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On a regime switching illiquid high volatile prediction model
for cryptocurrencies

Youssef El-Khatib∗ Abdulnasser Hatemi-J†

Abstract

Cryptocurrencies are increasingly utilized by investors and financial in-
stitutions worldwide. The current paper proposes a prediction model for a
cryptocurrency that encompasses three properties observed in the markets for
cryptocurrencies—namely high volatility, illiquidity, and regime shifts. By
using Ito calculus, we provide a solution for the suggested stochastic differ-
ential equation (SDE) along with a proof. Moreover, numerical simulations
are performed and are compared to the real data, which seems to capture the
dynamics of the price path of a cryptocurrency in the real markets.

Keywords: Stochastic Modeling, cryptocurrencies, illiquid, high volatility, regime

switching, CTMC.

1 Introduction

With the fast development of digital finance over the past decade and with the in-

troduction of blockchain technology, there has been an immense expansion in the

trading of cryptocurrencies. According to [38] there exists around 10000 cryptocur-

rencies and the most prominent one with the largest market value is bitcoin, which

was initiated in the report [33] written by an unknown author under the pseudonym

[33]. Researchers are not in total agreement regarding the usefulness of cryptocur-

rencies. For example, [38] doubts that cryptocurrencies qualify for even being called

currencies. In contrast, [25] believes in cryptocurrencies as the newcomers that will
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reshape the entire financial system, which needs to be reshaped according to him.

As of the first week of June 2022, the market capitalization of cryptocurrencies is

estimated to exceed 900 billion dollars at [6]. Modeling cryptocurrency prices is

then an important issue. Reference [11] provides an interesting presentation of the

economics of cryptocurrencies. On the other hand, [5] shows that the market for

cryptocurrencies is vulnerable to bubbles and crises. References [9] and [10] demon-

strate empirically that a cryptocurrency can function as a very useful hedge. In [39]

the author observes that the market of the bitcoin is informationally inefficient. A

comprehensive survey on the publications on cryptocurrencies is provided by [17],

which shows that the number of publications on the underlying topic has as a strong

positive trend since its start in year 2013. The work of [35] provide a detailed survey

of numerous publications that deal with the security concerns of cryptocurrencies.

Citation [30] suggests an index that can be used for measuring uncertainty in the

cryptocurrencies. The basis for this index is the news coverage from the mass-media.

Reference [2] investigates empirically the factors that determine the adaptation of

cryptocurrencies and blockchains in 137 countries. In [29] a three-factors model for

cryptocurrencies is presented. They find that the return of each individual cryp-

tocurrency is explained by the return of the entire market for the cryptocurrencies,

the size, and the momentum. Citation [28] finds empirical evidence that the returns

of cryptocurrencies are robustly linked to the network factors but not to the produc-

tion factors.

Since cryptocurrencies are energy intensive, there are naturally environmental effects.

This important issue has been investigated by [16] using asymmetric causality tests

developed by [18]. It is found that there are negative asymmetrical environmental

causal impacts of the demand for major cryptocurrencies. The authors suggest that

the policy makers should introduce environmental taxes imposed on cryptocurrency

transactions to dampen the damaging effects of the cryptocurrencies on the environ-

ment. By applying asymmetric causality tests, the authors of [24] obtain empirical

evidence that supports the dynamic interaction and risk transmission between the

oil market and bitcoin.
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Publication [27] explores the potential portfolio diversification gains between ten

main cryptocurrencies, which results in finding that diversifying across these cryp-

tocurrencies lead to better investment outcomes indeed. In [20] the potential port-

folio diversification benefits between bitcoin, stocks, bonds, and the US dollar in

the global market is explored. The authors find that there are no portfolio diver-

sifications benefits that can be obtained from this cryptocurrency if the portfolio

is created by the standard approach pioneered by [32]. However, if the portfolio is

created by using [19] approach, which combines risk and return in the optimization

problem, including bitcoin in the portfolio results in a higher risk adjusted return.

In addition, [23] obtains empirical support for increasing return per unit of risk for

investors from the Middle East if they add cryptocurrencies in their portfolios.

