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Abstract

Scientific and technological advances are resulting in improved forecasts of risk, but

do better forecasts result in better risk management? I investigate to what extent the

improvements in lead time of winter weather advisories affect the frequency of motor

vehicle crashes. I construct a data set of winter weather advisories, weather monitor

readings, and vehicle crashes at the county-date level in 11 states in the US during

2006-2018. Using within county variation in lead time, I show that receiving winter

advisories earlier reduces crash risk significantly. I also examine two potential mech-

anisms that might lead to these effects. First, using the mobile phone location data

from SafeGraph, I show that longer lead times result in fewer visits by people to places

outside their homes. Second, using snow plow truck location data, I show that road

crews perform a greater level of winter maintenance activities when advisories arrive

with longer lead time. Overall, this study provides evidence that improvements in fore-

cast lead times result in meaningful economic benefits to society, and these benefits

come from both the individual and institutional response to longer lead times.
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1 Introduction

Advances in predictive technology are improving forecasts in several areas–the outcome of an

election, the spread of a contagious disease, or the eruption of a volcano. This is particularly

true for meteorology, where weather forecasts are getting more accurate and available earlier–

sometimes days or weeks in the future (Bauer et al. 2015). However, improvements in weather

forecasts are costly, and require significant public investments in meteorological operations

and research (Alley et al. 2019). Although, in theory, better forecasts should enable better

risk management (Millner and Heyen 2021), there are several reasons why this may not be

true in practice. People may not pay attention to forecasts (Golman et al. 2017), may choose

not to act on forecasts,1 or may not have sufficient means to respond to forecasts.2

In this paper, I investigate if forecast improvements result in meaningful benefits to

society in the context of winter weather forecasts and motor vehicle crashes. I focus on

improvements in the lead time of forecasts, i.e., how far in advance a forecast is available

before the predicted event occurs. The literature on the effect of forecast lead time on risk

management is scarce. Most studies examine this question in a lab setting and find that

longer lead time can have mixed effect on risk management (Hoekstra et al. 2011, Weyrich

et al. 2020).3 On one hand, longer lead time may allow people and organizations to plan

better and take more effective actions; on the other hand, getting forecasts too early may

adjust their expectations about risk and make the weather look less hazardous.

Motor vehicle crashes are a significant economic and health hazard to people.4 Winter

weather results in particularly risky driving conditions on the road and greatly increases

the likelihood of vehicle crashes (Qiu and Nixon 2008).5 Winter weather advisories, often

1There could be various reasons. People may not trust forecasts. For example, a 2017 YouGov Poll in
the United Kingdom shows just above 50% of respondents trust weather forecasters’ opinion on weather
forecasts (Smith 2017). People may also perceive the advisory in a forecast as a symbolic threat to their
freedom and may choose not to comply (Cherry et al. 2021).

2Uncertainty about the benefits of risk mitigating actions may also result in inaction. Li and Peter (2021)
provide a comprehensive review.

3In a sole empirical study, Simmons and Sutter (2008) examine the effect of tornado warning lead time on
tornado related fatalities and injuries. Their results suggest that, conditional on receiving a warning, longer
lead time does not reduce injuries or fatalities.

4In US, every year more than 2.5 million people get injured and nearly 35,000 people die in more than
6 million vehicle crashes (Bureau of Transportation Statistics 2021). For the year 2010 alone, the total
economic cost of all vehicle crashes in the country is estimated to be 871 billion dollars (Blincoe et al. 2015).
Since 2010, the number of crashes and injuries have increased by more than 20%, and the number of fatalities
have increased by 10%.

5In a review study, Qiu and Nixon (2008) find that snowfall can increase the likelihood of crashes by 84%
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issued several hours in advance by the National Weather Service, can inform people about

the approaching adverse weather and ensuing risky driving conditions. This information

may help mitigate crash risk by encouraging people to change their travel plans such as

avoiding driving or allocating more time to drive slow during that day, or by helping road

crews to plan and manage roads proactively. This paper aims to assess whether longer lead

time on winter advisories actually results in these benefits, and whether these benefits are

economically meaningful.

Using a novel combination of county-date level data on winter weather advisories, weather

monitor readings, and vehicle crashes for 11 US states during 2006-2018, I examine whether

longer lead time on winter advisories results in fewer crashes.6 In my research design, condi-

tional on forecasted event type and realized weather on a day, the effect of lead time on crash

risk is identified off the variation in lead time within a county-year-month. The identification

assumption is that once we control for the type of winter event forecasted and the realized

weather on a day, the variation in advisory lead time is orthogonal to any unexplained factor

affecting the crash risk within a county-year-month. This residual variation in lead time is

likely to be a result of random variation in weather systems or variation in the forecasters’

judgement calls.7

My empirical strategy attempts to address the following key challenges in identifying

the causal effect of weather forecast lead time on a loss outcome. First, places that receive

advisories with shorter lead time may differ in their risk of loss from those that receive longer

lead time advisories. To address this potential endogeneity, my estimates are identified off

the variation in lead time within the same county. Second, adverse weather with longer

forecast lead time is often more severe and is likely to result in more loss. To address this, I

use weather monitor readings on snow, rain, and temperature at the county-date level which

control for the realized severity of weather. Finally, adverse weather events often have low

occurrence rate such as flash floods, tornadoes, and hurricanes, and they may not always

result in losses that can be measured precisely and granularly, say at a county level. Thus, an

and likelihood of injuries by 75%.
6The 11 states are Illinois, Indiana, Iowa, Maine, Massachusetts, Michigan, Minnesota, New Jersey, Ohio,

South Dakota, and Wisconsin. Crash data for Illinois, Iowa, and Minnesota are available to me only for
the years 2010-2018, 2009-2018, and 2010-2015, respectively. For the other eight states, the crash data are
available for the whole period of 2006-2018.

7Human forecasters use weather prediction model outputs, current weather observations, and a rule-based
guidance for issuing advisories. Often multiple forecasters work together in shifts to issue advisories for the
same area.
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empirical design using such events may not have sufficient variation in outcomes to estimate

the lead time effects with desired statistical significance. I use winter weather as the adverse

event, and daily vehicle crashes as the loss outcome. Both winter weather and vehicle crashes

occur with reasonable frequency in my sample.

I find that longer lead time on a winter advisory results in significantly fewer crashes

on days the advisory is issued for. A one standard deviation increase in advisory lead time

reduces daily crashes by 6% on the same day. Longer lead time on advisories may cause

some of the travelling plans to shift to an earlier or a later date. So, I also examine whether

some reduction in crashes on the day of the advisory is explained by a shift in crashes to a

different date. I find that a one standard deviation increase in advisory lead time increases

daily crashes by 2.5% on the previous day but does not affect crashes on the following day

significantly. Preliminary calculations show that longer lead times result in net reduction of 8

crashes per 100,000 people annually. I quantify the dollar benefits of longer lead time through

their effect on reducing crash risk using the economic cost estimates of vehicle crashes from

Blincoe et al. (2015).8 My estimates suggest that, relative to advisories with zero lead time,

winter advisories with longer lead times result in annual economic savings of nearly 110

million USD in my sample. To give a sense of magnitude, these savings are about 10% of

the annual budget of the National Weather Service and about 2% of the annual budget for

the entire meteorological services and research of the US federal government.

I also examine two potential mechanisms that might explain these effects of longer lead

times on crash rates. First, using the mobile phone location data from SafeGraph for the

11 states in my sample, I examine whether longer lead times result in fewer visits by people

outside their homes. Second, using the snowplow truck location data for the state of Iowa,

I examine whether road crews perform a greater level of winter maintenance activities when

advisories arrive with longer lead time. I show that both the visits by individuals and

road maintenance activities respond to lead times on winter advisories. People visit fewer

places on the day of the advisory when there is a longer lead time. Road maintenance

activities increase with lead time for the same as well as the previous day of the advisory.

My analysis suggests that the value of better forecasts may come from both the individual

and institutional risk mitigation efforts.

8Blincoe et al. (2015) estimate the economic cost of vehicle crashes in the US for the year 2010. They
account for both the direct and the indirect economic costs (value of life, lost productivity, workplace losses,
and congestion costs) of crashes to society.
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This paper, to the best of my knowledge, provides the first empirical evidence that

getting forecast advisories earlier results in better risk management.9 Martinez (2020) uses

the improvements in hurricane path accuracy to show that benefits from receiving accurate

forecasts outweigh costs of improvements. On similar lines, Rosenzweig and Udry (2019) and

Shrader (2020) also show that firms’ response to long-run forecasts of risk is higher when

forecasts are more accurate. While these studies show that accurate forecasts are valuable,

this paper shows that there is value to getting forecasts earlier.

This paper also contributes to the emerging literature on the role of forecasts in adapta-

tion to and mitigation of weather risk. Most literature on this subject focuses on the role of

seasonal or long-run weather forecasts in production decisions of firms. Downey et al. (2021)

show that construction firms adjust labor usage based on long-run rainfall forecasts. Shrader

(2020) shows that albacore fishing vessels use three-month ahead ENSO forecasts to make

decisions about their fishing effort and expenditures. Rosenzweig and Udry (2019) examine

the role of 2-4 month ahead monsoon forecast in investment and labor decisions of farmers

in India. In a recent study, using a theoretical model, Millner and Heyen (2021) show that

people can be better off using short-run forecasts when reliable long-run forecasts are not

available. My contribution is to provide the empirical evidence that both individuals and

institutions can and do use short-run weather advisories to mitigate risk in routine activities

such as driving and winter road management. In this respect, my paper is close to Neidell

(2009) and Shrader et al. (2022). Neidell (2009) shows that people respond to day-ahead

pollution alerts while planning daily activities. Shrader et al. (2022) show that accurate

short-run forecasts of temperature on a day reduce mortality from extreme temperatures.

My paper complements this literature by providing evidence that the value of short-run

forecasts and advisories can come from risk mitigation actions of both the individuals and

institutions.

Finally, this study also contributes to a large economic literature that examines policy

implications for mitigating vehicle crash risk. Vehicle crashes are a leading cause of property

damage, injuries, and deaths worldwide. Most existing research examines man-made factors

of crash risk such as cellular usage (Bhargava and Pathania, 2013; Abouk and Adams, 2013;

Karl and Nyce, 2019, 2020; Faccio and McConnell, 2020), alcohol consumption (Carpenter

and Dobkin, 2009; Hansen, 2015), sleep (Smith 2016), and violation of traffic rules (DeAn-

9Most studies examine the effect of forecast lead time using surveys or lab experiments, and find that
longer lead time can have mixed effect on risk management (Hoekstra et al., 2011; Weyrich et al., 2020).
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gelo and Hansen, 2014; Gallagher and Fisher, 2020). My paper extends this literature by

examining the role of weather advisory lead times in reducing weather related crash risk.

In a related study, Ferris and Newburn (2017) show that wireless alerts for flash floods re-

duce road accidents in Virginia. My contribution is to show that early communication of

weather advisories can result in meaningful reductions in weather related crash risk through

the actions of drivers as well as road maintenance crews.

There are some limitations to this study. First, this paper aims to quantify the economic

benefits of longer lead times of winter advisories given existing weather forecasting technolo-

gies. It cannot provide guidance on if or how the National Weather Service should change the

process of generating weather advisories. Second, there is a potential limitation to using the

crash data based on the police accident reports. My sample includes the number of vehicle

crashes to the extent they are reported to the police.10 Third, although this paper shows

that both the number of visits by individuals and activities by road crews may contribute to

reduction in crashes due to longer lead time, it does not quantify the extent to which these

two mechanisms might lead to those effects. Further, there are likely other actions taken by

people and organizations, which I do not examine, that may explain some of the reduction

in crash risk due to longer lead times. When winter advisories are available earlier, com-

muters may drive slow, choose alternative modes of transport, or visit places closer to their

homes and workplaces. The data available limit my ability to examine this broader range of

potential channels. This paper however provides the first evidence that longer lead times on

weather advisories may really enable these mechanisms, and result in meaningful benefits to

the society. Future work in this area may explore these mechanisms in more details.

