

Holoreturns And Holothetic Invariance in Economics

Mughal, Adil Ahmad

University of Management and Technology, Lahore

September 2022

Online at https://mpra.ub.uni-muenchen.de/114641/ MPRA Paper No. 114641, posted 22 Sep 2022 01:10 UTC

Holoreturns And Holothetic Invariance in Economics:

Mirza Adil Ahmad Mughal

Abstract: Hicks neutral technical progress implies that in Y = AF(K, L) any technical progress only changes the technological knowledge, A, but does not affect inputs and this is the Hicks-neutral holothetic result given by Sato in which the technical progress transforms into a scale effect without changing the map of isoquants to non-holothetic trajectory. This holothetic nature of production functions is possible under Lie-group like transformations with invariance properties for production functions under a given technical progress. This paper proposes a Farkas Lemma-like character of this holothetic transformation. Kostant's Convexity Theorem is a well-generalized result of convexity on Lie-group transformations concerning holotheticity. There's an 'equilibrium pricing' way found here for a convexity assumption implying 'holothetic invariance'.

Preliminaries:

Separating Hyperplane Theorem: Minkowski: Let K be a convex subset of \mathbb{R}^n and z a point of \mathbb{R}^n . There is a hyperplane H through z and bounding for K if and only if z is not interior to K. [1]

Farkas' Lemma: If C is a closed convex cone, then for any $b \in \mathbb{R}^n \setminus C$ *there is* $n \in C$ * *such that n,* b < 0*. Where* C* *is the polar dual of* C*.*

Corollary: If C is a convex cone, Rc is the closure of C. Proof Of course $C \subseteq Rc$, and Rc is closed. For any b outside the closure of C Farkas' lemma gives an n such that n, b < 0 and n, $x \ge 0$ for all $x \in C$, so $b \notin Rc$. [2]

Proposition1: Given a current technical optimal T, a truly above-optimal technical change should be such that T+ > T so that equilibrium prices PT must not imply PT+; therefore, a priced T+ on new equilibrium prices should be Hicks neutral and thus holothetic [3]. And if T+ is not priced in the new equilibrium prices then it must violate the underlying homotheticity.

Remark1: In the production and asset pricing cases homotheticity of production functions and no-arbitrage of asset pricing serve as the equivalent bounding conditions respectively for production and asset pricing. Hicks neutrality here makes homotheticity equivalent to holotheticity.

Via Brouwer's and No Retraction Theorems and Farkas Lemma [4]:

Theorem1: Let X be a closed convex cone $\in \mathbb{R}^n$ while $0 \in X$. Let every $x \in X$ be an optimal trading strategy with its respective payoff while 0 is also a no-trade but optimal strategy. The No-Arbitrage condition makes X convex and closed under an equilibrium security prices' set Y as a polar projection of X separated by a separating hyperplane H with prices and strategy payoffs orthogonal to H.

Assume *H* to be a closure of *X* as a boundary of a unit disk. There cannot be a strategy $b \in H$ with a retraction $h : X \rightarrow H$ such that:

h(b) = b, for any $b \in H$ (No Retraction for a unit disk)

So $b \notin X$.

And there cannot be a point $b \in H$ such that (b, x) > 0 (Farkas Lemma)

Proof1:

Economic Proof (Proposing a 'No-trade, Holoreturns Lemma'):

Given the No-Arbitrage condition and from [5] implying optimality of no-trade, in terms of pre-trade being equal to post-trade for equilibrium prices, implies Farkas Lemma and Brouwer's Fixed-point Theorem. The h in H, given the concave utility of consumption and risky returns, implies as per the "law of iterated expectations" that $\Delta h = 0$. And if equilibrium consumption of the consumer i is Ci then for an above-optimal h-strategy payoff the Ci,h = (Ci + h) which should be higher than Ci; but Ci,h is bounded by the concave utility of risky return with the corresponding disutility of that risk such that there is no Ci,h > Ci.

Holothetic production functions given by Sato and Economic Invariance:

Let X be a set of optimal technologies' closed convex cone with H as its boundary and with vertex zero implying "possibility of inaction, as 0 also being a maximizer" [1].

Via No Retraction and Farkas Lemma:

Theorem2: There cannot be an above-optimal technology x+ in a unit disk X such that it is not priced (which is so by definition of being above-optimal). Therefore x+ must be lying on the boundary and therefore must not be positively priced. That an x+ must transform into scale effect by preserving holothetic isoquant maps given the equilibrium prices.

Here pricing of technology implies it being adopted for having developed a market.

Proof2:

Here Farkas Lemma guarantees the Lie group-like invariance under transformation. [3]: I quote,

"Lemma (Fundamental Lemma of Holotheticity). A family of production functions is holothetic under a given type of technical progress if and only if it is invariant under a group." [3] [6]

From Theorem1, there cannot be a retraction to the boundary, a condition conserving the convexity of X. (Brouwer's Fixed-point Theorem)

Proposition2: The pricing implications for convexity and homotheticity of the technology set of production functions, given a Farkas Lemma condition of nonnegative equilibrium price set, homotheticity is a holotheticity.

Remark2: On Proposition2, at least in terms of an always possible "product-augmenting Hicks neutrality", the isoquant map must be holothetic.

References:

- 1. Buxton, C. (2016). Brouwer Fixed-Point Theorem.
- 2. Constantinides, G. M., & Duffie, D. (1996). Asset pricing with heterogeneous consumers. *Journal of Political economy*, *104*(2), 219-240.
- 3. Debreu, G. (1959). *Theory of value: An axiomatic analysis of economic equilibrium* (Vol. 17). p. 25, Yale University Press.
- 4. McLennan, A. (2018). *Advanced fixed-point theory for economics* (Vol. 25). pp. 38-39 Singapore: Springer.
- 5. Sato, R. (1980). The impact of technical change on the holotheticity of production functions. *The Review of Economic Studies*, 47(4), 767-776.
- 6. van den Ban, E. P. (2016). Lie groups, convexity and symplectic structure.