Cryptocurrencies are increasingly chosen as financial assets that are included in the

investment portfolios by the individual investors and financial institutions world-

wide‡. Many studies on cryptocurrencies have emerged investigating principally

portfolio diversification profits, market effectiveness, hedging, or capturing the data

generating process for the volatility of the cryptocurrencies. The main contribution

of this paper is to suggest a prediction model for cryptocurrencies. Market observa-

tions imply several differences between a cryptocurrency and traditional asset prices.

Cryptocurrencies have higher volatility compared to regular assets. Besides, cryp-

tocurrencies are widely less liquid than conventional financial instruments. The paper

of [31] examines the relationship between cryptocurrency liquidity, herding behavior,

and profitability during extreme price movement periods and it reveals that herding

behavior variations have a decreasing magnitude. When building a prediction model

for cryptocurrency prices we need to keep in mind that these instruments are differ-

ent from traditional assets. Cryptocurrency modeling has been studied by a great

number of authors in the literature. Many of these works investigated prediction

models. In [1] the authors suggest a method for predicting price variations in bitcoin

and Ethereum using Twitter data and Google Trends data. Reference [22] provides a

review of the research works on predicting cryptocurrency prices from 2010 to 2020.

‡Since cryptocurrencies are based on new technology, software development is an integral part
of it.
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Most of these studies utilize machine learning for price prediction. Other papers in-

vestigate the cryptocurrency price volatility and prediction using econometrics, and

statistical models on time-series data. As far as we know, no previous research has

suggested a prediction model using stochastic differential equations (SDEs) dealing

with cryptocurrencies’ high fluctuations and illiquidity. In this paper, we propose

an SDE to model future trajectories of cryptocurrency values. Our suggested model

comprises three of the most significant stylized facts of cryptocurrencies: illiquidity,

high volatility, and regime switching (RS).

The paper is organized as the following. Section 2 describes the construction of the

model. Section 3 studies the existence, uniqueness and positivity of the SDE solution.

In section 4, numerical simulations are conducted and several figures are presented

in order to illustrate the performance of the model. The final section expresses the

concluding statements.

2 Model formulation

We follow the works of [26] and more recently [15] to construct our cryptocurrencies

prediction model. First of all, a filtered probability space and sources of random-

ness living on it are to be specified. In [26] and [15], only the Brownian motion is

generating the randomness. The idea of this paper is to include a second source of

randomness that is independent from the Brownian motion namely a continuous time

Markov chain-CTMC. Then, the model becomes a regime switching model which can

be seen as an expansion of the [15].

2.1 Probability space and sources of randomness

Consider a filtered probability space (Ω,F , (Ft)t∈[0,T ], P ). Let (Bt)t∈[0,T ] be a Brow-

nian motion and denote by (FB
t )t∈[0,T ] the filtration generated by (Bt)t∈[0,T ]. We

assume that there is a second source of randomness living in the probability space.

Let (Zt)t∈[0,T ] denote a Markov jump process defined values in a finite state space

S := {1, 2, ..., N} and denote by FZ = (FZ
t )t∈[0,T ] := σ(Zt, 0 ≤ t ≤ T ), which is the

natural filtration generated by the Markov process Z under P . The filtration F is
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then defined as F := FB ∨ FZ .

2.2 The model

Let C = (Ct)t∈[0,T ] be the rate of the cryptocurrency with regard to the US dollar.

Assume that µ is the expected return of the underlying cryptocurrency, and σ is

its volatility. The price impact factor of the broker is λ(t, C) and θt represents the

number of units of the underlying cryptocurrency that the trader owns at time t.

Thus, λ(t, C)dθt represents the price impact of the investor’s trading. We assume

that the cryptocurrency’s value is therefore governed by the following stochastic

differential equation:

dCt = µ(Zt)Ctdt+ (σ(Zt)Ct + g(t)) dBt + λ(t, Ct)Ctdθt, t ∈ [0, T ],

C0 = x > 0. (2.1)