The chapter is organized in six sections. Section 2 describes the data and the empirical

strategy. Section 3 presents results on the effect of advisory lead time on vehicle crash

risk. Section 4 discusses the robustness of main results. Section 5 discusses two potential

mechanisms. Section 6 concludes.

10Minor crashes that result in property damage below a certain threshold might not be reported. I discuss
this limitation in some detail in section 2.
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2 Data and Empirical Strategy

2.1 Data Description

This paper uses a novel combination of three data sets: motor vehicle crash data from police

accident reports maintained by the department of transportation of respective states, daily

weather monitor readings from the National Oceanic and Atmospheric Administration’s

(NOAA) Global Historical Climate Network (GHCN) database, and a database of weather

advisories issued by the National Weather Service (NWS).

2.1.1 Vehicle Crash Data

My analysis uses detailed police accident reports of motor vehicle crashes maintained by the

Department of Transportation (DoT) of each state. I assembled this data set through re-

quests to a state’s DoT, the Highway Safety Information System (HSIS) database, or through

internet downloads from the respective DoT’s website. I limit my analysis to those Midwest

and Northeast states for which I was able to obtain data for the years between Jan 1, 2006

to Dec 31, 2019.11 These states are Illinois, Iowa, Indiana, Maine, Massachusetts, Michigan,

Minnesota, New Jersey, Ohio, South Dakota, and Wisconsin.12 These crash reports provide

time, date, and county location for all the crashes. Using this information, I calculate the

total number of crashes on a date in a county.

One limitation of using police accident reports is that they likely undercount the number

of vehicle crashes (Bhargava and Pathania, 2013; Blincoe et al., 2015). States typically

require a vehicle crash to be reported to the police if the crash results in injury or death

of a person, or property damage in excess of a threshold dollar amount. The threshold for

property damage varies by state and is typically between 500-1000 USD in the eight states

in my sample. As a result, minor crashes that result in a small property damage or minor

injury may go unreported.

Using the police accident reports may also lead to potential biases in my estimate of the

effect of lead time on crash risk. First, there are differences across states in the criteria for

11The earliest digitized winter weather advisories are available from Jan 1, 2006.
12Crash data for Illinois, Iowa, and Minnesota are available to me only for the years 2010-2018, 2009-2018,

and 2010-2015, respectively. My results are robust to limiting my sample to eight states for which I have
crash data for all the years during 2006-2018.
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reporting a crash to the police. Similarly, the reporting criteria may also vary over time in

my study. However, my empirical strategy exploits the variation in lead time and crashes

within the same county, year, and month. As long as the reporting criteria do not change

in a county within a month, my results may not be affected by the variations in the criteria.

Second, if crash reporting patterns are correlated with the lead time on winter advisories,

then my estimate of the effect of lead time on crash risk may be biased. When winter

weather is worse, people may be less inclined to wait on road to file a crash report. Police

may also find it difficult to respond and reach promptly to crash sites on days with worse

weather conditions, which often experience higher crash rates due to weather. However, my

empirical strategy controls for the realized weather conditions on a day. So, conditional on

the realized weather, crash reporting patterns are less likely to be correlated with advisory

lead time. Also, as I show in this study, longer lead times on advisories result in more winter

road maintenance activities. So, longer lead times are more likely to enable police to respond

earlier and record a crash report. If this is the case, then my estimates will be biased upward,

i.e. toward finding a less negative or more positive effect of lead time on crash risk.

2.1.2 Weather Advisory Data

I obtain weather advisory data from the archive of watch, warnings, and advisories (‘advi-

sories’ henceforth) issued by the National Weather Service (NWS). The historical data on

these advisories are digitized and maintained by the Iowa Environmental Mesonet (IEM)

group of Iowa State University. This data set is a collection of geospatial format files that

provide information on geographic coverage, timing, and other details for the warning mes-

sage for all weather advisories issued since 1986. Data on winter weather advisories are fully

available only after 2005.13

Weather advisories are typically issued to a county by one of the 122 local weather

forecast offices operated by the National Weather Service. A weather forecast office (WFO)

typically serves a county warning area that consists of 20 to 50 counties, often across state

boundaries. The office is primarily tasked with providing short-term weather forecasts (up

to 7 days ahead) and weather advisories to the counties in their designated county warning

areas. According to the National Weather Service guidelines, the primary goal of winter

13The digital archival of the NWS advisories relies on NWS’s Valid Time Extent Code (VTEC) system
which allows for systematic parsing of the information in advisories. The VTEC system for winter advisories
was operational by November 2005.
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advisories is to provide people enough lead time to take appropriate action, and to describe

the severity, location, timing and evolution of hazardous winter weather events occurring or

forecast to occur.14 For this study, I consider those advisory messages that inform people

about any of the following weather events: blizzard, snow storm, freezing rain, lake effect

snow, ice storm, and snow squall.15

There are three types of advisories–watch, advisory, and warning. Watches are issued

when the event is likely but its occurrence, location, timing are uncertain. Advisories and

warnings are issued when the event is occurring or has a high probability of occurrence.

For this study, I treat the three types of advisories in the same way. Figure D.5 shows an

example of a winter weather ‘advisory’ issued by the Milwaukee weather forecast office to

alert counties about a forecasted adverse winter weather event. The advisory was issued for

20 counties in the state of Wisconsin at 2:53 PM on February 4, 2019. The adverse weather

event related to this advisory was forecasted to occur between 6 PM on February 5 to 6 AM

February 6.

The archive database provides the time an advisory is issued by the local weather forecast

office, the name of the issuing weather forecast office, the time the advisory goes in effect

(i.e., the forecasted time of onset of the hazardous event), the time the advisory expires,

the nature of the hazardous event, and the names of affected counties. This information

allows me to capture for each date and county whether a winter advisory is active in the

county on that date, and the lead time of the advisory, i.e. the time between the advisory

issuance and the predicted onset of the event. An advisory can remain active for more than

a day. For the first day of an active advisory, I estimate the lead time as the difference

between the time of issuance and the time when the advisory goes in effect that day. For the

subsequent days, I estimate the lead time as the number of hours passed since the issuance

of the advisory until the beginning of the current day, i.e. 0000 hours on the day. If there are

multiple updates made to an advisory for a weather event, I consider the issuance time of

only the first advisory issued to estimate the lead time. For example, a local forecast office

may have issued a Watch on January 10 at 6 am CST for a likely snow storm to affect a

county between 5 pm on January 10 and 11 am on January 12. At 12 pm on January 10,

the forecast office may issue an updated advisory that upgrades the ‘Watch’ to a ‘Warning’.

14NWSI 10-513 accessed from https://www.nws.noaa.gov/directives/sym/pd01005013curr.pdf
15I do not include advisories that inform only about wind chill. Although, wind chill causes extremely

hazardous conditions for health, it may not directly affect the crash risk.
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In this example, for my purposes the advisory is issued at 6 am on January 10, it goes in

effect at 5 pm on January 10, and remains active for three dates– January 10, 11 and 12. I

estimate the lead time of the advisory as 11 hours for January 10, 18 hours for January 11,

42 hours for January 12.

2.1.3 Daily weather observations

I obtain daily snowfall amount, rainfall amount, and minimum and maximum temperatures

from the National Oceanic and Atmospheric Administration’s (NOAA) Global Historical

Climate Network (GHCN) database. This database provides daily weather monitor readings

for weather stations across the 50 US states and the District of Columbia. It is an aggregation

of records from several agencies that in turn collect the monitor readings from their network

stations.

The reported daily minimum and maximum temperature readings are the recorded tem-

peratures at a specific time on a day. The reported daily snow and rain readings are the

accumulated amounts for the last 24-hour period. Most agencies require their network sta-

tions to report monitor readings once a day at a fixed hour, typically around 7 AM local

time. While most stations report within a few hours of the suggested reporting time, some

stations may report several hours later. This variance in reporting time creates potential

problem for the estimation of snowfall and rainfall amount during a calendar day. To address

this, while calculating the daily snow and rain amounts, I consider monitor readings for only

those weather stations that report between 5 am and 9 am.

For each county, I estimate the daily accumulated snowfall, accumulated rainfall, and

minimum and maximum temperature recorded by aggregating the weather monitor readings.

Prior studies often aggregate temperature and air pollution monitor readings for a region

as the inverse distance-weighted average of all available readings from the monitors located

within a radius of the region centroid (e.g., Currie and Neidell (2005) and Heutel et al.

(2017)). Unlike temperature or air pollution, rain and snow accumulations may not have

smooth spatial variation. An aggregation using weighted average of all monitor readings

within a radius may result in loss of variation in observations for snow and rain, particularly

for counties with fewer weather stations. So, I aggregate weather readings as the simple

average of all available monitor readings for the stations located within the county boundary.

County and date pairs that do not have any valid monitor readings are dropped from the

sample.
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2.1.4 Variable and Primary Sample Construction

My primary sample includes all county-date observations, with or without an active winter

advisory, for the 11 states during 2006-2019. For each county and date, I construct the fol-

lowing variables: total number of crashes, total snow accumulation, total rain accumulation,

minimum and maximum temperature observed, indicator for whether a winter advisory is

active, and the advisory lead time in hours. I create additional variables to account for

whether a day is a workday or a holiday in that county.16 I also create a variable to indicate

the name of the local weather forecast office that is tasked to issue weather advisories to the

county.

The nature of winter season may vary from one year to another. However, a winter season

overlaps two calendar years. To account for this, I construct a new variable ‘seasonal year’

that starts from September 1 in a given year and ends on August 31 of the next year. Since

my data span 14 calendar years from January 1, 2006 to December 31, 2019, my primary

sample covers 13 seasonal years, i.e. from September 1, 2006 to August 31, 2019. In the

data, each seasonal year is denoted by the beginning year number, i.e. seasonal year 2006

cover dates from September 1, 2006 to August 31, 2007. The 13 seasonal year values go from

2006 to 2018. In this paper from here onward, I use ‘year’ to always mean a ‘seasonal year’

unless noted otherwise.

I drop observations with missing weather variables on the current day, previous day, and

the next day. I also drop county-date observations with negative values for advisory lead

time and duration. The primary sample contains 2,195,305 county-date observations over

the sample period of 13 years (2006-2018) across 734 counties from 11 states.It includes all

county-date observations that receive an advisory as well as that do not receive an advisory.

Of the total observations, 103,233 county-dates receive an active advisory.

2.2 Empirical Strategy

My empirical strategy estimates the effect of advisory lead time on crash risk by exploiting

the variation in lead times. Figure 1 plots the distribution of lead time for county-dates that

receive an advisory. The bars plot the proportion of county-date observations (y-axis) that

receive a winter advisory with lead time in one of the six lead time bins (x-axis). Of all the

16Using the information on website timeanddate.com, I create a list of federal and state holidays during
2006-2019 calendar years.
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county-dates with an active winter advisory, about 13% receive the advisory with zero lead

time, about 54% receive the advisory with lead time between 0 and 24 hours, and about 33%

receive the advisory with more than 24 hours of lead time. The empirical design compares

days that receive longer lead time advisory with days that receive shorter lead time advisory.

Figure 1: Distribution of Winter Advisory Lead times

Notes: The figure plots the distribution of lead time of winter advisories in the sample. The bars plot the
proportion of county-date observations (y-axis) that receive a winter advisory with lead time in one of the
six lead time bins (x-axis).

A potential challenge to this empirical design is that days receiving a longer lead time

advisory may have different weather conditions from days receiving a shorter lead time

advisory. Figure 2 shows that days that receive an advisory with longer lead time also

receive more snow and rain. This suggests that winter weather is likely more severe and

hazardous for driving on days that receive an advisory earlier. To account for this difference

in severity of weather, my empirical design controls for the realized weather using weather

monitor readings for snow, rain, and temperature, and their mutual interactions in the county

on that date.

