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Abstract 

The paper investigates persistence, returns and volatility spillovers from the bitcoin market to 
the gold and silver markets using daily datasets from 2 January 2018 to 31 July 2020 by 
employing the fractional persistence framework. The results show strong price persistence with 
bitcoin posing the highest volatility persistence, while silver poses the lowest volatility 
persistence. The results of multivariate GARCH modelling, using the CCC-VARMA-GARCH 
model and other lower variants indicate the impossibility of returns spillover between the 
bitcoin and gold (or silver) market, while there exist bi-directional volatility spillovers. 
Appropriate portfolio management and hedging strategies render towards the end of the paper 
require more gold and silver investments in the portfolio of bitcoin to fully have the 
diversification advantage and reduce risk to the minimum without reducing the expected 
returns of their portfolio.   

Keywords: Bitcoin; Commodity markets; CCC-VARMA-GARCH model; Volatility 

spillovers; Portfolio management     

JEL Classification: C22  

  

 

1. Introduction 

Among precious metals, gold and silver are used for industrial or investment purposes due to 

their high economic values. These precious metals, especially gold, serves as a reserve 

instrument for central banks. It is important to state that instrument like gold possesses high 
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transaction volume and significant cash flow in the global market. Gold is one of the top-most 

marketed products worldwide and serves as a wealth storage tool, especially during economic 

and political instability (Aggarwal and Lucey, 2007; Batten et al., 2010; Lucey et al., 2013; 

Yaya et al. 2016; Gil-Alana et al., 2017; Yaya et al., 2021a). Historically, the function of gold 

and silver are very similar, and a long-run relationship exists between the two metals (Wahab 

et al., 1994; Ciner et al. 2013; Gokmenoglu and Fazlollahi, 2015; Pierdzioch et al., 2015; Auer, 

2016; Pierdzioch et al., 2016; Zhu et al., 2016; Schweikert, 2018). Both gold and silver are 

used for jewellery, and are often traded as investment assets, even though silver possesses little 

industrial usage but it is more commodity-driven than gold (Yaya, Vo and Olayinka, 2021). 

As an alternative investment, cryptocurrency was introduced through the introduction 

of Bitcoin by Nakamoto (2008). As of today, of about 9900 cryptocurrencies, bitcoin is the 

most innovative digital currency.1 The currency had experienced ups and downs price swings 

but has not failed to keep drawing attention to all parts of society about its investment option. 

Following Nakamoto (2008), Bitcoin is described as peer-to-peer electronic cash that achieves 

its decentralization anonymously and transparently at the time of its creation. A few years back, 

bitcoin was labelled the “New Gold” by some social network agencies, and other data providers 

(Chuen, 2015; Dwyer, 2015; Bariviera et al., 2017; Elendner et al., 2018; Härdle et al., 2018). 

According to Wu and Pandey (2014), Bitcoin is less useful as a currency, but it can play an 

essential role in enhancing the efficiency of an investor’s portfolio. Bitcoin is known to drive 

prices of other cryptocurrencies and generally, markets of these crypto coins are high volatility 

and inefficient (Babatunde et al., 2021; Yaya, et al., 2019; Yaya et al., 2021b; Yaya et al., 

2022).  

A few studies have considered Bitcoin and precious metals such as Gold and Silver 

(Bouoiyour and Selmi, 2015; Dyhrberg, 2016; Bouri et al., 2017; Corbet et al., 2018; Klein et 

 

1
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al.. 2018; Shahzada et al., 2019). Dyhrberg (2015a, 2015b; 2016) adopted the Asymmetric 

Generalized Autoregressive Conditional Heteroscedasticity (AGARCH) methodology to 

explore Bitcoin hedging capabilities and concluded that Bitcoin possesses close hedging 

abilities as Gold. According to Dwyer (2015), Bitcoin volatility returns is higher than in gold 

and foreign exchanges. Bouoiyour and Selmi (2015) adopted the optimal-GARCH model to 

explore the relationship between precious metals and Bitcoin prices with high fluctuations in 

financial markets and found that these commodities are not fixed over time. Also, it is noted 

that Bitcoin serves as a weak safe-haven in the short run, and as a hedge in the long run.  

Eryigit (2017) investigated the short-term and long-term effects of gold prices on 

precious metals such as palladium, silver and platinum, and energy prices such as crude oil and 

gasoline. The author employed a vector autoregressive (VAR) model to explore the short-term 

interaction between prices of gold and metals and the results of the VAR analysis showed that 

gold has a short-term dependence on silver prices. Zhu et al. (2017) examined the influence of 

some economic factors such as gold price on the Bitcoin price using the Vector Error 

Correction (VEC) model. They concluded that gold price has the least impact among other 

factors considered.  Liu and Su (2018) examined the dynamic causality between the returns of 

gold and silver in China market using the rolling window bootstrap approach. The results show 

that gold has positive and negative impacts on silver in multiple sub-periods. Klein et al. (2018) 

implemented the Baba-Engle-Kroner-Kraft (BEKK-GARCH) model on Bitcoin and Gold as 

well as other assets and found Gold to play an important role with flight-to-quality in times of 

financial market distress, while Bitcoin behaved differently.  

