ambiguity-neutral

[i.e., u (�) and v (�) are identical up to a positive a¢ne transformation] or ambiguity is absent.

Risk prudence arises under two di¤erent sets of conditions. First, Gollier (2001a) shows that it

su¢ce if (i) the felicity function V (�) is more concave than the vNM utility function u (�) ; and

(ii) the marginal utility function u0 (�) is a convex function.8 Second, Kimball and Weil (2009,

Proposition 1) show that risk-prudent behaviour emerges if u (�) exhibits decreasing absolute risk

aversion (DARA), provided that the consumer�s future felicity is concave in the choice variable

(i.e., savings).9 Our Theorems 1 and 2 generalise these results to an environment in which both

ambiguity and ambiguity aversion matter for the saving problem.

Our �rst theorem states that a risk-averse and ambiguity-averse consumer is mixed-prudent

if two additional conditions are satis�ed: (i) V (�) is more concave than v (�) and (ii) both u0 (�)

and v0 (�) are convex functions. Our second theorem states that a risk-averse (but not necessarily

ambiguity-averse) consumer is mixed-prudent if both u (�) and v (�) exhibit DARA, provided that

the consumer�s future felicity is concave in savings.10 These results are best explained by starting

with two special cases. First, if the consumer is ambiguity-neutral (or if there is no ambiguity), then

optimal saving is una¤ected by the uncertainty regarding the true distribution of future income.

Thus, any precautionary savings (if exist) must be driven by risk alone. In this case, mixed

prudence is equivalent to risk prudence and our results coincide with those of Gollier (2001a) and

Kimball and Weil (2009). Second, if the consumer is risk-neutral or if the �rst-order distributions

7 In Section 4.2, we show that some of our results obtained under the time-separable version of GRSA preferences
can be easily extended to a non-time-separable version.

8 In the absence of ambiguity, condition (i) implies that the consumer has a preference for late resolution of
uncertainty, whereas condition (ii) implies that higher savings will create a larger gain in (expected) future utility
in a stochastic environment than in a deterministic one. If V (�) is a positive a¢ne transformation of u (�) ; then
Gollier�s result is identical to the risk prudence result of Kimball (1990).

9Both sets of conditions are summarised in Gollier (2001a, p.302, Proposition 78). The second set of conditions,
however, �rst appears in the 1992 working paper version of Kimball and Weil (2009). Hence, we attribute this to
Kimball and Weil (2009).
10Our Theorem 2 speci�es the conditions under which future felicity is concave in savings.
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of future income are all degenerate, then the consumer�s saving decision is only a¤ected by the

�rst moment of the income risk. But since the true distribution of this risk is unknown, its �rst

moment remains ex ante random. Any precautionary savings that emerge in this case is entirely

driven by ambiguity, i.e., ambiguity prudence. Most importantly, this type of ambiguity prudence

(that emerges under risk neutrality) can be characterised in the same way that Gollier (2001a) and

Kimball and Weil (2009) did for risk prudence, except with u (�) replaced by v (�). The intuition

is that a risk-neutral consumer with GRSA preferences who is subject to an ambiguous risk will

behave in exactly the same way as a risk-averse consumer with SKP preferences who faces a pure

risk. The main di¤erence is that the former�s risk preferences are captured by a linear vNM utility

function u (�), while the latter�s are captured by a concave function v (�) : Thus, according to our

�rst two theorems, a consumer is mixed-prudent in general if she is risk-prudent under these two

special cases.

More generally, the conditions in Theorem 1 have two e¤ects on the consumer�s saving decision:

The �rst one works as if it raises the consumer�s subjective discount factor, while the second one

ensures that an increase in savings will create a larger gain in (expected) future utility under

ambiguity than in a deterministic environment. Both contribute to a higher marginal bene�t of

saving under ambiguity, which encourages savings. The conditions in Theorem 2 have the same

e¤ect on the marginal bene�t of saving but work through a di¤erent mechanism. Speci�cally, this

result is obtained by comparing the certainty equivalent of future consumption under ambiguity

to the future consumption in a deterministic environment. The concavity of u (�) and v (�) imply

that the certainty equivalent is lower in level than its deterministic counterpart under any given

level of savings. The DARA assumptions imply that the same increase in savings will lead to a

larger increase in the certainty equivalent than in its deterministic counterpart. These together

contribute to a higher marginal bene�t of saving under ambiguity.

When comparing between Theorems 1 and 2, one major di¤erence is that ambiguity aversion

is not required in the second one. This shows that ambiguity aversion is not a necessary condition

for mixed prudence. As noted above, precautionary saving can arise under ambiguity even if the

consumer is risk-neutral. This means risk aversion, or any conditions on the higher-order derivative

of u (�) ; are not necessary for mixed prudence. Furthermore, the conditions in Theorems 1 and 2

are weaker than the convexity of �0 (�) [or a positive third-order derivative of � (�)] and decreasing

absolute ambiguity aversion (DAAA).11 Thus, neither of these properties is necessary for mixed

11Absolute ambiguity aversion A� (�) is de�ned in a similar fashion as absolute risk aversion, i.e., A� (x) �
��00 (x) =�0 (x) : The function � (�) is said to exhibit DAAA if A� (�) is a decreasing function.
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prudence. Our results show that precautionary saving behaviour under ambiguity is a complex

issue that cannot be easily determined by a single condition. Instead, it is determined by a

number of substitutable factors related to risk preferences, ambiguity preferences and attitudes

toward intertemporal substitution. Our results also highlight the often-overlooked importance of

v (�) in generating precautionary saving under ambiguity.

Our third theorem delves deeper into the conditions for ambiguity prudence and its relation

with mixed prudence. Although the two coincide under risk neutrality and degenerate �rst-order

probability distributions, they are not equivalent in more general cases. If the consumer is both

strictly risk-averse and strictly ambiguity-averse, then the conditions in Theorems 1 and 2 are in

general insu¢cient to ensure ambiguity prudence. To explain the situation more precisely, let s�A;

s�R and s
�
D denote, respectively, optimal savings under Ambiguity, pure Risk and Deterministic

future income. Risk prudence, ambiguity prudence and mixed prudence are, respectively, de�ned

as s�R � s
�
D; s

�
A � s

�
R and s

�
A � s

�
D: The conditions in Theorems 1 and 2 ensure that s

�
R � s

�
D and

s�A � s
�
D; but do not rule out the possibility of s

�
R > s

�
A � s

�
D: The strict inequality means that the

consumer cuts back her savings when the distribution of future income becomes uncertain. Thus,

the precautionary savings characterised in our �rst two theorems, i.e., (s�A � s
�
D), can be possibly

due to a mixture of risk prudence and ambiguity �imprudence�. For this reason, we call it �mixed�

prudence.

Our Theorem 3 provides a set of su¢cient conditions under which a strictly risk-averse and

strictly ambiguity-averse consumer is both risk-prudent and ambiguity-prudent, i.e., s�A � s
�
R � s

�
D

(which immediately implies mixed prudence). The risk prudence result is similar to the one

in Gollier (2001a). The ambiguity prudence result, on the other hand, requires two additional

conditions: �rst, the �rst-order probability distributions of future income can be ranked according

to �rst-order stochastic dominance (FOSD); and second, the function � (�) exhibits decreasing

absolute ambiguity aversion. The �rst assumption allows us to compare the marginal bene�t of

saving under di¤erent plausible distributions. If one distribution is ranked lower than another

according to FOSD, then it is more likely to draw low levels of future income from the former.

Since savings have a greater impact on future consumption when future income is low, the marginal

bene�t of saving is higher under those distributions that are deemed less favourable (ranked lower)

by FOSD. In the presence of ambiguity, the consumer will weigh the marginal bene�t of saving

under di¤erent plausible distributions according to her ambiguity preferences. In particular, an
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ambiguity-averse consumer will put a higher importance on the less favourable distributions.12

This, together with DAAA, guarantees that the marginal bene�t of saving under ambiguity are

higher than that under a pure risk.13

We conclude this section by mentioning some related studies. Our paper is most closely related

to Osaki and Schlesinger (2014) and Berger (2014). Both studies analyse precautionary saving be-

haviour under ambiguity in a two-period model that is similar to ours, but with recursive smooth

ambiguity preferences [Klibano¤ et al. (2009)]. Osaki and Schlesinger (2014) focus on the con-

ditions for mixed prudence. Their main result (Proposition 2) relies on the assumption that the

�rst-order distributions can be ranked according to some stochastic dominance criterion, hence it is

similar to our Theorem 3. They, however, do not distinguish between risk prudence and ambiguity

prudence. Berger (2014), on the other hand, focus on ambiguity prudence alone. Our Theorem 4

generalises Berger�s Proposition 1 to GRSA preferences and shows that DAAA can be replaced by

a weaker condition. Baillon (2016) proposes a model-free de�nition of ambiguity prudence which is

di¤erent from Berger�s and ours. Baillon�s approach is similar in spirit to the risk apportionment

approach of Eeckhoudt and Schlesinger (2006) in characterising higher order derivatives of utility

function. Whereas, our de�nition of ambiguity prudence is based on the behavioural prediction

of a speci�c decision problem. Two recent studies, Wang and Li (2020) and André et al. (2021),

have adopted the GRSA preferences to study consumer behaviour. The former examines how

changes in ambiguity aversion will a¤ect di¤erent types of intertemporal decisions, one of which

is precautionary saving. Some of the assumptions in their Proposition 1 [in particular, A1, A2,

A3, (i) and (iv)] are also used in our Theorem 3. André et al. (2021) analyse the demand for

annuity and saving in a two-period model with longevity uncertainty. They focus on a special

case of GRSA preferences in which both u (�) and v (�) are exponential utility functions but with

di¤erent parameters.

The rest of the paper is organised as follows: Section 2 describes the model environment and

the generalised recursive smooth ambiguity preferences. Section 3 presents the main results on

mixed prudence (Theorems 1-3). Section 4 presents some further results. Section 5 concludes.

12This is consistent with the conventional wisdom that ambiguity-averse consumers act as if they are more pes-
simistic [Ilut and Schneider (2022)], or pay more attention to the worst-case scenario. This mechanism, however, is
not needed in our Theorems 1 and 2.
13We also attempt to establish the ordering s�A � s�R � s�D without imposing any restrictions on the �rst-order

distributions. This proves to be challenging and we are only able to establish this when u (�) displays a constant
absolute risk aversion (i.e., exponential utility). This result is stated in Theorem 4.
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2 The Model

Consider the consumption-saving problem faced by a consumer in a two-period model. The con-

sumer starts with a known initial wealth w > 0 in the �rst (or current) period and receives a

random income ey in the second (or future) period. The true distribution of ey is unknown to the

consumer. Thus, she relies on her own subjective beliefs when making the saving decision. These

beliefs are formulated as follows: Let � be a subset of R and F � fF (ey j �) : � 2 �g be a collection

of probability distributions de�ned on a common support 
 =
�
y; y
�
; with 0 < y < y < 1: The

collection F contains all the distributions of future income that are deemed plausible by the con-

sumer. We refer to these as �rst-order probability distributions. The perceived likelihood of these

distributions is represented by a non-degenerate, second-order probability distribution function

G (�) de�ned on �: Ambiguity is absent is G (�) is degenerate at some �y in �; so that G (�) = 1 if

� � �y and zero otherwise.

There is a single risk-free asset which o¤ers a known gross return R > 0: The consumer can

save or borrow using this asset. An ad hoc borrowing constraint is in place to limit the amount

of debt that the consumer may incur. Let (c1; c2; s) denote, respectively, current consumption,

future consumption and savings in the current period. These choice variables are subject to non-

negativity constraints: c1 � 0; c2 � 0; budget constraints: c1 + s = w and c2 = ey +Rs; and an ad

hoc borrowing constraint: s � �b; where b > 0 is the borrowing limit.14

As mentioned in the Introduction, the consumer is assumed to have generalised recursive

smooth ambiguity (GRSA) preferences. Lifetime utility under this type of preferences is de�ned in

three stages: First, for each plausible distribution in F and for each (s; �) 2 [�b; w]��; a certainty

equivalent of future consumption is computed according to

Mu (s; �) � u
�1

�Z



u (ey +Rs) dF (ey j �)

�
: (1)

In the above equation, u : R+ ! R is a von Neumann-Morgenstern (vNM) utility function that

captures the consumer�s atemporal risk preferences. At this stage, we only require u (�) to ful�ll

some basic properties which are listed below.

14 If y � Rb; then future consumption is non-negative even when the consumer owes the maximum amount of debt

(�b) and receives the lowest amount of future income
�
y
�
: If y < Rb; then the ad hoc borrowing constraint will

never bind, because otherwise future consumption will be negative in some future income states. Our main results
are valid in both cases.
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Assumption A1 The function u : R+ ! R is at least twice continuously di¤erentiable, strictly

increasing and concave.

