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Abstract

This study aims to characterise and represent the Indonesian manufac-
turing sector as a production network. We specifically define any relation-
ship between any two products in the network as a relationship that one
product is used as input to produce the other, akin to the input-output
models but in a much-disaggregated level of 10-digit product level. This
study utilises the Indonesian annual survey of manufacturing firms, specif-
ically the 2017 data, to construct a product-level network of industries.
Using the constructed network, this study discusses which products and
sectors in the Indonesian manufacturing sector are more well-connected to
others, using different centrality measures commonly discussed in network
theory. We find that, generally, low-to-medium technology products are
the more central products in Indonesian manufacturing. We also compare
our framework with other well-established product network frameworks
and discuss possible further works using our framework.

1 Introduction

1.1 Background

Recently, as the ”product-as-networks” and ”sectors-as-networks” frameworks
have been growing in the body of literature, the ability to successfully represent
a country’s (or region’s, or the world’s) economy as networks allows for a wide
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range of calculations to be estimated – and hence more policy questions to be ad-
dressed. Studies using network-based models have asked questions from the age-
old question on economic multipliers (see W. Leontief, 1987; Richardson, 1985)
to the more recent inquiries on, for instance, which product should a country
transition into being more competitive at (see Hidalgo et al., 2007; Hidalgo and
Hausmann, 2008), how to characterize a country’s production landscape (see
Hausmann and Klinger, 2008b; De La Cruz and Riker, 2012; Hausmann and
Klinger, 2008a), as well as characterizing the cascading effects of idiosyncratic
microeconomic shocks on the aggregate fluctuations (see Acemoglu et al., 2012).

Considering the above, this study aims to characterize the Indonesian econ-
omy’s manufacturing sector as a production network. While the country’s
statistics bureau (BPS / Statistics Indonesia) have officially released the of-
ficial input-output statistics1, and that numerous studies have even integrated
the Indonesian input-output tables to an interregional or world-level models (see
Bartelme and Gorodnichenko, 2015), this study takes a step back and asks the
question: can we go more granular than the sectoral level?

As we know, the input-output (IO) based models are aggregated at the sec-
toral level. The most granular view of the IO tables in Indonesia is the 185-sector
version2. While the above model is useful and has indeed been the cornerstone
to numerous economic modeling and estimations across the years, this study
argues that we can do one even better. Specifically, the manufacturing sector
of the Indonesian economy can be disaggregated to its 10-level product level of
input-output linkages, but not perfectly3.

We argue that a successful representation of product-as-networks for the
Indonesian economy can lead to novel and more granular questions being an-
swered. For the IO-based models, trivially, the disaggregation of manufacturing
products allows the analysis to be conducted at a more targeted level. However,
for the competitiveness-based models (for instance, the Product Space models
by Hidalgo et al., 2007), the disaggregation of the manufacturing sector into
a product-level network might allow the two networks to be compared in one
integrated analysis.

For instance, following the PS model, suppose some product x is calculated
to be one of the better products for Indonesia to transition into and attempt to
be competitive. However, without the product-level network, one might strug-
gle to thoroughly analyze whether that product x’s upstream industries are
well-established. Trivially, importing the upstream products is a completely
feasible option; however, the ability to readily query the upstream industry on
a product-level IO network is only beneficial to policymaking.

1See the official statistics released by BPS.
2See the official statistics released by BPS.
3This condition is caused by the potential ”over-inclusion” problem that will be discussed

in Section 2.
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This study aims to start the discussion on such a disaggregation and pro-
vide an approximate look at how the 10-digit product-level manufacturing sector
input-output linkages are constructed in Indonesia. We identify our framework
to be akin to the IO-based models of Indonesia, but a limitation4 in data shape
and availability hinders this study from fully deriving the A matrix in the IO
model (the intersectoral n × n matrix). As such, this study is explicitly (and
carefully) claiming only to be an approximation of a manufacturing-only 10-
digit product-level unweighted input-output network for Indonesia.

