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Abstract. Ordinary least squares, two-stage least squares and the NISE estimator 

are applied to three data sets involving equations from microeconomics. The 

focus is on simultaneity bias in linear least squares and on the ability of the other 

estimators to mitigate the bias.  
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                         Explorations in NISE Estimation          

1. Introduction  

 The detection and correction of simultaneous-equation bias in ordinary 

least squares (OLS) remains a challenging issue in the estimation of linear models. 

If exclusion restrictions are the basis for the identification of parameters,  

researchers typically rely on instrumental variables (IV), for example two-stage 

least squares (TSLS) or limited information maximum likelihood (LIML). “The 

various methods that have been developed for simultaneous-equations models 

are all IV estimators” (Greene 2003, 398). This option fails, however, if the 

instrument set is weakly correlated with the endogenous variables or is in effect 

an omitted variable from the equation of interest. “Those who use instrumental 
variables would do well to anticipate the inevitable barrage of questions about 

the appropriateness of their instruments” (Leamer 2010, 35).   

 “It is remarkable that in many IV studies, the discussion and justification of 

conditional IV independence does not pay much attention to the time period in 

which the control variables are measured, i.e. whether this happens prior to 

instrument assignment or at a later point. In particular, there seems to exist a 

wide spread consensus that it is reasonable to use IV methods in cross-sectional 

data, where outcomes and controls are measured in the same period. [However] 

…credible controls need to be measured prior to treatment assignment. 

Otherwise, they might be affected by the treatment so that conditioning on them 

likely introduces selection bias” (Deuchert and Huber 2007, 411-412.) 

 An alternative to IV is the Non-Instrumental Simultaneous-Equation (NISE) 

estimator, which is applied in this paper to the consistent estimation of three 

equations from microeconomics. A researcher may select NISE in several 

situations: (i) observations on the instruments are unavailable or incomplete; (ii) 

the instruments are found to be weak; (iii) they fail Sargan’s J test for exogeneity; 
or (iv) the researcher simply wants a second opinion about her IV estimates. The 

papers by Blankmeyer (2017a, 2017b,2018,2020) provide analytical details, 

simulations and additional applications while Chow (1964, 533-537, 542-543) 

shows how the estimator that I call NISE is related to canonical correlation, TSLS 

and LIML. The next section provides a concise description of NISE, and the 

appendix contains a more detailed derivation. In section 3 a supply function is 



 

 

estimated for business loans; the derived demand for nursing services is the 

subject of section 4; and in section 5 a spatial demand function for houses is 

developed. The final section offers several conclusions and caveats. 

 

2. The NISE estimator 

 In the simultaneous linear equation  

         Yγ = Xβ + u,       (1) 

observations on G endogenous variables are collected in a matrix Y while X 

contains H exogenous variables.  Also γ and β are vectors of parameters to be 

estimated, and the vector u has spherical gaussian disturbances with 

E(u) = E(Xu) = 0. There are L exogenous variables that appear in other linear 

equations; and because L ≥ G, exclusion restrictions are sufficient to identify 

equation (1). A researcher wants to estimate equation (1) only and may have no 

usable data on the instruments. Since the Jacobian term does not appear in the 

log likelihood (Davidson and MacKinnon 1993, 644), the NISE estimator simply 

minimizes   

 F = (Yγ - Xβ)T(Yγ - Xβ) – λ[γT(YTY)γ -1] .                                    (2) 

With standard software that computes the largest squared canonical 

correlation between Y and X, γ is estimated by c, the canonical coefficients of Y; 

and β is estimated by the OLS regression of Yc on X. A researcher may then 

choose to renormalize the equation, dividing both sides by an element of c. 

Finally, a pairs bootstrap will approximate the sampling errors of these NISE 

coefficients.  

                       

3. The supply of business loans 

 I estimate the U. S. banking industry’s supply function for business loans 

based on monthly data from January 1983 through December 2006 (cp. Maddala 

1988, pp. 313-317). The time series, not seasonally adjusted, are from the FRED 

archive at the Federal Reserve Bank of St. Louis. The log of the total value of loans 

outstanding is regressed on the prime rate (the “price” variable) and on three 
included exogenous variables: the 3-month Treasury bill rate, its one-month lag, 

and the log of total bank deposits. (The banks can of course invest their deposits 

in Treasury bills as an alternative to business loans.)  The demand side of the 



 

 

business-loan market provides two instrumental variables: the corporate bond 

rate and the log of the industrial production index.   