Since u (�) is continuous and future consumption is of �nite value in all possible states, the

expected utility inside the square brackets in (1) is well-de�ned. A strictly increasing u (�) implies

that the inverse function u�1 (�) is single-valued and strictly increasing. Hence, the certainty

equivalent Mu (s; �) is well-de�ned for all (s; �) 2 [�b; w]��.
15 Note that we only require u (�) to

be (weakly) concave, hence Assumption A1 includes risk neutrality as a special case.

If ey is drawn from the distribution F (ey j �) ; then Mu (s; �) is the quantity of �risk-free� future

consumption that yields the same utility as the random consumption pro�le c2 = ey+Rs: Since the

true distribution of ey is unknown, Mu (s; �) is itself a random variable. Thus, in the second stage,

the consumer forms a subjective expected utility over the random pro�le fMu (s; �) j � 2 �g using

the second-order probability distribution G (�). The subjective expected utility in the second stage

is given by Z

�
v [Mu (s; �)] dG (�) ; (2)

where v (�) is another vNM utility function that captures the consumer�s attitudes toward the

randomness in fMu (s; �) j � 2 �g : The basic properties of v (�) are listed in Assumption A2.

Assumption A2 The function v : R+ ! R is at least twice continuously di¤erentiable, strictly

increasing and concave.

De�ne � (�) � v � u�1 (�) and U (s; �) �
R

 u (ey +Rs) dF (ey j �) : Then (2) can be rewritten as

Z

�
v [Mu (s; �)] dG (�) =

Z

�
v � u�1 [U (s; �)] dG (�) =

Z

�
� [U (s; �)] dG (�) : (3)

We refer to U (s; �) as �rst-order expected utility and
R
� � [U (s; �)] dG (�) as second-order expected

utility. The main di¤erence between v (�) and � (�) can be explained as follows: Mu (s; �) and U (s; �)

can be viewed as ex ante evaluation about future consumption and future utility under a given

value of savings and a given �rst-order distribution. Both are ex ante random in the presence of

ambiguity. A concave v (�) means that the consumer dislikes any mean-preserving spread in the

distribution of Mu (s; �) ; while a concave � (�) means that the consumer dislikes the same kind of

spread in the distribution of U (s; �) : Following Klibano¤ et al. (2005), we refer to a consumer

with a concave � (�) as ambiguity-averse and one with a linear � (�) as ambiguity-neutral.

15Under Assumption A1, Mu (s; �) is also di¤erentiable with respect to s for any given � 2 �: The details are
shown in Appendix A.1.
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Assumptions A1 and A2 together imply that � (�) is at least twice continuously di¤erentiable

and strictly increasing. But the concavity of u (�) and v (�) does not necessarily imply that of � (�) :

To see this, di¤erentiate the identity � [u (c)] � v (c) twice to obtain

�0 (x) =
v0 (c)

u0 (c)
; (4)

�00 (x) =
v00 (c)� �0 (x)u00 (c)

[u0 (c)]2
; (5)

where x = u (c) and c � 0: Let Au (c) � �u
00 (c) =u0 (c) and Av (c) � �v

00 (c) =v0 (c) be the Arrow-

Pratt coe¢cient of absolute risk aversion for u (�) and v (�) ; respectively. Then (4) and (5) imply

that16

�00 (x) S 0 i¤ Av (c) T Au (c) ; (6)

for x = u (c) : Hence, the consumer is ambiguity-averse [i.e., �00 (�) � 0] if and only if v (�) is

more concave than u (�) : This has three immediate implications: First, risk aversion alone does

not imply ambiguity aversion because the latter requires another (more) concave function v (�) :

Second, a risk-neutral (or even risk-loving) consumer can also be ambiguity-averse, provided that

v (�) is su¢ciently concave. Hence, risk aversion is neither necessary nor su¢cient for ambiguity

aversion. Third, if the consumer is both risk-averse and ambiguity-averse, then v (�) must be a

concave function.

The last component of GRSA preferences is a time aggregator function W : R2+ ! R; which

captures the consumer�s attitudes toward intertemporal substitution. Since W (�) is de�ned over

deterministic consumption paths, we �rst compute the certainty equivalent of fMu (s; �) j � 2 �g

using the utility function v (�) ; i.e.,

Mv (s) � v
�1

�Z

�
v [Mu (s; �)] dG (�)

�
; (7)

for any given s 2 [�b; w] :17 We refer to Mv (s) as the second-order certainty equivalent of fu-

ture consumption obtained from s: A deterministic consumption path in this setting is given by

fc1;Mv (s)g ; which yields a lifetime utility of W [c1;Mv (s)] :

16This result has been shown in Klibano¤ et al. (2005, Proposition 1). These details, however, are useful in
understanding some of our main results, hence they are mentioned here.
17By Assumption A1, Mu (s; �) is of �nite value for all (s; �) 2 [�b; w]��: The continuity of v (�) then ensures that

v [Mu (s; �)] is also of �nite value for all (s; �) : Hence, the expectation
R
�
v [Mu (s; �)] dG (�) exists. By Assumption

A2, v�1 (�) is single-valued and strictly increasing. Hence, Mv (s) is well-de�ned for all s 2 [�b; w] : In Appendix
A.1, it is shown that Mv (s) is di¤erentiably and strictly increasing under Assumptions A1 and A2.
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We start by considering an additively separable aggregator function W (�) ; which yields the

familiar time-additively-separable lifetime utility function,

W [c1;Mv (s)] � V (c1) + �V [Mv (s)] : (8)

In the above equation, � 2 (0; 1) is the subjective discount factor and V : R+ ! R is the

(per-period) felicity function. We choose to start with this speci�cation for two reasons. First, the

time-separable speci�cation has been used by the vast majority of existing studies on precautionary

saving. Using the same speci�cation will facilitate comparison with this literature. Second, the

time-separable speci�cation is easier to grasp, which allows for a clear development of the intuition

behind our main results. In Section 4.2, we show that some of the results obtained under (8) can

be readily extended to a non-separable aggregator function.

The basic properties of V (�) are summarised in Assumption A3. The limit condition (only one

is necessary) is intended to rule out the uninteresting case where c1 = 0 (or equivalently, s = w):

Assumption A3 The function V : R+ ! R is twice continuously di¤erentiable, strictly increas-

ing and strictly concave. It also satis�es either lim
c!0

V (c) = �1 or lim
c!0

V 0 (c) = +1:

We now exploit the intricate structure of GRSA preferences to derive two alternative but

equivalent expressions of future felicity, V [Mv (s)]. The �rst one uses � (�) � � � u
�1 (�) and a new

composite function 	(�) � V � v�1 (�) to rewrite future felicity as follows:

V [Mv (s)] = V � v�1
�Z

�
v � u�1

�Z

S

u (ey +Rs) dF (ey j �)
�
dG (�)

�

� 	

�Z

�
� [U (s; �)] dG (�)

�
: (9)

Equation (9) expresses future felicity as a transformation of the second-order expected future

utility
R
� � [U (s; �)] dG (�). Under this formulation, the consumer�s lifetime utility is a nonlinear

aggregate of current-period felicity V (c1) and
R
� � [U (s; �)] dG (�). This is similar in spirit to the

Kreps-Porteus representation in Kimball and Weil (2009, p.248).18

The second alternative expression of V [Mv (s)] involves a new variable:

M� (s) � �
�1

�Z

�
� [U (s; �)] dG (�)

�
; (10)

18The original expression V [Mv (s)] ; on the other hand, is in the same spirit as Selden�s representation [see Kimball
and Weil (2009, p.248)].
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which is the certainty equivalent of the �rst-order expected utility pro�le fU (s; �) j� 2 �g de�ned

using the composite function � (�) :19 Note that M� (s) is measured in utility units, while Mv (s) is

measured in units of consumption. Using (3), (7) and ��1 (�) = u � v�1 (�) ; we can get u [Mv (s)] =

M� (s) : De�ne � (�) � V � u
�1 (�) : Then we can rewrite V [Mv (s)] as follows:

V [Mv (s)] = V � u
�1

�
u � v�1

�Z

�
� [U (s; �)] dG (�)

��
� � [M� (s)] : (11)

This alternative formulation expresses future felicity as a transformation of the certainty equivalent

M� (s) : We now have three di¤erent but equivalent ways of expressing future felicity and also

lifetime utility function.20 These form the basis of three di¤erent approaches in characterising

precautionary saving behaviour, which are detailed in Section 3.

The lifetime utility function in (8) can help unify three groups of studies in the precautionary

saving literature. The �rst group of studies [e.g., Osaki and Schlesinger (2014, Section 4) and Berger

(2014)] adopt the recursive smooth ambiguity preferences advanced by Klibano¤ et al. (2009). This

speci�cation is able to separate risk attitudes from ambiguity attitudes, but attitudes toward risk

and intertemporal substitution are confounded. The recursive smooth ambiguity preferences can

be recovered from (8) by setting V (�) � u (�) ; so that

W [c1;Mv (s)] = u (c1) + �u � v
�1

�Z

�
v [Mu (s; �)] dG (�)

�

= u (c1) + ��
�1

�Z

�
�

�Z



u (ey +Rs) dF (ey j �)

�
dG (�)

�
: (12)

The second group of studies [e.g., Gollier (2001a, Section 20.3) and Kimball and Weil (2009)]

use the Selden/Kreps-Porteus (SKP) preferences which disentangle risk attitudes from attitudes

toward intertemporal substitution, but assume that the consumer is ambiguity-neutral. The SKP

preferences can be recovered from (8) by setting v (�) � u (�) ; i.e.,

W [c1;Mu (s)] = V (c1) + �V � u
�1

�Z

�

Z



u (ey +Rs) dF (ey j �) dG (�)

�

| {z }
Mu(s)

: (13)

19By Assumptions A1 and A2, � (�) is continuous and strictly increasing. The continuity of � (�) and the bound-
edness of U (s; �) for all (s; �) 2 [�b; w]�� ensures the existence of the expectation

R
�
� [U (s; �)] dG (�) : A strictly

increasing � (�) means that the inverse function ��1 (�) is single-valued and strictly increasing. Hence, M� (s) is
well-de�ned for all s 2 [�b; w] : In Appendix A.1, it is shown that the derivative of M� (s) is well-de�ned and is
strictly positive under Assumptions A1 and A2.
20While Mu (s; �) and U (s; �) are ex ante evaluation of future consumption and future utility under a given �rst-

order condition,Mv (s) ;M� (s) and
R
�
� [U (s; �)] dG (�) are ex ante evaluations that take into account the consumer�s

entire belief system, i.e., all the �rst-order plausible distributions and their subjective likelihood as represented by
G (�) :
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In the above equation, Mu (s) � Mv (s) is the certainty equivalent of risky future consumption

associated with the compound probability distribution

H (ey) �
Z

�
F (ey j �) dG (�) ; for all ey 2 
:

The last group of studies [most notably, Kimball (1990)] use the expected-utility (EU) pref-

erences, which assume that the consumer is ambiguity-neutral and do not separate risk attitudes

from attitudes toward intertemporal substitution. The EU preferences correspond to the special

case when V (�) � u (�) � v (�) in (8). The consumer�s lifetime utility function then becomes

u (c1) + �

Z



u (ey +Rs) dH (ey) :

In the absence of ambiguity, i.e., when G (�) is degenerate at some �y 2 �; the lifetime utility

in (8) becomes

W [c1;Mu (s)] � V (c1) + �V � u
�1

�Z



u (ey +Rs) dF

�
ey j �y

��
: (14)

Equation (14) is observationally equivalent to the lifetime utility of a consumer who has SKP

preferences and faces a pure future income risk drawn from the distribution F
�
ey j �y

�
: There is,

however, a subtle di¤erence between (13) and (14). If the consumer is ambiguity-neutral, then

Mu (s) is computed using the compound probability distribution H (ey) : If there is no ambiguity,

then Mu (s) is computed using the distribution F
�
ey j �y

�
; which needs not be the same as H (ey) :

Finally, if ambiguity is absent, then the recursive smooth ambiguity preferences in (12) becomes

W [c1;Mv (s)] = u (c1) + �

Z



u (ey +Rs) dF

�
ey j �y

�
: (15)

This is observationally equivalent to the lifetime utility of an expected-utility maximiser who faces

a pure future income risk drawn according to F
�
ey j �y

�
:21

21The GRSA preferences considered here, however, do not cover the preferences considered in Leland (1968),
Sandmo (1970) and Peter (2019). The �rst two studies consider a consumer with expected utility preferences de�ned
over a non-separable vNM utility function of current and future consumption. Peter (2019) extends this type of
preferences to an environment with ambiguity.
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3 Analysis

Taking the risk-free return R > 0 as given, the consumer�s problem is to choose a feasible allocation

(c1; c2; s) so as to maximise his lifetime utility in (8). This problem can be succinctly expressed as

max
s2[�b;w]

fV (w � s) + �V [Mv (s)]g ; (P1)

where Mv (s) is de�ned in (7). Since the choice set is compact and the objective function is

continuous under Assumptions A1-A3, (P1) has at least one solution. These assumptions, however,

do not guarantee that the objective function is concave in the choice variable. A concave objective

function is desirable because it ensures that the �rst-order condition is su¢cient to identify the

solution(s).22 If the objective function is strictly concave, then a unique solution exists. Uniqueness

of solution is useful in simplifying the subsequent comparative statics analysis.