Another potential challenge to the empirical design is that places receiving winter advi-

sories earlier may have different crash risk from places receiving advisories later. Similarly,

years that receive shorter lead time advisories can be different from years that receive longer

lead time advisories. For example, forecasting technology and frequency of crashes in a

county can change over the years (or months).

To address these issues, my empirical design uses the variation in advisory lead times

within the same county-year-month. The identifying assumption is that controlling for the
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Figure 2: Distribution of rain, snow, and minimum temperature by advisory lead time

(a) Snow (inches) (b) Rain (inches) (c) Minimum temperature (F)

Notes: The figures show the distribution of observed snow (Panel A), rain (Panel B), and minimum temper-
ature (Panel C) at the county-date level by advisory lead time for the main sample. Box and whisker plot
the distribution of observed weather element (y-axis) for county-dates that receive the winter advisory with
lead time in one of the six 12-hour bins (x-axis). The lower hinge, mid-line, and upper hinge of boxes show
the 25th, the 50th, and the 75th percentile. Whiskers stretch from the 5th percentile to the 95th percentile.
The dotted red line plots the mean.

observed weather, within a county-year-month, the variation in advisory lead time is likely

orthogonal to any other unexplained factors affecting the crash risk. My primary specification

is the following:

Crashcd = ψAdvisorycd + βLeadtimecd

+ γd−1❲c,d−1 + γd❲cd + γd+1❲c,d+1 + λ❳cd + Φcym + ǫcd
(1)

where Crashcd is the number of crashes per 100,000 people in county c on date d. Advisorycd

is an indicator variable which is 1 if there is a winter advisory issued on date d for county

c, else it is 0. Leadtimecd, the key variable of interest, is the lead time of the advisory on

date d in county c in hours. When no advisory is active for a county-date, the lead time

variable is set equal to 0. So, Advisorycd captures the effect of an advisory issued with

zero lead time. Leadtimecd captures the effect of an additional hour of lead time on crash

risk. Φcym are fixed effects, for each combination of county, year, and month, that allow

me to use the within county-year-month variation in advisory lead time and crashes. These

also control for all observable and unobservable factors that might affect crash risk within a

county-year-month.

❲cd includes the non-parametric functional forms of observed snow, rain, and minimum

temperature, and their mutual interactions for county c on date d. Specifically, ❲cd is
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defined as:

❲cd = {snowbincd, rainbincd, tempbincd, snowbincd × tempbincd, rainbincd × tempbincd}

where snowbincd, rainbincd and tempbincd are three separate vectors of indicator variables

that are 0 or 1 based on which bin snowfall, rainfall, and temperature in county c on date d

fall in. I use six bins of snow in inches: {<0.01, 0.01-0.5, 0.5-1, 1-2, 2-3, 3-5,>5}, six bins

of rainfall in inches: {<0.01, 0.01-0.25, 0.25-0.5, 0.5-1, 1-1.5, 1.5-2, >2}, and five bins for

temperature in Fahrenheit: {<5, 5-23, 23-41, 41-60, >60}. ❲cd also includes two interacted

sets of snow and rain with temperature to account for the effect of precipitation through

temperature.17 I also include❲c,d−1 and ❲c,d+1, one day lag and one day lead variables of

observed weather, respectively, to control for any effect of previous and next day’s weather

on crashes.18

❳cd includes additional controls. Driving patterns and traffic volume may vary by day

of the week and based on whether the day is a workday or a holiday. I control for the day of

week effects by including the categorical variable DayofWeek which takes one of the seven

values based on what day of week it is on date d. I control for the effects of holidays by

including an indicator variable Workday which is 1 if the date d is a workday in county c,

else it is 0.19 I also control for seasonality in the traffic volume by including the categorical

variable Weeknum that takes a value between (01–53) based on the week number of the

year the date d falls in, as defined in ISO 8601.

In my preferred specifications, I also include two additional control variables. First, I

control for the type of forecasted weather event for which the advisory is issued. The seven

event types in my sample are blizzard (BZ), ice storm (IS), lake effect snow (LE), snow

squall (SQ), winter storm (WS), severe winter weather (WW), and freezing rain (ZR). Certain

weather events may systematically receive advisories with longer lead-time compared to other

events. At the same time, people may react differently to advisories issued for certain event

types. To control for any potential bias, I include a categorical variable AdvisoryType that

17Snow or rain on days with below freezing temperatures may result in more hazardous driving conditions
compared to warmer days.

18Previous and next day’s weather may affect crashes in more than one way. The previous day’s snow
accumulation may be large enough to pose risky conditions the next day. Also, a portion of realized snow
and rain amounts for a day may be attributed to previous or next day’s realized weather and misreported,
especially for continuing weather events that overlap multiple days.

19To construct this variable I use the list of state and federal holidays from the website
www.timeanddate.com.
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takes one of the seven values based on the event type for which the advisory is issued for.20

Second, I also control for the time of weather advisory issuance. The nature of an advisory

as well as people’s reaction to it may systematically depend on when the advisory is issued.

To control for this potential source of bias, I include a categorical variable AdvisoryT ime

that takes one of the four values from {0000− 0600, 0600− 1200, 1200− 1800, 1800− 2400}

based on which hour bucket the issuance time falls in.

I weight all regressions by county population. Errors are clustered at the ‘weather forecast

office (WFO)–date’ level to account for error structure correlations between counties on a

day that receive advisories from the same weather forecast office.

2.2.1 Displacement Effect

It is possible that longer lead-time on advisories causes some vehicle crashes to happen on an

earlier or a later day. This may happen for various reasons. When people are informed of a

potential adverse weather event in advance, they may choose to change their travel plans to

earlier or later dates. For example, upon receiving a snow storm advisory for the next day,

people may travel to purchase groceries and other necessities before the adverse weather.

Similarly, some travelers may postpone their travel plans to the subsequent day. To estimate

such displacement effects, I estimate the following variation of the primary specification in

equation 1:

Crashcd =
∑

i=−1,0,1

βiLeadtimec,d+i +
∑

i=−1,0,1

ψiAdvisoryc,d+i

+ γd−1❲c,d−1 + γd❲cd + γd+1❲c,d+1 + λ❳cd + Φcym + ǫcd

(2)

where Leadtimec,d−1, Leadtimec,d, and Leadtimec,d+1 are the lead time of advisories on the

date d − 1, d, and d + 1. The coefficient βi on the variable Leadtimec,d+i is the estimate

of the effect of an additional hour of lead time on advisory active for date d + i on crashes

that occur on date d. For example, if d denotes January 15, then β−1, the coefficient on

Leadtimec,d−1, captures the effect of an additional hour of lead time on the advisory active

for January 14 on vehicle crashes that occur on January 15. Similarly, β+1 captures the

effect of an additional hour of lead time on the advisory active for January 16 on vehicle

crashes that occur on January 15.

20When no advisory is issues, the variable take the value ‘NoAdv’.
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Another interpretation of the coefficients on variables Leadtimec,d−1, Leadtimec,d, and

Leadtimec,d+1 is that they capture the effect of an additional hour of lead time on advisory

active for date d on crashes that occur on date d + 1, d, and d − 1, respectively. So, β−1,

the coefficient on Leadtimec,d−1, captures the effect of today’s advisory lead-time on crashes

that will occur tomorrow, and β+1, the coefficient on Leadtimec,d+1, captures the effect of

today’s advisory lead-time on crashes that occurred yesterday. In the subsequent discussion,

it is the latter interpretation that I will use while discussing the results and implications.

2.2.2 Identifying Assumption

The identifying assumption of my empirical design is that within a county-year-month, con-

ditional on realized weather and forecasted event type, the residual variation in advisory

lead time is uncorrelated with any other unexplained factors that might affect the crash

rate. There are two potential sources of this residual variation in lead time. First, there

could be variation in how snow storms and other winter weather phenomena develop. This

variation might result in some storms being predicted earlier than others. Once I control for

the severity of weather using the observed weather variables, within a county-year-month,

the variation in weather system is likely to be random and uncorrelated with other factors

affecting the crash risk.

The second potential source of residual variation in the lead time is the process of issuing

winter advisories. These advisories are issued by human forecasters working in the local

weather forecast offices. Forecasters primarily use the quantitative forecasts of weather

elements and pre-agreed severity criteria to issue the advisory. The severity criteria consist

of objective thresholds for weather elements, such as a threshold for the forecasted amount of

snow accumulation in a 12-hour period. However, the criteria acts more like a guidance than

a strict rule. Forecasters can use their judgement to issue an advisory for an event that poses

significant risk even if it does not meet the severity criteria. Thus, subjective judgement is a

potential source of variation in advisory lead time. Further, multiple forecasters often work

in the same office on different shifts during a day. This could result in additional variation

in the judgement calls on when to issue an advisory.

These variations in weather systems together with the variations in subjective decisions

made by human forecasters are likely to be uncorrelated with the other factors affecting the

crash risk, within a county-year-month, after controlling for the observed weather, forecast

event type, and the other time varying features of the day (e.g., day of week, workday, and

week of year). The underlying assumption is that variation in weather systems and human
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judgment calls are not based on any unobservable information that is correlated with the

riskiness of driving conditions.21

3 Effect of Advisory Lead time on Crash Risk

3.1 Descriptive Analysis

Figure 3 presents the descriptive evidence of the effect of advisory lead time on crash risk.

The figure is a binned scatter plot of the average crashes per 100,000 people (x-axis) by

average realized snow in inches (y-axis) within each of the six snow bins as mentioned in

section 2.2. Each line in the plot corresponds to county-dates that receive advisory with

lead time falling in one of the six bins of advisory lead times in hours: {0, (0,12], (12-24],

(24,36], (36,48], >48}. The solid black line plots the average crashes by realized snow for

those county-dates that receive winter advisory with zero lead time. The dark gray long-

dashed line shows the average crashes by realized snow for those county-dates that receive

winter advisory with lead time of more than zero hours but less than or equal to 12 hours,

and so on. The markers with whiskers plot the average crashes per 100,000 people and the

associated 95% confidence interval.

The figure suggests that snow storms that receive advisories with longer lead time result

in fewer crashes. It shows that while the average number of crashes increases with realized

snow amount, it is highest on days that receive an advisory with zero lead time for every

level of snow. As we move to days in higher lead time bins, the average number of crashes

decreases gradually for a given level of snow. The figure also shows that the difference in the

average number of crashes by lead time is greater for days with higher amount of realized

snowfall.

The descriptive evidence in Figure 3 uses the variation in lead time and crashes across

all counties and months. It also does not control for the effects of other observed weather

conditions or the county and month specific factors that may affect the likelihood of a vehicle

crash. In the next section, I estimate the effect of lead time on crash risk using the fixed

21One possible violation of this assumption may be that forecasters issue these advisory based on some
information, which is an unobservable to me, about the impact of weather on crash risk. If the information
tells the forecaster that weather might increase the crash risk, the forecaster is likely to issue the advisory
with longer lead time. If this is the case, the coefficients on lead time are likely to be biased upward, i.e.,
towards finding a less negative or more positive effect of lead time on crash risk. Thus, my results are robust
to such violation.
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Figure 3: Crashes per 100,000 people by snow for different advisory lead times

Notes: The figure shows the binned scatter plot of the average crashes per 100,000 people (x-axis) by average realized snow
in inches (y-axis) within each of the six snow bins in inches, i.e., {<0.01, 0.01–0.5, 0.5–1, 1–2, 2–3, 3–5,>5}. The markers
with whiskers plot the average crashes per 100,000 people and the associated 95% confidence interval. Each line in the plot
corresponds to county-days that receive advisory with lead time falling in one of the six bins of advisory lead times in hours:
{0, 0–12, 12–24, 24–36, 36–48, >48}. The solid black line joins the markers that plot the average crashes by realized snow
for county-dates that receive winter advisory with zero lead time. The dark gray long-dashed line corresponds to the average
crashes for county-dates that receive winter advisory with lead time of more than zero hours but less than or equal to 12 hours,
and so on.

effect specification in Equation 1 that uses the variation within a county-year-month and

controls for various observed factors that may affect crash risk.