 The current paper investigates price persistence and volatility spillovers of Bitcoin price 

to Gold and Silver prices using the Multivariate GARCH framework. Specifically, the paper 

applied the Constant Conditional Correlation – Vector Autoregressive Moving Average -

GARCH (CCC-VARMA-GARCH) model which allowed for constant correlations in 
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conditional volatility and cross-markets spillovers of returns and volatility to be investigated. 

As pre-analysis, volatility persistence is examined using the fractional persistence approach 

and volatility observed is decomposed using the VARMA structure in the multivariate 

volatility model. Based on the findings, appropriate design and hedging strategies for the 

management of investments of Bitcoin with Gold and Silver are presented. 

Section 2 of the paper reviews the relevant literature on the topic while section 3 

presents the time series analysis methods. Section 4 presents the data and findings on CCC-

MGARCH and CCC-VARMA-GARCH models, while Section 5 presents a strategy to manage 

portfolios of assets using optimal weights and hedge ratios. Section 6 concludes the paper.  

 

2. Methodology 

2.1. Long memory process and fractional persistence technique 

Granger and Joyeux (1980) and Hosking (1981) define the long memory process in both time 

and frequency domain approaches for a stationary time series process 
tX

~
 with an 

autocovariance function ( ) ( ) ( )kttktt XXEXXCovk ++ == ~
,

~~
,

~~  as, 

     ( ) ,~ 12 −→ d
kck  as →k          (1)                                    

where k is the time lag with respect to time t, and the autocorrelation ( )k  is a slowly 

hyperbolic decreasing function with respect to time t. The autocorrelations are also not 

summable, i.e.: 
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where   denotes the Fourier frequency. From (3), it can be shown that  
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( ) 1−= d

fcf  as  0→d        (4)                                    

where 
fc is a positive constant. Equation (4) implies that the spectral density will tend to 

infinity as the frequency approaches zero frequency.  

According to the literature, there are different estimation techniques to estimate and test 

the fractional persistence parameter (Geweke and Porter-Hudak, 1983; Fox and Taqqu, 1986; 

Kunsch, 1987; Robinson, 1995a, b; Ooms and Hassler, 1997 and others). The local Whittle 

estimation and log-periodogram regression methods are semi-parametric estimation 

approaches to fractional integration. The local Whittle’s method for estimating d is based on a 

frequency domain using the Whittle function as in Kunsch (1987); Beran (1994) and Robinson 

(1995a). Other extensions of the local Whittle estimator are found in Shimotsu and Phillips 

(2005) and Shimotsu (2010). The estimator by Robinson (1995a) is often implemented in most 

software packages. Geweke and Porter-Hudak (1983) developed the log-periodogram method 

to obtain an estimate of the fractional differencing parameter. This method was modified in 

Robinson (1995b). 

Robinson (1995a) developed the local Whittle semi-parametric estimator. In the 

frequency domain, the authors defined, 
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The GSE of d is obtained as follows by minimizing the likelihood function in equation (6) 
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Robinson (1995b) proves consistency for ( ).5.0,5.0−d  Though, the log-periodogram 

regression is popularly employed, it is important to note that its consistency is less than that of 

WSE at the nonstationary range. The log-periodogram regression is defined as: 

( )( ) ( ) mkI kkkX
,..2,1,

~
ln

~
ln 10~ =++=         (8) 

where ( )kX
I ~~  is the periodogram of the time series 

tX
~

 and k  is assumed to be i.i.d. Thus, 

using the least square estimator, the differencing parameter is obtained as follows: 

      
1 1

ˆ ˆd = −               (9)                                   

The estimator is asymptotically normal and corresponds to the theoretical standard error 

.
2 m


  

 

2.2. Multivariate volatility modelling 

Multivariate volatility models are popularly adopted in finance to capture both volatility 

clustering and contemporaneous correlation of asset return vectors. Following Bollerslev 

(1990) and Chevallier (2011), the CCC-GARCH model is defined as follows: 

1 2

t,     
t t t t t

r x H v =+ + =                                     (10) 

where tr  is a 1m  vector of response variable;   is a 1k  vector of constant terms,   is a km  

matrix of parameters; tx  is a 1k  vector of predictors; 2/1

tH  is the Cholesky factor of the 

time-varying conditional covariance matrix ;tH  t
  is the identically and independently 

distributed error process that is heteroscedastic defined such that tv  is 1m  vector of 

innovations that are normally, independently and identically distributed.   