In doing so, this study utilizes the firm-level micro-data from the Indonesian
manufacturing sector, released annually by BPS. Each year, BPS releases one
main dataset containing plant-level characteristics; however, our main focus in
the study is exploring two closely-related datasets that are unique at the prod-
uct level and not the plant level. The first dataset provides information on
the raw/intermediate input used by each firm surveyed in the primary dataset,
commonly referred to as Rawin dataset. Meanwhile, the second dataset pro-
vides information on the other side, namely, the products that are produced by
each firm surveyed in the primary dataset, commonly referred to as the Proin
dataset5.

As one might see, combining the Rawin and Proin datasets can provide a
network of which products are the upstream products (ancestor node in the
graph) of some other products and, analogously, which products are the down-
stream product (child node in the graph) of some other products. The study
borrows one of the important notions in the computer science literature, specif-
ically the graph traversal methodologies from network theory. The literature
draws back to the early seminal paper on graphs (see, for instance, Zuse, 1972;
Moore, 1959) that introduces how one should approach a traversal of graphs
and thus construct the whole network.

This study is structured as follows. In the current introductory section, Sec-
tion 1, the study provides the relevance of the study, as well as how it compares
and can be integrated into the other existing frameworks. In the following sec-
tion, Section 2, the study provides the algorithm of the whole network graph
generation in its first subsection. We describe the data source in the second
subsection. In the third subsection, we address the potential shortcomings of
the dataset and algorithm. This study argues that the handling methods of
the potentially erroneous data and algorithm allow the overall framework to be
used in various settings and differing degrees of data quality – a typical land-

4This condition is caused by the potential ”over-inclusion” problem that will be discussed
in Section 2.

5At the time of this writing, the two datasets are now unable to be officially acquired by
purchasing from BPS-Statistics Indonesia, as now the institution only provides the primary
data. The data used in this study was used in past studies/research projects and was acquired
by authors before BPS started providing only the primary dataset.
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scape in using empirical, survey-based datasets. We introduce the concept of a
“strong edge” and “weak edge” to address one of the potential shortcomings of
the two datasets – Proin and Rawin – which can only be joined at the firm level.

Section 3 describes the generated network. Apart from the network creation
for the whole Indonesian manufacturing sector, this study also provides several
critical applications that can be derived after obtaining the initial network.
Finally, the last concluding section, Section 4, describes the study’s limitations
and potential ways forward in expanding the framework and integrating it into
the existing economic frameworks.

2 Model

2.1 Setup

This study defines a network by its colloquial definition; that is, a network G

is defined as a pair of sets that are comprised of a set of vertices V and set of
edges E, such that G = (V,E) where every edge e ∈ E, any two nodes v1, v2
that it connects are members of the set V .

In the context of the study, any vertex v in the set V represents one product
at the 10-digit product code level, either used as an input or produced as an
output by some firm f in the set of firms F . The graph that the study utilizes
is the directional graph (digraph), where for any edge e denoting an ancestor-
children relationship between two nodes, e.g., u, v ∈ V such that e = (u, v) it is
the case that in the Indonesian manufacturing survey dataset, some firm f ∈ F

uses u as an input in the Rawin dataset (input dataset) and produces v as an
output in the Proin dataset (output dataset). A simple illustration is shown in
Figure 1.

Figure 1: Illustration of one downstream linkage of product u being used as input
to produce product v

u v

The algorithm used to produce the complete network in this study is by us-
ing an ensemble of the standard graph traversal methodology. First, the study
creates the set of edges E using the data available at the firm level. For any
firm f ∈ F , we define the set of edges Ef relevant for the firm by creating a
Cartesian product of any input i in the input set If ⊆ V that the firm uses with
any output o in the output set Of ⊆ V that the firm produces. By aggregating
the set of edges for all firms E1, E2, ..., En, the study obtains the full network
set of edges E.
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While the above exercise might sound trivial, at the time of writing, the
only join keys between the Rawin (input) dataset and Proin (output) dataset
are the firm IDs6. This means that one can only approximate the network,
as the information on how exactly each input is utilized in producing which
output is unclear. One obvious problem that can be potentially spotted in the
process is what the study refers to as the “over-inclusion” of the ancestor-child
relationship. Consider a case where a firm f produces two outputs o1, o2 ∈

V , where it uses inputs i1, i2 ∈ V both to produce o1, but only input i2 to
produce o2. Such a case means that the valid edges are (i1, o1), (i2, o1), (i2, o2).
However, as the method assumes a Cartesian product to create the edges, (i1, o2)
is mistakenly included. Cases with higher cardinality of products in the input
set and output set analogously follow from the simple case.