With these considerations in mind, our task in this section is twofold: The �rst one is to derive

conditions under which the objective function in (P1) is strictly concave. The second task is to

provide conditions under which precautionary saving exists. The de�nition of precautionary saving

is made precise in the next subsection.

3.1 Precautionary Saving Motives

Suppose (P1) has a unique solution denoted by s�A (this will be veri�ed later). Precautionary

saving is de�ned by comparing this to the optimal savings in two other environments. In the �rst

one, future income is known with certainty. The consumer�s problem in this case is given by

max
s2[�b;w]

fV (w � s) + �V (�+Rs)g ; (P2)

where � > 0 is the mean of the compound distribution H (ey) : Since V (�) is continuous and

strictly concave under Assumption A3, (P2) has a unique solution denoted by s�D: In the second

environment, future income is drawn from the compound distributionH (ey) without any ambiguity.

The consumption-saving problem now takes the form

max
s2[�b;w]

�
V (w � s) + �V � u�1

�Z



u (ey +Rs) dH (ey)

��
: (P3)

22Most, if not all, of the existing studies on precautionary saving (including this one) focus on the �rst-order
necessary condition of the consumption-saving problem. This approach is valid only if the �rst-order condition is
su¢cient.
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This problem has a unique solution s�R; which will be veri�ed later.

Previous studies, such as Kimball (1990) and Kimball and Weil (2009), focus on the conditions

under which s�R � s
�
D: This means the consumer chooses to save more when facing a pure income

risk in the future period. This type of saving behaviour is referred to as risk prudence. Precaution-

ary saving can also arise due to the introduction of ambiguity, i.e., s�A � s
�
R: This type of saving

behaviour has become known as ambiguity prudence. Formally, ambiguity prudence refers to the

tendency to save more due to a mean-preserving spread in the distribution of U (s; �) : Note that

the mean value of U (s; �) satis�es

Z

�
U (s; �) dG (�) =

Z



u (ey +Rs) dH (ey) :

Hence, when de�ning ambiguity prudence, we compare s�A to the optimal saving when the pure

income risk is drawn from the compound distribution H (ey) : It is also important to note that risk

prudence does not necessarily imply ambiguity prudence, and vice versa.

In the current section, we focus on the conditions under which s�A � s
�
D:
23 We refer to this as

mixed prudence. In all of our results, a mixed-prudent consumer is also risk-prudent, but is not

necessarily ambiguity-prudent. If the consumer is both risk-prudent and ambiguity-prudent, i.e.,

s�A � s
�
R � s

�
D; then mixed prudence is immediately implied. In this case, the additional savings

induced by mixed prudence can be expressed as a sum of those induced by risk prudence and

ambiguity prudence, i.e.,

s�A � s
�
D = (s

�
A � s

�
R)| {z }

(+)

+ (s�R � s
�
D)| {z }

(+)

: (16)

Our Theorem 3 provides a set of conditions under which (16) is valid. Further discussions about

ambiguity prudence can be found in Section 4.1.

3.2 Main Results

In this subsection, we present three di¤erent approaches to establish the uniqueness of s�A and

to identify conditions under which s�A � s
�
D: These approaches are based on the three equivalent

formulations of future felicity mentioned in Section 2. We begin with an outline of our strategy.

First note that the consumer�s felicity in the current period, V (w � s) ; is identical in (P1)-

(P3). This means the marginal cost of saving, V 0 (w � s) ; under any given value of s is identical

23Obviously, there is an important di¤erence between s�A > s�D and s�A = s�D: In the following analysis, we will
also mention the conditions under which precautionary saving is strictly positive.
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in all three problems. Hence, when comparing fs�A; s
�
R; s

�
Dg, it su¢ce to focus on future felicity

alone. In particular, s�A � s
�
D if the marginal bene�t of saving in (P1) exceed that in (P2).

In all three approaches, future felicity under ambiguity is expressed as the composition of two

suitably chosen functions: � (�) and gA (�) ; so that

V [Mv (s)] � � [gA (s)] ; for all s 2 [�b; w] : (17)

Likewise, future felicity in (P2) is expressed as the composition of � (�) and another function gD (�) ;

so that

V (�+Rs) � � [gD (s)] ; for all s 2 [�b; w] : (18)

The choices of � (�) ; gA (�) and gD (�) are summarised in Table 1.
24 The �rst approach is motivated

by the formulation in (9), hence � (�) corresponds to the composite function 	(�) � V � v�1 (�)

and gA (�) corresponds to the mapping s 7!
R
� � [U (s; �)] dG (�) : The latter captures the e¤ect of

savings on second-order expected future utility. The second approach uses the original expression

for future felicity, V [Mv (s)] : Hence, � (�) in (17) now corresponds to V (�) ; and gA (�) is de�ned

as the mapping s 7! Mv (s) ; which captures the e¤ect of savings on the second-order certainty

equivalent of future consumption. The third approach is motivated by the formulation in (11).

In all three cases, gA (�) corresponds to an ex ante evaluation of future consumption or future

utility under ambiguity, gD (�) is its deterministic counterpart,
25 and � (�) captures the consumer�s

preferences on gA (�) : Assumptions A1-A3 ensure that f� (�) ; gA (�) ; gD (�)g are all continuously

di¤erentiable, strictly increasing functions. In each approach, we will impose additional conditions

to ensure that � (�) is also a concave function.

Table 1: Main Ingredients of the Three Approaches

� (�) gA (s) gD (s)

Approach #1 	(�) � V � v�1 (�)
R
� � [U (s; �)] dG (�) � � u (�+Rs)

Approach #2 V (�) Mv (s) �+Rs

Approach #3 � (�) � V � u�1 (�) M� (s) u (�+Rs)

The main advantage of this strategy is that when comparing s�A to s
�
D; it su¢ce to focus on

24The same strategy is used in Theorem 3 and Theorem 4 to establish ambiguity prudence, i.e., s�A � s
�
R:

25 In all three approaches, gD (�) can be derived from gA (�) in either one of the following two ways: (i) By assuming
that G (�) is degenerate at some �y 2 � and F

�
ey j �y

�
is degenerate at �: (ii) By assuming that all the �rst-order

distributions in F are identical and degenerate at �:
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gA (�) and gD (�). The rationale is as follows: Based on (17) and (18), the marginal bene�t of saving

in (P1) and (P2) are given by �0 [gA (s)] g
0
A (s) and �

0 [gD (s)] g
0
D (s) ; respectively. Hence, s

�
A � s

�
D

if

�0 [gA (s)] g
0
A (s) � �

0 [gD (s)] g
0
D (s) ; for all s 2 [�b; w] : (19)

Since f� (�) ; gA (�) ; gD (�)g are all strictly increasing functions, the derivatives in (19) are all strictly

positive. If, in addition, �0 (�) is a decreasing function, then condition (19) is satis�ed when

gA (s) � gD (s) and g0A (s) � g
0
D (s) ; (20)

for all s 2 [�b; w] : The conditions in (20) states that the consumer is mixed prudent if gA (s)

is lower in level but more responsive to s (i.e., steeper as a function in s) than its deterministic

counterpart. This will then contribute to a higher marginal bene�t of saving under ambiguity and

promote savings. We now discuss each of these three approaches in detail.

Approach #1

Under the �rst approach, the objective function in (P1) is rewritten as

�A (s) � V (w � s) + �	

�Z

�
� [U (s; �)] dG (�)

�
:

We �rst examine the conditions under which �A (�) is strictly concave. Since V (�) is strictly

concave by Assumption A3, it su¢ce to consider the consumer�s future felicity. The mapping s 7!

	
�R
� � [U (s; �)] dG (�)

	
is concave if u (�) ; � (�) and 	(�) are all increasing concave functions. This

follows from the facts that (i) monotonicity and concavity are preserved by integration, and (ii) the

composition of two increasing concave functions is again increasing concave.26 Under Assumptions

A1-A3, u (�) is strictly increasing and concave, and both � (�) and 	(�) are strictly increasing.

Hence, additional conditions are needed to ensure the concavity of � (�) and 	(�) : As shown in (6),

� (�) is concave if and only if v (�) is more concave than u (�) : By the same token, 	(�) � V �v�1 (�)

is concave if and only if V (�) is more concave than v (�) : De�ne AV (c) � �V
00 (c) =V 0 (c) : Then

u (�) ; � (�) and 	(�) are all concave functions if and only if

AV (c) � Av (c) � Au (c) � 0; for c � 0: (21)

26The full argument is developed in the proof of Theorem 1.
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Taken together, Assumptions A1-A3 and (21) are su¢cient to guarantee that �A (�) is strictly

concave, which then ensures the uniqueness of s�A. The conditions Au (�) � 0 and Av (�) � Au (�)

correspond to risk aversion and ambiguity aversion, respectively. If ambiguity is absent (or if the

consumer is ambiguity-neutral), then AV (�) � Au (�) means that the consumer has a preference

for late resolution of intertemporal risk.27

Under Approach #1, the �rst-order condition for (P1) is given by

V 0 (w � s) � �	0
�Z

�
� [U (s; �)] dG (�)

�

| {z }
�0[gA(s)]

Z

�
R�0 [U (s; �)]Us (s; �) dG (�)

| {z }
g0
A
(s)

; (22)

where Us (s; �) is the derivative of U (s; �) with respect to s: Condition (22) will hold with strict

equality if s�A is an interior solution, i.e., s
�
A > �b. The right side of this condition re�ects the

marginal bene�t of saving. If this is outweighed by the marginal cost under every feasible value

of s, then the consumer will choose to exhaust the borrowing limit, i.e., s�A = �b: The marginal

bene�t of saving can be decomposed into two parts. The �rst part shows how a change in second-

order expected utility will a¤ect future felicity. This corresponds to �0 [gA (s)] in (19). The second

part shows how a change in s will a¤ect the second-order expected utility, which corresponds to

g0A (s) in (19).

On a similar vein, the deterministic saving problem (P2) can be rewritten as

max
s2[�b;z]

fV (w � s) + �	 [� � u (�+Rs)]g ;

and the �rst-order condition is given by

V 0 (w � s) � �	0 [� � u (�+Rs)]| {z }
�0[gD(s)]

R�0 [u (�+Rs)]u0 (�+Rs)| {z }
g0
D
(s)

: (23)

The consumer is mixed-prudent (i.e., s�A � s
�
D) if the marginal bene�t of saving in (P1) is no less

than that in (P2), i.e.,

	0
�Z

�
� [U (s; �)] dG (�)

�Z

�
�0 [U (s; �)]Us (s; �) dG (�)

� 	0 [� � u (�+Rs)]�0 [u (�+Rs)]u0 (�+Rs) : (24)

Our �rst theorem provides a set of conditions under which (24) is valid. Unless otherwise stated,

27This implication may not be true in the presence of ambiguity. See Strzalecki (2013) for details.
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all proofs can be found in Appendix A.

Theorem 1 Suppose Assumptions A1-A3 are satis�ed.

(i) If (21) is satis�ed, then (P1) has a unique solution denoted by s�A:

(ii) If, in addition, both u0 (�) and v0 (�) are convex functions, then s�A � s
�
D:

Theorem 1 identi�es �ve conditions [not counting the di¤erentiability and monotonicity of

u (�) ; v (�) and V (�)] that are su¢cient to establish mixed prudence. These are (I) risk aversion,

i.e., Au (�) � 0; (II) ambiguity aversion, i.e., Av (�) � Au (�) ; (III) the concavity of 	(�) ; i.e.,

AV (�) � Av (�) ; (IV) risk prudence as in Kimball (1990), i.e., the convexity of u
0 (�) ; and (V) the

convexity of v0 (�) : Conditions I and II together imply that the second-order expected utility is no

greater than its deterministic counterpart, i.e.,

Z

�
� [U (s; �)] dG (�)

| {z }
gA(s)

� � � u (�+Rs)| {z }
gD(s)

: (25)

This follows immediately from Jensen�s inequality. Conditions I, II, IV and V together ensure that

the ex ante evaluation of future utility is more responsive to changes in s than its deterministic

counterpart, i.e.,

Z

�
�0 [U (s; �)]Us (s; �) dG (�)

| {z }
�

g0
A
(s)

R�0 [u (�+Rs)]u0 (�+Rs)| {z }
g0
D
(s)

: (26)

As noted before, given the concavity of 	(�) (condition III), (25) and (26) are su¢cient to deliver

(24).