Where g(t) is originally suggested by [8] and it signifies a function that is determin-

istic and captures well the impact of increase in the volatility that takes place during

a special period. It is also able to embody Sornette’s [37] empirical encompassing

of the market price index during a crunch via a dissipative harmonic oscillator char-

acterized by a sinusoidal function that is exponentially decreasing. This function is

expressed as the following:

g(t) = c1 + c2e
c3t sin(c4t),

where ci, i = 1, 2, 3, 4 are real constants. Let θt be the number of the underlying

cryptocurrency that the trader owns and assume that it satisfies the following pro-

cess:

dθt = ηtdt+ ζtdBt, t ∈ [0, T ]. (2.2)

The above proposed model can be seen as generalisation of the models considered in

[13] on the valuation of options during crisis and in [14], and [15] where the authors

investigated option’s pricing in illiquid and high volatile situations. The SDE (2.1)

expands the previous models by adding regime switching which permits to variate

the parameters according to different economic situations.

5



2.3 Solution existence and uniqueness analysis

The below proposition outlines the existence and uniqueness of the solution of the

SDE of our model (2.1).

Proposition 1 Let at := µ(Zt) + λ(t, Ct)ηt, bt := σ(Zt) + λ(t, Ct)ζt, and

ξt = exp

(
∫ t

0

(

au −
b2u
2

)

du+

∫ t

0

budBu

)

, ξ0 = 1. (2.3)

Then

Ct =

(

C0 −

∫ t

0

g(u)
[

σ(Zu) + λ(t, Ct)ζt
]

ξ−1
u du+

∫ t

0

g(u)ξ−1
u dBu

)

ξt. (2.4)

Proof. We consider the process (ξt)t∈[0,T ] defined by the SDE

dξt = atξtdt+ btξtdBt ξ0 = 1, (2.5)

where at and bt are defined at the begining of the above proposition. The SDE

provides a geometric Brownian motion with solution given by (2.3). We use the

variation of constants method. First, assume that

Ct = Ytξ1t, Y0 := C0. (2.6)

Then Yt can be obtained using the below integration by parts for stochastic processes

dYt = d(ξ−1
t Ct) = ξ−1

t dCt + Ctdξ
−1
t + [dξ−1

t , dCt]. (2.7)

The solution of the regime switching model SDE (2.1) given by (2.4) can be obtained

after embedding (2.2) into equation (2.1), then calculating dξ−1
t by using the Ito

formula applied to f(ξt) = 1
ξt

and then by making use of (2.7), (2.3), and (2.6).

□

Remark 1 The equation (2.4) demonstrates the existence and uniqueness of a so-

lution for the SDE (2.1) but does not guarantee non-negative values.

• For the positivity, the below condition is required

C0 +

∫ t

0

g(u)ξ−1
u dBu ≥

∫ t

0

g(u)
[

σ(Zu) + λ(t, Ct)ζt
]

ξ−1
u du. (2.8)

The above condition can be satisfied with a careful choice of g and λ.
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• It should be pointed out that choices of g and λ that do not satisfy the condition

(2.8) but produce a rate of cryptocurrencies approaching zero or become nega-

tively with very low probability could be considered as reasonable choices. This

can be interpreted in the sense that any rate that reaches zero implies that the

underlying cryptocurrency does not survive and disappears from the market,

which in fact can happen in the real markets.

3 Numerical results and simulations

3.1 Methodology

Consider the one dimensional stochastic process X := (Xt)t∈[0,T ] driven by the fol-

lowing SDE:

dZt = a(t, Zt, Xt)dt+ b(t, Zt, Xt)dBt, Z0 = z is a given constant. (3.1)

To obtain a discretized trajectory of Zt from the SDE (3.1) using Euler-Maruyama

scheme, the following steps need to be implemented:

1. simulate ∆Bk as normally distributed random variable N(0,∆t)

2. simulate Xk the Continuous Time Markov Chain

3. set Z̃0 := Z0 = z and evaluate Z̃k+1 using

Z̃k+1 = Z̃k + a(k∆t, Z̃k, Xk)∆t+ b(k∆t, Z̃k, Xk)∆Bk, (3.2)

for k = 0, . . . , N − 1. Notice that ∆Bk = Bk+1 − Bk. We will not use the symbol˜

for discretized version of a given SDE from now on. The application of (3.2) to the

model (2.1) gives the system

Ck+1 = Ck + µ(Zk)Ck∆t+ (σ(Zk)Ck + g(k))∆Bk + λ(k, Ck)Ck∆θk,

θk+1 = θk + ηk∆t+ ζk∆Bk,
(3.3)

where we have discretized the time into M time steps tk with equal sizes ∆t =

tk+1 − tk =
T
M
, for k = 0, . . . ,M − 1.
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3.2 Algorithm

