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Abstract 

The Malmquist productivity index is one of the best known and most widely used measures in the 

economic literature to quantify and decompose changes in productivity of multi-input multi-output 

production processes over time. Two main approaches are used to calculate this index: the adjacent 

Malmquist index and the base period Malmquist index. No base period is required to calculate the 

adjacent Malmquist index, but it fails to comply with the circularity property. The base period 

Malmquist index uses the technology of a base period and is circular, but the base period choice is 

arbitrary. There is, therefore, a trade-off between the choice of one or other version of the Malmquist 

index. The aim of this paper is to propose a new total factor productivity index that is simultaneously 

circular and does not need to resort to a base period or ad hoc reference. To this end, as in other sciences, 

we propose a new multi-input multi-output reference production technology for use as a standard for 

measuring and decomposing total factor productivity changes. As discussed, the standard production 

technology is conceptually attractive. Also, its parameterization is versatile and adaptable to the 

evolution of a set of firms performing any multi-input multi-output production process. Additionally, 

the new approach can bring about a true total factor productivity index, which can be decomposed into 

an output change and an input change. Finally, the new index can be used to decompose the traditional 

technical change component into a global technical change applicable across the industry under study 

and a locally specific technical change dependent on the assessed firm. 
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1. Introduction 

In the early 1980s, Caves et al. (1982) introduced the Malmquist productivity index (MPI), also called 

the adjacent Malmquist index (Adj-MI), as an adaptation to production theory of the index originally 

defined by Malmquist (1953) for consumer theory. As opposed to other classical alternatives in 

economics like the Törnqvist, Laspeyres, Paasche and Fisher indices, which all rely on price 

information, the MPI is a non-price dependent approach for determining productivity change over time. 

Later, Färe et al. (1992, 1994a) showed how to implement the Adj-MI under data envelopment analysis 

(DEA). DEA is a non-parametric technique strongly based on mathematical linear programming for 

estimating production frontiers and technical efficiency. Moreover, Färe et al. (1992) suggested an initial 

decomposition of the Adj-MI into a catching-up effect (efficiency change) and a frontier-shift effect 

(technical change) in order to derive direct drivers of productivity change. Later, other alternative 

decompositions were developed (see, for example, Färe et al, 1994b, Ray and Desli, 1997, Lovell, 2003 

and Zofio, 2007).  

Under the axiomatic test approach to index number theory, the definition of an appropriate index for 

capturing productivity change requires the establishment of a set of properties (also called tests) that the 

index formula should satisfy. In the 1920s, Fisher (1922) proposed a sizeable number of such, 

economically and mathematically intuitive, tests, which any approach had to pass to be considered a 

suitable index number. Later, Eichhorn and Voeller (1976) provided a summary of the main tests 

published in the literature. More up-to-date summaries are Balk (1995), Althin (2001) and Diewert and 

Fox (2017). Within this axiomatic test approach, the circular test (circularity) is a desirable property for 

any productivity change index. Simply speaking, a productivity change index (I) computed at three 

points in time, t, t+1 and t+2, passes the circular test when 1 1 2 2t t t t t t
I I I

+ + + + = . 

As Frisch (1936) and other authors (see, for example, Balk and Althin, 1996, Pastor and Lovell, 2007) 

pointed out, an attractive property of a productivity change index covering a long period of time is that 

it is possible to chain it (i.e., circularity). Chaining is not possible if the reference technology changes 

over time. Recently, Färe and Zelenyuk (2021) clarified the similarities and differences between 

circularity and transitivity, since there do not appear to be commonly accepted notions of these two 

terms in the index number literature. Circularity and transitivity are not exactly the same. However, the 

two notions are equivalent once the so-called identity test is satisfied (Balk and Althin, 1996; Althin, 

2001). This happens to be the case with the Adj-MI, which trivially satisfied the identity test. So, 

circularity and transitivity can be used interchangeably in the case of the Adj-MI. 

The theoretical formulation of the Adj-MI by Färe et al. (1992) only considers two periods of time. In 

real applications where the available panel data covers more than two periods, the Adj-MI is repeatedly 

determined for each pair of consecutive periods of time, as in Färe et al. (1992). In this case, the Adj-
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MI is calculated as the geometric average of two terms (each using a different period as a reference 

technology) and does not satisfy the circularity test.  

Therefore, Berg et al. (1992) were the first to introduce in their celebrated paper a version of the MPI 

that satisfied circularity: the base period Malmquist productivity index (BP-MI). In their definition, the 

index is not an average of two terms. Instead, it is the ratio of a pair of distance functions calculated 

from a common reference technology across all the considered years. In the case of the BP-MI, the 

reference technology is empirically determined. Indeed, it represents the production possibility set 

estimated from the data observed in a certain period of time. In this regard, Berg et al. (1992) 

recommended the use of the first period associated with the corresponding panel data because 

productivity change estimation aims to measure improvements or deteriorations with respect to the 

initial period.  

Since the contribution by Berg et al. (1992), many researchers have taken this research avenue in order 

to determine productivity change in applications or propose new theoretical solutions in the context of 

productivity measurement under the satisfaction of the circularity property. Regarding new approaches 

based on Berg et al. (1992), worthy of note are, for example, Pastor and Lovell (2005), who introduced 

a circular global Malmquist index based on an empirically determined reference technology for all the 

considered periods. In this case, the empirically determined reference technology does not correspond 

to the first period of the series, but, instead, matches the convex hull of all the estimated technologies in 

the periods under evaluation. Additionally, Pastor et al. (2011) defined the biennial Malmquist 

productivity index, as a refinement of the previous global Malmquist index. Other recent contributions 

are Aparicio and Santín (2018), who adapted the so-called Camanho-Dyson index (Camanho and Dyson, 

2006) in order to compare the performance of groups of decision-making units (DMUs) over time 

subject to the circularity property, and Camanho et al. (2021) and Walheer (2022), who defined the 

global counterpart of the MPI for group contexts. All in all, the Adj-MI and the BP-MI have attracted 

the interest of many scholars in economics for empirical applications over the last decades1. 

Returning to the axiomatic test approach, another interesting test guarantees the independency of the 

reference period considered for index determination. Indices that do not satisfy this condition can draw 

different conclusions about productivity change depending on the arbitrarily selected base period 

(Althin, 2001). In this regard, Berg et al.’s approach (1992) is base period dependent, whereas the Adj-

MP satisfies independency. Althin (2001) proved that the BP-MI is independent of the reference period 

if and only if the marginal rate of substitution of inputs is independent of time. Unfortunately, this is a 

 
1 Note that, based on a Google Scholar web search conducted at the end of August 2022, we found that, measured 
by the number of citations, the Adj-MI is more successful than the BP-MI. Caves et al. (1982) accumulates 5,674 
citations for the Adj-MI, whereas its famous decomposition proposed by Färe et al. (1994b) has 6,666 citations. 
On the other hand, Berg et al. (1992) receives a “mere” 841 citations.  
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very hard condition to enforce with regard to a production technology. Some more recent contributions 

partially dealing with this issue are Asmild and Tam (2007) and Otsuki (2013). 

Overall, practitioners measuring productivity changes nowadays face a trade-off between circularity and 

base period independency. The use of the BP-MI rather than the Adj-MI has the plus of satisfying the 

circularity test, but the downside of reference period dependency. On the other hand, the use of the Adj-

MI for our empirical application instead of the BP-MI will satisfy base period independency, but the 

circularity property will not hold. 