3.2 Fixed Effects Analysis

Table 1 Columns 1–3 present the results from estimating Equation 1. Columns 4–6 present

the results from estimating Equation 2. Columns 1 and 4 include controls for realized

weather, day of week, holiday, and week number. Columns 2 and 5 include additional

controls for the advisory event type. Columns 3 and 6 include additional controls for both

the advisory event type and advisory issuance time. The coefficient on Leadtimec,d shows

the effect of an additional hour of advisory lead time on vehicle crash rates on the day of

the advisory. The coefficients on Leadtimec,d−1 and Leadtimec,d+1 show the effect of an
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additional hour of advisory lead time on vehicle crash rates one day after and one day before

the day of the advisory, respectively.

Table 1: The effect of advisory lead time on crash risk

Dependent Variable: crashes per 100,000 people

(1) (2) (3) (4) (5) (6)

Leadtimec,d -0.045∗∗∗ -0.037∗∗∗ -0.035∗∗∗ -0.049∗∗∗ -0.041∗∗∗ -0.039∗∗∗

(0.004) (0.005) (0.005) (0.004) (0.005) (0.005)
Leadtimec,d−1 0.008∗∗∗ 0.003 0.002

(0.003) (0.004) (0.004)
Leadtimec,d+1 0.007∗ 0.013∗∗∗ 0.016∗∗∗

(0.004) (0.005) (0.005)
Advisory Event Type
BZ 1.77∗∗ 1.43 1.75∗ 1.32

(0.900) (0.921) (0.913) (0.938)
IS 2.85∗∗ 2.61∗ 3.09∗∗ 2.78∗∗

(1.37) (1.38) (1.33) (1.35)
LE 2.24∗∗∗ 1.89∗∗∗ 2.22∗∗∗ 1.77∗∗∗

(0.279) (0.344) (0.286) (0.367)
SQ 2.35∗ 1.76 2.34∗ 1.68

(1.30) (1.18) (1.33) (1.21)
WS 1.59∗∗∗ 1.26∗∗∗ 1.74∗∗∗ 1.32∗∗∗

(0.220) (0.306) (0.223) (0.322)
WW 2.05∗∗∗ 1.75∗∗∗ 2.21∗∗∗ 1.82∗∗∗

(0.116) (0.258) (0.118) (0.284)
ZR 2.59∗∗∗ 2.31∗∗∗ 2.72∗∗∗ 2.37∗∗∗

(0.278) (0.340) (0.288) (0.360)
Controls

Advisory issuance time No No Yes No No Yes
County-Year-Month Fixed Effects Yes Yes Yes Yes Yes Yes
Mean Crashes (days with advisory) 11.1 11.1 11.1 11.1 11.1 11.1
Observations 2,195,305 2,195,305 2,195,305 2,195,305 2,195,305 2,195,305
R2 0.18 0.18 0.18 0.18 0.18 0.18

Notes: The table shows the results from estimating the regression models in Equation 1 (Columns 1–3) and Equation 2
(Columns 4–6). The sample includes all county-date observations that receive as well as that do not receive a winter advisory.
The dependent variable is crashes per 100,000 people. Leadtimec,d, Leadtimec,d−1, and Leadtimec,d+1, the key variables of
interest, are lead times (in hours) of winter advisories active on date d, d− 1, and d+1. Additional controls include: Advisory
Event Type which is a vector of seven indicator variables that capture which event type the advisory is issued for. The seven
event types are Blizzard (BZ), ice rain (IS), lake effect snow (LE), snow squall (SQ), winter storm (WS), severe winter weather
(WW), and freezing rain (ZR); Advisory Issuance Time which is a vector of four indicator variables that capture which hour
bucket in {0000 − 0600, 0600 − 1200, 1200 − 1800, 1800 − 2400} the advisory issuance time falls in. All specifications include
controls for current, previous, and next day’s weather, day of week, workday, and week of year effects. All specifications include
county-year-month fixed effects. All regressions are weighted by county population. Standard-errors clustered at wfo-date level
are in parentheses. Significance Level: ***: 0.01, **: 0.05, *: 0.1

The coefficient on leadtimec,d in columns 1 is −0.045 which means that an additional

hour of lead time reduces crashes by 0.045 per 100,000 people on the same day the advisory

is active. The coefficient on lead time decreases in magnitude to −0.037 when I control for

the advisory event type in column 2. When I include an additional control for the advisory

issuance time in column 3, the coefficient on leadtimec,d further decreases in magnitude to

−0.035. The pattern is similar for columns 4–6. This suggests that a part of the reduction

in crashes is explained by the type of forecasted event and the time at which the advisory is
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issued.22 The fully specified model in column 6 is my preferred specification.

The coefficient on leadtimec,d in column 6 is -0.039 which means that an additional hour

of lead time reduces crashes by 0.039 per 100,000 people on the same day the advisory is

active. The coefficient is statistically significant at the 1% significance level. The coefficient

on leadtimec,d+1 is 0.016 and is significant at 1% level. This shows that an additional hour of

lead time increases crashes by 0.016 per 100,000 people on the previous day. The coefficient

on leadtimec,d−1 is 0.002 and is not statistically significant.Given the average crash rate of

11.1 crashes per 100,000 people on days with an active advisory and a standard deviation of

advisory lead time of 17.5 hours, increasing the advisory lead time by one standard deviation

reduces crashes on the same day by 6.2% and increases the crashes on the previous day by

2.5%.23 The overall effect of increasing the advisory lead time by one standard deviation on

crashes is a reduction of 3.7%. These estimates suggest that though longer lead times reduce

crash risk on the same day in a meaningful way, the increase in crashes on previous day

erodes some of these benefits. Before I discuss the potential reasons for this displacement

effect, it is helpful to examine how different levels of lead time affect crash risk.

Specifically, I examine whether the incremental effect of lead time improvement on crash

risk varies with the level of lead time. For example, does increasing the lead time by an

additional hour affect crash risk differently if the original lead time is 24 hours compared

to when it is 48 hours? To investigate the incremental effect of lead time on crash risk, I

estimate the following specification that includes a non-parametric functional form of the

lead time variable:

Crashcd =
∑

b 6={0}

βbLeadtime
b
cd + ψAdvisorycd

+γd−1❲c,d−1 + γd❲cd + γd+1❲c,d+1 + λ❳cd + Φcym + ǫcd

(3)

where I replace the primary variable of interest Leadtimecd with five indicator variables

Leadtimebcd. These indicator variables capture which lead time bin, b ∈
{

(0,12], (12-24], (24-

36], (36-48], >48
}

, the advisory lead time on date d in county c falls in. In the regression,

I omit the lead time bin of exactly zero hours. This non-parametric functional form of the

22It is possible that, in addition to advisory lead time, people may also be responding to the advisory
event type and the issuance time of the advisory. If advisory lead times are not random for different event
types and issuance time, then the coefficient in column 1 and column 4 may be biased.

23The effect on crash rates on the day of the advisory of a one standard deviation increase in lead time is
0.039× 17.5/11.1 = 0.062
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lead time variable allows me to account for any non-linear effects of lead time on crashes.

Thus, the coefficients βb measure by how much the crash rate changes in a county when the

advisory arrives with lead time in bin b relative to a lead time of zero hours. To examine

the incremental effect of lead time on crashes on the previous and next day, I estimate a

following variation of specification in equation 2:

Crashcd =
∑

i=−1,0,1

∑

b 6={0}

βb
iLeadtime

b
c,d+i +

∑

i=−1,0,1

ψiAdvisoryc,d+i

+γd−1❲c,d−1 + γd❲cd + γd+1❲c,d+1 + λ❳cd + Φcym + ǫcd

(4)

where βb
i measures by how much the crash rate on date d+ i changes in a county when the

advisory active for date d arrives with lead time in bin b relative to a lead time of zero hours.

Figure 4 plots the estimated coefficients βb
i based on the specification in equation 4.

The markers with gray whiskers plot the estimated effect of advisory lead time (in hours

on x-axis) and their 95% confidence interval on vehicle crashes per 100,000 people (y-axis).

The x-axis coordinate of markers correspond to the average lead time in the corresponding

bin. The black solid line corresponds to the estimates of the effect of lead-time on crashes

that occur on the same day the advisory is active for. The dashed and dotted black lines

correspond to the estimates of the effect of lead-time on crashes that occur on the previous

and the next day, respectively.

The plot provides two insights. First, it shows that the effect of lead time on crash

rate reduction for the same day remains meaningful even at longer levels of lead times. So,

the estimate using the regression Equation 1 is not driven by a limited range of lead time

duration. An advisory with lead time between 0 to 12 hours reduce crashes per 100,000

people by 0.95 relative to an advisory with zero lead time. For lead times longer than 12

hours, the marginal effect of every additional 12 hours is smaller initially but increases as the

lead time increases. For example, relative to an advisory with zero lead time, an advisory

with lead time between 12 to 24 hours reduces crash rate by 1.17 relative to a zero lead time

advisory. i.e. additional lead time on advisories in 12-24 bin relative to those in 0-12 hour

bin provides a reduction of 0.22 crashes per 100,000 only.24 The incremental reductions in

crash rate per 100,000 for three subsequent bins, relative to the corresponding previous bins,

are 0.59, 0.40 and 0.93 respectively.25

24The average lead time in 0-12 and 12-24 hour bins are 6.4 and 17.8 hours respectively.
25The average lead time in 24-36, 36-48, and >48 hour bins are 30.5, 41.9, and 60 hours respectively.
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Figure 4: The effect of advisory lead time on crashes per 100,000 people

Notes: The figure plots the estimated effect of advisory lead time on crashes per 100,000 people based on estimating the Equation
4. The dependent variable is crashes per 100,000 people. The sample includes all county-date observations that receive as well
as that do not receive a winter advisory. The markers with whiskers plot the estimated effect of advisory lead time (in hours
on x-axis) on vehicle crashes per 100,000 people (y-axis) along with the associated 95% confidence interval. The black solid
line corresponds to the estimates of the effect of lead-time on crashes that occur on the same day the advisory is active for.
The dashed and dotted black lines correspond to the estimates of the effect of lead-time on crashes that occur on the previous
and the next day, respectively. The x-axis coordinate of markers correspond to the average lead time in the corresponding bin.
There is a small horizontal shift added to markers’ positions to avoid overlapping. Standard Errors are clustered at WFO-date
level.

Second, the plot shows that the effect of longer lead time on previous day crash risk

is positive and meaningful only for lead times longer than 30 hours. The dashed black

line shows that for shorter lead time, the current day advisory either marginally reduces or

does not affect the crashes on the previous day relative to an advisory with zero lead time.

However, advisories with lead times longer than 30 hours, increase the crash rates on the

previous day. An advisory with lead time between 36-48 hours increases the previous day’s

crashes by 0.75 per 100,000 people, while an advisory with longer than 48 hours lead time

increases the previous day’s crashes by 1.36 per 100,000 people.

These results suggest that even a few hours of lead time can provide opportunities to

reduce crashes meaningfully. The incremental gains from smaller positive lead times suggest

that there are mitigation mechanisms that people and organizations can use at short to

moderately longer notice periods, say between 0 and 24 hours. Lead times longer than 24
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hours seems to enable people to employ additional mitigation strategies that may result in

larger reductions in crash rates for the same day. However, some of these strategies may also

push crash risk up during the previous day. For example, longer than 30 hour lead times may

allow people to move their travel plans earlier by one day. In this case, a longer lead time

advisory may result in more traffic on the road the previous day and, hence, more crashes.

Thus, some benefits from crash reduction on the current day may be eroded by the increase

in crashes on the previous day.