Figure 2: Illustration of the potential ”over-inclusion” in product network

i1

i2

o1

o2

The (approximate) handling of the above problem will be more thoroughly
discussed in one of the following sections that describe the study’s specific han-
dling of such a condition using what we refer to as the “strong” and “weak”
edges. As one might note, the analogous problem of under-inclusion might also
occur, but such a case is inevitably outside the scope of the study as it consti-
tutes dealing with the non-existence of relationships in our data. This condition
also becomes the rationale as to why this study limits its scope to creating an
unweighted network. That is, the study disregards the value-added flow among
products as we deem mistaken flow of value-added is more severe (especially
considering cascading effects in networks) in the analysis compared to inaccu-
rate determination of existence or non-existence of linkages between products.

As a base for creating the complete graph, the study uses the total number
of firms having an ancestor-child relationship of any two products (u, v) as the
weight of the edges. Formally, we define the weight w of some edge e as we as
follow.

6This condition is a case where both the input dataset and output dataset have a product-
level unit of analysis, while the joining keys between the two are at firm-level, which is more
aggregated than product-level. One can only see, for instance, an arbitrary firm f ∈ F

uses inputs i1, i2, ..., in ∈ V as inputs; and separately, the firm f ∈ F produces outputs
o1, o2, ..., om ∈ V with no linking at product-level.
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we =
∑

f∈F

sign(Ef )

where:

sign(Ef ) =

{

0, if (u, v) ̸∈ Ef

1, otherwise

The study calculates the weight of each edge by taking the summation of
sign functions for every firm f ∈ F on whether the directional relationship be-
tween the vertices, for instance, (u, v) forming the edge e is present in the firm’s
set of edges Ef . The sign function takes the value of 1 if the edge is present
and 0 otherwise.

Now that all the assumptions and definitions are laid out, we proceed to dis-
cuss the complete network creation algorithm. To create a complete network,
ideally, one iteration of a pair of Breadth-First Search (BFS)7 will be conducted
from each node. The pair of BFS algorithms are simple traversals starting from
every node v ∈ V , with one being conducted directionally to the upstream prod-
ucts and the other being conducted in the downstream direction.

Combining the two processes, the complete industry tree in the study can be
constructed. We combine the two output edge lists for any starting node v ∈ V .
The product of the algorithm, i.e., the complete network of industries, will be
provided in Section 3, along with other analyses that can be derived from the
complete graph.

2.2 Data Source

The study uses the Indonesian firm-level micro-data survey released by the
statistics bureau, Statistics Indonesia (or Badan Pusat Statistik / BPS), on a
yearly basis referred to as the Statistik Industri (SI) or Industri Besar Sedang
(IBS) dataset. More specifically, the study utilizes the complimentary datasets
from the surveys, namely the product-level input dataset used by each firm
named the Rawin dataset and the product-level output dataset produced by
each firm named the Proin dataset.

For demonstration purposes, this study uses the SI (the Proin and Rawin
included) year 2017 as the primary dataset in this study. The specific dataset

7Breadth-First Search or BFS is one of the ubiquitous methods in conducting graph traver-
sal in network theory. By doing BFS from some starting node v ∈ V , the user can exhaustively
obtain the list of all connected (and remotely connected) nodes to v (for instance, see Cormen
et al., 2009).
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is used based on two main reasons. First, the dataset is the latest available.
Second, the dataset is one of the first to adopt the Indonesian standardized
commodity-level product code, KBKI (Klasifikasi Baku Komoditas Indonesia)
2015 on both the input (Rawin ) and output (Proin ) datasets. The KBKI
codes are detailed to the tenth digit, one of the most granular data available in
the Indonesian context.