 The conditional covariance matrix is specified as follows: 

jihhRDDH jtitijttt == ,2/12/1                                                    (11) 
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where tD  is a diagonal matrix with elements as conditional variances,  R  is a matrix of 

unconditional correlations of the standardized residuals ii
  ( )1,...,i m=  as elements:   
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                                                  (12) 

and th  is defined as any univariate GARCH (1,1) model, 

        1 1t t t
h h  − −= + +                                                         (13) 

where 0,0    and 0  are the model parameters conditioned in order to realize 

covariance stationary mean reverting conditional variances of shocks in the return series. Since 

the shocks revert themselves to more stable states, we obtain the persistence of volatility and 

half-life for each conditional variance series as:  

                                                       Persistence  = +                 (14) 

                                                ( ) ( )Half-life ln 0.5 ln  = +                (15) 

  For the purpose of modelling, the parameters of the CCC-GARCH model are estimated 

using the maximum likelihood estimator and the unconcentrated log-likelihood function is 

based on the multivariate normal distribution for observation t. The log-likelihood function is 

given in   

( ) ( )  ( )  tttt RDRml  −−−−= −12/1 5.0detlndetln5.02ln5.0                       (16) 

where 
ttt D  2/1~ −= is a 1m  vector of standardized residuals, .ttt xr −=  Assume that tv  follow 

a multivariate t distribution with degrees of freedom greater than 2, then the unconcentrated log-

likelihood function for observation t is  



8 

 

   

( )  ( )  ( ) 









−


+






 +

−

−−−−−





−






 +

=

−

2

~~
1ln

2

detlndetln5.02ln
22

ln
2

ln

1

2/1

df

Rmdf

DRdf
mdfmdf

l

tt

tt





                    (17) 

The correlation matrix R can be concentrated out of equations. (17) and (18) by defining the (i, j) the 

element of R as  
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We obtained the starting values for the parameters in the mean equations and the initial 

residuals t̂  using the least squares estimator. The starting values for the parameters in the 

variance equations are obtained by a procedure proposed by Gourieroux and Monfort (1997).  

 
3. Data, Empirical analysis and Discussion 

Daily prices of Bitcoin, gold and silver were analyzed in this paper. The datasets span the 

period 2 January 2018 to 31 July 2020. These were retrieved from the Federal Reserve Bank 

of St Louis Economic Database (FRED) at https://fred.stlouisfed.org. Bitcoin is priced in US 

dollars per coin while gold and silver are priced in US dollars per troy. Plots of the price series 

are given in Figure 1, while plots of the log-returns series are given in Figure 2. Both figures 

clearly show possible co-movements of assets since 2018 as they both picked during the Covid-

19 crash around March 2020 and prices are increasing astronomically. Having obtained the 

log-returns based on the formula        

      ( )1log
t t t

r P P−=                (19) 

where t
r  is the log-returns series and t

P  and 1t
P−  are the current day and previous day prices 

of the commodity, respectively. We have plots of the returns series in Figure 1. There are 

https://fred.stlouisfed.org/
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volatility spikes that indicate possible co-movements between Bitcoin and gold returns, and 

between Bitcoin and silver returns.  

INSERT FIGURE 1 ABOUT HERE 

INSERT FIGURE 2 ABOUT HERE 

 Table 1 summarizes the descriptive statistics of the variables in terms of price and log 

returns. The Bitcoin market and Silver market prices both have the lowest and highest values, 

respectively. We also observed that only Bitcoin have a negative mean return while Gold and 

Silver possess a small positive mean return. On average Bitcoin has the highest price, followed 

by Gold. Gold market return and Bitcoin market price both have the lowest and highest standard 

deviation, respectively. Skewness, Kurtosis, and subsequently, the Jarque-Bera test result in 

Table 1 are employed to examine if the time series data are distributed normally. All the 

variables are positively skewed except the bitcoin market and Silver market return. The kurtosis 

values show that the distributions of the series are too peaked. This result is further supported 

by the Jarque–Bera (JB) test statistics. The statistics are significant at the 5% level, which 

shows that all the series are not normally distributed. 

INSERT TABLE 1 ABOUT HERE 

 Table 2 presents the results of serial correlations and conditional heteroscedasticity tests 

on the returns series. The Ljung-Box test was conducted on the returns and squared returns 

series for lags 1 and 5 and the results indicated the significance of serial correlations in these 

three returns series. To confirm heteroscedasticity, the ARCH LM test of Engle (1982) was 

conducted and we found the strong significance of the ARCH effect in gold and silver returns 

while Bitcoin returns are only significant at a 10% level. 