3.3 Economic Value of Longer Lead Times

In this section, I estimate the economic value of longer lead times of winter advisories based

on their impact on vehicle crashes. Specifically, I estimate the economic savings due to the

reduction in crashes as a result of advisories that arrive with some positive lead time relative

to a hypothetical scenario when all advisories arrive with zero lead time. This method

attributes a baseline economic value of zero dollars to the benefits from advisories with zero

lead time.26

First, I estimate the total number of crashes avoided as a result of advisories with positive

lead times relative to the hypothetical scenario of zero lead time on all advisories. To do this,

I start with the estimated regression model in Equation 2. This provides the model predicted

number of vehicle crashes per 100,000 people in county c on date d for the observed lead time

on advisories. I denote the predicted crashes by ˆcrash
obs

cd . Specifically, I use the estimates

from the fully specified specification in model 6 of Table 1 to calculate the predicted crashes
ˆcrash

obs

cd , i.e.

ˆcrash
obs

cd =
∑

i=−1,0,1

β̂iLeadtimec,d+i +
∑

i=−1,0,1

ψ̂iAdvisoryc,d+i

+ γ̂d−1❲c,d−1 + γ̂d❲cd + γ̂d+1❲c,d+1 + λ̂❳cd + ˆCnY rMncym

(5)

Replacing the actual lead times with zero in Equation 5 will provide the estimated crashes

in county c on date d, i.e. ˆcrash
zero

cd , under a scenario where the advisory comes with zero

lead time. Thus, the predicted number of avoided crashes per 100,000 people due to the

26In theory, a forecaster may not need specialized skills or costly resources to provide a winter advisory
with zero lead time. Since, such an advisory can always be issued after the onset of the event, investments in
scientific advances and technology are likely to be needed for generating advisories with positive lead times.

22



positive lead time on advisory in county c on date d is

δcd = ˆcrash
zero

cd − ˆcrash
obs

cd

=
∑

i=−1,0,1

β̂iLeadtimec,d+i
(6)

In other words, δcd is the number of additional crashes per 100,000 people in county c on

date d if we replace the actual lead time on advisory with zero hours.

Next, I estimate the economic savings from the predicted number of avoided crashes using

the economic cost estimates of vehicle crashes from Blincoe et al. (2015), a study conducted

by the National Highway Traffic Safety Administration of the Department of Transportation.

Blincoe et al. (2015) estimate the economic cost of vehicle crashes in the US for the year

2010. They account for both the direct costs (value of life, medical costs, legal, emergency

service, insurance administration, and property damage costs) and the indirect economic

costs (lost productivity, workplace losses, and congestion costs) of crashes. They estimate

that the average economic cost in 2010 dollars of a property damage only (PDO) crash is

6,000 USD per-damaged-vehicle, of an injury crash is 21,000 USD per person,27 and of a

fatal crash is 1.4 million USD. I calculate the average cost of a single crash as the weighted

average of the costs of three types of crashes, where the weights are the proportions of PDO,

injury, and fatal crashes in the US in 2018.28 These calculations estimate the average cost

of a single crash to be around 20,000 USD in 2018 dollars.29

Using these estimates, the total economic value of winter advisory lead times in reducing

vehicle crashes in my sample is given by

∑

cd

δcd × populationcd × 20, 000 (7)

where populationcd is the population (in 100,000 people) of county c in the calendar year the

date d falls in.

27The cost of injury varies from 4,000 USD for minor injury to 1 million USD for serious injuries. I estimate
the average cost of an injury crash using the proportions of different injury levels in 2010. My estimations
are limited by the assumption that mix of injuries remains same over time and geography.

28For the purposes of this study, the proportions of three types of crashes have not changed much over
time. The proportion of PDO, injury, and fatal crashes in 2010 and 2018 are (70%, 29.5%,0.5%) and (71.4%,
28.1%,0.5%) respectively.

2917,300 USD in 2010 dollars.
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My estimates suggest that, during 2006-2018 in the sample, positive lead times on winter

advisories reduce roughly 8 crashes per 100,000 people each year. These avoided crashes

result in an annual economic savings of approximately USD 110 million in my sample. To

give a sense of magnitude, during 2018, the total annual budget of the NWS was around

USD 1 billion and that of the US federal government for the entire meteorological services

and research was nearly USD 4.8 billion.This suggests that there are meaningful economic

benefits from longer lead times on winter advisories through their effect on crash risk.

4 Robustness Check

4.1 Effect of quantitative forecasts

The identification assumption in my empirical strategy is that once we control for the type

of winter event forecasted and realized weather on a day, the variation in advisory lead time

is orthogonal to any unexplained factor affecting the crash risk within a county-month-year.

My main specification in equation 2 controls for the realized weather and the type of winter

event forecasted but not for the predicted severity of the event. If longer lead time on an

advisory is positively correlated with the predicted severity of the weather event, then it is

plausible that people might be responding to the predicted severity instead of the longer lead

time. A winter advisory message usually contains text that may provide both qualitative and

quantitative description of the forecasted weather conditions such as the forecasted amount

of snow, precipitation, and temperature (Figure D.5 in appendix). It is likely that people get

informed about the predicted severity of the forecasted event through this message in the

advisory. However, in my data on winter weather advisories, I do not observe this textual

message and do not have access to the predicted severity. So, if the advisories for events

with higher predicted severity also come with longer lead time, then my main specifications

may not be able to estimate the causal effect of lead time on crash risk. In this section, I

use an alternative source of forecasts of weather severity to perform a robustness check to

show that my results are robust to controlling for the predicted severity of the weather on

the day of the advisory.

In my robustness test, I modify the main specifications by including controls for the

forecasted amount of snow, precipitation, and minimum temperature on the day of the

advisory. I obtain historical daily forecast data from the National Digital Forecast Database

(NDFD) for the period January 2010 to December 2018 for the 11 states in my sample.

The NDFD data provide gridded forecasts of weather elements generated by the Weather

24



Forecast offices (WFOs) and Weather Prediction Center (WPC). I obtain data for snow,

temperature, and quantitative precipitation forecast (QPF). The QPF measures the total

liquid amount resulting from all types of precipitation events such as snow, sleet, icy rain,

and rain. However, there is no straightforward way to separate the QPF forecast into snow

and rain. I will refer to QPF as precipitation in the rest of this section. The data of snow

and precipitation forecasts provide the forecasted amount of snow and precipitation with

a lead time of up to 54 and 72 hours.30 The data on temperature provide the forecasted

minimum temperature for the 24–hour period, with a lead time of up to 72 hours.

I use these gridded forecasts to calculate the county level forecasts for each date in my

sample.31 For a county-date in my main sample, I construct 12 additional variables that

measure the forecasted value of daily snow, precipitation, and temperature for different lead

times. The variables on snow forecast measure the daily snow forecasted 0 to 24, 12 to 36,

24 to 48, and 30 to 54 hours in advance. The variables on precipitation forecast measure

the daily precipitation forecasted 0 to 24, 12 to 36, 24 to 48, 36 to 60, and 48 to 72 hours

in advance. The variables on temperature forecast measure the daily minimum temperature

forecasted 24, 48, and 72 hours in advance. For each forecast variable, I created additional

indicator variables that capture the bin in which the forecast value for the day falls. These

bins for snow, precipitation, and temperature forecasts are the same as the bins used for

the categorical variables for the observed snow, precipitation, and temperature. I use six

bins of snow in inches: {<0.01, 0.01-0.5, 0.5-1, 1-2, 2-3, 3-5,>5}, six bins of precipitation in

inches: {<0.01, 0.01-0.25, 0.25-0.5, 0.5-1, 1-1.5, 1.5-2, >2}, and five bins for temperature in

Fahrenheit: {<5, 5-23, 23-41, 41-60, >60}.

Using this sample, I re-estimate the six specifications included in Table 1 by adding

the controls for forecasted snow, precipitation, and temperature. Specifically, I include the

indicator variables of forecasts and their interaction with the categorical variables of the

respective observed weather element. The following controls are added to each of the six

30The data obtained on snow forecasts for lead time of more than 54 hours contain a large number of
missing observations. To give a comparison, 94% of county-date observations that receive an advisory in my
sample have lead time of less than 54 hours.

31For the snow and precipitation, I add the forecasted amount for all the grids that fall within a county.
For the temperature, I take the simple average of the forecasted amount for all the grids that fall within a
county.
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(8)

where snowfm
cdl is the indicator variable that is 1 or 0 if the snowfall forecast with lead time

l for date d in county c falls in bin m. Similarly, pptfm
cdl and tempf

m
cdl denote the indicator

variables for precipitation and temperature forecasts. snowobsncd is the indicator variable that

is 1 or 0 if the observed snowfall in county c on date d falls in bin n. Similarly, rainobsncd
and tempobsncd denote the indicator variables for observed rain and temperature.

Table 2: The effect of advisory lead time on crash risk controlling for forecasted weather

Dependent Variable: crashes per 100,000 people

(1) (2) (3) (4) (5) (6)

Leadtimec,d -0.046∗∗∗ -0.035∗∗∗ -0.034∗∗∗ -0.050∗∗∗ -0.039∗∗∗ -0.038∗∗∗

(0.005) (0.006) (0.006) (0.005) (0.006) (0.007)
Leadtimec,d−1 0.007∗∗ 0.005 0.005

(0.004) (0.005) (0.005)
Leadtimec,d+1 0.009∗∗ 0.012∗∗ 0.012∗∗

(0.005) (0.006) (0.006)
Controls

Forecasted weather Yes Yes Yes Yes Yes Yes
Advisory issuance time No No Yes No No Yes
County-Year-Month Fixed Effects Yes Yes Yes Yes Yes Yes
Observations 1,293,473 1,293,473 1,293,473 1,293,473 1,293,473 1,293,473
R2 0.20 0.20 0.20 0.20 0.20 0.19

Notes: The table shows the results from estimating the regression models in Equation 1 (Columns 1–3) and Equation 2 (Columns 4–6) with
additional controls for forecasted weather as described in Equation 8. The sample includes all county-date observations during 2010-2018 that
receive as well as that do not receive a winter advisory. The dependent variable is crashes per 100,000 people. Leadtimec,d, Leadtimec,d−1,
and Leadtimec,d+1, the key variables of interest, are lead times (in hours) of winter advisories active on date d, d − 1, and d + 1. Additional
controls include: Advisory Event Type which is a vector of seven indicator variables that capture which event type the advisory is issued for. The
seven event types are Blizzard (BZ), ice rain (IS), lake effect snow (LE), snow squall (SQ), winter storm (WS), severe winter weather (WW), and
freezing rain (ZR); Advisory Issuance Time which is a vector of four indicator variables that capture which hour bucket in {0000 − 0600, 0600 −
1200, 1200−1800, 1800−2400} the advisory issuance time falls in. All specifications include controls for current, previous, and next day’s weather,
day of week, workday, and week of year effects. All specifications include county-year-month fixed effects. All regressions are weighted by county
population. Standard-errors clustered at wfo-date level are in parentheses. Significance Level: ***: 0.01, **: 0.05, *: 0.1

Table 2 shows the result of estimating the six specifications from Table 1 after including

the controls mentioned in equation 8. The coefficient on leadtimec,d in Table 2 is negative

and statistically significant at 1% level across all specifications. Moreover, its magnitude in

Table 2 is close to that in Table 1 for all specifications. The results for the effect of previous

and next day’s lead time are also consistent. These results suggest that the effect of lead
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time on crash risk measured in Table 1 is likely not explained by the predicted severity of

the forecasted event.

5 Mechanisms

The benefits of longer lead time may come from both individual and institutional risk mit-

igation efforts. In this section, I examine two potential mechanisms through which longer

lead times on winter advisories may reduce vehicle crashes. First, longer lead time may

result in fewer crashes by reducing road traffic. The traffic reduction might in turn result

from people deciding to change travel plans and visiting fewer places, as well as business

and school closures that also reduce commuting. I examine this mechanism using mobile

phone location data from SafeGraph. The second potential mechanism is that longer lead

time may allow road crews to plan in advance and perform better road management before,

during, and after the snow storm. Better road treatment and ice-control activities can make

roads less risky during adverse winter weather, resulting in fewer crashes. I examine this

mechanism using high frequency snow plow operations data from the state of Iowa.