We now explore further the economic meaning of the conditions in Theorem 1. Set gA(s) =
R
� � [U (s; �)] dG (�) and gD(s) = � � u (�+Rs) ; and rewrite the �rst-order condition in (22) as

V 0 (w � s) � �
	0 [gA(s)]

	0 [gD(s)]| {z }
�

Discount Factor E¤ ect

R
� �

0 [U (s; �)]Us (s; �) dG (�)

R�0 [u (�+Rs)]u0 (�+Rs)| {z }
Generalised R isk Prudence E¤ect

�R	0 [gD(s)]�
0 [u (�+Rs)]u0 (�+Rs)| {z }

MB of saving under certa inty

: (27)
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Equation (27) breaks down the marginal bene�t of saving under ambiguity into that under certainty

and two additional factors. The �rst one is labelled as �discount factor e¤ect.�28 To explain this

formally, de�ne

e� (s) � �	
0 [gA(s)]

	0 [gD(s)]
:

If 	(�) is a linear function, or if the consumer is ambiguity-neutral and risk-neutral so that gA(�) �

gD(�); then the discount factor e¤ect is absent, i.e., e� (�) = �: But for any risk-averse and ambiguity-

averse consumer with a concave 	(�) [i.e., under conditions I, II and III in Theorem 1], e� (s) � �

for all s 2 [�b; w] : This works as if the consumer has become more patient under ambiguity, which

then induces the consumer to save more.

The second factor in (27) is essentially the ratio between g0A(s) and g
0
D(s): If the consumer is

ambiguity-neutral, so that �0 (�) is a constant function, then this ratio will be reduced to

g0A(s)

g0D(s)
=

R

 u

0 (ey +Rs) dH (ey)
u0 (�+Rs)

: (28)

If u0 (�) is convex, then any mean-preserving spread in the distribution of ey will generate a higher

(expected) marginal utility of future consumption and promote saving. This is the same mechanism

behind the risk prudence result of Kimball (1990). Now consider the case when the consumer is

not ambiguity-neutral. Risk aversion (condition I) implies that for any s 2 [�b; w] and for any

� 2 �;

U (s; �) =

Z



u (ey +Rs) dF (ey j �) � u (e� (�) +Rs) ;

where e� (�) is the mean of F (ey j �) : Risk prudence (condition IV), on the other hand, implies that

Us (s; �) =

Z



Ru0 (ey +Rs) dF (ey j �) � Ru0 [e� (�) +Rs] :

Combining these and ambiguity aversion (condition II) gives

�0 [U (s; �)]Us (s; �) � R�
0 [u (e� (�) +Rs)]u0 (e� (�) +Rs) ;

which is equivalent to

d

ds
� [U (s; �)] �

d

ds
f� � u (e� (�) +Rs)g ; for any � 2 �: (29)

28This is similar in spirit to the �timing of uncertainty e¤ect� in Osaki and Schlesinger (2014, p.16).
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Equation (29) states that a mean-preserving spread in any �rst-order distribution F (ey j �) will

make � [U (s; �)] more sensitive to changes in s:29 This essentially generalises Kimball�s risk pru-

dence result to a concave transformation of (�rst-order) expected future utility. Note that � �

u (e� (�) +Rs) = v (e� (�) +Rs) ; which means

d

ds
f� � u (e� (�) +Rs)g = v0 [e� (�) +Rs] :

Thus, by the convexity of v0 (�) (condition V),

Z

�

d

ds
f� � u (e� (�) +Rs)g dG (�) =

Z

�
v0 [e� (�) +Rs] dG (�)

� v0 (�+Rs) = �0 [u (�+Rs)]u0 (�+Rs) : (30)

The inequality in (30) is again the risk prudence e¤ect, but now applied on a consumer with

vNM utility function v (�) who faces a pure risk in e� (�) : Equation (26) can then be obtained by

combining (29) and (30). We use the term �generalised risk prudence e¤ect� to re�ect the interplay

between the convexity of u0 (�) and that of v0 (�) : This, alongside with the discount factor e¤ect,

encourages the consumer to save more in (P1) than in (P2).

Our Theorem 1 encompasses at least four important special cases. The �rst one is the expected-

utility model which corresponds to the special case of V (�) � v (�) � u (�) in (8). Under these

restrictions, conditions I, II and III in Theorem 1 are equivalent, while IV and V coincide. Unique-

ness of solution is guaranteed by the strict concavity of u (�), and precautionary saving exists if

u0 (�) is weakly convex (condition IV), which is the well-known result in Kimball (1990). In terms

of (27), the discount factor e¤ect is absent (reduced to one) and the generalised risk prudence

e¤ect is reduced to (28).

The second special case is the SKP preferences, which can be obtained by imposing ambiguity

neutrality, i.e., v (�) � u (�) : In this case, conditions I and IV in Theorem 1 are equivalent to

II and V, respectively. Conditions I, III and IV are then su¢cient to ensure the existence of

precautionary saving. This is the risk prudence result of Gollier (2001a, p.300-302). Since the

consumer is ambiguity neutral, the generalised risk prudence e¤ect is again reduced to (28). When

viewed through this lens, Gollier�s risk prudence result can be explained by a combination of

discount factor e¤ect and Kimball�s risk prudence e¤ect.

29The same argument remains valid if we compare F (ey j �) to another non-degenerate distribution, say M (ey j �) ;
where F (ey j �) is a mean-preserving spread of M (ey j �) :

21



We now present two new special cases in which precautionary saving is strictly positive even

though u000 (�) = 0: Suppose u (�) is quadratic so that

u (c) = �0 + �1c�
�2
2
c2; (31)

for some real numbers �0; �1 > 0 and �2 > 0: The main �nding here is that if the consumer

is strictly risk-averse and strictly ambiguity-averse, then precautionary saving is strictly positive

even if u000 (�) � 0: This result is formally stated in Corollary 1. An additional restriction on the

parameters f�1; �2; y; wg is introduced to ensure u
0 (c1) > 0 and u0 (c2) > 0 under all feasible

values of s in (P1).

Corollary 1 Suppose Assumptions A2-A3 and �1 > �2max fy +Rw;w + bg are satis�ed. Sup-

pose u (�) takes the quadratic form in (31), AV (�) � Av (�) > Au (�) and v
0 (�) is convex. Then

s�A > s
�
D:

One implication of Theorem 1 and Corollary 1 is that a strictly positive third derivative of � (�)

is su¢cient but not necessary for mixed prudence. To see this, suppose both u (�) and v (�) are

thrice di¤erentiable and have non-negative third-order derivative, i.e., u000 (�) � 0 and v000 (�) � 0:

Then � (�) is also thrice di¤erentiable but �000 (�) can be either positive-valued or negative-valued

(see Appendix A.1 for details). In other words, the conditions in Theorem 1 and Corollary 1 do

not imply �000 (�) � 0: But, on the contrary, if �000 (�) � 0 and u000 (�) � 0; then v000 (�) must be strictly

positive.

Finally, we revisit one of the special cases mentioned in the Introduction. The result is sum-

marised in Corollary 2. It states that if v (�) is strictly concave and v0 (�) is strictly convex, then

precautionary saving is strictly positive even if the consumer is risk-neutral. In other words, risk

aversion is also not necessary for mixed prudence. By setting u (c) = c; the lifetime utility function

in (8) becomes

W [c1;Mv (s)] � V (c1) + �V

�
v�1

�Z

�
v [e� (�) +Rs] dG (�)

��
:

This shows that an ambiguity-averse but risk-neutral consumer who faces an ambiguous risk is

observationally equivalent to a risk-averse consumer with SKP preferences who faces a pure risk

in e� (�) : Thus, mixed prudence under risk neutrality is observationally equivalent to risk prudence

under SKP preferences. This explains the result in Corollary 2, which is essentially the risk
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prudence result in Gollier (2001a, p.300-302) but with u (�) replaced by v (�) :

Corollary 2 Suppose Assumptions A2 and A3 are satis�ed. Suppose u (c) = c; AV (�) � Av (�) >

0; and v0 (�) is strictly convex. Then s�A > s
�
D.

Through Approach #1, we not only identify a set of su¢cient conditions for mixed prudence, we

also show that neither risk aversion nor risk prudence are necessary for this type of precautionary

saving behaviour. A caveat of this approach is that the conditions in (21) are incompatible with

the recursive smooth ambiguity preferences put forward by Klibano¤ et al. (2009) [which requires

V (�) � u (�) 6= v (�)]: This prompts us to explore a di¤erent approach that can be applied to such

preferences, which is Approach #2.

Approach #2

Consider the objective function of (P1) in its original form, i.e.,

�A (s) � V (w � s) + �V [Mv (s)] :

Under Assumption A3, �A (s) is a concave function in s if the mapping s 7! Mv (s) exhibits

concavity, i.e., for any s1; s2 2 [�b; w] and for any � 2 [0; 1] ;

Mv (s�) � �Mv (s1) + (1� �)Mv (s2) ; (32)

where s� � �s1+ (1� �) s2: Since Mv (s) is itself a certainty equivalent of Mu (s; �) ; this will also

require the concavity of Mu (s; �) ; i.e.,

Mu (s�; �) � �Mu (s1; �) + (1� �)Mu (s2; �) ; for any � 2 �: (33)

The notion of concave certainty equivalent has been previously considered in Gollier (2001a,

p.322), Gollier (2001b, Lemma 5), , Hennessy and Lapan (2006, Proposition A) and Kimball and

Weil (2009, p.268-269). The necessary and su¢cient condition for this property can be traced

back to Hardy et al. (1934, Theorem 106). In order to state this condition, we need to introduce

two additional notations. De�ne Tu (c) � �u
0 (c) =u00 (c) as the coe¢cient of risk tolerance of u (�) ;

which is the reciprocal of Au (c) : Similarly, de�ne Tv (c) � �v
0 (c) =v00 (c) : To ensure that Tu (�) and

Tv (�) are well-de�ned and continuously di¤erentiable, we adopt a stronger version of Assumptions

A1 and A2 in this part of the analysis.

23



Assumption A10 The function u : R+ ! R is thrice continuously di¤erentiable, strictly increas-

ing and strictly concave.

Assumption A20 The function v : R+ ! R is thrice continuously di¤erentiable, strictly increas-

ing and strictly concave.

Lemma 1 states the conditions under which (32) and (33) are valid. The �rst part states that

the concavity of s 7!Mu (s; �) is equivalent to the concavity of Tu (�) : This is essentially the same

result that appears in the aforementioned studies. The second part states that if both Tu (�) and

Tv (�) are concave functions, then the concavity of Mv (�) can be ensured. This is an extension of

the result in part (i).30 A complete detailed proof of Lemma 1 can be found in Appendix B.

Lemma 1 Suppose Assumptions A1 0 and A2 0 are satis�ed.

(i) For any � 2 �;Mu (s; �) is a concave function in s if and only if Tu (�) is a concave function.

(ii) If both Tu (�) and Tv (�) are concave functions, then Mv (�) is a concave function.

The assumption of a concave risk tolerance may sound restrictive at �rst, but it is satis�ed

by the commonly used hyperbolic-absolute-risk-aversion (HARA) class of utility functions [e.g.,

quadratic utility functions, constant-absolute-risk-aversion (CARA) utility functions and constant-

relative-risk-aversion (CRRA) utility functions]. Recall that a de�ning feature of HARA utility

functions is a linear (hence weakly concave) risk tolerance. Thus, according to Lemma 1, if both

u (�) and v (�) belong to the HARA class, thenMv (�) is a concave function. Our next result provides

a second set of su¢cient conditions under which s�A � s
�
D:

Theorem 2 Suppose Assumptions A1 0; A2 0 and A3 are satis�ed.

(i) If both Tu (�) and Tv (�) are concave, then (P1) has a unique solution denoted by s
�
A:

(ii) If, in addition, both Tu (�) and Tv (�) are increasing, then s
�
A � s

�
D:

There are two fundamental di¤erences between the conditions in Theorem 1 and those in

Theorem 2. On the one hand, Theorem 2 does not require any speci�c ranking of AV (�) ; Av (�)

and Au (�) : This means there is no restriction on the consumer�s ambiguity attitudes, and it does

30The concavity of Tu (�) and Tv (�) here means that both T
0
u (�) and T

0
v (�) are decreasing functions. In particular,

Tu (�) and Tv (�) need not be twice di¤erentiable globally. Hence, we only need to consider up to the third-order
derviative of u (�) and v (�) :
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not require a preference for late resolution of temporal risk under SKP preferences. On the other

hand, Theorem 2 requires Tu (�) and Tv (�) to be increasing concave functions, which are stronger

than the assumption of convex u0 (�) and v0 (�) in Theorem 1.

We now explain the role played by each of the conditions in Theorem 2. First of all, the

concavity of Tu (�) and Tv (�) are only required to prove the uniqueness of s
�
A: These conditions are

not used in the proof of part (ii). Under Approach #2, we set � (�) = V (�) ; gA (�) = Mv (�) and

gD (s) = (�+Rs) in (19). Since V (�) is strictly increasing and strictly concave by Assumption

A3, s�A � s
�
D is true if

Mv (s) � �+Rs and M
0
v (s) � R;

for any s 2 [�b; w] ; where M0
v (s) is the derivative of Mv (s) with respect to s: The �rst inequality

follows immediately from the concavity of u (�) and v (�) : The second inequality is valid if both

Tu (�) and Tv (�) are increasing, i.e., both u (�) and v (�) exhibit decreasing absolute risk aversion

(DARA).