INSERT TABLE 2 ABOUT HERE 
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 Table 3 presents the results of price series persistence, Pt; returns series, rt; volatility 

persistence using absolute and squared returns series (
t

r  and 2

t
r ). The log-periodogram and 

Whittel semi-parametric estimators were applied to estimate the long memory and fractional 

persistence values for three periodogram points T0.6, T0.7 and T0.8 for periodogram T0.6, 

persistence results show that Bitcoin price persists most compared to gold and silver prices in 

both fractional persistence estimators, whereas the results are contradictory in other 

periodogram points. In the log-returns, the randomness of returns (random walk) is observed 

in the three markets and these markets are in their state of market efficiency. in terms of 

volatility persistence, we observe persistence in absolute and squared returns for Bitcoin to be 

the highest while silver is the lowest. Thus, volatility persists more in Bitcoin than in gold and 

silver prices, while silver volatility persists for the shortest period among the three assets.  

INSERT TABLE 3 ABOUT HERE 

 The results obtained from the sign and size bias tests of Engle and Ng (1993) for 

asymmetry in returns and the conditional correlation (CCC) test of Engle and Sheppard (2001) 

are presented in Table 4. In the three returns series, Bitcoin, Gold and Silver, none of the sign 

and size bias tests is significant implying that the symmetric multivariate GARCH model is 

suitable to model the relationship from Bitcoin to Gold returns and from Bitcoin to Silver 

returns. The CCC test also indicates constancy of correlation as the null of the CCC test against 

dynamic correlations (DCC) is significantly unrejected in the two relationships: Bitcoin-Gold 

spillovers and Bitcoin-Silver spillovers. 

INSERT TABLE 4 ABOUT HERE 

 We present the results of the CCC-GARCH models for Bitcoin-Gold and Bitcoin-Silver 

relationships. Recall, in (11),   and t
x  are 1k   vectors of constant terms variables, 

respectively, such that in the bivariate settings, each matrix is of dimension 2 1 , that is 
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( )bitcoin i
   =  where  ,i gold silver= . The matrix  , the m k  matrix of parameters is a 

1k   vector of products. In the case of bivariable,   is a 2 2  matrix:  

     
,11 12

,21 22

bitcoin bitcoin i

i bitcoin i

  
  
  

 = =   
   

               (20) 

where 
bitcoin

  and 
i

  are the autoregressive parameters of order 1 for Bitcoin and Gold (or 

Silver) price returns, respectively; and ,bitcoin i
  measures the returns spillover from the Gold 

(Silver) market to the Bitcoin market, and also ,i bitcoin
  measures the returns spillover from the 

Bitcoin market. to the Gold (Silver) market. If both spillover parameters are significant, it 

implies a bidirectional spillover effect in the two asset markets.  

 The results of CCC-GARCH models for Bitcoin-Gold and Bitcoin-Silver relationships 

are presented in Table 5. From the mean equation of the Bitcoin-Gold relationship, only the 

AR(1) parameter for Bitcoin return is significant while the spillover parameters, ,bitcoin i
  and 

,i bitcoin
 . Thus, there is no spillover from Bitcoin to Gold price, and neither is any return spillover 

from Gold to Bitcoin returns. A similar result is obtained in the case of the Bitcoin-Silver 

relationship. By looking at the results of the variance equation, all GARCH parameters are 

highly significant. For the Bitcoin-Gold relationship, the volatility persistence of Bitcoin in the 

Bitcoin-Gold portfolio is 0.8806 while that of Silver in the same portfolio is 0.9522. Thus, the 

persistence of volatility on Bitcoin in this portfolio is lesser than that of Gold, and the 

corresponding half-lives of these shocks are 5.45 and 14.15, respectively. Similarly to the 

Bitcoin-Silver relationship, the volatility persistence of Bitcoin in the Bitcoin-Silver portfolio 

is 0.8904 while that of Silver in the portfolio is 0.9321. Thus, the half-lives of Bitcoin are 

shorter compared to that of Silver. Post estimation diagnostics reported in the results table 



12 

 

showed that the two models are adequate in modelling returns and volatility spillovers in the 

portfolio pairs.    

  INSERT TABLE 5 ABOUT HERE 

 The fact that there is no returns spillover in Bitcoin-Gold and Bitcoin-Silver portfolios 

but volatility spillovers suggested further probe into the volatility/shocks forms. The 

MGARCH model in (13) is modified to allow for volatility spillovers as in the CCC-VARMA-

GARCH model of McAleer et al. (2009). The VARMA-GARCH component of the model 

allows for the conditional variance of Bitcoin not to depend only on its own past conditional 

variance and shocks, but also on those of Gold (Silver) market returns. The same explanation 

holds for the conditional variance of the Gold (Silver) market. The bivariate model is given in 

(21). 