5.1 Effect of advisory lead time on visits

To test whether longer lead times reduce vehicle crashes by reducing travel, I examine

whether longer lead times result in fewer visits by people outside of their home. In or-

der to access data on visits, I use the mobile phone location data collected by SafeGraph for

the period January 2018-December 2019 for the 11 states in my sample.32 Using the latitude

and longitude location data of a smartphone, SafeGraph determines the total number of

daily visits by unique visitors to various points of interests (POI). These POIs include al-

most all types of places of interest that people may visit outside of their homes such as retail

stores, restaurants, hotels, offices, factories, hospitals or schools. SafeGraph provides the

category of POI based on the North American Industry Classification System (NAICS). For

each county-date, I aggregate the number of visits to all POIs as well as by five types of POI

based on NAICS categories: retail, leisure (includes restaurants), commercial, educational,

and healthcare. The sample for this analysis includes 433,395 county-date observations from

739 counties for the 11 states. Of these, 26,189 county-dates receive a winter advisory.33

32The earliest publicly available visit data from SafeGraph is from January 2018.
33In this sample, crash data is available for 309,972 county-date observations for the nine states. Of

these, 18,924 county-dates receive an active winter advisory. Crash data from Minnesota and Illinois are not
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To estimate the effect of lead time on visits, I estimate the following fixed-effects speci-

fication, which is similar to the one in equation 1.

visitscd = βLeadtimecd + ψAdvisorycd

+ γd−1❲c,d−1 + γd❲cd + γd+1❲c,d+1 + λ❳cd + Φcym + ǫcd
(9)

visitscd is the total visits to all POIs by unique visitors per 100,000 people in county c on

date d. Advisorycd is an indicator variable that is equal to 1 when there is an active winter

advisory for county c on date d, else it is equal to 0. Leadtimecd is the lead time in hours

on advisory active for county c on date d. When no advisory is active, Leadtimecd is equal

to 0. The coefficient on Advisorycd estimates the effect of a winter advisory per se on visits,

whereas the coefficient on Leadtimecd estimates the effect of an additional hour of advisory

lead time on visits conditional on an advisory issued for that date. ❲cd are controls for

realized weather in county c on date d. ❳cd includes controls for day of week, holiday, and

week number. In some specifications, I also control for advisory event type and advisory

issuance time. Φcym are county-year-month fixed effects that allow me to use the within

county-year-month variation in lead time and visits. I also estimate the effect of lead time

of advisories issued one day prior and one day later on visits using the specification similar

to the one in equation 2:

visitscd =
1

∑

i=−1

βiLeadtimec,d+i +
1

∑

i=−1

ψiAdvisoryc,d+i

+ γd−1❲c,d−1 + γd❲cd + γd+1❲c,d+1 + λ❳cd + Φcym + ǫcd

(10)

The coefficient β−1, β0, and β+1 are the estimates of percentage change in visits in county c

on date d due to an additional hour of lead time of an advisory issued on day d− 1, d, and

d+ 1, respectively.

Columns 1–3 of Table 3 present the regression results for the specification in equation 9.

Columns 4–6 present the regression results for the specification in equation 10. Specifications

in Columns 1 and 4 have controls for day of week, holiday, and week number. Columns 2

and 5 have additional controls for advisory event type. Columns 3 and 6 have additional

controls for both advisory event type and advisory issuance time. The figures in bracket are

standard errors clustered at WFO-date level. All specifications include county-year-month

fixed effects.

available to me for the year 2019.
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Table 3: The effect of advisory lead time on visits to all POIs

Dependent Variable: visits to all POIs per 100,000 people

(1) (2) (3) (4) (5) (6)

Leadtimec,d -15.0∗∗∗ -8.16∗∗∗ -8.54∗∗∗ -14.6∗∗∗ -6.92∗∗∗ -7.22∗∗∗

(2.17) (2.50) (2.56) (2.21) (2.49) (2.59)
Leadtimec,d−1 -6.75∗∗∗ -1.44 -1.88

(2.00) (2.27) (2.36)
Leadtimec,d+1 5.19∗∗ 0.552 0.107

(2.49) (2.60) (2.77)
Advisory Event Type
BZ -1,138.7∗∗ -1,121.4∗∗ -1,226.9∗∗∗ -1,178.3∗∗

(504.2) (521.2) (442.5) (460.6)
IS 1,383.6∗∗ 1,364.0∗ 1,346.7∗ 1,368.0∗∗

(696.9) (696.6) (702.3) (686.9)
SQ 490.2∗∗∗ 495.6∗∗∗ 474.4∗∗∗ 510.7∗∗∗

(124.6) (158.0) (134.7) (165.9)
WS -447.2∗∗∗ -446.9∗∗∗ -513.3∗∗∗ -477.6∗∗∗

(132.1) (156.4) (133.3) (157.3)
WW -92.5∗ -97.6 -144.4∗∗∗ -113.4

(51.3) (104.0) (51.6) (103.2)
Controls

Advisory issuance time No No Yes No No Yes
County-Year-Month Fixed Effects Yes Yes Yes Yes Yes Yes
Mean visits (all days) 7,133 7,133 7,133 7,133 7,133 7,133
Mean visits (days with advisory) 5,440 5,440 5,440 5,440 5,440 5,440
Observations 433,395 433,395 433,395 433,395 433,395 433,395
R2 0.54 0.54 0.54 0.54 0.54 0.54

Notes: The table shows the results from estimating the regression models in Equation 9 (Columns 1–3) and Equation 10 (Columns 4–6). The
sample includes all county-date observations during Jan 2018–Aug 2019 that receive as well as that do not receive a winter advisory. The
dependent variable is all visits per 100,000 people. Leadtimec,d, Leadtimec,d−1, and Leadtimec,d+1, the key variables of interest, are lead
times (in hours) of winter advisories active on date d, d − 1, and d + 1. Additional controls include: Advisory Event Type, a vector of seven
indicator variables that capture which of the five event types the advisory is issued for: Blizzard (BZ), ice rain (IS), snow squall (SQ), winter storm
(WS), and severe winter weather (WW); Advisory Issuance Time which is a vector of four indicator variables that capture which hour bucket in
{0000 − 0600, 0600 − 1200, 1200 − 1800, 1800 − 2400} the advisory issuance time falls in. All specifications include controls for current, previous,
and next day’s weather, day of week, workday, and week of year effects. All specifications include county-year-month fixed effects. All regressions
are weighted by county population. Standard-errors clustered at wfo-date level are in parentheses. Significance Level: ***: 0.01, **: 0.05, *: 0.1

Columns 1–6 of Table 3 show that the coefficient on Leadtimecd is negative and statisti-

cally significant at the 1% level. The coefficient in column 1 (column 4) means that for an

additional hour of lead time on advisory active for county c on date d, the visits fall by 0.28%

(0.27%).34 However, the coefficient on Leadtimecd falls in magnitude once the specification

controls for the effect of advisory event type. The coefficient on Leadtimecd in column 2

(column 5) is -8.16 (-6.92).Based on the most specified model 6, the coefficient is -7.22. This

suggests that an additional hour of lead time reduces visits by 0.13% on the same day.35

I also estimate the effect of lead time on visits to different categories of POIs using the

specification in column 6 of Table 3. Table 4 presents these estimates. Column 1 shows

34The coefficient in column 1 is -15. The mean visits on days with advisory are 5,440. so, the percentage
change is 15/5440× 100 for the specification in column 1.

35Appendix B.3 discusses the effect of advisory event type on visits in detail.
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the estimates of the effect of lead time on total visits. Columns 2-6 show the estimates of

lead time effect on visits to POIs categorized as retail, leisure, commercial, education, and

health, respectively. The figures in bracket are standard errors clustered at WFO-date level.

All specifications include county-year-month fixed effects.

Table 4: Effect of advisory lead time on visits by POIs

Dependent Variables: all visits retail leisure commercial education health
Model: (1) (2) (3) (4) (5) (6)

Variables

leadtimec,d -7.22∗∗∗ -2.18∗∗∗ -1.93∗∗ -1.04∗∗ -1.26 -0.825∗∗∗

(2.59) (0.780) (0.863) (0.429) (0.863) (0.316)
leadtimec,d−1 -1.88 -0.703 -0.770 -0.091 -0.387 -0.015

(2.36) (0.695) (0.761) (0.391) (0.814) (0.283)
leadtimec,d+1 0.107 0.440 -0.243 0.266 -0.412 -0.022

(2.77) (0.811) (0.980) (0.456) (0.767) (0.344)

Controls

Advisory event type Yes Yes Yes Yes Yes Yes
Advisory issuance time Yes Yes Yes Yes Yes Yes
county-year-month fixed effects Yes Yes Yes Yes Yes Yes
Mean (days with advisory) 5,439.8 2,008.2 1,463.9 604.4 671.5 502.0
Mean (all days) 7,133.3 2,576.1 2,080.5 804.5 833.7 590.7
Observations 433,395 433,395 433,395 433,395 433,395 433,395
R2 0.537 0.391 0.386 0.377 0.615 0.718

Notes: The table shows the results from estimating the regression models in Equation 10 with controls which are similar to
those included in Column 6 of Table 3. The sample includes all county-date observations during Jan 2018–Aug 2019 that
receive as well as that do not receive a winter advisory. The dependent variables for specification in Columns 1–6 are visits
to all, retail, leisure, commercial, education, and health PoIs per 100,000 people, respectively. Leadtimec,d, Leadtimec,d−1,
and Leadtimec,d+1, the key variables of interest, are lead times (in hours) of winter advisories active on date d, d − 1, and
d + 1. Additional controls include: Advisory Event Type, a vector of seven indicator variables that capture which of the
five event types the advisory is issued for: Blizzard (BZ), ice rain (IS), snow squall (SQ), winter storm (WS), and severe
winter weather (WW); Advisory Issuance Time which is a vector of four indicator variables that capture which hour bucket in
{0000− 0600, 0600− 1200, 1200− 1800, 1800− 2400} the advisory issuance time falls in. All specifications include controls for
current, previous, and next day’s weather, day of week, workday, and week of year effects. All specifications include county-
year-month fixed effects. All regressions are weighted by county population. Standard-errors clustered at wfo-date level are in
parentheses. Significance Level: ***: 0.01, **: 0.05, *: 0.1

Table 4 shows that longer lead times on advisories reduce visits to all categories of PoIs

for the same day. The effect of an additional hour of lead time varies from -0.11% to -0.19%

for different types of visits. The effect is statistically significant at conventional levels for

all but educational visits. This suggests that additional lead time on advisories may result

in change of travel plans by people or change in hours of operations by businesses. The

coefficients on leadtimec,d−1 and leadtimec,d+1 are small and statistically insignificant. The

results do not provide evidence to suggest that the increase in crashes on previous day is

due to the shift in visits.36

36While the coefficient on Leadtimec,d+1 for total, retail, and commercial POIs in Table 4 is positive, it is
small and statistically insignificant.
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Although the results in Table 3 and Table 4 show that longer lead times reduce visits on

the day of the advisory, it is not clear to what extent these reductions in visits can explain

the reduction in crashes due to longer lead time. Table 1 and Table 4 show that an additional

hour of lead time reduces crashes by 0.35% and visits by 0.13% on the day of the advisory.

If the change in visits were to explain all the change in crashes, a 1% reduction in visits

should reduce crashes by 2.7% on a day with winter advisory. My estimate from Table B.2

shows that on days with no advisory, a 1% reduction in visits reduces crashes by 0.22%. So,

for the change in visits to explain all the change in crashes, the size of the effect of visits on

crashes on days with advisory has to be nearly 12 times greater than that on days with no

advisory.

My analysis does not preclude other mechanisms that may reduce crashes through in-

dividual risk mitigation efforts. While I observe the number of visits on a day, I do not

observe whether people visit different places or use different modes of transport for their

visits. People may also budget longer time for commute to drive more safely. Future studies

may examine to what extent these individual risk mitigation mechanisms can explain the

reduction in crashes due to longer lead times.