Under this approach, the �rst-order condition of (P1) is given by

V 0 (w � s) � �V 0 [Mv (s)]M
0
v (s)

= �
V 0 [Mv (s)]

V 0 (�+Rs)| {z }
�

Discount Factor E¤ ect

M
0
v (s)

R| {z }
Combined DARA E¤ect

� RV 0 (�+Rs)| {z }
MB of saving under certa inty

: (34)

Similar to (27), the right side of (34) expresses the marginal bene�t of saving under ambiguity as

the product of the marginal bene�t under certainty and two additional factors. The �rst one is

again labelled as �discount factor e¤ect,� albeit it is de�ned di¤erently from the one in Approach

#1. For any s 2 [�b; w], de�ne b� (s) according to

b� (s) � � V
0 [Mv (s)]

V 0 (�+Rs)
:

If V (�) is a linear function, or if the consumer is ambiguity-neutral and risk-neutral so thatMv (s) =

�+Rs, then b� (�) � �: But if u (�) ; v (�) and V (�) are all strictly concave functions as required in

Theorem 2, then b� (s) > �:

The second factor in (34) is due to the DARA property of u (�) and v (�) : If both u (�) and

v (�) are CARA utility functions, then this term will be reduced to one, i.e., M0
v (s) = R: But if

both u (�) and v (�) are DARA utility functions, then M0
v (s) � R for all s 2 [�b; w] : The reason is

as follows: By saving more in the current period, the consumer can expect to have higher future
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consumption in all possible states under all plausible �rst-order distributions of future income. If

u (�) exhibits DARA, then such an increase will lower the consumer�s risk aversion in the future

period and raise the certainty equivalent Mu (s; �) : Saving more also means that risky income (ey)

will become less important than accumulated wealth (Rs) in the future period. Thus, when s is

su¢ciently large, Mu (s; �) will catch up with its deterministic counterpart e� (�) +Rs from below

[since risk aversion implies Mu (s; �) � e� (�) + Rs]. This is possible only if Mu (s; �) is increasing

at a faster rate than e� (�) +Rs when s increases, i.e.,

@

@s
Mu (s; �) � R; for any given � 2 �: (35)

By the same token, if v (�) exhibits DARA, then as each Mu (s; �) increases the consumer will

become less averse to the randomness in fMu (s; �) j � 2 �g : As a result, Mv (s) will catch up with

its deterministic counterpart (�+Rs) from below by increasing at a faster rate, i.e., M0
v (s) � R;

for any s 2 [�b; w] : Intuitively, M0
v (s) can be interpreted as the marginal gain in risk-free future

consumption due to an increase in s; while R is the counterpart in the deterministic environment.

The condition M0
v (s) � R thus implies that it is more rewarding to save under ambiguity.

Theorem 2 encompasses at least three special cases which are of interest. First, as shown in

(13), if the consumer is ambiguity-neutral, then the lifetime utility function in (8) is observationally

equivalent to SKP preferences under a pure future income risk that is drawn according to H (ey) :

In this case, a unique solution of (P1) exists if both V (�) and Tu (�) exhibits concavity; and

precautionary saving exists if u (�) exhibits DARA. These are the same conditions stated in Kimball

and Weil (2009, Propositions 1 and Proposition A3). Second, as shown in (12), if V (�) � u (�) then

the lifetime utility function in (8) becomes the recursive smooth ambiguity aversion preferences

developed by Klibano¤ et al. (2009). Thus, according to Theorem 2, if both Tu (�) and Tv (�)

are increasing concave functions then precautionary saving exists under this type of preferences.

Third, since Theorem 2 does not require any ranking of Av (c) and Au (c) ; precautionary saving

can exist even if the consumer is ambiguity-loving, i.e., Av (�) < Au (�) : This shows that ambiguity

aversion is not necessary for s�A � s
�
D:

Approach #3

We now present the third approach in characterising precautionary saving behaviour under am-

biguity. Using this approach, we are able to derive conditions under which the consumer is both

risk-prudent and ambiguity-prudent, i.e., s�A � s
�
R � s

�
D:
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Under Approach #3, the objective function in (P1) is expressed as

�A (s) � V (w � s) + �� [M� (s)] ; (36)

where � (�) � V � u�1 (�) and M� (�) is as de�ned in (10). Given Assumption A3, �A (�) is strictly

concave if (i) � (�) is increasing concave and (ii) the mapping s 7! M� (s) exhibits concavity.

Assumptions A1 and A3 ensure that � (�) is strictly increasing. It is concave if and only if V (�)

is more concave than u (�) ; i.e., AV (�) � Au (�) : Using the same line of argument as in Lemma

1, M� (�) is concave if the reciprocal of absolute ambiguity aversion T� (�) � ��0 (�) =�00 (�) is a

concave function. This result is formally stated in Lemma 2, the proof of which can be found in

Appendix B.

Lemma 2 Suppose Assumptions A1, A2 0 and Av (�) > Au (�) are satis�ed so that �
00 (�) < 0:

Then M� (�) is a concave function if T� (�) is concave.

The objective function in (P2) and (P3) can be similarly rewritten as

�D (s) � V (w � s) + �� [u (�+Rs)] ;

�R (s) � V (w � s) + ��

�Z



u (ey +Rs) dH (ey)

�
:

Assumptions A1 and A3, together with a concave � (�) ; are enough to ensure that �D (�) and

�R (�) are strictly concave.

Our next result provides a set of su¢cient conditions under which s�A � s
�
R � s

�
D: Unlike our

�rst two theorems, Theorem 3 requires an additional condition on the set of prior distributions,

which is stated in Assumption A4.

Assumption A4 For any continuous, increasing function � : 
 ! R; the expected value
R

 � (ey) dF (ey j �) is increasing in � on �:

Assumption A4 is equivalent to saying that F (ey j �1) is �rst-order stochastically dominated by

F (ey j �2) for any �1 < �2 in �: To use the terminology of Topkis (1998, Section 3.9.2), F (ey j �)

is stochastically increasing in � on � and F � fF (ey j �) : � 2 �g is a collection of stochastically

increasing distribution functions. Similar assumptions have been used by Osaki and Schlesinger

(2014, Section 5), Berger (2014), Peter (2019) and Wang and Li (2020). Assumption A4 has

two immediate implications: Fix s 2 [�b; w] : Since u (ey +Rs) is increasing in ey; this assumption
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ensures that U (s; �) �
R
S
u (ey +Rs) dF (ey j �) is an increasing function in �: By a similar token,

since u0 (ey +Rs) is decreasing in ey; Us (s; �) �
R
S
Ru0 (ey +Rs) dF (ey j �) is a decreasing function

in �: The relevance of these properties will be explained later.

Theorem 3 Suppose Assumptions A1, A2 0and A3 are satis�ed.

(i) If AV (�) � Au (�) and T� (�) is a concave function, then (P1) has a unique solution denoted

by s�A:

(ii) If, in addition, Av (�) > Au (�) ; T� (�) is an increasing function, u
0 (�) is convex, and Assump-

tion A4 is satis�ed ; then s�A � s
�
R � s

�
D:

Similar to the concavity of Tu (�) and Tv (�) in Theorem 2, the concavity of T� (�) is only required

in the proof of part (i). Theorem 3 identi�es six conditions that are su¢cient to establish both risk

prudence and ambiguity prudence. This includes (A) the concavity of � (�) ; i.e., AV (�) � Au (�) ;

(B) u (�) is strictly increasing and concave; (C) strict ambiguity aversion, i.e., Av (�) > Au (�) ;
31 (D)

decreasing absolute ambiguity aversion, i.e., T� (�) is increasing; (E) risk prudence as in Kimball

(1990), i.e., u0 (�) is convex; and (F) Assumption A4. We now explain the role played by each of

these conditions.

To start, the risk prudence result (i.e., s�R � s
�
D) holds if the marginal bene�t of saving in (P3)

exceed that in (P2), i.e.,

�0
�Z



u (ey +Rs) dH (ey)

� Z



u0 (ey +Rs) dH (ey) � �0 [u (�+Rs)]u0 (�+Rs) :

Provided that � (�) is concave (condition A), the above inequality is valid if

Z



u (ey +Rs) dH (ey) � u (�+Rs) and

Z



u0 (ey +Rs) dH (ey) � u0 (�+Rs) :

The �rst inequality is valid if and only if u (�) exhibits risk aversion (condition B). The second

inequality holds if and only if u0 (�) is convex (condition E). Thus, conditions A, B and E in

Theorem 3 are enough to establish s�R � s
�
D: This is essentially the risk prudence result of Gollier

(2001a).

31Strict ambiguity aversion is required only to ensure that �00 (�) < 0 so that T� (�) is well-de�ned.
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The ambiguity prudence result can be explained in a similar manner. Speci�cally, s�A � s�R

holds if the marginal bene�t of saving in (P1) exceed that in (P3), i.e.,

�0 [M� (s)]M
0
� (s) � �

0

�Z



u (ey +Rs) dH (ey)

� Z



Ru0 (ey +Rs) dH (ey) :

Given that � (�) is strictly increasing and concave; this condition is satis�ed ifM� (s) is lower in level

but more responsive to changes in s than its counterpart in (P3), which is
R

 u (ey +Rs) dH (ey) :

Formally, s�A � s
�
R holds if

M� (s) �

Z



u (ey +Rs) dH (ey) and M

0
� (s) �

Z



Ru0 (ey +Rs) dH (ey) : (37)

The �rst inequality follows immediately from ambiguity aversion (condition C). Since we are assum-

ing strict ambiguity aversion, this condition will hold with strict inequality. The second inequality

is the one that requires some elaboration. By saving more in the current period, the consumer can

expect a higher value U (s; �) under all plausible �rst-order distributions. This will in turn raise

the value of M� (s) : Formally, the derivative M
0
� (s) is given by

M
0
� (s) =

R
� �

0 [U (s; �)]Us (s; �) dG (�)R
� �

0 [U (s; �)] dG (�)
�

R
� �

0 [U (s; �)] dG (�)

�0 [M� (s)]| {z }
DAAA E¤ect

: (38)

The �rst term on the right side of (38) captures the e¤ect of s on a weighted average of

fU (s; �) j � 2 �g, where the weights are determined by the consumer�s ambiguity preferences � (�)

and second-order beliefs G (�) : The second term is related to the shape of the absolute ambiguity

aversion coe¢cient A� (�) :We start with the meaning of the second term. Consider a hypothetical

scenario in which each U (s; �) is increased by the same in�nitesimal amount " > 0: This will raise

the certainty equivalent of fU (s; �) j � 2 �g derived under � (�) by

d

d"
��1

�Z

�
� [U (s; �) + "] dG (�)

�����
"=0

=

R
� �

0 [U (s; �)] dG (�)

�0 [M� (s)]
:

If � (�) exhibits DAAA (condition D), then such an increase will make the consumer less ambiguity-

averse. This will narrow the gap between ��1
�R
� � [U (s; �)] dG (�)

	
and its counterpart in (P3),
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i.e.,
R

 u (ey +Rs) dH (ey) : In other words, for any " > 0;

Z



u (ey +Rs) dH (ey)� ��1

�Z

�
� [U (s; �)] dG (�)

�

�

Z



u (ey +Rs) dH (ey) + "� ��1

�Z

�
� [U (s; �) + "] dG (�)

�
:

Rearranging terms and dividing both sides by " > 0 gives

1

"

�
��1

�Z

�
� [U (s; �) + "] dG (�)

�
� ��1

�Z

�
� [U (s; �)] dG (�)

��
� 1:

By taking the limit "! 0; this becomes

R
� �

0 [U (s; �)] dG (�)

�0 [M� (s)]
� 1: (39)

Thus, the DAAA e¤ect in (38) tells us how much M� (s) will increase when all U (s; �) increase by

the same amount.

We now explain the �rst term on the right side of (38), which captures the di¤erential e¤ect

of s across di¤erent U (s; �) : We �rst rewrite it as

R
� �

0 [U (s; �)]Us (s; �) dG (�)R
� �

0 [U (s; �)] dG (�)
=

Z

�
Us (s; �)� (s; �) dG (�) ;

where � (s; �) is a Radon-Nikodym derivative de�ned by

� (s; �) �
�0 [U (s; �)]R

� �
0 [U (s; �)] dG (�)

; with

Z

�
� (s; �) dG (�) = 1:

If the consumer is ambiguity-neutral, then �0 (�) is a positive constant and � (s; �) = 1 for all

(s; �) 2 [�b; w]��: In this case, the �rst term on the right side of (38) is simply the expected value

of Us (s; �) under the second-order distribution G (�) : But if the consumer is strictly ambiguity-

averse (condition C), then � (s; �) is not a constant in general. Holding s �xed, a higher value

of � (s; �) means that the corresponding �rst-order distribution F (ey j �) is more important in the

consumer�s decision process.32 To explain this more precisely, pick any �1 and �2 in � so that

�2 > �1: Assumption A4 implies that F (ey j �1) is less desirable than F (ey j �2) under the �rst-order

stochastic dominance (FOSD) criterion. In other words, it is less likely to draw a high value of

32A similar Radon-Nikodym derivative also appears in Gollier [2011, Equation (8)]. Gollier interprets this deriva-
tive as a distortion to the consumer�s second-order beliefs.
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future income under F (ey j �1) than under F (ey j �2) : Hence, the �rst-order expected utility U (s; �)

is lower under �1 than under �2: This, together with ambiguity aversion, implies �
0 [U (s; �1)] �

�0 [U (s; �2)] and � (s; �1) � � (s; �2) : At the same time, since savings are more valued when future

income is low, the marginal bene�t of saving is greater under F (ey j �1) than under F (ey j �2) ;

i.e., Us (s; �1) � Us (s; �2) : Thus, when the consumer is deciding how much to save, she will put

greater importance on those �rst-order distributions that yield a higher marginal bene�t of saving.