              
, , 1 , , 1 , , 1 , , 1

, , 1 , , 1 , , 1 , , 1

bitcoin t bitcoin bitcoin t bitcoin i i t bitcoin i bitcoin t bitcoin i i t

i t i i t i bitcoin bitcoin t i bitcoin i t i bitcoin bitcoin t

h h h

h h h

      

     
− − − −

− − − −

= + + + +

= + + + +
            (21) 

where the shock spillover effects from Gold (Silver) are captured by the parameter ,bitcoin i
 , and 

,i bitcoin
  captures the shock spillover effect of Bitcoin to Gold (Silver). The cross-market 

conditional volatility is also captured in the model, which ,bitcoin i
  captures the effect of the 

conditional volatility of Gold (Silver) on Bitcoin, and ,i bitcoin
  captures the effect of the 

conditional volatility of Bitcoin on Gold (Silver). Thus, the transmission of shocks from one 

market to another is quantified using the VARMA-GARCH models. 

 In Table 6, the results of mean equations for CCC-VARMA-GARCH models for the 

two relationships (Bitcoin-Gold and Bitcoin-Silver) agree with that of CCC-GARCH models 

as returns spillover parameters are not significant. In the Bitcoin-Gold relationship, the 

parameter ,bitcoin i
  is insignificant implying that there is no shocks spillover from the Gold 
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market to the Bitcoin market. Similarly, ,i bitcoin
  parameter is not significant meaning that there 

is no shock spillover from the Bitcoin market to the Gold market. By looking at volatility 

spillovers, the parameter ,bitcoin i
  is 398.83 and it is significant implying that there is a sharp 

positive volatility spillover from the Gold to the Bitcoin market. This estimate is positive, 

implying that as shocks increase in one market, shocks also increase in the other market. The 

parameter ,i bitcoin
  is -0.1369 and is also significant implying its spillover from the Bitcoin 

market to the Gold market meaning an inverse relationship in the transmission of shocks 

spillovers. The conditional volatility spillover in the Bitcoin-Gold portfolio of assets is 

bidirectional since both ,bitcoin i
  and ,i bitcoin

  are significant. In the Bitcoin-Silver portfolio, there 

are significant bidirectional shocks and volatility spillovers. In this portfolio, ,bitcoin i
  and 

,i bitcoin
 are negative meaning inverse relationships in shock transmission. Similarly, ,i bitcoin

  is 

negative while ,bitcoin i
  is positive. These inverse relationships show that the Bitcoin market 

transmits shocks or volatility inversely compared to gold and silver. here, both constant 

correlations for Bitcoin-Gold and Bitcoin-Silver models are significant, where the correlation 

for Bitcoin-Silver is negative. 

INSERT TABLE 6 ABOUT HERE 

 Post estimation results in Table 6 show the adequacy of the CCC-VARMA-GARCH 

models for Bitcoin-Gold and Bitcoin-Silver relationships. Also, by comparing the Akaike 

(AIC) and Swartz (SBC) information criteria of CCC-VARMA-GARCH models in Table 6 

with those of CCC-GARCH models in Table 5, we found CCC-VARMA-GARCH models for 

the two portfolios more relevant in the management of investment in these assets.  

 
4. Bitcoin asset management in the portfolio of Gold and Silver 
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This section presents portfolio design and hedging strategies for the management of Bitcoin 

assets in the portfolio of Gold and Silver. The approach documented in Kroner and Sultan 

(1993), Kroner and Ng (1998) and Arouri et al. (2011) is used. The approach sets to minimize 

the risk without minimizing the expected returns. Their estimator uses the estimates of the 

conditional variances and covariances in an hedge ratio portfolio of Bitcoin and Gold (Silver) 

assets. The interest of the investor is to minimize the risk of his Bitcoin-Gold (Silver) portfolio 

without reducing the expected returns. The portfolio weight formula is, 

    

2 2

, , ,

, , 2 2 2

, , , ,2

i t bitcoin i t

bitcoin i t

bitcoin t bitcoin i t i t

w
 

  
−

=
− +

               (22) 

where 

, ,

, , , , , ,

, ,

0,          0

,      1  

1,            1        

bitcoin i t

bitcoin i t bitcoin i t bitcoin i t

bitcoin i t

if w

w w if w

if w

 
= 
 

 and , ,bitcoin i t
w  is the weight of Bitcoin in a $1 

Bitcoin-Gold (or Bitcoin-Silver) portfolio at time t, 2

, ,bitcoin i t
  is the conditional covariance 

between the Bitcoin price and Gold (Silver) price, 2

,i t
  is the conditional variance for Gold 

(Silver) price and 2

,bitcoin t
  is the conditional variance for Bitcoin price. The optimal weight of 

Gold (Silver) in the Bitcoin-Gold (or Bitcoin-Silver) market portfolio can be evaluated as 

, ,1
bitcoin i t

w− . Kroner and Sultan (1993) present risk-minimizing hedge ratios between Bitcoin 

and Gold (Silver), and the formula is, 

2

, ,

, , 2

,

bitcoin i t

bitcoin i t

i t





=                  (23) 

and the low ratio , ,bitcoin i t
  implies that Bitcoin price risk can be hedged by taking a short 

position in Gold (Silver) markets.  