Furthermore, since Caves et al. (1982) proposed the Adj-MI, the Malmquist index has been commonly 

considered as a productivity index. However, the standard formulation of the Adj-MI does not comply 

with what is traditionally understood in the literature as a total factor productivity index (TFPI), that is, 

the ratio of an output quantity index to an input quantity index. Recently, O’Donnell (2012) formally 

verified that the Adj-MI cannot be expressed as a TFPI (see also Pastor et al., 2020). On this ground, 

Ang and Kerstens (2017) recently claimed that the MPI is not multiplicatively complete. A possible 

solution for this weakness of the Adj-MI is the so-called Hicks–Moorsteen productivity index introduced 

by Bjurek (1996). Nevertheless, under Bjurek’s approach, the original formulation of the Adj-MI is 

abandoned in favor of another expression based upon the ratio of an aggregate output quantity index to 

an aggregate input quantity index. In particular, the Hicks–Moorsteen productivity index measures the 

change in input quantities in the input direction using input distance functions and the change in output 

quantities in the output direction using output distance functions rather than just implementing an input 

orientation based upon input distance functions or an output orientation grounded on output distance 

functions, as the traditional Adj-MI does.  

Finally, and regarding the decomposition of the Malmquist index into its main drivers, that is, efficiency 

change and technical change, some authors claim that the frontier shift over time should be considered 

as a global phenomenon affecting the entire technologies in the two periods for the corresponding sector 

(see Balk and Althin, 1996, Asmild and Tam, 2007, and Otsuki, 2013). In contrast, under the traditional 

decomposition of the Malmquist index, the component associated with technical change is calculated 

locally with respect to the units under evaluation, showing frontier shift as a firm-specific phenomenon. 

For this reason, Balk and Althin (1996), Asmild and Tam (2007) and Otsuki (2013) introduced technical 

change components that should reflect a global frontier shift over time. In our opinion, however, the 

technical change experienced by a firm depends on two drivers, which should be individually identified: 

a global sector change, which is common for all production units, and how each company locally 

experiences technological change over the two considered periods. 

In this paper, we suggest a new approach to overcome all three weaknesses of the Malmquist 

productivity index pointed out above: i) the trade-off between circularity or independency of the 

considered reference time period; ii) the issue of whether or not the Malmquist index is a total factor 
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productivity index, and iii) the dilemma between measuring technical change as a local or as a global 

phenomenon with a view to the decomposition of the Malmquist index. To simultaneously solve all the 

above problems, we venture to propose, as is common practice in other sciences, the use of a reference 

production technology or simply a standard to be systematically used in production economics for 

enhancing the measurement of productivity changes. 

International standards are systematically utilized as fundamental measurement references in different 

disciplines. For example, the International System of Units (SI) defines seven well-known base units for 

measuring mass (kilogram), length (meter), time (second), electric current (ampere), thermodynamic 

temperature (kelvin), luminous intensity (candela) and amount of substance (mole). There have also 

been some attempts at using standards in economics, for example the quality adjusted life years 

(QALYs), some American oil companies report their production in terms of oil barrels and the World 

Bank currently defines the international poverty line in low-income countries, used to calculate the 

number of people leaving in extreme poverty, as $1.90 a day. In our production context, the aim of this 

paper is to define this standard together with an appropriate decomposition able to overcome all the 

aforementioned drawbacks of the two most important versions of the Malmquist index: the Adj-MI and 

the BP-MI. 

The paper is organized as follows. Section 2 briefly introduces the background. In Section 3, we define 

the new standard total factor productivity index (STFPI), together with its decomposition, and the steps 

for applying this methodology in practice. Section 3 also provides a numerical example to illustrate the 

theoretical ideas. In Section 4, we exemplify the new decomposition by applying the approach to the 

group of 42 Swedish pharmacies operating from 1980 to 1989 previously used in Färe et al. (1992) and 

then in Althin (2001) for the purposes of comparison with the Adj-MI and the BP-MI. Finally, Section 

5 outlines the conclusions and points out some future research lines. 

 

2. Background 

In this section, we briefly introduce the notation for the Adj-MI and the BP-MI. Additionally, we 

introduce the formal definition of a total factor productivity index (TFPI) and briefly discuss the locality 

of the technical change component of the Adj-MI. Although other techniques could be used to estimate 

the corresponding technologies and technical efficiency, our calculations are based on data envelopment 

analysis (DEA) (see Charnes et al., 1978 and Banker et al., 1984) because DEA has the flexibility to 

handle multi-input multi-output production processes. 

Let us consider a panel of 1,...,j J=  decision-making units (DMUs) and, at least, two different time 

periods, t  and 1t + . In this context, jix
  denotes the quantity of the i -th input, 1,...,i m= , consumed by 

the j -th DMU, 1,...,j J= , in the period  , , 1t t = + . And jry


 denotes the quantity of the r -th output, 
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1,...,r n= , produced by the j -th DMU, 1,...,j J= , in the period  , , 1t t = + . In vectorial notation, 

we use ( ),j jx y
   to denote the input-output bundle corresponding to the j -th DMU, 1,...,j J= . 

Additionally, we need to define two technologies to establish the relationship between inputs 

( )1,..., m

mx x x R+=   and outputs ( )1,..., n

ny y y R+=  . Within this framework, the contemporaneous 

benchmark technology is defined as ( ) , :T x y x
   = can produce y

 , , 1t t = + . Moreover, we use a 

subscript linked to the technology to denote which type of returns to scale is being assumed: cT
  for 

constant returns to scale (CRS), the so-called benchmark technology, and vT
  for variable returns to 

scale (VRS), the so-called best practice technology. 

As previously mentioned, there are very different approaches to estimate a technology from a sample of 

observed bundles of inputs and outputs. One, classified as a non-parametric methodology, is DEA. 

Within this approach, cT
  and vT

  are estimated as follows (see Charnes et al., 1978 and Banker et al., 

1984): 

 

 

( )
1

1

, : , 1,..., ,

, 1,..., , 0, 1,...,

J
m n

r j jr

j

c J

i j ji j

j

x y R y y r n

T

x x i m j J

   



 



 

+
+

=

=

 
   = 

 =  
   =   =
  




  (1) 

 

 

( )
1

1 1

, : , 1,..., ,

, 1,..., , 1, 0, 1,...,

J
m n

r j jr

j

v J J

i j ji j j

j j

x y R y y r n

T

x x i m j J

   



 



  

+
+

=

= =

 
   = 

 =  
   = =   =
  



 
.  (2) 

 

Without identifying the assumed type of returns to scale, given the input-output bundle ( ),l l

o ox y  

observed in period l , l  taking the values t  or 1t + , the Shephard output distance function (Shephard, 

1970) with respect to the technology T  , , 1t t = + , is generically defined as: 

 

 ( ) ( ) , inf 0 : ,l l l l

o o o oD x y x y T
  =   . (3) 

 

Additionally, we use a subscript to denote which type of returns to scale is being assumed on the 

technology — ( ),l l

c o oD x y
  for CRS and ( ),l l

v o oD x y
  for VRS—, that is, whether cT


 or vT


 is used to 

determine the distance function, respectively.  
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An equivalent representation of the technology, which is useful when an output-oriented distance 

function is utilized, is associated with the partially oriented notion of output production possibility set 

( ) ( ) : ,n
P x y R x y T
     

+=   . In this way, the Shephard output distance function in (3) can be 

equivalently rewritten as: 

 

 ( ) ( ) ( ) , inf 0 :l l l l

o o o oD x y y P x
  =   . (4) 

 

Under DEA, the value of the Shephard output distance function ( ),l l

c o oD x y
  is calculated as follows: 

 

 

( ) 1

1

1

, max

. .

, 1,...,

, 1,...,

0, 1,...,

l l

c o o

J
l

j ji oi

j

J
l

j jr or

j

j

D x y

s t

x x i m

y y r n

j J











 



−

=

=

  = 

 =

 =

 =




.  (5) 

The distance ( ),l l

v o oD x y
  is computed in the same way as ( ),l l

c o oD x y
 , albeit adding the constraint 

1

1
J

j

j


=

=  to (5). 

The (simple) Adj-MI grounded on the technology of period   is defined as follows.  