Consequently, the weighted average
R
� Us (s; �)� (s; �) dG (�) will be greater than the expected

value
R
� Us (s; �) dG (�) ; i.e.,

Z

�
Us (s; �)� (s; �) dG (�) �

Z

�
Us (s; �) dG (�) =

Z



Ru0 (ey +Rs) dH (ey) : (40)

Another way to derive (40) is by considering the covariance between �0 [U (s; �)] and Us (s; �) :

Since both of them are decreasing functions in � under Assumption A4, they are comonotone and

have a positive covariance, i.e.,

Z

�
�0 [U (s; �)]Us (s; �) dG (�) �

�Z

�
�0 [U (s; �)] dG (�)

� �Z

�
Us (s; �) dG (�)

�
:

The condition in (40) can be obtained by rearranging terms.

The inequalities in (39) and (40) together establish the second inequality in (37). From this

discussion, it is clear that the only reason of having Assumption A4 is to generate a positive co-

variance between �0 [U (s; �)] and Us (s; �). Berger (2014, Proposition 2) and Osaki and Schlesinger

(2014, p.14-15) provide other assumptions can also achieve the same e¤ect.

Our Theorem 3 is similar to the �rst part of Proposition 2 in Osaki and Schlesinger (2014), but

there are three non-trivial di¤erences: First, Osaki and Schlesinger do not specify the conditions

under which the �rst-order condition of the consumer�s problem is su¢cient to identify the optimal

level of savings. These conditions are explicitly stated in our Theorem 3. Second, they focus on the

recursive smooth ambiguity preferences developed by Klibano¤ et al. (2009), which corresponds

to the case when V (�) � u (�) : Our Theorem 3 extends this to the more general case in which V (�)

is an increasing concave transformation of u (�) : Finally, Osaki and Schlesinger do not explore the

connection among risk prudence, ambiguity prudence and mixed prudence.
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4 Further Results

4.1 More on Ambiguity Prudence

A natural follow-up question to Theorem 3 is whether we can establish the ambiguity prudence

result without imposing any restrictions on the set of �rst-order distributions, as in our �rst two

approaches. In this subsection, we show that this is possible but at the expense of the generality

of u (�) : The result is formally stated in Theorem 4, which shares a resemblance with Proposition

1 in Berger (2014). Using the recursive smooth ambiguity preferences of Klibano¤ et al. (2009)

[i.e., when V (�) � u (�) in (8)], Berger shows that the consumer is ambiguity-prudent if (i) � (�)

is increasing and concave, (ii) � (�) exhibits DAAA, and (iii) u (�) is either a linear function or an

exponential function (i.e., CARA). Using a modi�ed version of Approach #2 (which now requires

ambiguity aversion), our Theorem 4 generalises Berger�s result in two ways: First, we generalise his

result to the case when V (�) 6= u (�) : Second, we show that DAAA is overly su¢cient for ambiguity

prudence. Instead, this can be replaced by a weaker condition, which is DARA of v (�) : To see

why this is true, di¤erentiate A� (u (c)) with respect to c to get

A0� (x) =
1

u0 (c)

�
A0v (c)�A

0
u (c)

�
+Au (c)A� (x) ;

where x = u (c) : Suppose � (�) exhibits ambiguity aversion so that A� (�) � 0: Then A
0
v (�) � 0 and

A0u (�) = 0 (CARA utility) does not necessarily imply A
0
� (�) � 0: But if A

0
� (�) � 0 and A

0
u (�) = 0;

then A0v (�) � 0 must be true.

Theorem 4 Suppose u (�) exhibits constant absolute risk aversion so that Tu (c) = T u > 0 for

all c � 0; and Assumptions A2 0 and A3 are satis�ed.

(i) If Tv (�) is concave, then both (P1) and (P3) have a unique solution denoted by s
�
A and s

�
R;

respectively.

(ii) If, in addition, Tv (�) is an increasing function and � (�) is concave, then s
�
A � s

�
R:

The CARA assumption is useful because under this type of preferences, Mu (s; �) and the

certainty equivalent under H (�) ; i.e., u�1
�R
u (ey +Rs) dH (ey)

�
; are both linear functions in s:

Given that V (�) is strictly increasing and strictly concave, s�A � s
�
R holds if

Mv (s) � u
�1

�Z
u (ey +Rs) dH (ey)

�
and M

0
v (s) � 1:
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The �rst inequality is valid under ambiguity aversion. The second inequality can be established

using the DARA property of v (�) alone.

Finally, since V (�) is strictly increasing and strictly concave, and u (�) exhibits CARA, the risk

prudence result of Kimball and Weil (2009) remains valid here. Thus, the conditions in Theorem

4 also guarantee that s�R � s
�
D:

4.2 Non-Time-Separable Utility

In this subsection, we show that the results in Theorem 2 can be readily extended to a non-time-

separable version of GRSA preferences. Suppose now the consumer�s attitudes toward intertempo-

ral substitution is captured by a general aggregator function W : R2+ ! R: Let Wi (c1; c2) denote

the partial derivative of W (�) with respect to the ith argument, for i 2 f1; 2g ; and Wij (c1; c2) be

the partial derivative of Wi (�) with respect to the jth argument, for i; j 2 f1; 2g : The properties

of W are stated in Assumption A5, which will replace Assumption A3.

Assumption A5 The functionW : R2+ ! R is twice continuously di¤erentiable, strictly increas-

ing and jointly strictly concave in both arguments. In addition, W1 (c1; c2) =W2 (c1:c2) is increasing

in c2 for any c1 � 0; and lim
c1!0

W1 (c1; c2) =1 for all c2 � 0:

The main assumption here is that the marginal rate of substitution W1 (c1; c2) =W2 (c1:c2) is

increasing in c2 for all c1 � 0: This is true if and only if

W12 (c1; c2)

W2 (c1; c2)
�
W1 (c1; c2)W22 (c1; c2)

[W2 (c1; c2)]
2 � 0; (41)

for all (c1; c2) 2 R
2
+: Intuitively, this means any increase in c2 will increase the marginal bene�t

of c1 relative to that of c2: Holding other things constant, this will encourage the consumer to

substitute c2 for c1: A su¢cient condition for (41) is W12 (c1; c2) � 0; for all (c1; c2) 2 R
2
+: The

limit condition in Assumption A5 ensures that it is never optimal to choose c1 = 0:

The consumer�s lifetime utility is now given by W [c1;Mv (s)] and the consumption-saving

problem under ambiguity can be expressed as

max
s2[�b;w]

fW [w � s;Mv (s)]g : (P4)
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The deterministic version of (P4) is given by

max
s2[�b;w]

fW (w � s; �+Rs)g : (P5)

Since W (�) is continuous and jointly strictly concave in its arguments, if Mv (s) satis�es the

concavity condition in (32), then the objective function in (P4) is continuous and strictly concave

in s. This ensures the existence of a unique solution for (P4), denoted by es�A: The �rst-order

condition of (P4) can be expressed as

W1 [w � s;Mv (s)]

W2 [w � s;Mv (s)]
�M0

v (s) ;

which holds with equality if es�A > �b: As for (P5), Assumption A5 alone is enough to ensure the

existence of a unique solution, denoted by es�D: The �rst-order condition of (P5) implies

W1 (w � s; �+Rs)

W2 (w � s; �+Rs)
� R;

which holds with equality if es�D > �b:

The consumer is mixed-prudent, i.e., es�A � es�D; if

W1 (w � s; �+Rs)

W2 (w � s; �+Rs)
�
W1 [w � s;Mv (s)]

W2 [w � s;Mv (s)]
�M0

v (s) � R; (42)

for all s 2 [�b; w] : Since W1 (c1; c2) =W2 (c1:c2) is increasing in c2; the �rst inequality in (42) is

equivalent to

�+Rs �Mv (s) :

The intuition is as follows: Under Assumption A5, a higher future consumption in the deterministic

environment will encourage the consumer to substitute future consumption (c2) for more current

consumption (c1) : This discourages saving in the deterministic environment. On the other hand,

M
0
v (s) � R means that it is more rewarding to save under ambiguity. These two forces together

ensure es�A � es�D:

Thus, similar to Approach #2 in Section 3, the consumer is mixed-prudent if Mv (s) is lower

in level but more sensitive to changes in s than its deterministic counterpart. From this point

onward, the proof of es�A � es�D and its interpretation are exactly the same as in Theorem 2. Thus,

by replacing Assumption A3 with A5, we can generalise Theorem 2 to a non-time-separable lifetime
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utility function. This is formally stated as Theorem 5 (the proof is omitted).

Theorem 5 Suppose Assumptions A1 0; A2 0 and A5 are satis�ed.

(i) If both Tu (�) and Tv (�) are concave, then both (P4) and (P5) have a unique solution, denoted

by es�A and es�D; respectively.

(ii) If, in addition, both Tu (�) and Tv (�) are increasing, then es�A � es�D:

5 Conclusions

In this paper we adopt a two-period model to analyse precautionary saving behaviour under am-

biguity. Our goal is to better understand the conditions that lead to precautionary saving in this

setting. To this end, we adopt the generalised recursive smooth ambiguity (GRSA) preferences of

Hayashi and Miao (2011) and distinguish between two types of precautionary saving motives under

ambiguity, namely mixed prudence and ambiguity prudence. Our �rst two major results show a

close connection between risk-prudence under Selden/Kreps-Porteus preferences and precautionary

saving under GRSA preferences. In particular, these results do not require any stochastic ordering

on the �rst-order probability distributions of future income. This type of ordering, however, is

needed in the analysis of ambiguity prudence.

We believe the methodology developed in this paper can also be useful in two other directions

of research. The �rst one is comparative statics analysis. For instance, under what conditions will

a more ambiguity-averse consumer save more in the presence of ambiguity? The second direction

is to analyse precautionary saving behaviour under other types of ambiguous risks, e.g., interest

rate risk. We plan to pursue these in future work.
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Appendix A

A1. Preliminaries

This subsection serves two purposes. First, it collects some preliminary known results that are

useful for subsequent proofs. Second, it veri�es certain claims that we have made in the main text.

Properties of Mu (s; �) : For any (s; �) 2 [�b; w]��; Mu (s; �) is implicitly de�ned by

u [Mu (s; �)] �

Z



u (ey +Rs) dF (ey j �) : (A.1)

If u (�) is concave, then

u [Mu (s; �)] �

Z



u (ey +Rs) dF (ey j �) � u [e� (�) +Rs] ;

where e� (�) is the expected value of ey under F (ey j �) : Hence, we have Mu (s; �) � e� (�) + Rs:

Di¤erentiating both sides of (A.1) with respect to s and rearranging terms give

@

@s
Mu (s; �) =

R

u0 [Mu (s; �)]

Z



u0 (ey +Rs) dF (ey j �) > 0: (A.2)

The denominator on the right side is non-zero as u (�) is strictly increasing, hence the partial

derivative is well-de�ned.