Our algorithm consists of the following phases:

1. We simulate a trajectory for the Brownian motion: (Bk)k=0,...,M−1.

2. We simulate independently a trajectory for the CTMC: (Xk)k=0,...,M−1.

3. For k = 1, (C0, θ0) and all the parameters of the model are given, we use (3.3)

to calculate (C1, θ1),

4. for k = 2, (C1, θ1) and the parameters of the model are all known from the

previous step, then apply (3.3) to calculate (C2, θ2),

5. repeat the previous two steps to k = M − 1.

3.3 Illustrations

The above algorithm is implemented by creating a code in Python. It is assumed

that the CTMC has 3 possible states, Z ∈ {0, 1, 2}. Here, for the illiquid with high

volatility case the parameters have the values: C0 = 10, g(t) = α(Zt)cos(πt/4), λ =

1.5, ηt = t, ζt = sin(πt/4), T = 40, N = 10000.

Figure 1: Realizations of the cryptocurrency to dollar value. First run of the
simulations.

• State one when Zt = 0 corresponds to a bad economic situation for cryptocur-

rencies. The following parameters values are used for covering this specific

situation:
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1. expected return µ(0) = 0.005

2. volatility σ(0) = 2.5,

3. increase of the volatility factor in function g is α(0) = 10.

• State two when Zt = 1 represents a normal economic circumstance. This case

is dealt with via the following parameters values:

1. expected return µ(0) = 0.045

2. volatility σ(0) = 0.5,

3. increase of the volatility factor in function g is α(0) = 1.

• State three when Zt = 2 depicts a good economic condition. The parameters

values for this situation are below

1. expected return µ(0) = 0.2

2. volatility σ(0) = 0.3,

3. increase of the volatility factor in function g is α(0) = 0.5.

Figure 2: Realizations of the the cryptocurrency to dollar value. Second run of the
simulations.

Figure 3 offers the bitcoin to dollar values from November 2021 to August 2022 taken

from the website of yahoo finance. We have divided the time period into four parts.

These four periods can be seen as four different states for the Bticoin to dollar values.
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Figure 3: Bitcoin to US dollar as of August 7, 2022 divided into 4 states. Source:
https://finance.yahoo.com

Figures 1 and 2 provide two simulations of cryptcourrency to dollar values trajectory

in an illiquid market under stress. The graphs seem to accord well with the reality

since cryptocurrency prices tend to be exceptionally volatile during certain periods.

4 Conclusions

A cryptocurrency is a digital form of payment that is based on cryptography. Cryp-

tocurrencies are increasingly considered as a serious alternative measure of payment

versus the traditional fiat currencies. Despite having their advantages, cryptocur-

rencies are extremely volatile and risky. They are also characterized by the markets

that can suffer from the illiquidity issue. Structural breaks or regime shifts are also

taking place in the markets for cryptocurrencies. The current paper provides a model

that can be used for predicting the ex-ante path of the exchange rate of the cryp-

tocurrencies. The suggested approach contributes to the existing literature on the

topic by considering simultaneously three explicit characteristics of cryptocurren-

cies—namely— (1) illiquidity, (2) high volatility and (3) regime shifts. A solution

for the SDE modelling the exchange rate of the cryptocurrency is provided along

with a mathematical proof. Numerical simulations are provided, which can capture

the situations in which the dynamism of the cryptocurrency rates with regard to the

US dollar operate in real markets. There are massive publications on the cryptocur-

rencies. However, these publications are mainly empirical dealing with issues like
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portfolio diversifications benefits, market efficiency, hedging or capturing the data

generating process for the volatility of the cryptocurrencies. To our best knowledge,

this is the first attempt to suggest a stochastic differential equation for modeling

the exchange rate (i.e., the pricing) of the cryptocurrencies that covers the three

mentioned characteristics.
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