 Table 7 presents the optimal weight of Bitcoin in $1 of the Bitcoin-Gold (or Bitcoin-

Silver) portfolio and the corresponding hedge ratio. These were 2.41 and 8.57%, respectively. 
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Conversely, the weights of Gold and Silver in the portfolio were 97.59 and 91.43%, 

respectively. This means that, for every $1 investment in Bitcoin-Gold and Bitcoin-Silver 

portfolios, 2.41cents and 8.57cents should be invested in Bitcoin. So, for Gold and Silver 

allocation in the Bitcoin mixed portfolios, more investments are expected for Gold and Silver, 

that is at 97.59 cents and 91.43cents, respectively. Regarding the hedge ratios, 3.06% of Gold 

is needed to shorten $1 long in Bitcoin, while 0.58% of Silver is to be added to the Bitcoin-

Silver portfolio in a $1 long in Bitcoin.  

INSERT TABLE 7 ABOUT HERE 

 The results here are not surprising since Bitcoin has higher volatility persistence 

compared to Gold and Silver (see Table 3). Thus, more investments in Gold and Silver are 

needed. Investors are therefore advised to hold more Gold and Silver in theory portfolios in 

order to have a diversification advantage and minimize the risk without lowering the expected 

returns of their portfolio.   

 

5. Conclusions 

Due to the popularity of Bitcoin as a new “gold”, the present paper examines returns and 

volatility persistence and spillovers of Bitcoin prices to gold and silver prices using daily series 

spanning from 2 January 2018 to 31 July 2020. The fractional persistence framework, using 

log-periodogram and local Whittle estimators are first applied to the price, returns and volatility 

proxies and the results show strong persistence in prices as the Bitcoin market poses the highest 

volatility persistence, followed by the gold market. The results of the CCC-GARCH and CCC-

VARMA-GARCH models show the impossibility of return spillovers from the Bitcoin market 

to the gold and silver market, and neither of the two commodity markets can spill their price 

returns over to the Bitcoin market. Results of the variance components of both MGARCH 

models show significant market volatility and cross-market volatility and conditional 
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correlations. That is, there are shocks and volatility spillovers from the Bitcoin market to the 

gold or silver markets, and these are bi-directional. Thus, based on the performance of Bitcoin 

in the analysis, the assets can still perform as a “safe haven”. 

Due to volatility spillovers in the paired portfolios of Bitcoin-Gold and Bitcoin-Silver, 

portfolio and hedging strategies are designed for the management of investments in the paired 

portfolios. We find that more investments in Gold and Silver are needed in the portfolio of 

Bitcoin in order to fully have the diversification advantage and minimize the risk without 

lowering the expected returns of their portfolio. To further validate our findings, the dynamic 

connectedness approach used in Adekoya et al. (2022) and tail risk dependence, comovement 

with the predictability of Tiwari et al. (2022) can be employed to check if there exist bi-

directional spillovers between gold (silver) and bitcoin. This is left to curious readers. 
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Figure 1: Comovements of Bitcoin price with Gold and Silver prices 
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Figure 2: Comovements of Bitcoin price returns with Gold and Silver price returns 
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Table 1: Descriptive Statistics on Prices and Log-returns 

  Bitcoin market Gold market Silver market 

Statistics Pt rt  Pt rt  Pt rt  

Mean  7713.381 -0.00039  1409.655  0.000608  16.21276  0.000514 
Median  7819.355  0.001850  1332.705  0.000618  16.29850  0.000732 
Maximum  16960.01  0.209941  1974.870  0.046875  24.47600  0.080148 

Minimum  3195.710 -0.46863  1173.890 -0.03688  11.92200 -0.13734 
Std. Dev.  2387.161  0.048639  176.2417  0.008078  1.559288  0.015359 
Skewness  0.131933 -1.4304  0.872098  0.080752  1.264661 -0.84602 