If u (�) exhibits decreasing absolute risk aversion (DARA), then �u0 (�) is a concave transfor-

mation of u (�), or in other words, �u0 � u�1 (�) is a concave function (Gollier, 2001a, p.25). It

follows that

�u0 [Mu (s; �)] = �u
0 � u�1

�Z



u (ey +Rs) dF (ey j �)

�
� �

Z



u0 (ey +Rs) dF (ey j �)

) u0 [Mu (s; �)] �

Z



u0 (ey +Rs) dF (ey j �) : (A.3)

Equations (A.2) and (A.3) together imply that, if u (�) is a DARA utility function, then @
@s
Mu (s; �) �

R; for all (s; �) 2 [�b; w]��: By the same argument, if u (�) exhibits increasing absolute risk aver-

sion [resp., constant absolute risk aversion (CARA)], then @
@s
Mu (s; �) � R [resp.,

@
@s
Mu (s; �) = R]:
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Properties of Mv (s) For any s 2 [�b; w] ; the second-order certainty equivalent Mv (s) is im-

plicitly de�ned by

v [Mv (s)] �

Z

�
v [Mu (s; �)] dG (�) : (A.4)

If both u (�) and v (�) are concave, then by Jensen�s inequality

v [Mv (s)] �

Z

�
v [Mu (s; �)] dG (�) � v

�Z

�
Mu (s; �) dG (�)

�

� v

�Z

�
[e� (�) +Rs] dG (�)

�
:

The second line uses the fact that Mu (s; �) � e� (�) +Rs for all (s; �) : Hence, we have

Mv (s) �

Z

�
[e� (�) +Rs] dG (�) � �+Rs: (A.5)

If both u (�) and v (�) are strictly concave, then (A.5) will hold with strict inequality. Di¤erentiating

both sides of (A.4) with respect to s and rearranging terms give

M
0
v (s) =

1

v0 [Mv (s)]

Z

�
v0 [Mu (s; �)]

�
@

@s
Mu (s; �)

�
dG (�) :

The expression on the right is well-de�ned as v0 [Mv (s)] 6= 0: Substituting (A.2) into the above

equation gives

M
0
v (s) =

R

v0 [Mv (s)]

Z

�

v0 [Mu (s; �)]

u0 [Mu (s; �)]

�Z



u0 (ey +Rs) dF (ey j �)

�
dG (�) > 0; (A.6)

which is strictly positive if u (�) and v (�) are strictly increasing. The same expression can be

obtained if we write (A.4) as

v [Mv (s)] =

Z

�
� [U (s; �)] dG (�)

and di¤erentiate both sides with respect to s: In particular, if we rewrite (4) as

�0 (x) =
v0
�
u�1 (x)

�

u0 [u�1 (x)]
;

for any x in the domain of u (�) ; then we can get

�0 [U (s; �)] =
v0 [Mu (s; �)]

u0 [Mu (s; �)]
: (A.7)
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If v (�) exhibits decreasing absolute risk aversion, then

�v0 [Mv (s)] = �v
0 � v�1

�Z

�
v [Mu (s; �)] dG (�)

�
� �

Z

�
v0 [Mu (s; �)] dG (�)

) v0 [Mv (s)] �

Z

�
v0 [Mu (s; �)] dG (�) : (A.8)

Properties of M� (s) : For any s 2 [�b; w] ; M� (s) is implicitly de�ned by

� [M� (s)] �

Z

�
� [U (s; �)] dG (�) : (A.9)

If � (�) is increasing and concave, then by Jensen�s inequality

� [M� (s)] � �

�Z

�
U (s; �) dG (�)

�

)M� (s) �

Z

�
U (s; �) dG (�) =

Z



u (ey +Rs) dH (ey) � u (�+Rs) : (A.10)

The last inequality follows from the concavity of u (�) : Di¤erentiating both sides of (A.9) with

respect to s and rearranging terms give

M
0
� (s) =

1

�0 [M� (s)]

Z

�
�0 [U (s; �)]Us (s; �) dG (�) :

This derivative is well-de�ned and strictly positive as � (�) is strictly increasing. Using the same

line of argument as in (A.3) and (A.8), one can show that if � (�) exhibits decreasing absolute

ambiguity aversion (DAAA), then

R
� �

0 [U (s; �)] dG (�)

�0 [M� (s)]
� 1; for all s 2 [�b; w] :

This, however, is di¤erent from M
0
� (s) � 1:

Third-Order Derivative of � (�) Suppose u (�) and v (�) [and hence � (�)] are thrice di¤eren-

tiable. We now show that u000 (�) � 0 and v000 (�) � 0 do not necessarily imply �000 (�) � 0: Recall the

expression in (5), which is

�00 (x) =
v00 (c)� �0 (x)u00 (c)

[u0 (c)]2
;
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for any x = u (c) and c � 0: Di¤erentiating both sides with respect to c and rearranging terms give

�000 (x) =
1

[u0 (c)]3

2
64v000 (c)� �00 (x)u0 (c)u00 (c)| {z }

(+)

� �0 (x)u000 (c)| {z }
(+)

3
75� 2

u00 (c)�00 (x)

[u0 (c)]2| {z }
(+)

:

Suppose u (�) ; v (�) and � (�) are all strictly increasing and concave functions. Then v000 (�) = 0 and

u000 (�) � 0 imply �000 (�) < 0: If v000 (�) > 0 and u000 (�) � 0; then �000 (�) can be either positive-valued

or negative-valued. But on the contrary, if �000 (�) � 0 and u000 (�) � 0; then v000 (�) must be strictly

positive.

A.2 Proof of Theorem 1

Part (i) As mentioned in the main text, it su¢ce to show that future felicity	
�R
� � [U (s; �)] dG (�)

	

is a concave function in s: Pick any s1 and s2 from [�b; w] : For any � 2 [0; 1] ; de�ne s� �

�s1 + (1� �) s2: Since monotonicity and concavity are preserved by integration, it follows from

Assumption A1 that U (s; �) �
R
S
u (ey +Rs) dF (ey j �) is strictly increasing and concave in s; for

any � 2 �: Hence,

U (s�; �) � �U (s1; �) + (1� �)U (s2; �) : (A.11)

Since � (�) is strictly increasing and concave,

Z

�
� [U (s�; �)] dG (�) �

Z

�
� [�U (s1; �) + (1� �)U (s2; �)] dG (�)

� �

Z

�
� [U (s1; �)] dG (�) + (1� �)

Z

�
� [U (s2; �)] dG (�) : (A.12)

By the same token, since 	(�) is strictly increasing and concave,

	

�Z

�
� [U (s�; �)] dG (�)

�

� 	

�
�

Z

�
� [U (s1; �)] dG (�) + (1� �)

Z

�
� [U (s2; �)] dG (�)

�

� �	

�Z

�
� [U (s1; �)] dG (�)

�
+ (1� �)	

�Z

�
� [U (s2; �)] dG (�)

�
: (A.13)

This proves that future felicity is concave in s:
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Part (ii) Set gA (s) =
R
� � [U (s; �)] dG (�) and gD (s) = � � u (�+Rs) ; for all s 2 [�b; w] : By

the concavity of � (�) and u (�) ;

gA (s) � �

�Z

�
U (s; �) dG (�)

�
= �

�Z

�
u (ey +Rs) dH (ey)

�

� � � u

�Z

�
(ey +Rs) dH (ey)

�
= � � u (�+Rs) :

This proves gA (s) � gD (s) for all s 2 [�b; w] : The derivative of gA (�) is given by

g0A (s) =

Z

�
�0 [U (s; �)]Us (s; �) dG (�)

= R

Z

�

v0 [Mu (s; �)]

u0 [Mu (s; �)]

Z



u0 (ey +Rs) dF (eyj�) dG (�) : (A.14)

The second line uses (A.7) and the de�nition of U (s; �) : Since gD (s) = ��u (�+Rs) = v (�+Rs) ;

g0D (s) = Rv
0 (�+Rs) : (A.15)

As shown in Section A.1, the concavity of u (�) implies Mu (s; �) � e� (�) + Rs; for all (s; �) 2

[�b; z]��: Since v (�) is more concave than u (�) under ambiguity aversion, the ratio v0 (c) =u0 (c)

is a decreasing function in c. Combining these two observations gives

�0 [U (s; �)] =
v0 [Mu (s; �)]

u0 [Mu (s; �)]
�
v0 [e� (�) +Rs]
u0 [e� (�) +Rs] > 0: (A.16)

By the convexity of u0 (�) ;

Z

S

u0 (ey +Rs) dF (eyj�) � u0 [e� (�) +Rs] > 0: (A.17)

Substituting (A.16) and (A.17) into (A.14) yields

g0A (s) � R

Z

�
v0 [e� (�) +Rs] dG (�) :

Finally, the convexity of v0 (�) implies

R

Z

�
v0 [e� (�) +Rs] dG (�) � v0 (�+Rs) = g0D (s) : (A.18)

This establishes g0A (s) � g
0
D (s) and completes the proof of Theorem 1.
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A.3 Proof of Corollary 1

Given the quadratic utility function in (31), the marginal utility of consumption is non-negative

in both time periods and in all possible states if

�1
�2
� w + b � w � s = c1 � 0; (A.19)

and

�1
�2
� y +Rw � ey +Rs = ec2 � 0;

for all s 2 [�b; z] ; where y is the highest possible level of future income. This explains the additional

condition �1 > �2max fy +Rw;w + bg : The inequality in (A.19) implies s � w � �1=�2: Note

that �1 > �2 (w + b) can be rewritten as

�b > w �
�1
�2
:

Hence, the feasible set of s remains the same as [�b; w]. There are now two possible scenarios for

s�A : either s
�
A = w or w > s�A � �b: In the �rst scenario, the desired result s�A � s�D is trivially

true. In the second scenario, the �rst-order condition in (22) is again valid. The rest of the proof

focuses on this scenario.

Set gA (s) =
R
� � [U (s; �)] dG (�) and gD (s) = ��u (�+Rs) : If both u (�) and � (�) are strictly

concave, then as shown in the proof of Theorem 1 part (ii) gA (s) < gD (s) for any s 2 [�b; w].

Strict concavity of u (�) also implies

Mu (s; �) < e� (�) +Rs; for all (s; �) 2 [�b; z]��:

Meanwhile, a strictly concave � (�) means that v0 (c) =u0 (c) is a strictly decreasing function in c.

These two observations imply that the inequality in (A.16) will be strict, i.e.,

v0 [Mu (s; �)]

u0 [Mu (s; �)]
>
v0 [e� (�) +Rs]
u0 [e� (�) +Rs] :

Substituting this into (A.14) yields

g0A (s) > R

Z

�

v0 [e� (�) +Rs]
u0 [e� (�) +Rs]

Z



u0 (ey +Rs) dF (ey j �) dG (�) = R

Z

�
v0 [e� (�) +Rs] dG (�) :
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The equality uses the fact that u0 (�) is linear, which means

Z



u0 (ey +Rs) dF (ey j �) = u0 [e� (�) +Rs] :

The last step is to apply the convexity of v0 (�) as in (A.18). This proves that g0A (s) > g
0
D (s) and

establishes the result in Corollary 1.

A.4 Proof of Corollary 2

Set gA (s) =
R
� � [U (s; �)] dG (�) and gD (s) = � � u (�+Rs) : If u (c) = c and v (�) is strictly

concave, then � (�) is also strictly concave. It follows that

gA (s) < �

�Z

�
U (s; �) dG (�)

�
= �

�Z

�

Z



(ey +Rs) dF (ey j �) dG (�)

�
= gD (s) :

Risk neutrality also means that Mu (s; �) = e� (�) +Rs; for all (s; �) 2 [�b; z]��; and

�0 [U (s; �)] = v0 [Mu (s; �)] = v
0 [e� (�) +Rs] :

Substituting this into (A.14) gives

g0A (s) = R

Z

�
v0 [e� (�) +Rs] dG (�) > Rv0

�Z

�
[e� (�) +Rs] dG (�)

�
= g0D (s) :

The inequality follows from the strictly convexity of v0 (�) : This proves Corollary 2.

A.5 Proof of Theorem 2

Part (i) By Assumption A3, V (�) is a strictly concave function. By Lemma 1 part (ii), Mv (s)

is a concave function in s if both Tu (�) and Tv (�) are concave functions. These two observations

together implies that �A (�) is strictly concave.

Part (ii) As shown in (A.5), if both u (�) and v (�) are strictly concave, then Mv (s) < � + Rs;

for all s 2 [�b; w]. Also, as shown in Section A.1, M0
v (s) can be expressed as

M
0
v (s) =

1

v0 [Mv (s)]

Z

�
v0 [Mu (s; �)]

�
@

@s
Mu (s; �)

�
dG (�) :
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If u (�) exhibits DARA, then M0
u (s; �) � R for all (s; �) 2 [�b; w]��: Combining these two gives

M
0
v (s) �

R

v0 [Mv (s)]

Z

�
v0 [Mu (s; �)] dG (�) � R:

The second inequality follows from (A.8), which is based on the DARA property of v (�) : This

completes the proof of Theorem 2.

A.6 Proof of Theorem 3

The proof of part (ii) has already been explained in the main text. Hence, we will only mention

the proof of part (i) in here. If AV (�) � Au (�) ; then the composite function � (�) is concave. This,

together with Lemma 2, ensures that the consumer�s future felicity � [M� (s)] is a concave function

in s: The strict concavity of V (�) then implies that �A (�) is strictly concave.

A.7 Proof of Theorem 4

Part (i) The uniqueness proof of s�A is the same as in Theorem 2, hence we focus on the unique-

ness of s�R. Under Approach #2, the objective function in (P3) can be expressed as

�R (s) � V (w � s) + �V

�
u�1

�Z

S

u (ey +Rs) dH (ey)
��
:

If u (�) exhibits CARA, then u�1
�R
S
u (ey +Rs) dH (ey)

�
is a linear function in Rs: This, together the

strictly concavity of V (�) under Assumption A3, ensures that �R (�) is a strictly concave function.

Hence, (P3) has a unique solution.