2.3 Handling Over-inclusion: Weak Edge and Strong Edge

Related to the prior discussion in Section 2.1 on how the inherent shape of the
datasets can potentially induce the over-inclusion problem, this section describes
the suggested handling method. We use the notion of a “strong” and “weak”
edge. The formal definition of a strong industrial linkage edge (SILE) is as
follows.

Definition 1 A strong industrial linkage edge is defined as some edge e ∈ E

from the industrial linkage graph such that its weight we ≥ wt where wt is some
cutoff threshold weight that determines pruning.

In the above definition, we define any upstream/downstream linkage whose
weight is lower than some arbitrarily-chosen cutoff weight wt is considered as a
potentially irrelevant and/or mistaken connection. However, edges with a weak
linkage might very well exist. We formally define such an occurrence as a weak
industrial linkage edge (WILE) as follows.

Definition 2 A weak industrial linkage edge is defined as some edge e ∈ E

from the pruned industrial linkage graph such that its weight we < wt where wt

is some cutoff threshold weight that determines pruning and we is non-zero.

Trivially, the last possibility will be a non-existent edge (weight is zero), and
this is excluded as a WILE, as if the connection has a weight of zero, then no
linkage exists.

Given the two definitions above, any complete industrial network provided
in further sections of this study will have some threshold weight. We account
for the possible irrelevant or mistaken edges using such measure, and as such,
any further analysis will suffer from the inherent limitations of any used thresh-
old weight. In the following Table 1, this study summarizes the sensitivity of
different cutoff weights.
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Table 1: Network shape by different threshold values

No Threshold Number of products
(nodes)

Number of industrial
linkage (edges)

1 5 1,161 3,948
2 10 926 2,738
3 25 642 1,579
4 50 414 819
5 100 231 399

Source: Statistics Indonesia-BPS (2017)
Note: The table above presents the number of products (nodes in a graph) and industrial
linkages (edges in a graph) as a result of the network creation, based on the different possible
thresholds in defining weak or strong edges. Note that the number of edges presented in the
table omits the non-SILE edges. The selection of thresholds presented above is arbitrary.

3 Results & Discussions

3.1 The Complete Network

This first subsection provides the baseline result of the industrial network. The
specification the study uses is a threshold weight wt of 50 for an edge to be
considered a strong edge. More simply put, for a product u ∈ V to be consid-
ered as an input to the output product v ∈ V , there must be at least 50 firms
reporting the use of u in the Rawin dataset to produce v in the Proin dataset,
or more formally forming an edge (u, v) in the graph. A visual representation
of the complete network is shown in Figure 3.
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Figure 3: Complete industrial network graph of the Indonesian manu-
facturing sector in 2017

Source: Statistics Indonesia-BPS (2017); network is calculated by authors
Note: The figure above displays the complete network of the Indonesian manufactur-
ing sector. Each red dot depicts one product, represented as one vertex in the graph.
Each arrow between nodes represents a “downstream linkage” from the source node to
the target node, formally defined as a relationship in which the source node (product)
contributes as an input to the production of the target node (product). Only strong
edges are shown, i.e., edges with less than a threshold of 50 firms reporting are ex-
cluded. Edges are drawn without any scaling by each edge’s weight. High precision
figure is used in the figure, allowing high-detail zoom-ins to be conducted.

Visually, one can observe that there are roughly four layers of product link-
ages from the outermost layers to the innermost, where the linkages are in high
cardinality. The observation is close, but, allowing potential linkages between
the same layers, the study finds that there are products involved in a production
chain of 6 products (by the highest eccentricity in Table 2), although such an
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occurrence is virtually idiosyncratic.

3.2 Summary statistics of the complete network

Besides such observation, Figure 3 is far too high in dimensionality to be inter-
preted. Taking a more general approach, several key summary statistics of the
network’s characteristics can be derived by iterating the nodes and edges (prod-
ucts and industrial linkages) in the graph. Table 2 provides some summary
statistics of some of the ubiquitous characteristics of a graph, e.g., centrality
measures, eccentricity, among others.

Table 2: Product-level (node-level) summary statistics of the complete network

Variable N Mean Std.
devi-
ation

Min. Median Max.