Kurtosis  3.145375  17.65112  2.897782  7.071959  7.780771  16.67059 
Jarque-Bera  2.5186  6183.8***  84.71***  460.84***  811.78***  5265.51*** 
Prob  0.2839  0.0000  0.0000  0.0000  0.0000  0.0000 
Note, *** indicates significance at 5% level. 
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Table 2: Conditional Heteroscedasticity and Autocorrelation Tests on Log-returns, 

rt 

Statistics Bitcoin market Gold market Silver market 

LB(1) 4.906 (0.027)** 1.854 (0.173) 18.420 (0.000)*** 
LB(5) 13.714 (0.018)** 16.072 (0.007)** 34.514 (0.000)*** 

LB2(1) 1.358 (0.244) 35.252 (0.000)*** 51.259 (0.000)*** 
LB2(5) 11.368 (0.045)** 126.870 (0.000)*** 115.720 (0.000)*** 

ARCH LM(1) 1.348 (0.246) 36.883 (0.000)*** 55.064 (0.000)*** 
ARCH LM(5) 2.017 (0.074)* 15.916 (0.000)*** 16.840 (0.000)*** 

In parentheses are computed rejection probability errors, and ***, ** and * indicate significance at 1, 5 and 10% 

levels.  
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Table 3: Fractional integration estimates based on Whittle semi-parametric and Log-

periodogram regression  

 Bandwidth Pt rt 

Series m. Whittle Semi-
parametric 

Log-
Periodogram 

Whittle Semi-
parametric 

Log-
Periodogram 

Bitcoin 
market 

T0.6 0.9170** 0.9988** -0.0326 0.0801 
T0.7 1.0795** 1.0968** -0.0648 0.0316 

 T0.8 1.0031** 1.0476** 0.0458 0.0805 

Gold 
market 

T0.6 0.8629** 0.8701** 0.0013 -0.0231 
T0.7 0.9052** 0.9420** -0.0198 0.0200 

 T0.8 0.9449** 0.9662** 0.1319** 0.1553** 

Silver 
market 

T0.6 0.7440** 0.7462** 0.0024 0.0600 
T0.7 0.9182** 0.9621** 0.0544 0.1143 

 T0.8 1.0320** 1.0525** 0.0489 0.0998 

  
t

r  
2

t
r  

Series m. Whittle Semi-
parametric 

Log-
Periodogram 

Whittle Semi-
parametric 

Log-
Periodogram 

Bitcoin 
market

T0.6 
0.4897** 0.5606** 0.5713** 0.5519** 

 T0.7 0.3039** 0.3767** 0.2917** 0.3189** 
 T0.8 0.2296** 0.2387** 0.2206** 0.2140** 

Gold 
market 

T0.6 
0.3122** 0.4133** 0.2499** 0.3217** 

 T0.7 0.2973** 0.3531** 0.2623** 0.2682** 
 T0.8 0.2871** 0.3310** 0.2682** 0.3141** 

Silver 
market 

T0.6 
0.2287** 0.1969 0.0400 0.0135 

 T0.7 0.2913** 0.2427** 0.1180** 0.0837 
 T0.8 0.2085** 0.2505** 0.0900** 0.0725 

Note: total sample T is 667 and the three periodogram points (bandwidths), T0.6, T0.7 and T0.8 are 49, 94 and 181, 
respectively. These are bandwidths with stable estimates of d  
** indicates significant estimates at the 5% level. 
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Table 4: Asymmetry test and CCC test 

  Bitcoin market Gold market Silver market 

Sign Bias test 0.8691 (0.3851) 0.5753 (0.5653) 0.6073 (0.5438) 

Negative Size Bias test 0.3599 (0.7191) 0.1920 (0.8478) 0.9717 (0.3316) 

Positive Size Bias test 0.0897 (0.9285) 0.1635 (0.8701) 0.4870 (0.6264) 

Joint bias test 0.9199 (0.8206) 0.7775 (0.8548) 1.4771 (0.6876) 

Engle Sheppard CCC 2

2  test ---- 0.7938 (0.4618) 0.9185 (0.1700) 

In parentheses are computed rejection probability errors and tests were conducted at a 5% significant level.  
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Table 5. Results of CCC-GARCH models 

Parameters Bitcoin-Gold  Bitcoin-Silver 

    Mean Equation   

              
bitcoin
  -3.81E-04 (0.6157) -5.05E-04 (0.4681) 

              
i
  -0.0521 (0.3790) -0.0654 (0.2427) 

             
bitcoin

  0.6989 (0.0000)*** 0.5726 (0.0000)*** 

             
i

  1.45E-04 (0.2027) 6.75E-05 (0.7246) 

             ,bitcoin i
  -4.64E-03 (0.9172) -0.0422 (0.3849) 

              ,i bitcoin
  3.05E-03 (0.5854) -1.3411 (0.8911) 