 

 ( ) ( )
( )

1 1

1 1
,

, , ,
,

t t

c o ot t t t

o o o o t t

c o o

D x y
M x y x y

D x y






+ +
+ + = , , 1t t = + . (6) 

 

Except for trivial cases, the assumption of CRS or VRS when calculating Shephard’s distance functions 

leads to very different results. In recent years, however, some voices have called attention to the 

unsuitability of using the expression of the traditional Malmquist index according to the type of returns 

to scale that best fits the technology estimated from the data. For example, Grifell-Tatjé and Lovell 

(1995) used a two-dimensional example to show that, in the presence of variable returns to scale, the 

Malmquist productivity index does not adequately measure productivity change. In the same vein, Ray 

and Desli (1997) stated that the Malmquist productivity index is correctly measured by the ratio of CRS 

distance functions even when the technology exhibits variable return to scale. Lovell (2003) is another 

author who supports this same thinking. This is the reason why we assume CRS in expression (6). 
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Given that the choice of either of the above two indices, expression (6) for , 1t t = + , is arbitrary with 

respect to the measurement of productivity change over time, and possibly leading to different results 

Caves et al. (1982) suggested taking the geometric mean of both expressions, that is, 

 

 ( ) ( ) ( )1 1 1 1 1 1 1, , , , , , , , ,t t t t t t t t t t t t t t

o o o o o o o o o o o oM x y x y M x y x y M x y x y
+ + + + + + +=  . (7) 

 

Equation (7) is also known as the Färe, Grosskopf, Lindgren and Roos (1989) adjacent Malmquist 

output-based productivity index. This index was originally decomposed into efficiency change and 

technical change as follows (Färe et al., 1992): 

 

 ( )1 1, , ,t t t t

o o o o o oM x y x y EC TC
+ + =  , (8) 

 

where 
( )
( )

1 1 1,

,

t t t

c o o

o t t t

c o o

D x y
EC

D x y

+ + +

=  and 
( )
( )

( )
( )

1/2
1 1

1 1 1 1

, ,

, ,

t t t t t t

c o o c o o

o t t t t t t

c o o c o o

D x y D x y
TC

D x y D x y

+ +

+ + + +

 
 = 
  

. 

 

However, the above index does not satisfy circularity (see, for example, Pastor and Lovell, 2007). A 

desirable property of any productivity change index covering a long period of time is that it is possible 

to chain it. This is known as circularity in index number theory. Chaining is out of the question if the 

reference technology changes over time, which is the case with the Adj-MI. Fortunately, Berg et al. 

(1992) proposed an index that compares adjacent period data using a technology from a unique base 

period. This BP-MI satisfies circularity, generates a single measure of productivity change, and can also 

be decomposed into efficiency change and technical change, as demonstrated by Berg et al. In this 

regard, the ‘chain’ version of the Malmquist productivity index, known as the BP-MI, is defined as 

follows (Berg et al., 1992): 

 

 ( ) ( )
( )

1 1

1 1
,

, , ,
,

b t t

c o ob t t t t

o o o o b t t

c o o

D x y
M x y x y

D x y

+ +
+ + = , (9) 

 

where b  denotes the base time period (usually the first period in a series). Additionally, (9) can be 

decomposed into a term interpreted as efficiency change and a component interpreted as technical 

change: 

 

 ( )1 1, , ,b t t t t b

o o o o o oM x y x y EC TC
+ + =  , (10) 
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where 
( )
( )

1 1 1,

,

t t t

c o o

o t t t

c o o

D x y
EC

D x y

+ + +

=  and 
( ) ( )

( ) ( )1 1 1 1 1

, ,

, ,

t t t b t t

c o o c o ob

o t t t b t t

c o o c o o

D x y D x y
TC

D x y D x y
+ + + + +

= . 

In the decomposition, the expression of the efficiency change component is the same as the expression 

of the same term in (8), whereas the frontier shift over time is measured in (10) by the distance between 

technology t  and t + 1, albeit as a relative distance to the base reference technology b

cT . However, and 

in contrast to the Adj-MI, the values of Berg et al.’s index (1992) are not independent of the selected 

base period.  

Along these lines, Asmild and Tam (2007) recently revisited this property of independency, introducing 

a global base period Malmquist grounded on the geometric mean of all the shifts experienced by each 

of the units in the sample and utilizing each of the time periods in the available dataset as the base period. 

In this way, the index is independent of the selection of base period (in the considered time windows) 

because all the time periods used as references are averaged, and the choice of a specific base period is 

no longer arbitrary.  

Regarding the two decompositions of the Malmquist indices in both (8) and (10), there is a coincident 

component that measures efficiency change and another term that captures the frontier shift. As these 

expressions are defined in (8) and (10), technical change is determined locally, exclusively assessing 

the input-output bundles of the evaluated company. Therefore, under the Adj-MI, the geometric average 

of individual technical changes is calculated as a way of capturing the overall pattern for the whole 

industry in a single value. In contrast, as Asmild and Tam (2007) and Otsuki (2013) claim, technical 

change is expected to be a global phenomenon, not simply the average of local measures or technical 

change. Accordingly, Asmild and Tam (2007) and Otsuki (2013) directly introduce aggregated measures 

of technical change to estimate the global trend. In the case of Asmild and Tam (2007), one of their 

proposals is the geometric mean of the ratios ( ) ( )1, ,t h h t h h

c j j c j jD x y D x y
+  for all the observed firms 

1,...,j J=  in all the periods considered in the panel ( 1,2,...h = ). In place of a full-blown total factor 

productivity index with its decomposition, Otsuki (2013) proposes a similar idea focused exclusively on 

measuring a global technical change. Instead of using all the observations as in Asmild and Tam (2007), 

his approach adopts a grid of synthetic points using directional vectors. Both approaches are inspired by 

the seminal paper by Balk and Althin (1996). 

Although we agree that technical change is a global phenomenon, we also believe that, due to its intrinsic 

characteristics and its relative location in the input-output space with respect to the production frontiers 

in each time period, each firm experiences technological change locally. Therefore, our proposal lies 

somewhere in between the above two strategies: the frontier shift associated with a firm is decomposed 

into an average global effect and a local change component.  
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3. Standard total factor productivity index 

 

Over the last few decades, the MPI has been under the spotlight as a measure of productivity change 

over time for several reasons. One is related to the fact that it does not need information on market 

prices, which makes this index suitable for benchmarking public services produced by public production 

units like education or health (for a review, see De Witte and López-Torres, 2017 and Hollingsworh, 

2008, respectively). Although much has already been written about this index, no approach has, to the 

best of our knowledge, so far succeeded in simultaneously satisfying the following properties: 

circularity, independency of a considered reference period for index calculation, the determination of a 

TFPI and, finally, the possibility of considering a technical change term as the mixture of two 

components (a global and a local frontier shift). In this section, we introduce a solution aimed at filling 

this gap of the literature. 

 

3.1. Standard technology 

 

Our approach is fundamentally based upon the definition of a standard technology, that is, a common 

reference or base technology for use in any empirical problem to measure productivity change over time. 

We are aware that many standards could be defined as possible alternatives. However, once a standard 

has been accepted by most practitioners in a field, its associated advantages far outweigh any possible 

disadvantages. In our productivity context, the main benefit of using a standard reference will be an 

increase in the comparability of the results achieved by different researchers and ease of use. 

Additionally, as far as the direct benefits of the new Malmquist productivity index defined based on our 

proposal of a standard reference are concerned, the properties of circularity, independency of the 

considered reference period for index calculation and the determinateness test will be naturally satisfied. 

Moreover, due to the features of the standard that we propose, the new approach is rewritten as a ratio 

of an output quantity change index to an input quantity change index. In this regard, the new index could 

be reinterpreted as a total factor productivity change (TFPC) index. This is something that the Adj-MI 

or the BP-MI cannot guarantee (O’Donnell, 2012). As a direct consequence of its application, the new 

approach is also able to decompose traditional technical change into two components: an average global 

technical change and a local technical change. 