Network characteristics
Node indegrees (Explains how
many other products are used
as an input for a particular
product)

353 2 2 0 2 9

Node outdegrees (Explains
how many other products uses
a product as an input)

353 1 4 0 0 35

Betweenness centrality (Ex-
plains how ”central” a prod-
uct is by showing how many
shortest paths among every
other products passes through
the node)

353 6 39 0 0 490

Node PageRank (Explains
how ”central” a product is
by scoring each product based
on their connections and the
connections’ connections)

353 0.0016 0.0007 0.0012 0.0014 0.0083

Node eccentricity (Explains
the length of the longest
shortest path starting from a
node/product)

353 0 1 0 0 6

Producing-firms characteristics
Number of workers (persons) 353 231 618 20 156 11,428

(continued on the next page)

10



Table 2: Product-level (node-level) summary statistics of the complete network

Variable N Mean Std.
devi-
ation

Min. Median Max.

Network characteristics
Number of female workers
(persons)

353 112 478 0 50 8,787

Number of male workers (per-
sons)

353 119 158 10 97 2,641

Average value-added per
worker (million IDR/worker)

353 0.6 1.0 0.01 0.3 13.9

Foreign ownership (%) 353 0.6 1.0 0.01 0.3 13.9
Wage of production workers
(million IDR)

353 8.5 23.6 0.2 5.3 433.5

Wage of other workers (mil-
lion IDR)

353 2.6 4.8 0 1.7 54.0

Source: Statistics Indonesia-BPS (2017)
Note: The table above displays the summary statistics of the products contained in the complete
industrial network graph with threshold weight of 50 and product code depth at 10 digits of
KBKI product codes. The summary statistics included are the count of non-missing observations,
the arithmetic mean, standard deviation, minimum value, median value, and maximum value of
each variable. Only products that are successfully joined between the firm-level datasets (that
produces the “producing firms characteristics” calculations) and the product-level datasets (that
produces the “network characteristics” calculations) are included.

Several general observations can be noted from Table 2. First, note that the
number of observations found as a result of an inner-join between the product-
level dataset (which shows the number of products/linkages on Table 1) and
the firm-level dataset is now showing less number of products (414 products in
Table 1 to 353 in Table 2). This indicates only 353 of the 414 products are
reported to be domestically produced by Indonesian firms.

Further, this study finds that, on average, a product serves as an input
for one other product, as explained by the “node outdegrees” characteristics.
Meanwhile, on average, a product also uses two other products as input, il-
lustrated by the “node indegrees” characteristics. Taking the higher extremes,
some product(s) takes an input of as many as six other products, while some
product(s) is used by 35 other products as input. Other centrality measures
(e.g., betweenness, PageRank) and characteristics are also provided in the ta-
ble. They will be discussed in greater detail further in the manuscript as the
relevant discussions are presented.
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3.3 Product-level snapshots

3.3.1 Simple applications on several policy questions

Next, we delve deeper at the product level. Specifically, this section aims to
shed light on some ubiquitous policy questions related to an economy’s man-
ufacturing sector. Whether one is assessing policies in the context of aiming
to improve the manufacturing sector’s total value added, or in the context of
considering which sector to support more prominently than others due to some
idiosyncratic shock8, one of the common question to arise is questions related
to which sector should we prioritize?

The logic is simple: a sub-optimal decision in choosing the targeted industry
might be costly in either of the two mentioned cases. We argue that much like
the sectoral-level input-output where the total economic impact might be esti-
mated by considering which sectors yield the highest economic multipliers (see,
for instance, Poot, 1991; Zuhdi, 2015; Tui and Adachi, 2021), the product-level
version of such multipliers can be used to pick the products (or industries) with
the highest degree of connection to the whole economy, and thus avoid making
the said sub-optimal decision.