 Table 1 shows that the supply-price elasticities for NISE and TSLS do not 

differ significantly, but they are significantly larger than the OLS supply elasticity –
a likely instance of the latter estimator’s simultaneity bias.  All three included 

exogenous variables have the expected signs, and all are statistically significant 

except the lagged Treasury bill rate in the OLS regression.  

 The instruments for TSLS are adequate. In the first-stage regression the 

corporate bond rate’s t-statistic is -2.53, and the t-statistic for log industrial 

production is 7.76. The instruments are also valid: the significance level of 

Sargan’s J test is 0.25. For this data set, where TSLS performs acceptably, its 

coefficients are very similar to the NISE coefficients.  

 I did not explore issues of non-stationarity in the data set since it seems 

unlikely that unit roots can be detected reliably in time series of only 24 years 

duration (cp. Pindyck 1999, p. 7).  

 “Simultaneity is a concern in much of empirical economic analysis. One 

approach that has been employed to avoid the problems associated with 

simultaneity is to replace the suspect explanatory variable with its lagged value”  
when instrumental variables are unavailable or perform poorly (Reed 2015, 897). 

The author mentions a dozen examples of this strategy and remarks that it “is 
common across a wide variety of disciplines in economics and finance. Many 

appear in top journals including the American Economic Review, the Journal of 

Finance, the Economic Journal, and the Journal of Banking & Finance, and are 

highly cited” (ibid).  
 Using analytical methods and simulations, Reed shows that the 

replacement strategy does not in fact solve the simultaneity problem: the 

estimated parameters are still biased and inconsistent. For example, if the supply 

function for business loans is estimated by OLS when the prime rate has been 

replaced by its one-month lag, the coefficient is 0.156, very similar to the biased 

estimate in Table 2 -- 0.173. NISE may often be a better option in the absence of 

good instrumental variables.   

  

4. The demand for nurses 

 Drawing on a data base of the Texas Health and Human Services 

Commission (2002), I estimate the demand curve for nursing services in Texas 



 

 

long-term care facilities. The sample is comprised of 824 for-profit nursing homes 

licensed by the state in 2002. According to the textbook model of a competitive 

market, the price of a resource depends on the amount of the resource used in 

combination with other inputs, and it also depends on the price of the good or 

service produced–in this case a nursing facility’s average revenue per resident 

day. In conjunction with the supply curve for the resource, this resource-demand 

function determines the wage rate.  

 I focus on the demand function for the services of licensed vocational 

nurses (LVN), also called licensed practical nurses, who have typically completed 

one or two years of formal training and who work under the supervision of 

registered nurses (RN) and physicians. In the log-linear model the jointly 

endogenous variables are the total LVN hours worked during 2002 and the 

average hourly LVN wage rate. The included exogenous variables are the total 

hours worked by RN, by nurse’s aides (AIDE), and by laundry and housekeeping 
personnel (L+H) together with the number of beds in the facility and the revenue 

per resident day. The excluded exogenous variables would presumably be the 

determinants of the LVN supply curve, e. g., each LVN’s age, the number of young 
children in the family, a spouse’s income, and the local cost of living.  However, 

these potential instruments are absent from the data set so I compare OLS and 

NISE.  

 In Table 2 the coefficients are statistically significant except for RN hours.  

Both regressions show that the demand for LVN hours is inelastic with respect to 

the hourly wage; but the NISE coefficient for the LVN wage is significantly larger in 

magnitude than its OLS counterpart, probably a consequence of OLS simultaneity 

bias.  

 

5. A spatial demand function for houses 

 I estimate a conventional partial-equilibrium demand function for houses.  

The price is specified in terms of dollars per square foot of living space and the 

quantity in terms of total square feet of living space, both variables in logarithms. 

The spatial data set “house” (Bivand et al., 2020) provides information on 25,357 

single-family homes sold in Lucas County, Ohio between 1993 and 1998. The 

demand for a house probably depends not only on its price and features but also 



 

 

on the typical prices and features of other homes in the neighborhood. Given the 

geographic coordinates of a particular house, spatial software identifies the k 

nearest houses and reports their average price and attributes. Specifically the 

algorithm produces a vector Wprice of 25,357 observations whose i-th element is 

the average log price of the k houses nearest house i. Likewise the i-th row of a 

vector Wlotsize is just the average log lot size of the same k neighbors of house i.  

LeSage and Pace (2009, chapter 1) have additional discussion of the W operator.   

Choosing k –the size of the neighborhood— is an exercise in model selection with 

non-nested hypotheses. LeSage and Pace (2014) explain why the model-selection 

criteria may not be very sensitive to the choice of k.   