Part (ii) The desired result s�A � s
�
R holds if and only if the marginal bene�ts of saving under

(P1) is greater than that under (P3), i.e.,

V 0 [Mv (s)]M
0
v (s) � V

0

�
u�1

�Z

S

u (ey +Rs) dH (ey)
��

d

ds

�
u�1

�Z

S

u (ey +Rs) dH (ey)
��
:

Given that V (�) is strictly increasing and concave, this condition holds if

Mv (s) � u
�1

�Z

S

u (ey +Rs) dH (ey)
�
; (A.20)

M
0
v (s) �

d

ds

�
u�1

�Z

S

u (ey +Rs) dH (ey)
��

= R: (A.21)
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Condition (A.20) follows immediately from ambiguity aversion. To see this, note that

Mv (s) = v�1
Z

�
v � u�1

�Z



u (ey +Rs) dF (ey j �)

�
dG (�)

� v�1 � v � u�1
�Z

�

Z



u (ey +Rs) dF (ey j �) dG (�)

�

= u�1
�Z

S

u (ey +Rs) dH (ey)
�
:

The second line uses the concavity of � (�) � v � u�1 (�) : The equality in (A.21) follows from the

CARA assumption for u (�) : As shown in (A.6), the derivative of Mv (s) is given by

M
0
v (s) =

R

v0 [Mv (s)]

Z

�

v0 [Mu (s; �)]

u0 [Mu (s; �)]

�Z

�
u0 (ey +Rs) dF (ey j �)

�
dG (�) :

Again by the CARA assumption for u (�) ;

1

u0 [Mu (s; �)]

�Z

�
u0 (ey +Rs) dF (ey j �)

�
= 1;

for all � 2 �: Hence, the derivative of Mv (s) can be simpli�ed to become

M
0
v (s) =

R

v0 [Mv (s)]

Z

�
v0 [Mu (s; �)] dG (�) : (A.22)

The last step is to invoke the DARA property of v (�) : In particular, combining (A.8) and (A.22)

gives (A.21). This completes the proof of Theorem 4.
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Appendix B: Concavity of Certainty Equivalent

This appendix provides a detailed and self-contained proof of Lemmas 1 and 2. We begin by

establishing an intermediate result, which is a variant of Theorem 106 in Hardy et al. (1934).

B.1 Preliminaries

For any positive integer J > 1; de�ne a function fMJ
u : R

J
+ ! R+ according to

fMJ
u (x) � u

�1

2
4

JX

j=1

pju (xj)

3
5 ; (B.1)

where x =(x1; :::; xJ) 2 R
J
+; pj 2 [0; 1] for each j, and

PJ
j=1 pj = 1:

fMJ
u (x) is said to be concave

if for any x1 and x2 in R
J
+; and for any � 2 [0; 1] ;

fMJ
u (�x1 + (1� �)x2) � �fMJ

u (x1) + (1� �)fMJ
u (x2) : (B.2)

Lemma A1 Let u : R+ ! R be a thrice continuously di¤erentiable, strictly increasing and

strictly concave function. Then the following statements are equivalent:

(i) Tu (c) � �u
0 (c) =u00 (c) is a concave function.

(ii) fMJ
u (x) is concave.

Proof of Lemma A1 To prove that (i) implies (ii), �rst rewrite equation (B.1) as

u
h
fMJ
u (x)

i
=

JX

j=1

pju (xj) : (B.3)

Since u (�) is at least twice continuously di¤erentiable, so is fMJ
u (x) : Let hi (x) be the derivative

of fMJ
u (x) with respect to the ith element of x; and hi;j (x) be the derivative of hi (x) with respect

to the jth element of x: The Hessian matrix of fMJ
u (x) is denoted by H (x) = [hi;j (x)] for any

x 2 RJ+: The certainty equivalent fMJ
u (x) is concave if and only if H (x) is a negative semi-de�nite

matrix. We now show that H (x) is negative semi-de�nite if Tu (�) exhibits concavity.

Straightforward di¤erentiation of (B.3) gives

u0
h
fMJ
u (x)

i
hi (x) = piu

0 (xi) ; (B.4)
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u00
h
fMJ
u (x)

i
[hi (x)]

2 + u0
h
fMJ
u (x)

i
hi;i (x) = piu

00 (xi) ; (B.5)

for i = 1; :::; J; and

u00
h
fMJ
u (x)

i
hi (x)hj (x) + u

0
h
fMJ
u (x)

i
hi;j (x) = 0; if i 6= j: (B.6)

Combining (B.4) and (B.5) gives

hi;i (x) = pi
u00 (xi)

u0
h
fMJ
u (x)

i �
u00
h
fMJ
u (x)

i

n
u0
h
fMJ
u (x)

io3
�
piu

0 (xi)
�2
:

Similarly, combining (B.4) and (B.6) gives

hi;j (x) = �
u00
h
fMJ
u (x)

i

n
u0
h
fMJ
u (x)

io3 pipju
0 (xi)u

0 (xj) :

Thus, for any $ = ($1; :::; $J) 2 R
J ; we can write

$
T �H (x)$

=

PJ
j=1 pj$

2
ju
00 (xj)

u0
h
fMJ
u (x)

i �
u00
h
fMJ
u (x)

i

n
u0
h
fMJ
u (x)

io3

2
4

JX

j=1

pj$ju
0 (xj)

3
5
2

=
u00
h
fMJ
u (x)

i

n
u0
h
fMJ
u (x)

io3

2
4

JX

j=1

pj$
2
ju
00 (xj)

3
5

8
><
>:

n
u0
h
fMJ
u (x)

io2

u00
h
fMJ
u (x)

i �

hPJ
j=1 pj$ju

0 (xj)
i2

PJ
j=1 pj$

2
ju
00 (xj)

9
>=
>;
:

Hence, $T �H (x)$ � 0 if and only if

n
u0
h
fMJ
u (x)

io2

u00
h
fMJ
u (x)

i �

hPJ
j=1 pj$ju

0 (xj)
i2

PJ
j=1 pj$

2
ju
00 (xj)

; (B.7)

for any $ 2 RJ : To see the connection between this and the concavity of Tu (�) : First, de�ne an

auxiliary function � : R! R+ according to

� (m) �

�
u0
�
u�1 (m)

�	2

u00 [u�1 (m)]
:
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Straightforward di¤erentiation gives

�0 (m) = 2�
u0
�
u�1 (m)

�
u000
�
u�1 (m)

�

fu00 [u�1 (m)]g2
= 1� T 0u

�
u�1 (m)

�
:

Since u�1 (�) is strictly increasing, it follows that Tu (�) is weakly concave if and only if � (�) is

weakly convex.

If � (�) is weakly convex, then

n
u0
h
fMJ
u (x)

io2

u00
h
fMJ
u (x)

i � �

2
4

JX

j=1

pju (xj)

3
5

�
JX

j=1

pj� [u (xj)]

=
JX

j=1

pj
[u0 (xj)]

2

u00 (xj)
�

hPJ
j=1 pj$ju

0 (xj)
i2

PJ
j=1 pj$

2
ju
00 (xj)

:

The second line is obtained by using Jensen�s inequality. The third line follows from the de�nition of

� (m) : The last inequality follows from the Cauchy-Schwartz inequality and the fact that u00 (�) < 0:

This proves that if Tu (�) is concave then the condition in (B.7) is satis�ed and H (x) is negative

semi-de�nte.

To prove the necessity of a concave Tu (�) ; suppose H (x) is negative semi-de�nite so that (B.7)

holds for all $ 2 RJ : Set $j = u
0 (xj) =u

00 (xj) for each j: Then (B.7) becomes

�

2
4

JX

j=1

pju (xj)

3
5 �

n
u0
h
fMJ
u (x)

io2

u00
h
fMJ
u (x)

i �
JX

j=1

pj
[u0 (xj)]

2

u00 (xj)
�

JX

j=1

pj� [u (xj)] ;

which proves that � (�) is convex, and hence Tu (�) is concave. This completes the proof of Lemma

A1. �

B.2 Proof of Lemma 1

Part (i) Fix s 2 (�b; z) and � 2 �: Recall the de�nition of Mu (s; �) ; i.e.,

u [Mu (s; �)] =

Z



u (ey +Rs) dF (ey j �) :

In order to apply the result in Lemma A1, we �rst construct a discrete approximation for the

integral on the right side. For any positive integer J > 1; let fby0; by1; :::; byJg be an arbitrary
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partition of 
 so that y = by0 � by1 � ::: � byJ = y: De�ne a set of probabilities fp1 (�) ; :::; pJ (�)g

according to

pj (�) � F (byj j �)� F (byj�1 j �) ; for each j � 1:

The corresponding cumulative distribution function is denoted by FJ (ey j �) �
PJ
j=1 �j (y)F (byj j �) ;

where �j (y) = 1 if y 2 [byj�1; byj) and zero otherwise. Finally, de�ne fMJ
u (x) according to

fMJ
u (x) � u

�1

2
4

JX

j=1

pj (�)u (xj)

3
5 ; (B.8)

where xj = byj + Rs for all j: Since FJ (ey j �) converges pointwise to F (ey j �) as J approaches

in�nity, we can get

lim
J!1

JX

j=1

pj (�)u (xj) =

Z



u (y +Rs) dF (ey j �) ,

and by the continuity of u (�) ; we can get

lim
J!1

fMJ
u (x) =Mu (s; �) ;

for each s 2 (�b; z) and � 2 �:

By Lemma A1, if Tu (c) � �u
0 (c) =u00 (c) is concave then fMJ

u (x) satis�es the condition in (B.2).

Since x is a linear function in s; it follows that fMJ
u (x) is a concave function in s for each J > 1:

Hence,
n
fMJ
u (�)

o
forms a sequence of concave functions in s that converges pointwise to Mu (�; �)

for any given � 2 �: By Theorem 10.8 in Rockfellar (1970), the limiting function Mu (�; �) must

be concave as well. This proves the desired result.

Part (ii) Let g1 : � ! R+ and g2 : � ! R+ be two continuous functions. Suppose Tv (c) �

�v0 (c) =v00 (c) is a concave function. Using the same line of argument as in part (i), we can prove

that

v�1
�Z

�
v [�g1 (�) + (1� �) g2 (�)] dG (�)

�

� �v�1
�Z

�
v [g1 (�)] dG (�)

�
+ (1� �) v�1

�Z

�
v [g2 (�)] dG (�)

�
; (B.9)

for any � 2 [0; 1] : Pick any s1 6= s2 from [�b; w] and de�ne s� = �s1+ (1� �) s2: By the result in

part (i),

Mu (s�; �) � �Mu (s1; �) + (1� �)Mu (s2; �) ; for all � 2 �:
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Since both v (�) and v�1 (�) are strictly increasing,

Mv (s�) � v�1
�Z

�
v [Mu (s�; �)] dG (�)

�

� v�1
�Z

�
v [�Mu (s1; �) + (1� �)Mu (s2; �)] dG (�)

�
: (B.10)

Substituting g1 (�) =Mu (s1; �) and g2 (�) =Mu (s2; �) into (B.9) gives

v�1
�Z

�
v [�Mu (s1; �) + (1� �)Mu (s2; �)] dG (�)

�

� �v�1
�Z

�
v [Mu (s1; �)] dG (�)

�
+ (1� �) v�1

�Z

�
v [Mu (s2; �)] dG (�)

�

= �Mv (s1) + (1� �)Mv (s2) : (B.11)

The desired result follows by combining (B.10) and (B.11). This proves Lemma 1.

B.3 Proof of Lemma 2

The proof is similar in spirit to the proof of Lemma 1 part (ii). Let g1 : �! R+ and g2 : �! R+

be two continuous functions. Suppose T� (x) � ��0 (x) =�00 (x) is a concave function. Using the

same line of argument as in part (i), we can prove that

��1
�Z

�
� [�g1 (�) + (1� �) g2 (�)] dG (�)

�

� ���1
�Z

�
� [g1 (�)] dG (�)

�
+ (1� �)��1

�Z

�
� [g2 (�)] dG (�)

�
: (B.12)

for any � 2 [0; 1] : Pick any s1 6= s2 from [�b; w] and de�ne s� = �s1+(1� �) s2: By the concavity

of u (�) ;

U (s�; �) � �U (s1; �) + (1� �)U (s2; �) ; for all � 2 �:

Since both � (�) and ��1 (�) are strictly increasing,

M� (s�) � ��1
�Z

�
� [U (s�; �)] dG (�)

�

� ��1
�Z

�
� [�U (s1; �) + (1� �)U (s2; �)] dG (�)

�
: (B.13)

Substituting g1 (�) = U (s1; �) and g2 (�) = U (s2; �) into (B.12) gives
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��1
�Z

�
� [�U (s1; �) + (1� �)U (s2; �)] dG (�)

�

� ���1
�Z

�
� [U (s1; �)] dG (�)

�
+ (1� �)��1

�Z

�
� [U (s2; �)] dG (�)

�

= �M� (s1) + (1� �)M� (s2) : (B.14)

The desired result can be obtained by combining (B.13) and (B.14). This completes the proof of

Lemma 2.
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