Our approach is particularly grounded on the expression of the BP-MI, see (9), where the base 

technology b is a synthetic reference set rather than a particular set corresponding to the first, the last or 

any period or combination of time periods in the empirical series. In this respect, given the difficulty for 

dealing parametrically with multi-input multi-output production processes, we select the following 

simple formulation of a multi-output constant elasticity of substitution function, introduced by Färe and 

Primont (1995, p. 155), which is based on the notion of distance function: 
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11
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, .
n m

FP o o r or i oi
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D x y y x


    
= =

  
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From (11), we can naturally define the synthetic technology ( ) ( ) : , : , 1m n

FPS x y R D x y
+

+=   . Next, 

we prove that if this technology is defined through the output production possibility sets 

( ) ( )  ( ) : , : , 1n n

S FPP x y R x y S y R D x y+ +=   =   , m
x R+  , then ( ),FP o oD x y  matches the 

definition of the Shephard output distance function in (4). 

Proposition 1. Let ( ) ( ) : , 1n

S FPP x y R D x y+=   , m
x R+  . If 

11

0 0

1 1

0
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r i

y x
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   
  , 

then ( ),FP o oD x y = ( ) ( ) inf 0 : o Sy P x   . 

 

Proof. Based on the expression of the Shephard output distance function (4), we can take the following 

steps: 
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■ 

 

Next, we prove that the output production possibility sets ( )SP x  satisfy the set of usual axioms in 

microeconomics under a specification of the parameters in (11) (for more details, see Färe and Primont, 

1995, p. 27). 

Proposition 2. Let 
m

x R+  and 0  . Let 0 0  , 0r  , 1,...,r n= , 0 0  , 0i  , 1,...,i m= , and 

1  . Then, ( )SP x  fulfills the following axioms: 

(A1) ( )0s SP x . 

(A2) If ( )Sy P x  and 0 1  , then ( )Sy P x   (weak disposability of outputs). 

(A3) If ( )Sy P x  and y y  , then ( )Sy P x  (strong disposability of outputs). 
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(A4) ( )SP x  is a bounded set (scarcity). 

(A5) ( )SP x  is a closed set. 

(A6) ( )SP x  is a convex set. 

Proof. We will use that ( ) ( ) 
11
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(A4) holds because 

1

1

0

1

0
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i oi

i

r

r

x

y





 

 
=

 
 
  


, for all 1,...,r s= . (A5) is satisfied because ( )h y  is a 

continuous function. Finally, to prove (A6), notice that ( )h y  is a quasi-convex function. This last claim 

is true because 0 0   and ( )
1

1

n

r r

r

y f g y



=

 
=     

 
 , with ( )

1

n

r r

r

g y y


=

=  and ( )
1

f z z = . ( )f z  is a 

monotone increasing function and ( )g y  is a convex function because it is the sum of convex functions, 

since 0r  , 1,...,r s= , and 1  . Then, we can apply Theorem 13.8(b) in Madden (1986) (because a 

convex function is also a quasi-convex function) and we get that ( )f g y    is a quasi-convex function. 

Therefore, ( )h y  is also a quasi-convex function. As a consequence, any lower contour set is convex. In 

particular, ( )SP x  is a lower contour set. ■ 

Furthermore, S  is a conical technology and, therefore, it exhibits (global) constant returns to scale. To 

demonstrate this point, notice that, by (11), ( ) ( ), ,FP o o FP o oD x y D x y  =  for any 0   and, 

consequently, if ( ),o ox y S , then ( ),o ox y S   due to the definition of S . In this way, we have that 

S S=  for all 0  , which is the definition of global CRS (see Färe and Primont, 1995, p. 23).  

Additionally, (11) can be plugged into the Malmquist expression in (6) to determine productivity change. 

Before doing so, a previous indispensable step is to set values for the parameters that appear in (11) in 

order to define a specific standard technology. This technology will be used to compute all distance 

functions and productivity measures. For the sake of simplicity, our proposal sets the parameters that 
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define the output side, the numerator in (11), as the standard or unit n-sphere or, in other words, the 

surface of the unit ball in the positive orthant. To define the input side, the denominator in (11), we 

suggest the use of a standard or unit m-simplex, that is, the convex hull of its m+1 vertices in the positive 

orthant. All in all, this implies defining the following parameter values2: 
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=  =

= =
=

 (12) 

 

Now, by plugging (11) with parameters defined in (12) into (6), we get the definition of the so-called 

standard total factor productivity index (STFPI): 
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which, by applying (11) and (12), can be explicitly expressed as follows: 
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. (14) 

 

A TFPC index is formally defined in the literature as the ratio of an output quantity change index to an 

input quantity change index. According to this definition, the Adj-MI and the BP-MI are not TFPC 

indices (an exception is the Hicks–Moorsteen productivity index, see Bjurek, 1996), implying that they 

cannot always be interpreted as measures of actual productivity change over time (O’Donnell, 2012). 

However, the new STFPI can be easily expressed as a ratio of an output quantity change index to an 

input quantity change index, which means that it can be really understood as an actual TFPC index. 

Although, at this point, the new index could be naturally decomposed through a direct application of 

(10), where the reference technology associated with the base period is substituted by the standard 

technology, we, like other authors (see Balk and Althin, 1996, Asmild and Tam, 2007, and Otsuki, 

2013), believe that the component of technical change should represent the frontier shift over time as a 

 
2 After considering many possibilities, we decided to base the standard technology on geometric grounds. 
Accordingly, a unit n-sphere evokes the production possibilities frontier illustrated in practically all efficiency 
measurement handbooks, whereas the m-simplex evokes an isoquant where inputs are perfect substitutes. 
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global phenomenon affecting the studied industry rather than an average of how the observed DMUs 

locally experience technical change. For this reason, inspired mainly by Asmild and Tam (2007) and 

Otsuki (2013), we prefer to generate a set of K artificial DMUs uniformly distributed on the surface of 

the standard technology and determine, through the projection of these synthetic units on to the two 

empirical technologies at t and t+1, a global technical change as the aggregation of all the distances 

calculated based on this procedure. The larger the number of generated DMUs, the better our estimate 

of technical change for the sector between periods should be. Nevertheless, as we will use a geometric 

average to aggregate all these calculations, there should be a point at which it will no longer be necessary 

to increase the size of this artificial data set. Following Asmild and Tam (2007) and Otsuki (2013), we 

implement this strategy to improve the estimation accuracy of the overall frontier shift over time. 

Furthermore, our decomposition will allow us to identify an additional term devoted to capturing how a 

company locally experiences technological change over time. 

Let us assume that ( ) 
1

,
K

S S

k k
k

x y
=

 is the set of K artificial production units uniformly distributed on the 

surface of the standard technology. Later, we will show how to generate this grid of points. Our proposal 

for decomposing the STFPI is as follows: 

 

 ( )1 1, , ,S t t t t s s s

o o o o o o o o oM x y x y EC TC EC GTC LTC
+ + =  =   , (15) 
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 . 

In (15), we identify the term oEC  as the typical component for measuring efficiency change between 

periods t  and 1t +  that also appears in (8) and (10). The traditional technical change 
S

oTC  in (10) is 

now decomposed in two new components, a global technical change 
S

oGTC  and a local technical change 

S

oLTC . The component 
S

oGTC  should capture the frontier shift of the corresponding sector over time. 