The quantity variable is to be regressed on the house’s own price, its age 
when sold, the year of sale, the number of bedrooms, the total number of rooms, 

and the log of the property’s lot size; additional regressors are Wprice and 
Wlotsize with k = 200 neighbors. In a textbook model of supply and demand the 

OLS estimate of the demand elasticity is expected to be biased and inconsistent 

because it ignores the simultaneous determination of price and quantity (e.g., 

Greene 2003, 378-379). Potential instruments for the housing model include 

supply-side variables like the costs of land, labor and materials; but these are 

absent from the data set so I compare OLS and NISE. The results are displayed in 

Table 3, where each regressor has the expected sign and is statistically significant. 

But OLS indicates that housing demand is quite inelastic (-0.090) while NISE 

estimates that the demand is moderately inelastic (-0.659). The implausible OLS 

estimate may well reflect simultaneity bias.   

 The coefficient of W(ln price) is a kind of substitution elasticity: in this 

partial-equilibrium context, it measures how the demand for a house with specific 

features responds, ceteris paribus, to variations in the average price of 

neighboring houses. Again the NISE estimate is notably larger than the OLS 

estimate.  

           This microeconomic demand function is not be confused with the hedonic 

pricing model often used in spatial econometrics (e.g., LeSage and Pace 2009, 42-

43.)  In particular the hedonic model lacks a continuous-valued quantity variable 

and therefore does not produce conventional estimates of price elasticity and 

substitution elasticity.  



 

 

    

6. Conclusions and caveats 

 When a linear model may be subject to simultaneity bias, NISE is proposed 

as an alternative (or a complement) to IV estimators. I have explored simultaneity 

bias in three equations from microeconomics.  The key to successful IV estimation 

is obviously one or several strong instruments, and the key to successful NISE 

estimation is one or several strong included exogenous variables (X in equation 1). 

 In this paper I have attributed to simultaneity bias the significant 

differences between certain pairs of OLS and NISE coefficients. Of course that 

conclusion cannot be categorical since other specification problems or data issues 

may also skew the estimates. However I note that NISE is specifically designed to 

deal with simultaneity bias and is ineffective against bias in other situations where 

IV is often applied, e. g. a regressor contaminated by measurement error or an 

omitted regressor. If these issues were predominant in the three data sets, the 

relevant OLS and NISE coefficients would probably not differ significantly.  

 For many linear models a pairs bootstrap can produce NISE standard errors, 

but the bootstrap should be applied to a robust estimator of dispersion like the 

median absolute deviation or the Qn statistic (Rousseeuw and Croux 1993; 

Maronna et al. 2006, chapter 2). Besides limiting the distortions due to outlying 

observations, a robust version of the standard error is required since the NISE 

coefficients are not guaranteed to have finite second moments, as Anderson 

(2010) explains in the context of LIML. 
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Appendix: a derivation of the NISE maximum likelihood estimator (mle) 

 

 In equation (1), the covariance matrix of Y, denoted Θ, has rank G and is 

consistently estimated by its usual sample counterpart, denoted V. Likewise the 

covariance matrix of X, denoted ψ, has rank H. When the NISE log-likelihood is 

concentrated by “partialing out” X from each column of Y, the residuals have a 

covariance matrix ∑, of rank G, which is consistently estimated by its sample 

counterpart, denoted S. Then the variance of the jointly endogenous variables can 

be decomposed into the residual variance and the “regression” variance, say 

                  γTΘγ = γT∑γ  + δTψδ  .                         (A1)     

 Now NISE bears a formal resemblance to LIML, whose derivation is 

provided by Davidson and MacKinnon (1993, 644-649) and by Theil (1971, 502-

504 and 679-686). LIML and NISE maximize similar constrained Gaussian log-

likelihoods and have similar normalizations. For NISE, the normalization constraint 

is γTΘγ = 1 (Chow 1964, 533-537 and 542-543; cp. Theil 1971, 684 and Anderson 

2010, 359-361). However, NISE does not use the other LIML constraints, which 

involve the excluded exogenous variables W, i. e., the instruments. These latter 

constraints increase the asymptotic efficiency of LIML relative to NISE, but the 

premise of NISE is that valid observations on the instruments are not available. 

 In short, a derivation of NISE as mle follows the derivation of LIML if one 

omits every term involving variables excluded a priori from the equation of 

interest. Given a random sample of n observations X and Y, maximization of the 

NISE log likelihood is equivalent to the minimization of 

 

  F* = 0.5nlog|∑|  + 0.5tr(∑-1S) –0.5ρ(γTΘγ – 1) ,            (A2) 

where ρ is a Lagrange multiplier (cp. Theil 1971, 679). S is a consistent estimator 

of ∑, and this substitution means that the second term in (A2) is a constant, not 

dependent on ∑.  When (A1) is applied to the third term of (A2) and ∂F*/∂∑ is set 

equal to zero, it follows that 

          n∑-1   - ργγT
  =  0                                                                                                    (A3) 



 

 

(e.g., Theil 1971, 31-32 or Greene 2003, 839-840).  