5.2 Effect of lead time on winter road maintenance

Most states have departments responsible for plowing snow and performing ice-control ac-

tivities on roads during winter weather. In general, county highway departments maintain

state and national highways, and Department of Transportation (DoT) maintains the local

roads. These activities are primarily de-icing or anti-icing. Snow plowing is one of the most

familiar de-icing activities that removes the accumulated snow and ice from the road. De-

icing is often performed during or after a winter snow storm, which may also include the

application of dry salt or salt mixed with liquid chemical (‘prewetted salt’) (Fu et al. 2006).

Anti-icing activities, on the other hand, reduces snow or ice accumulation by preventing its

direct contact with the road (NASEM, 2004). In most cases salt or another anti-icing agent,

usually a liquid brine solution, is applied on the road surface before a snow storm.

State DoTs use specialized in-house systems to obtain information on weather and road

conditions. In addition to these systems, they also rely on winter weather forecasts and

advisories issued by the WFO to make road treatment decisions. Longer lead times on

advisories may help road crews to prepare in advance and perform better road management

operations. For example, road crews are more likely to apply salt or other anti-icing material

in advance when a snow storm advisory arrives with longer lead time (NASEM, 2004).
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Similarly, more snow plows may be kept ready to perform snow plowing and salt application

during and after the snow storm.

In this section, I examine the hypothesis that road crews perform a greater level of road

maintenance activities when advisories arrive with longer lead time. To test this hypothesis,

I use the Snow Plow Truck Location data for the state of Iowa maintained by the DoT for

the period October 2014 to April 2019.37 This data is a detailed location and operation level

data that is collected by the Automated Vehicle Location (AVL) system of each snow plow.

The AVL system tracks and stores the location, speed, direction, snow plow position, and

application rate of any solid or liquid material for every snow plow. These data are collected

by the AVL system every few seconds.

For my analysis, I aggregate the high frequency observations at the county-date level

to calculate the following six measures of road maintenance activity: (1) total distance

travelled in miles by snow plow, (2) total duration in hours that snow plows are active, (3)

total distance in miles plowed (when plow is engaged), (4) total solid material applied in lbs,

(5) total liquid material applied in gallons, and (6) total prewet material (salt mixed with

liquid) applied.

To examine the effect of lead-time on road treatment activity, I estimate the following

fixed-effect specification which is similar to equation 1

activitycd =
1

∑

i=−1

βiLeadtimec,d+i +
1

∑

i=−1

ψiAdvisoryc,d+i

+ γd−1❲c,d−1 + γd❲cd + γd+1❲c,d+1 + λ❳cd + Φcym + ǫcd

(11)

activitycd is the measure of activity per 100,000 people in county c on date d. I estimate a

separate specification for each of the six activities listed above. The coefficient β−1, β0, and

β+1 are the estimates of the effect of an additional hour of lead time of an advisory issued

on day d− 1, d, and d+ 1, respectively, on the road treatment activity in county c on date

d. A positive value of the coefficient β0 on leadtimec,d will suggest that longer lead-time

increases road treatment activity on the same day. The positive values of the coefficient β−1

and β+1 on leadtimec,d−1 and leadtimec,d+1 will suggest that longer lead-time increases road

37The historical data is available as geodatabase at https://data.iowadot.gov/documents/historic-snow-
plow-truck-location-avl/explore
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treatment activity on the next day and the previous day, respectively.38 ❲cd are controls for

realized weather in county c on date d. ❳cd includes control for day of week, holiday, week

number, advisory event type, and advisory issuance time. Φcym are county-year-month fixed

effects that allow me to use the within county-year variation in lead time and road treatment

activities.

Table 5 presents the regression results. Column 1 shows the estimates of the effect of

lead time on total distance travelled by snow plows. Columns 2-6 show the estimates of

lead time effect on operating duration, distance plowed, solid, liquid, and prewet material

applied, respectively. The figures in bracket are standard errors clustered at WFO-date level.

All specifications include county-year-month fixed effects.

The table shows that snow plow trucks travel more distance and operate for longer hours

on the day of the advisory. The estimates show that, on the day of advisory, for an additional

hour of lead-time, snow plow trucks travel 0.8% more distance and operate for 1.2% longer

duration. The results also show that the trucks apply more de-icing and anti-icing material

on the previous day. The estimates show that, on the day prior to the advisory, for an

additional hour of lead-time, the trucks apply 1.6% more solid, 2.4% more liquid, and 2.4%

more prewet material. If longer lead times on advisories allow road crews to better plan

their operations, we should expect an increase in early risk mitigation activities such as

application of salt and other anti-icing material before the storm.

These results suggest that road maintenance operations increase when winter advisories

arrive with longer lead time. In particular, both the de-icing and anti-icing activities increase

with lead time. However, it is not clear to what extent this increase in activity can explain

the reduction in vehicle crashes due to longer lead time. Prior research finds a negative

correlation between winter road maintenance operations and vehicle crashes (Ye et al. 2014;

Mahoney et al. 2017). Research suggests that application of de-icing and anti-icing chemicals

is associated with fewer crashes. However, there is a lack of causal evidence on the extent to

which the winter road maintenance operations reduce vehicle crashes. In my analysis, if the

increased road maintenance operations were to explain all the reduction in crashes, then on

average a 1% increase in snow plow trucks operating hours should reduce crashes by nearly

0.3% on the day of the advisory or a 1% increase in anti-icing material one day prior to the

38The coefficient on leadtimec,d+1 literally measures the effect of tomorrow’s advisory lead-time on today’s
road treatment activities. However, it can also be interpreted as the effect of today’s advisory lead time on
yesterday’s road treatment activities.
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Table 5: Effect of lead-time on road treatment activities

Dependent Variables: Distance Duration Plow Distance Solid Liquid Prewet
Model: (1) (2) (3) (4) (5) (6)

Variables

leadtimec,d 17.8∗∗ 0.794∗∗∗ -0.935 153.8 -7.59 5.20
(7.12) (0.258) (3.22) (456.7) (29.1) (6.20)

leadtimec,d−1 8.52 0.315 2.30 56.5 11.7 1.19
(5.45) (0.198) (1.90) (293.5) (19.9) (3.29)

leadtimec,d+1 11.3 0.455∗ -0.819 836.8∗∗ 87.9∗∗∗ 10.0∗∗

(7.61) (0.268) (2.26) (410.0) (30.9) (4.80)

Controls

Advisory Event Type Yes Yes Yes Yes Yes Yes
Advisory Issuance Time Yes Yes Yes Yes Yes Yes
County-Year-Month Fixed Effects Yes Yes Yes Yes Yes Yes
Mean of Dep Var 2,123 64 461 51,699 3,740 425
Observations 50,796 50,796 50,796 50,796 50,796 50,796
R2 0.41 0.44 0.25 0.29 0.18 0.10

Notes: The table shows the results from estimating the regression models in Equation 11. The sample includes all county-date
observations during October 2014–April 2019 for the state of Iowa that receive as well as that do not receive a winter advisory.
The dependent variables for specifications in Columns 1–6 are distance travelled by snowplows, operating duration of plows,
distance plowed, solid material applied, liquid material applied, and prewet material applied, respectively, per 100,000 people.
Leadtimec,d, Leadtimec,d−1, and Leadtimec,d+1, the key variables of interest, are lead times (in hours) of winter advisories
active on date d, d− 1, and d+1. Additional controls include: Advisory Event Type, a vector of seven indicator variables that
capture which of the five event types the advisory is issued for: Blizzard (BZ), ice rain (IS), snow squall (SQ), winter storm
(WS), and severe winter weather (WW); Advisory Issuance Time which is a vector of four indicator variables that capture which
hour bucket in {0000−0600, 0600−1200, 1200−1800, 1800−2400} the advisory issuance time falls in. All specifications include
controls for current, previous, and next day’s weather, day of week, workday, and week of year effects. All specifications include
county-year-month fixed effects. All regressions are weighted by county population. Standard-errors clustered at wfo-date level
are in parentheses. Significance Level: ***: 0.01, **: 0.05, *: 0.1

advisory should reduce crashes by nearly 0.15%. A useful extension of this work might be

to examine the causal effect of road maintenance activities on crash reduction.

My analysis in this section provides evidence that both the visits by individuals to places

away from home and road maintenance activities respond to longer lead times on winter

advisories. This suggests that both individuals and road crews pay attention to advisories

and act on them. While it is unclear how much of the reduction in vehicle crashes can be

explained by reduction in visits and increase in road maintenance operations, it is likely that

there are other risk mitigation activities undertaken by people and organizations, which I do

not examine, that may also explain some of the reduction in crashes due to longer lead times.

Overall, this analysis suggests that the value of better forecasts come from both individual

and institutional risk mitigation efforts.
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6 Conclusion

Technology improvements are creating opportunities for better forecasts of risk. This is par-

ticularly true for weather forecasts. In the US, there have been significant public investments

in meteorological services and research in recent years. Although, in principle, weather fore-

cast improvements should provide meaningful benefits to society, it is not clear whether this

happens in practice. This paper examines this question in the context of improvements in

lead times of winter advisories and their effect on motor vehicle crash risk.

Using a data set that I assembled on winter weather advisories, weather monitor readings,

and vehicle crashes at the county-date level in 11 states during 2006-2018, I examine whether

longer lead times on winter advisories result in fewer vehicle crashes. Exploiting the county-

year-month level variation in lead time, I show that receiving winter advisories earlier reduces

crash risk significantly. A one standard deviation increase in advisory lead time reduces daily

crashes by 6% on the same day, but increases daily crashes by 2.5% on the previous day.

I quantify the economic benefits of longer lead time through their effect on reducing the

crash risk. Preliminary calculations show that longer lead times, relative to zero lead time

on advisories, result in an annual reduction of 8 crashes per 100,000 people. My estimates

suggest that actual lead times on winter advisories issued during 2006-2018 have resulted in

an annual economic savings of nearly 110 million dollars in the 11 states in my sample.

I also examine two potential mechanisms that might lead to these effects of longer lead

times. First, using the mobile phone location data from SafeGraph, I examine whether

longer lead times result in fewer visits by people outside of their homes. Second, using

the snowplow truck location data, I examine whether road crews perform a greater level of

winter maintenance activities when advisories arrive with longer lead time. I show that both

the visits by individuals and road maintenance activities respond to lead times on winter

advisories. People visit fewer places on the day of the advisory when there is a longer lead

time. Road maintenance operations increase with lead time for the same as well as the

previous day of the advisory.

This paper provides three insights. First, it provides evidence that lead time improve-

ments in forecasts are valuable. In the context of vehicle crash risk, the paper shows that

early communication of weather advisories can meaningfully reduce crashes due to adverse

weather. Second, the results show that even marginal improvements, at the scale of a few

hours, in forecast lead time can result in better risk management. This suggests that lead

time improvements need not be at a larger scale (say, days) to provide meaningful opportu-
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nities for risk management. Third, this paper provides evidence that people and institutions

pay attention to and use short-run weather forecasts for risk mitigation in routine activities.

This paper estimates the net effect of advisory lead time on crash risk. In the context

of this study, there are several potential mechanisms through which longer lead times can

reduce crash risk. While I examine two mechanisms that may explain the effect of lead times

on crash risk, a natural and important extension of this work is to disentangle the role of

these mechanisms and quantify the extent to which these mechanisms that might contribute

to the observed effects of lead times. It would be useful to know to what extent the effect of

lead time materializes through the efforts of households, businesses, and public institutions.

Another important question to investigate is whether there are geographic variations in the

benefits of advisory lead time and to what extent these variations are the result of decisions

about investments and resource allocation in meteorological services, and whether policy

intervention can result in any benefits.
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A Forecast data from NDFD

I obtain the historical daily forecast data from National Digital Forecast Database (NDFD).