    Variance Equation   

           
bitcoin

  6.40E-05 (0.0000)*** 6.09E-05 (0.0000)*** 

             
bitcoin

  0.1847 (0.0000)*** 0.2108 (0.0000)*** 

             
bitcoin

  0.6959 (0.0000)*** 0.6796 (0.0000)*** 

           
i

  5.32E-07 (0.0000)*** 2.89E-06 (0.0000)*** 

             
i

  0.0822 (0.0000)*** 0.1681 (0.0000)*** 

             
i

  0.8700 (0.0000)*** 0.7640 (0.0000)*** 
               0.0163 (0.6788) 0.0234 (0.0303)*** 

             ˆˆ
bitcoin bitcoin

 +  0.8806 0.8904 

             ˆˆ
i i

 +  0.9522 0.9321 

           HL (bitcoin) 5.45 5.97 
           HL (i) 14.15 9.86 
    Post Estimation diag.   

           AIC -13.599 -12.492 
           SBC -13.511 -12.404 
          Ljung-Box Q(2)bitcoin 1.5664 (0.4569) 1.8431 (0.3979) 
          Ljung-Box Q(5)bitcoin 3.9808 (0.5522) 4.0963 (0.5356) 
          McLeod-Li(2)bitcoin 0.9968 (0.6075) 1.2374 (0.5386) 
          McLeod-Li(5)bitcoin 6.0652 (0.2999) 7.3366 (0.1968) 
          Ljung-Box Q(2)i 1.7636 (0.4140) 4.0471 (0.1322) 
          Ljung-Box Q(5)i 7.5560 (0.1825) 4.7468 (0.4476) 
          McLeod-Li(2)i 2.4387 (0.2954) 2.9651 (0.2271) 
          McLeod-Li(5)i 3.5475 (0.6162) 7.1875 (0.2071) 
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Table 6. Results of CCC-VARMA-GARCH models 

Parameters Bitcoin-Gold  Bitcoin-Silver 

    Mean Equation   

              
bitcoin
  -0.0002 (0.7789) -4.8E-04 (0.3823) 

              
i
  -0.0495 (0.3333) -0.0613 (0.1497) 

             
bitcoin

  0.2855 (0.7789) 0.5720 (0.0000)*** 

             
i

  0.0002 (0.1687) 2.2E-05 (0.9048) 

             ,bitcoin i
  -0.0179 (0.6867) -0.0630 (0.1844) 

              ,i bitcoin
  0.0021 (0.6846)  0.0007 (0.9396) 

    Variance Equation   

           
bitcoin

  7.0E-06 (0.0025)*** 6.2E-05 (0.0000)*** 

             
bitcoin

  0.1116 (0.0000)*** 0.2104 (0.0000)*** 

             ,bitcoin i
  0.2061 (0.2667) -0.4706 (0.0000)*** 

             
bitcoin

  0.5621 (0.0000)*** 0.6989 (0.0000)*** 

            ,bitcoin i
  398.83 (0.0000)*** 49.7289 (0.0004)*** 

           
i

  1.0E-06 (0.0000)*** 2.0E-06 (0.0000)*** 

             
i

  0.1013 (0.0000)*** 0.1537 (0.0000)*** 

             ,i bitcoin
  0.0060 (0.1378) -0.0174 (0.0592)*** 

             
i

  0.8263 (0.0000)*** 0.7835 (0.0000)*** 

             ,i bitcoin
  -0.1369 (0.0000)*** -1.9969 (0.0000)*** 

               0.0050 (0.0000)*** -0.0020 (0.0000)*** 
    Post Estimation diag.   

           AIC -13.624 -12.527 
           SBC -13.565 -12.412 
          Ljung-Box Q(2)bitcoin 3.1519 (0.2068) 2.3617 (0.3070) 
          Ljung-Box Q(5)bitcoin 5.5548 (0.3520) 4.0084 (0.5482) 
          McLeod-Li(2)bitcoin 1.0121 (0.6029) 0.8370 (0.6580) 
          McLeod-Li(5)bitcoin 1.7713 (0.8798) 4.3681 (0.4977) 
          Ljung-Box Q(2)i 1.4660 (0.4805) 5.3482 (0.0690) 
          Ljung-Box Q(5)i 7.6458 (0.1769) 6.0388 (0.3025) 
          McLeod-Li(2)i 1.8625 (0.3941) 4.5361 (0.1035) 
          McLeod-Li(5)i 3.2366 (0.6636) 8.5998 (0.1261) 
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Table 7. Estimates of Optimal portfolio weight and hedge ratio 

 

 Bitcoin-Gold Bitcoin-Silver 

, ,bitcoin i t
w  0.0241 0.0857 

, ,1
bitcoin i t

w−  0.9759 0.9143 

, ,bitcoin i t
  0.0306 -0.0058 

 