 Premultiplying (A3) by ∑ and postmultiplying by Θγ, 

         Θγ – (ρ/n)∑γγTΘγ = 0                 (A4) 

or     [Θ – (ρ/n) ∑]γ = 0                (A5) 

or     [∑ - λΘ]γ = 0  ,                 (A6) 

where λ = n/ρ. The corresponding determinantal equation is 

         |∑ - λΘ| =  | ∑Θ-1 – λI |  =   0 ;                                  (A7)  

and minimization requires the smallest characteristic value, 

         λmin = γT∑γ / γTΘγ   ,                                                                               (A8) 

which is a real positive fraction. 

 To operationalize the NISE estimation procedure, ∑ and Θ are replaced by 

their consistent estimators, S and V respectively. Then γ is estimated by c, the 

characteristic vector corresponding to λmin.  Finally β is estimated by the OLS 

regression of Yc on X.  However, as mentioned in section 2 of this paper, it will 

usually be more convenient to process X and Y using standard software for 

canonical correlation.   



 

 

  

 

  

 
                  Table 1. The business-loan supply function      

                            ln loans, n = 287      

        (standard errors under coefficients *)      

       

         OLS          NISE        TSLS  

         

prime rate    0.173    0.395      0.349  

       0.061    0.079      0.055  

       

treasury bill rate            -0.123   -0.187     -0.174  

                               0.062    0.056      0.041  

       

treasury bill rate            -0.027   -0.189     -0.155  

   lagged one month       0.039    0.054      0.054  

      

ln total bank deposits  0.678    0.495      0.533  

                             0.120    0.095      0.095  

       

 * For OLS and TSLS, the standard errors are heteroskedasticity- 

   and autocorrelation-consistent (HAC), Newey-West version. 

   A stationary block bootstrap estimates the standard errors 

   for the NISE regression.          

       

        NISE - OLS       NISE-TSLS      TSLS-OLS  

     bootstrap standard errors under differences      

             in coefficients) 

     

prime rate 0.222       0.046    0.176  

               0.068       0.074    0.063 

 

 

 

  



 

 

 

         
  Table 2. Estimates of the LVN demand model     
     (the dependent variable is log LVN hours)   
  standard errors are shown under coefficients *  
  n = 824     

      

      OLS    NISE  

 NISE-  

OLS 

       
   log LVN hourly wage -0.396  -0.649  -0.253 

    0.104  0.120   0.059 

      
   log number of beds 0.158  0.192   

 0.040  0.036   

      
   log RN hours 0.045  0.045   

 0.033  0.033   

      
  log aide hours 0.669  0.683   

 0.072  0.070   

      
  log L+H hours 0.138  0.143   

 0.058  0.055   

      
  log revenue per 0.350  0.384   
  resident-day 0.075  0.074   

      
  R-squared 0.827     

      
  largest squared      
  canonical correlation  0.832   

      
* HAC standard errors with Newey-West /Bartlett window  

   are reported for all regression coefficients except the 

   the NISE coefficient for log LVN hourly wage and its 

   difference from the corresponding OLS coefficient, which 

   are computed from a pairs bootstrap using the robust 

   Qn estimate of scale.      

  



 

 

 

 
                       Table 3. House demand function        
 (the dependent variable is ln square foot of living space )    
       standard errors are shown under coefficients*      
                                      n = 25,357           

        

      OLS      NISE     

         
   ln price / square foot of -0.090  -0.659     
   living space  0.005   0.006     

        
  W(ln price) 0.081  0.618     

 0.007   0.009     

        
number of bedrooms 0.047  0.428     

 0.004  0.005     

        
ln lotsize 0.091  0.151     

 0.004  0.006     

        
number of rooms (total) 0.175  0.155     

 0.002  0.003     

        
age -0.281  -0.478     

  0.011   0.017     

        
year of sale 0.003  0.023     

 0.001  0.001     

        
  W(ln lotsize) -0.008  -0.092     

 0.005  0.008     

        
R-squared 0.715  0.791     

        
        

*HAC standard errors with 

Newey-West/Barlett  window for 

all coefficients except the NISE 

price elasticity, which is the Qn 

statistic computed from a pairs 

bootstrap.         

 