The NDFD data provide the gridded forecasts for snow, precipitation, and temperature

are generated by the Weather Forecast offices (WFOs) and the Weather Prediction Center

(WPC). I obtain the 6 hourly gridded data of snow and precipitation (QPF) forecasts in

GRIB format from NDFD. The data on temperature forecasts is obtained for minimum

temperatures over 24 hour period. The forecasts for all three elements are available with

different lead times. In this section, I explain the process of converting the snow forecast

over a 6-hour period to a forecast of snow over a desired 24-hour period. The process works

similarly for precipitation.

The NDFD forecasts for snow are issued every 6 hours and are valid for the 6-hour

periods. For example, for my purpose a 24-hour lead time snow forecast issued at 0600 AM

01-Jan-2010 is the amount of snowfall forecasted during 0600 AM-1200 PM on 02-Jan-2010.

I construct the 24-hour lead time forecast for the period 1200 UTC to 1159 UTC (i.e. 0700

AM to 0659 AM EST) by adding the four separate 6-hour forecasts in the following way

(say, for the period 1200 UTC 01-Jan-2010 to 1159 UTC 02-Jan-2010):

Table A.1: Example of NDFD Forecast valid times

Forecast valid period Forecast issued at

1200 UTC 01-Jan-2010 to 1800 UTC 01-Jan-2010 1200 UTC 31-Dec-2009

1800 UTC 01-Jan-2010 to 0000 UTC 02-Jan-2010 1200 UTC 31-Dec-2009

0000 UTC 02-Jan-2010 to 0600 UTC 02-Jan-2010 1200 UTC 31-Dec-2009

0600 UTC 02-Jan-2010 to 1200 UTC 02-Jan-2010 1200 UTC 31-Dec-2009

The table shows the construction of 24-hour lead-time forecast for snow using the NDFD forecasts.
The forecast is what is available to an individual at 1200 UTC 12-31-2009 for the snow during
the period 1200 UTC 01-01-2020 – 1159 UTC 01-02-2010. (1200 UTC is 7 AM EST)

Thus, the above estimated 24-hour lead time forecast of snow amount for the period 7am

01-Jan-2010 EST to 7am 02-Jan-2010 EST is what an individual would receive at 7am EST

on 31-dec-2009. (Since 1200 UTC is 7 AM EST same day).
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B Visits and Crashes

B.1 Relation between visits and crashes

Longer lead time may reduce the number of people visiting several places. This may happen

because either people change their travel plans or places such as businesses and schools decide

to close or reduce the hours of operation when they receive weather advisory in advance.

In both cases, the resulting effect is to reduce the number of people commuting to visit

places outside of their homes. This in turn is likely to reduce the number of vehicles on the

road and the number of crashes. Figure B.1 provides descriptive evidence for the relationship

between visits and crashes for county-dates that receive no winter advisory. The figure shows

a binned scatter plot of crashes per 100,000 people (x-axis) by average visits per 100,000

people (y-axis) within each of the ten decile bins for the visits. The markers with whiskers

plot the mean and 95% confidence interval for crashes per 100,000 people. The figure shows

a positive correlation between crashes and visits.

Figure B.1: Crashes by visits on days with no weather advisory

Notes: The figure shows the binned scatter plot of the average crashes per 100,000 people (x-axis) for the average visits per
100,000 people (y-axis) within each of the ten decile bins for visits. The sample includes 188,899 county-date observations that
did not receive an advisory. The markers with whiskers plot the average crashes per 100,000 people and the associated 95%
confidence interval.

To further examine the effect of visits on crashes, I estimate the following fixed-effect
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specification using county-date observations that do not receive any advisory.

log(crashes)cd = βlog(visits)cd

+γd−1❲c,d−1 + γd❲cd + γd+1❲c,d+1 + λ❳cd + Φcym + ǫcd
(12)

where log(crashes)cd and log(visits)cd are the log of crashes and visits in county c on date

d. The rest of the specification is the same as discussed in equation 1. ❲c,d−1, ❲cd, and

❲c,d+1 are the controls for realized weather for the previous, current, and the next day,

respectively. ❳cd includes variables DayofWeek, Workday, and Weeknum to control for

the effects of day of week, holidays, and seasonality in traffic, respectively. Φcym are county-

year-month fixed effects that allow me to use the within county-year-month variation in visits

and crashes. The coefficient β on the primary variable of interest log(visits)cd measures the

percentage change in crashes when visits increase by 1%. Table B.2 presents the regression

estimates for equation 12. The coefficient on log(visits) is 0.22 and statistically significant

at 1% level. This shows that a one percent increase in visits increases crashes by 0.22%.

Thus, days with higher visits to places away from home also have higher crash rate. Next, I

examine whether longer lead time results in fewer visits to POIs.

Table B.2: Linear effect of advisory lead time on visits

Dependent Variable: log(crashes)

Variables

log(visits) 0.223∗∗∗

(0.016)

County-Year-Month Fixed Effects Yes
Observations 291,133
R2 0.127

Notes: The table shows the results from estimating the regression models in Equation 12. The sample includes all county-date
observations during Jan 2018-Dec 2019 that do not receive a winter advisory. The dependent variable is log of crashes per
100,000 people. log(visits), the key variables of interest, is log of total visits to places away from home per 100,000 people
based on the mobile phone location data from SageGraph. The specification includes controls for current, previous, and next
day’s weather, day of week, workday, and week of year effects. Additionally, it includes county-year-month fixed effects. The
regressions are weighted by county population. Standard-errors clustered at wfo-date level are in parentheses. Significance
Level: ***: 0.01, **: 0.05, *: 0.1

B.2 Effect of advisory lead time on visits- Descriptive evidence

Figure B.2 plots the mean total daily visits to all POIs by average snow for different lead-

time buckets on days that receive an active advisory. The figure is a binned scatter plot of
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the average visits per 100,000 people (y-axis) to all POIs by average realized snow in inches

(x-axis) within each of the six snow bins as mentioned in section 2.2. Each line in the plot

corresponds to county-days that receive advisory with lead time falling in one of the four

bins of advisory lead times in hours: {0, (0,24], (24-48], >48}. The solid black line shows

the average visits by realized snow for those county-dates which receive winter advisory with

zero lead time. The gray long-dashed line shows the average visits by realized snow for those

county-dates which receive winter advisory with lead time of more than zero hours but less

than or equal to 24 hours, and so on.

Figure B.2: Visits per 100,000 people by snow for different advisory lead times

Notes: The figure shows the binned scatter plot of the average visits per 100,000 people (x-axis) for the realized average snow
in inches (y-axis) within each of the six snow bins in inches, i.e., {<0.01, 0.01–0.5, 0.5–1, 1–2, 2–3, 3–5,>5}. The markers with
whiskers plot the average visits per 100,000 people and the associated 95% confidence interval. Each line in the plot corresponds
to county-days that receive advisory with lead time falling in one of the four bins of advisory lead times in hours: {0, 0–24,
24–48, >48}. The solid black line joins the markers that plot the average visits by realized snow for county-dates that receive
winter advisory with zero lead time. The dark gray long-dashed line corresponds to the average crashes for county-dates that
receive winter advisory with lead time of more than zero hours but less than or equal to 24 hours, and so on.

The figure shows two key patterns. First, it shows that on days when an advisory arrives

with zero lead time, visits are high for low amount of snow, but falls sharply as snow increases.

However, on days when an advisory arrives with some lead time, the relation between visits

and snow is relatively flat. As a result, visits do not fall as sharply when an advisory comes

with some lead time as they fall when an advisory comes with no lead time. Second, the

figure shows that with incremental lead time on advisory, the visits reduce for nearly all
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levels of snow. Overall, the figure suggests that longer lead time reduces visits for lower

levels of realized snow.

B.3 Effect of advisory event type on visits

The results in Table 3 suggest that while people do respond to winter advisories and reduce

visits, their response is driven by both the advisory event type and the advisory lead time.

If the advisory event types that reduce visits by a greater number also have longer lead time,

then a portion of the effect of lead time on visits in Columns 1 and 4 may be explained by

the effect of advisory event type. Figure B.3 plots the regression estimates for the effect of

the five categories of advisory event type on visits by the average lead time of advisories

for those event types. The markers with whiskers plot the regression estimates with 95%

confidence interval as shown in Table 3 column 6. The size of the markers corresponds to the

number of county-date observations with advisories in that category of event type. The labels

next to the markers show advisory event type and corresponding number of observations in

brackets. For example, when the underlying winter event types are winter storm (WS)

and winter weather (WW ), the number of visits per 100,000 people falls by 478 and 113

respectively. At the same time, the average lead times on WS and WW advisories are

41.4 hours and 14.2 hours respectively. There are fewer visits on days when a winter storm

advisory is active compared to those when a winter weather advisory is active. Comparison

of coefficients on Leadtimecd in columns 4 and 6 of Table 3 shows that only about half of

the reductions in visits is driven by the advisory lead time.

C Effect of lead time on road treatment activities

In this section, I estimate the effect of lead time on road treatment activities using a non-

linear specification similar to that in equation 3 that allows the effect size to vary with lead

time. Specifically, I replace each of the three primary variables of interest Leadtimecdi with

four indicator variables for each i which capture which lead time bin, b ∈
{

(0,12], (12-24],

(24-36], >36
}

, the advisory lead time on a day falls in. Figure C.4 plots the regression

estimates for the specification that allows for the non-linear effect of lead time. The solid

line plots the estimates of the effect of lead-time on same day activities. The dashed line

plots the estimates of the effect of lead time on previous day activities. The figure shows

that as lead-time increases, snow plow trucks travel more (panel a) and spend more time

operating (panel b) on the day of the advisory, and apply more solid material (panel d),

more liquid, and more prewet material (panel f) on the day prior to the advisory.
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Figure B.3: Effect of advisory event type on visits by average lead time

Notes: The figure plots the estimated effect of the five advisory event types on visits per 100,000 people based on the regression
results in Column 6 of Table 3. The dependent variable is all visits per 100,000 people. The markers with whiskers plot the
estimated effect (y-axis) of the five advisory event types on visits per 100,000 people average lead time (x-axis) on each type
of advisory event. The whiskers plot the associated 95% confidence interval. The marker size is proportional to the number
of observations (in parenthesis next to the marker) for each event type (written next to the marker). The five event types
are Blizzard (BZ), ice rain (IS), snow squall (SQ), winter storm (WS), and severe winter weather (WW). Standard Errors are
clustered at WFO-date level.
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Figure C.4: Regression result- effect of lead time on visits and crashes

(a) Effect on distance travelled (b) Effect on operating duration (c) Effect on distance plowed

(d) Effect on solid material applied (e) Effect on liquid material applied (f) Effect on prewet material applied

Notes: The figures plot the estimated effect of advisory lead time on road treatment activities that are performed on the current
(solid line), previous (dotted gray line), and the next day (dashed black line) of the advisory. The estimations are based on
specification similar to that in Equation 4. The dependent variables for specifications in Panel A–F are distance travelled by
snowplows, operating duration of plows, distance plowed, solid material applied, liquid material applied, and prewet material
applied, respectively, per 100,000 people. The markers with whiskers plot the estimated effect (y-axis) of advisory lead time
(in hours on x-axis) on the corresponding road treatment activity. The whiskers plot the associated 95% confidence interval.
The key variables of interest are the four indicator variables that capture which lead time bin, b ∈

{

(0,12], (12-24], (24-36],

>36
}

, the advisory lead time falls in. The regressions include county-year-month fixed effects. Additional controls included for
advisory event type, advisory event issuance time, and current, previous, and next day’s weather, day of week, workday, and
week of year effects. All regressions are weighted by county population. Standard Errors are clustered at WFO-date level.
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D Sample Winter Weather Advisory

Figure D.5: Sample winter weather advisory text message

Notes: The figure shows a winter weather advisory issued by the Milwaukee weather forecast office on
February 4, 2019. The advisory shows the time of issuance, the nature and severity of the forecasted winter
event, a description of the potential risk to people, the timing of the winter event, and a list of counties and
cities the advisory is issued for.
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