To this end, 
S

oGTC  averages the global frontier shift between t and t+1 evaluated for every synthetic 

point ( ),S S

k kx y , 1,...,k K= . Asmild and Tam (2007) propose a similar idea, using, in place of a grid of 

artificial points, all the observations over all the periods of the panel data in order to determine the global 

technical change. Asmild and Tam (2007, p. 143) also pointed out the possibility of using a set of 
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artificial DMUs as a future extension of their approach. Otsuki (2013) is another author that defines a 

measure of overall technical change, in this case based upon a grid of synthetic points. However, none 

of these authors made use of a standard technology, nor did they suggest generating the artificial points 

at the boundary of a reference technology, as we do. Moreover, no previous contribution has, to the best 

of our knowledge, proposed simultaneously decomposing technical change into global (GTC) and local 

(LTC) components. In (15), the local technical change (LTC) is the measurement of the relative position 

of each DMU at t+1 with respect to the synthetic average global technology change. Note that the 

traditional Adj-MI and BP-MI propose local technical change components, whereas Asmild and Tam 

(2007) and Otsuki (2013) exclusively identify global technical change. We stand astride these two 

currents in the literature and propose both. 

Regarding the axiomatic properties of the STFPI, this new approach is assessed resorting to the tests 

shown in Frisch (1936) and more recently in Althin (2001). Most of the properties met by the STFPI, 

for example, circularity, are directly inherited from the BP-MI. Other properties, like independency of 

base period, are satisfied due to the use of a standard as a reference technology for all the calculations 

and any panel data. Next, we summarize all the tests that the new approach satisfies by stating a 

proposition.  

Proposition 3. The STFPI passes the tests of identity, time reversal, circularity, commensurability, 

determinateness, inverse proportionality of inputs, proportionality of outputs and independency of base 

period. 

Proof. The STFPI satisfies the tests of identity, time reversal, circularity, and commensurability because 

it uses a reference technology as the base period. Regarding independency of base period, it is trivially 

satisfied due to the use of a standard technology. By expression (14), the STFPI satisfies both inverse 

proportionality of inputs and proportionality of outputs. Regarding determinateness, following Frisch 

(1936), if only one individual quantity becomes zero, then the STFPI is well-defined and, consequently, 

it does not become zero, infinite, or indeterminate. ■ 

Table 1 compares the traditional adjacent and base period versions of the Malmquist index with respect 

to the STFPI approach and the satisfaction of the usual tests3. In this regard, with respect to this list of 

properties, the results reported in the columns labelled Adj_MI and BP-MI in Table 1 are familiar. 

Regarding the results in Table 1, we find that the new index outperforms the most common MPI indices 

in the literature. The STFPI meets all the tests except proportionality of inputs (as applies to the classical 

approaches), although all three indices satisfy the test of inverse proportionality of inputs under CRS 

(because the output distance function is homogeneous of degree -1 in inputs if and only if the technology 

 
3 Under output-oriented distance functions, the indices pass the inverse proportionality test of inputs given CRS. 
In contrast, if we use input-orientation (as assumed in Althin, 2001), then the indices pass the proportionality test 
of outputs given CRS. 
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exhibits CRS – see Färe, 1988, p. 52). This makes economic sense since productivity is expected to be 

half if inputs are doubled. The proportionality of outputs is another property that all three indices satisfy 

without special conditions, thanks to the fact that the output distance function is homogeneous of degree 

+1 for outputs (see, for example, Färe and Primont, 1995, p. 17). Finally, on top of the satisfaction of 

all these desirable properties, we should add that the standard-based approach is also a TFPC index, to 

which neither the Adj-MI or BP-MI can lay claim. 

 

Table 1. Index tests for different productivity indices 

 

Test Adj-MI BP-MI STFPI 

T1: Identity Yes Yes Yes 

T2: Time reversal Yes Yes Yes 

T3: Circularity No Yes Yes 

T4: Commensurability Yes Yes Yes 

T5: Determinateness No No Yes4 

T6: Inverse Proportionality of inputs given CRS Yes Yes Yes 

T7: Proportionality of outputs Yes Yes Yes 

T8: Independent of base period Yes No Yes 

 

3.2. Steps for using the standard technology in practice 

In empirical problems, inputs and outputs are quantitative variables measured in different units and often 

expressed in very different orders of magnitude. This is not a problem in traditional applications of the 

BP-MI where the base technology is defined ad hoc using exactly the same variables and units of 

measurement as the inputs and outputs managed by the production units to be evaluated. However, under 

the new framework, the standard technology is parametrically defined in pure numbers with no units of 

measurement. As it makes no sense to add apples and oranges, our first task in order to solve the 

empirical problem on our hands is to normalize the initial empirical database with the twofold aim of 

erasing the units of measurement and preventing variables measured with higher values weight more in 

the productivity change calculus in expression (14).  

To do this, we propose dividing all the output and input variables by the highest value observed for each 

variable in the panel data. By doing this for every variable, all values will be naturally bounded between 

zero and one, where the maximum observed values will be equal to one for all outputs and inputs in the 

 
4 Following the definition of determinateness introduced by Frisch (1936), the new index strictly takes positive 
values, where some of the input or the output values equal zero as the test requires. Irrespective of the definition 
of the determinateness test, mathematically speaking, problems do arise when all the components of any of the 
input or output vectors observed in periods t or t+1 for DMU0 are zero. However, this case does not make economic 
sense in a real production process. 
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transformed database. For instance, if the maximum value over all the periods in the database for the r-

th output is 20 tons of apples, then we will divide all observed values of this r output by 20 tons of 

apples. In this way, the result would be a (pure) number between zero and one free of units of 

measurement. As model (5) is units invariant (Lovell and Pastor, 1995), the division of all values of a 

specific input or output variable by a number does not change the calculus of the distances or technical 

efficiency values. Therefore, the two traditional Malmquist indices will remain the same after this 

transformation.  

Once the original database is transformed, we can directly plug the resulting data into (14) to output the 

STFPI5. The calculus of oEC in (15) is straightforward through (5). Therefore, the next step is to 

calculate the S

oGTC using the standard technology. To do this, the set of the m inputs ( )1 2, ,S S S S

mx x x x=  

and n outputs ( )1 2, ,S S S S

ny y y y=  has to be generated according to the n outputs and m inputs in the 

empirical problem for K synthetic DMUs that should be plugged into (15) in order to calculate all 

necessary distances. Empirically, for the output side, that is, the numerator in (11), we define a unit n -

sphere centered at the origin in the positive orthant where the distance of its points to the origin, that is, 

the radius, equals one. For empirical purposes, K synthetic production units have to be uniformly 

distributed at random on the boundary of an n +1-dimesional ball. To do this, we resort to Marsaglia’s 

algorithm (1972), which is composed of the following steps.  

First, and obviously according to the empirical problem at hand, we generate n  independent outputs

( )1 2, , ny y y  using the absolute values from a big number K of draws of a normal distribution 

( )0,1ry N , 1,...,r n= , where K is the number of synthetic production units. Second, we calculate the 

radius of this point as ( )2 2 2

1 2 nP y y y= + + + . The final values that will be used as output for the 

reference are ( ) 1 2
1 2, , , , ,S S S S n

n

yy y
y y y y

P P P

 = =  
 

.  

To generate input data for the same K number of synthetic DMUs on the surface of the unit m-simplex, 

we follow Onn and Weissman (2011) who propose a simple procedure that can be adapted for this 

purpose. First, generate m  independent inputs ( )1 2, , mx x x  from an exponential distribution. This can 

easily be done by drawing independent variables from a big number K of draws of a uniform distribution 

in the [0,1] interval and then computing the negative natural logarithm of all generated variables. 

 
5 Equation (13) suggests that we might project the normalized empirical data in t and t+1 against the reference 
technology defined by K synthetic DMUs generated. This would be equivalent to the traditional procedure that we 
follow for the BP-MI in (9). The difference is that there are no parameters for the base technology in (9) because 
the parametric technology in this case is unknown and must be estimated. Within the new framework, however, 
we do know the function and the parameters of the standard technology so we can simply plug the normalized data 
into (14).    
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Second, sum all variables to get ( )1 2 mQ x x x= + + + . The final input vector that will be used for the 

standard is ( ) 1 2
1 2, , , , ,S S S S m

m

xx x
x x x x

Q Q Q

 
= =  

 
.  

Panel A in Figure 1 illustrates a mesh of K=1,000 synthetic DMUs that define the standard technology 

for the output side in the case of three outputs and one equal input, while panel B represents the surface 

of a technology of three inputs producing one equal output. 

 

Figure 1: The surface of the output and the input sides using a standard unit 3-sphere (Panel A) and a 

standard unit 3-simplex (Panel B) generated using a mesh of 1,000 uniformly random draws.  

 

Panel A: The unit 3-sphere. Draws using  Panel B: The unit 3-simplex. Draws using 

Marsaglia’s algorithm.      Onn and Weissman’s algorithm. 

 

Once the set of inputs and outputs are generated from the standard technology, it is straightforward to 

combine the vectors of inputs and outputs in ( ),S S
x y 6 and to project the K synthetic DMUs against any 

technology. For instance, we calculate the distances ( ),t S S

c k kD x y  and ( )1 ,t S S

c k kD x y
+  for the synthetic 

DMU k and, thus, the geometric averages that define 
S

oGTC  in (15). Once ( )1 1, , ,S t t t t

o o o oM x y x y
+ + , oEC

and S

oGTC  have been calculated, the S

oLTC  term can be computed as a residual. 

 

 

 
6 Note that ( ), 1S S

FPD x y =  from both data generation processes so the K synthetic production units are on the 

surface of the frontier of the reference technology. 
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3.3. A numerical example 

To illustrate how the index works in practice, we set out the following simple numerical example.  Let 

us assume an industry composed of ten DMUs, A, B, C, D, E, F, G, H, I and J that produce two outputs 

(y2 and y1) using one equal input (x) in two time periods t and t+1. The data, together with the outputs 

normalized by the maximum observed output values in the two periods (the input side is irrelevant in 

this example) are listed in Table 2. 

Table 2. Production data for ten DMUs in two periods. 

  t t+1 t t+1 

DMU y2 y1 x y2 y1 x y2 /MAX(y2) y1/MAX (y1) x y2 /MAX(y2) y1/MAX (y1) x 

A 1 6.5 1 1 5.5 1 0.1111 1.0000 1 0.1111 0.84615 1 

B 3 6 1 2 5 1 0.3333 0.9231 1 0.2222 0.76923 1 

C 5 5 1 5 5 1 0.5556 0.7692 1 0.5556 0.76923 1 

D 6 3 1 8 4 1 0.6667 0.4615 1 0.8889 0.61538 1 

E 6.5 1 1 9 2 1 0.7222 0.1538 1 1.0000 0.30769 1 

F 1.5 4 1 1.5 4 1 0.1667 0.6154 1 0.1667 0.61538 1 

G 2 3 1 2 3 1 0.2222 0.4615 1 0.2222 0.46154 1 

H 4 4 1 4 4 1 0.4444 0.6154 1 0.4444 0.61538 1 

I 3 4 1 3 4 1 0.3333 0.6154 1 0.3333 0.61538 1 

J 1 4.5 1 1 4.5 1 0.1111 0.6923 1 0.1111 0.69231 1 

MAX  6.5 6.5 1 9 5.5 1       
 

For illustrative purposes, Figure 2 represents the production frontiers for the two periods using the raw 

data without normalization. The piece-wise linear form of the non-parametric frontier in a DEA model 

under constant returns to scale reveals that A, B, C, D and E are efficient in period t, while only A, B, C 

and E remain fully efficient in period t+1. Regarding Table 2 and Figure 2, we also observe that DMUs 

C, F, G, H, I and J have the same input-output information in both periods. It is clear from Figure 2 that 

the productivity of firm A is lower at t+1 than in period t, although it still belongs to the production 

frontier. The opposite applies for firms D and E, which are efficient in both periods but have higher 

output values in period t+1 with respect to t.  
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Figure 2: Production frontiers for 10 DMUs producing in a two outputs one equal input setting and two 

time periods. 

 

The next step is to use Equations (8), (10) and (15) to compute and analyze the differences between the 

three productivity indices: the two traditional Malmquist indices plus the new standard total factor 

productivity index, alongside the components of these indices described above. Table 3 reports these 

results. 

Table 3: Total factor productivity indices and their components 

  Adjacent MI Base Period MI Standard TFPI 

 DMU Adj-MI EC TC BP-MI EC TC STFPI EC TC GTC LTC 

A 0.8490 1 0.8490 0.8519 1 0.8519 0.8482 1 0.8488 1.1177 0.7595 

B 0.8192 0.9333 0.8777 0.8148 0.9333 0.8730 0.8158 0.9333 0.8748 1.1177 0.7827 

C 1 1 1 1 1 1 1 1 1 1.1177 0.8954 

D 1.3333 1 1.3333 1.3333 1 1.3333 1.3333 1 1.3343 1.1177 1.1938 

E 1.3960 1 1.3960 1.4074 1 1.4074 1.4169 1 1.4179 1.1177 1.2686 

F 1 1.1647 0.8586 1 1.1647 0.8586 1 1.1647 0.8592 1.1177 0.7688 

G 1 1.0833 0.9231 1 1.0833 0.9231 1 1.0833 0.9237 1.1177 0.8265 

H 1 1 1 1 1 1 1 1 1 1.1177 0.8954 

I 1 1.0606 0.9429 1 1.0606 0.9429 1 1.0606 0.9435 1.1177 0.8442 

J 1 1.1684 0.8559 1 1.1684 0.8559 1 1.1684 0.8565 1.1177 0.7663 

Mean 1.0261 1.0385 0.9881 1.0268 1.0385 0.9887 1.0272 1.0385 0.9897 1.1177 0.8856 
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Looking at Table 3, note firstly that the efficiency change (EC) is calculated in the same way and is the 

same for all three indices. Secondly, on average, all three indices and their technical changes are very 

similar. Paired correlation coefficients among the three indices and the technical changes exceed 0.9997 

in both cases. Mean technical changes are below one in all three cases: 0.9881, 0.9887 and 0.9897 for 

the Adj-MI, the BP-MI and the STFPI, respectively, leading to the conclusion that, on average, the firms 

of this sector suffered a technical regress between the two periods. It is worth mentioning here that, in 

the case of the STFPI, the abovementioned average technical change 0.9897S

oTC =  is the component 

in (15) that evolves from the technical change of BP-MI in (10), where the standard technology 

substitutes the base period. However, the new STFPI allows a further valuable decomposition of the 

technical change S

oTC  between t and t+1 into two components: an average global technical change 

S

oGTC  and a local technical change S

oLTC .  

Figure 3 reproduces Figure 2 but also illustrates the new technical change decomposition. Firstly, the 

S

oGTC  of this industry is represented in Figure 3 as the dashed production frontier. This global technical 

change is obtained after averaging the distances calculated after projecting 1,000,000 synthetic DMUs 

generated from the surface of the reference technology using the steps developed in Section 3.2 against 

the production frontiers in t and t+1. In Figure 3, some of these distances ( ),t S S

c k kD x y  and ( )1 ,t S S

c k kD x y
+  

are represented as the ray vectors from the surface of the standard to the technologies in t and t+1. 

 

 

 

 

 

 

 

 

 

 

 



22 
 

Figure 3: The global and the local technical changes in the standard total factor productivity index 

 

 

In this example, the 
S

oGTC  shows that the production frontier at t+1 has experienced, on average, a shift 

upwards with respect to the technology in t. In Figure 3, this result can be intuitively understood using 

firm C as a reference.  Regarding y2, on the right (left) of unit C, the technology in t+1 (t) dominates the 

technology at t (t+1), where the area comprised between the two technologies is bigger on the right than 

on the left of C. The S

oGTC  is the average shift upwards of the technology at t and, being an average, is 

equal for all firms. For example, GTC for DMUs D, a fully efficient firm in both periods, and F, 

inefficient at t and t+1, are graphically measured in Figure 3 by the radial distances 

* ' *

t t t tOF OF OD OD= . On average, there was a non-negligible GTC equal to 1.1177 (Table 2), 

considering the whole industry between the two periods. The GTC is global in the sense that it accounts 

for the technical change that has occurred on average across the two production frontiers between the 

two periods and not only the geometric mean of those distances between t and t+1 calculated locally for 

the observed firms. 

Secondly, the local technical change (LTC) is the measurement of the relative position of each firm at 

t+1 with respect to the synthetic average technology change. In our case, LTC for DMUs D and F is 

graphically measured in Figure 3 by the radial distances 
' *

1t tOF OF+ and 
*

1t tOD OD+ , respectively. In 
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sum, the technical change of firm D between t and t+1 is the distance 1 1.3333t tOD OD+ = . This change 

is decomposed into two parts: i) GTC, * 1.1177t tOD OD = , that is, an equal average global technical 

change for all DMUs belonging to this industry, and ii) LTC ranging from the average synthetic 

production frontier up to the production frontier at t+1, *

1 1.1938t tOD OD+ = . In this case, the LTC 

shows that DMU D managed to perform above average compared to the GTC of its industry due to its 

particular output combination. Regarding firm F, its technical change is 1 0.8592t tOF OF+ =  suggesting 

a technical regress. However, the decomposition of the technical change for unit F highlights an average 

positive global technical change * ' 1.1177t tOF OF =  for the whole industry together with a local 

technical regress ' *

1 0.7688t tOF OF+ = . This means that the radial projection to the frontier of the output-

input combination chosen by F is located in a region of the production frontier that is currently suffering 

a technical regress. This finding is highly useful for avoiding misleading results, for example, both 

traditional indices might conclude by averaging the observed technical changes that the industry had a 

technical regress. The new decomposition may suggest that this industry made technical progress 

globally, although most firms were producing closer to the region where the technology was 

experiencing a technical regress. 

Thirdly, as discussed earlier, the STFPI can be used to calculate an output change over an input change 

as in Bjurek’s index, which is out of the question using either the Adj-MI or the BP-MI. In this example, 

as there is no input side, the output change is obtained by plugging the normalized output values of 

Table 2 into (14), and the results match the STFPI in Table 3. 

 

4. Empirical application 

In this empirical application, we use the same panel data of 42 Swedish pharmacies between 1980 and 

1989 as was previously analyzed in the seminal papers by Färe et al. (1992) and Althin (2001). This set 

of pharmacies produce four outputs employing four inputs. The four inputs are ‘Labor input for 

pharmacist’ (X1); ‘Labor input for technical staff’ (X2); ‘Equipment services’ (X3) and ‘Building 

services’ (X4). Both labor inputs (X1 and X2) are measured in number of hours per year, X3 is measured 

using the annual depreciation of pharmacy equipment measured in 1980 prices and X4 is assumed to be 

proportional to the available floor space, measured in square meters. The four outputs are ‘Drug 

deliveries to hospitals’ (O1); ‘Prescription drugs for outpatient care’ (O2); ‘Medical appliances for the 

handicapped’ (O3) and ‘Over the counter goods’ (O4). The first three outputs (O1, O2 and O3) are 

measured in number of times, whereas the fourth (O4) is measured in 1980 prices7. 

 
7 Färe et al. (1992) provide more details about the database, the variables, descriptive statistics and disaggregated 
Malmquist index and its decomposition over time for the set of 42 pharmacies.   
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Table 4 shows the productivity changes and their decomposition for the Adj-MI, the BP-MI, using the 

first year (1980) as the fixed reference technology, and the new STFPI. The modeled technologies 

assume constant returns to scale and strong disposability of inputs, and distances are calculated using 

an output orientation. The global technical change is calculated using 1,000,000 synthetic DMUs. The 

results provided are the geometric means of the 42 analyzed pharmacies8. 

Table 4. Results for the Adj-MI, BP-MI and STFPI and their decompositions. 

 Adjacent-MI  Base Period-MI Standard TFPI 

Year Adj-MI EC TC BP MI EC TC STFPI EC TC GTC LTC 

8081 0.9911 1.0220 0.9698 1.0561 1.0220 1.0334 1.0049 1.0220 0.9833 1.0123 0.9713 

8182 1.0740 0.9353 1.1483 1.1072 0.9353 1.1838 1.0758 0.9353 1.1503 1.2063 0.9536 

8283 1.0246 1.0548 0.9713 1.0586 1.0548 1.0036 1.0380 1.0548 0.9841 0.9467 1.0394 

8384 0.9424 0.9875 0.9544 0.9923 0.9875 1.0049 0.9559 0.9875 0.9680 0.9073 1.0669 

8485 1.0435 1.0039 1.0395 1.0495 1.0039 1.0454 1.0376 1.0039 1.0336 1.0215 1.0118 

8586 1.0189 0.9868 1.0325 1.0470 0.9868 1.0610 1.0067 0.9868 1.0201 1.0096 1.0104 

8687 1.0665 1.0015 1.0649 1.1035 1.0015 1.1018 1.0814 1.0015 1.0797 1.0211 1.0574 

8788 1.0435 1.0133 1.0298 1.0365 1.0133 1.0229 1.0274 1.0133 1.0140 1.0004 1.0136 

8889 1.0513 1.0056 1.0455 1.0572 1.0056 1.0513 1.0330 1.0056 1.0272 1.0216 1.0055 

Mean 1.0277 1.0007 1.0269 1.0559 1.0007 1.0552 1.0283 1.0007 1.0241 1.0136 1.0138 

Accum. 1.2786 1.0065 1.2703 1.6320 1.0065 1.6214 1.2859 1.0065 1.2775 1.1290 1.1316 

Direct 1.1922 1.0065 1.1844 1.6320 1.0065 1.6214 1.2859 1.0065 1.2775 1.1290 1.1316 

  

To interpret the results, note that a value of one means no change, a number greater than one means 

progress and less than one is equivalent to regress. By construction, efficiency changes coincide for all 

three indices. Therefore, the differences among indices stem from the calculus of technical change. 

Another straight result is that, as expected, the BP-MI and the STFPI satisfy the circularity test, and this 

implies that the accumulated productivity and technical changes are equal to the direct productivity and 

technical changes of the first period (1980) relative to the last period (1989). Table 5 shows that 

Pearson’s correlation coefficients for the nine average standard total factor productivity and traditional 

technical change values for this industry are positive, greater than 0.92 and statistically significant. In 

fact, correlations between the two traditional indices are slightly lower than when they are correlated 

with the STFPI. 

Table 5: Pearson correlation coefficients of average productivity change and technical change values. 

 Productivity indices  Technical changes 

 Adj-MI BP-MI STFPI  TC-Adj TC-BP TC-STFPI 

Adj-MI 1 0.8292 0.9405 TC-Adj 1 0.9246 0.9730 

BP MI 0.8292 1 0.9335 TC-BP 0.9246 1 0.9704 

SMI 0.9405 0.9335 1 TC-S 0.9730 0.9704 1 

 
8 The Adj-MI and the BP-MI results coincide exactly with Althin (2001, Table 4).  
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The new index provides more, rich information than the traditional approaches. Firstly, the accumulated 

average global technical change for this industry over the 1980-1989 period (1.1290) is much smaller 

than the resulting technical change calculated as the average of observed DMUs by the Adj-MI (1.2703) 

and the BP-MI (1.6214). Around half of the observed technical change is driven by the local technical 

change (1.1316) of a bunch of DMUs, which on average push the technology up above the average 

technical change. This new decomposition is useful for disentangling how the technical change evolved 

in every period. For example, according to the Adj-MI and BP-MI, technical change was measured in 

the period 80-81 as 0.9698 and 1.0334, respectively, leading to inconclusive results. However, the 

STFPI concludes that, on average, the industry made slight technical progress equal to 1.0123, although 

some pharmacies were located in the region where the production frontier suffered a technical regress, 

and they pull back the technology shift enough (0.9713) to offset the average positive global effect.     

Other valuable information that was previously discussed in Section 3.1 is that normalized output and 

input values can be plugged into (14) using the STFPI in order to calculate how it decomposes into an 

aggregate output and an aggregate input change. Table 6 provides this decomposition. 

Table 6. Productivity results for the STFPI including its decomposition into output and input changes. 

Year STFPI 
OUTPUT  
CHANGE 

INPUT  
CHANGE 

8081 1.0049 0.9880 0.9832 

8182 1.0758 1.0589 0.9843 

8283 1.0380 1.0782 1.0387 

8384 0.9559 0.9071 0.9490 

8485 1.0376 1.0323 0.9949 

8586 1.0067 1.0372 1.0303 

8687 1.0814 1.0683 0.9879 

8788 1.0274 1.0178 0.9906 

8889 1.0330 0.9982 0.9663 

Average 1.0283 1.0194 0.9913 

Accum. 1.2859 1.1890 0.9247 

Direct 1.2859 1.1890 0.9247 

 

The measures of output change and input change can be useful from a managerial point of view, 

especially in sectors like the public services, where there are no prices for many variables and individual 

information about each DMU is important for decision-making by policymakers. Output changes that 

are greater than one indicate an increase in outputs from period t to period t + 1, while values of less 

than one denote a decline. The values related to input changes can be interpreted in the same manner 

with respect to the inputs. From Table 6, we observe that the clear decline in productivity in the 83-84 

period is explained by the fact that, on average, the decreases in outputs (0.9071) were greater than the 

reduction in inputs (0.9490). Years 81-82, 84-85, 86-87 and 87-88 were especially interesting because, 

on average, the industry managed to increase productivity by producing more (output change greater 
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than one) with fewer resources (input change less than one). Interestingly, the opposite result, producing 

less with more, never happened in the above period, although the productivity gains in periods 82-83 

and 85-86 were due to positive output changes that were greater than the positive input increases.   

Before concluding this empirical section, let us look at how many synthetic DMUs should be used to 

calculate global technical change. Although this paper does not set out to analyze and find a large enough 

number of DMUs as of which the results are almost identical, Table 7 shows that the results remain 

quite stable when the number of DMUs increases over 1,000,000 synthetic units.  

Table 7. Global and local technical changes estimated with a different number K of synthetic DMUs on 

the standard technology surface. 

K 10,000 100,000 1,000,000 10,000,000 

Year GTC LTC GTC LTC GTC LTC GTC LTC 

8081 1.0109 0.9727 1.0120 0.9716 1.0123 0.9713 1.0123 0.9714 

8182 1.2107 0.9501 1.2067 0.9532 1.2063 0.9536 1.2061 0.9537 

8283 0.9455 1.0408 0.9467 1.0394 0.9467 1.0394 0.9468 1.0394 

8384 0.9056 1.0688 0.9068 1.0674 0.9073 1.0669 0.9072 1.0670 

8485 1.0222 1.0111 1.0215 1.0118 1.0215 1.0118 1.0215 1.0118 

8586 1.0103 1.0097 1.0097 1.0103 1.0096 1.0104 1.0095 1.0105 

8687 1.0213 1.0572 1.0216 1.0569 1.0211 1.0574 1.0212 1.0573 

8788 1.0004 1.0135 1.0007 1.0133 1.0004 1.0136 1.0004 1.0135 

8889 1.0217 1.0054 1.0216 1.0055 1.0216 1.0055 1.0216 1.0055 

Average 1.0137 1.0137 1.0136 1.0138 1.0136 1.0138 1.0135 1.0139 

Accum. 1.1298 1.1307 1.1293 1.1313 1.1290 1.1316 1.1287 1.1318 

Direct 1.1298 1.1307 1.1293 1.1313 1.1290 1.1316 1.1287 1.1318 

 

Table 7 shows that the results are highly correlated but slightly different depending on the number of 

synthetic DMUs projected against the technologies at t and t+1. Regarding average results, there are 

reductions (increases) of ten-thousandths in the average global (local) technical change as the number 

of synthetic DMUs increases. The more units we generate the better the results will be, although, at the 

end of the day, the choice of a final number of K artificial units will depend on the power of our computer 

and how much time is available. 

5. Conclusions 

In this paper, we introduce a new standard total factor productivity index based on defining a standard 

reference technology for all required calculations. As is the case in other fields, the acceptance of a 

common standard improves the comparability of calculations, ease of use and satisfaction of interesting 

properties. In our case, we defined the standard reference technology as a unit m-simplex input side able 

to produce a unit n -sphere output side. This standard does not need to be estimated from data and is 

grounded on a particular parametric specification of a general multi-output multi-input production 
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technology approach previously defined by Färe and Primont (1995). Färe and Primont (1995) 

introduced an extension of the CES production function for multi-output multi-input production 

contexts, on which we base our definition of the standard technology.  

The STFPI satisfies more typical tests or axioms in production theory than the Adj-MI and the BP-MI. 

To date, there has been a trade-off in the literature between circularity and the base period independency 

test. In particular, if we opted for the BP-MI instead of the Adj-MI, the gain in terms of circularity was 

offset by reference period dependency. On the other hand, if we utilized the Adj-MI instead of the BP-

MI, our approach passed the base period independency test, but the circularity property did not hold. 

From now on, though, we can use the STFPI, which passes both these two tests. Additionally, the new 

approach also satisfies the determinateness test thanks to the formulation of the standard technology. 

This is something to which neither of the above Malmquist indices can lay claim. Another interesting 

property satisfied by the STFPI is that it can be identified as a true total factor productivity index, that 

is, it can be expressed as the ratio of an aggregated change in outputs and an aggregated change in inputs. 

In contrast, the most common versions of the Malmquist productivity index do not fulfill this property. 

Regarding the decomposition of the new approach into typical drivers, efficiency change and technical 

change, we follow the ideas established by Balk and Althin (1996), Asmild and Tam (2007) and Otsuki 

(2013), where the technical change component is regarded as a global phenomenon affecting the frontier 

shift of the entire sector. Nevertheless, and unlike the above authors, our proposal is based upon two 

subcomponents: a global technical change across the industry and how a company locally experiences 

technical change over time depending on its particular position with respect to technologies at t and t+1. 

We identified both drivers in our approach by exploiting a grid of synthetic DMUs (in line with Otsuki, 

2013) located on the frontier surface of the standard technology. The methodology is easy to apply 

following the instructions provided in Marsaglia (1972) and Ohn and Weissman (2011), also briefly 

described in this paper. Once synthetic data are generated, the remaining distances can be calculated 

using different DEA models and resorting to the parametric standard technology. To facilitate the 

application and interpretation of this new approach, we also described a numerical example with ten 

DMUs and two periods outlining all necessary steps for calculating all the measurements under DEA. 

In our empirical application, we use the same panel data of 42 Swedish pharmacies between 1980 and 

1989 that was previously analyzed in the seminal papers by Färe et al. (1992) and Althin (2001). Results 

yielded by the STFPI provide new information about this industry, adding a local and global technical 

change together with aggregate output and input changes over time. We also found that global and local 

technical changes were stable from 1,000,000 synthetic DMUs onwards, although further research is 

necessary to define a suitable number for dealing with the trade-off between computation time and 

precision.  
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This paper should open up a good number of research avenues for the future. The standard can be 

extended to other Malmquist-type indices, like the Camanho and Dyson (2006) index for dealing with 

productivity gaps between groups of DMUs and its time-based version proposed by Aparicio and Santín 

(2018). Another challenge is to extend the decomposition of the global and local technical changes for 

production technologies operating under variable returns to scale over time. Finally, the use of standards 

is rare in economics compared with other sciences, and this research could open a door to the proposal 

of more standards not only in production economics but also in other fields.    
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