While technically constructible (and trivially preferable), multiplier calcu-
lations for this model require the weighted network. This study demonstrates
the usefulness of successfully representing an economy’s manufacturing sector
as networks – even its unweighted version – by arguing that one of the possi-
ble angles to approach such a question is by calculating the ”centrality” aspect
of the sectors/products, with respect to the whole network of products in the
said economy. In network theory, centrality refers to metrics that indicate ”how
well-connected” a node is with respect to the whole network. The centrality
calculations are applicable for both weighted and unweighted networks, thus
fitting with one of the data limitations in this study as we only characterize the
unweighted network of products.

Specifically, we will describe the products in the Indonesian manufacturing
sector by delving into the centrality measures (see illustrations in Figure 4) that
are exactly related to policy questions such as:

• Which products utilize the most number of other products as inputs?

• Which products are utilized the most by other products as inputs?

• Which products are the most connected with other products, with respect
to the whole production network?

The first two questions will be addressed by describing the product-level in-
degree and outdegree centralities, as the two centrality measures address the

8Take, for instance, the recent example of COVID-19 pandemic which forced a considerable
portion of the manufacturing sector in many economies to shut down.
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questions quite nicely. The third question is answered quite differently: we use
two different measures to answer the same question, each giving a different angle.

First, we try asking, ”which product is the most connecting for the other
products?” Such a question is addressed by discussing the betweenness central-
ity of the products. For the second approach, we try asking a unique question:
”How complex and overreaching is the network of products leading up to a
product?” This question is addressed by discussing the pagerank scores for the
products.

Figure 4: Illustration of different centrality measures

While the detailed definition for each centrality measure is discussed in the
respective sections, we conclude this argument that centrality measures can
be used as proxies for the multiplier calculations in the case of our unweighted
network by providing a visualization of relationships between the two on the data
where both sets of calculations (e.g., centrality and multipliers) are available:
the 185-sectors input-output table for Indonesia in 2016. Figure 5 plots the
relationship between the two.
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Figure 5: Relationship between unweighted centrality measures and
input-output multipliers, based on Indonesia’s 2016 Input-Output Ta-
ble

Source: Statistics Indonesia-BPS (2016); calculated by authors
Note: The figure above presents the binscatter plot between two input output multipli-
ers (e.g., backward and forward linkage) and four centrality measures (e.g., indegree,
outdegree, betweenness, and pagerank) calculated from the 2016 Indonesian Input-
Output table. Centrality measures are calculated by converting the input-output table
to its unweighted representation to simulate this study’s condition. Binscatter plot
construction follows Stepner, 2013.

3.3.2 Products’ indegrees: which products utilize the most inputs?

This study starts from a motivating question that states the following trivial
question: which products utilize the most inputs in their production? Such a
question might serve as an essential policy (and academic) question, especially
in determining crucial policy options within the product space.
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Addressing such a query, the first indicator discussed is the indegree centrality
of each product: a node (product) characteristic that calculates how many other
nodes (products) are the ancestor (used as an input) by the particular node
(product). By definition, the indegree centrality IC(u) of a node in a graph
(product u ∈ V in our context) can be defined (see, for instance, Hansen et al.,
2011) as follow.

IC(u) =
∑

v ̸=u∈V

sign(v −→ u)

where:

sign(v −→ u) =

{

1, if (v, u) ∈ E

0, otherwise

Essentially, the indegree centrality of a product (or node) u ∈ V is simply
the count of edges that starts from the other products v ∈ V for any product
v ̸= u and ends at the product u. This denotes the usage of other products
by product u, thus enabling one to address the question of whether product u
utilizes many other products or not.

The products at the 10-digits level that use the most number of inputs are
displayed in Table 3. Considering the product-level results in Table 3, a more
abstract view of the subject can also be studied. Table 4 presents the frequency
of how many times each sector’s (2-digit level) product (at the 10-digit level) is
present in the top 50 products with the highest indegree.

A general observation would be that the top indegree sector is dominated
by the basic-to-intermediate level of manufactured products, such as paddy and
rice products, meat/fish products, tobacco products, and base metal. Such an
observation might further support the notion that the Indonesian manufacturing
sector is still skewed to the upstream and basic industries, as a sophisticated
downstream industry should arguably lead to more complex, high-technology
products (such as electronics) being located at the top-50 inputs used.

Let us look deeper into one of the 10-digit products mentioned in the Table.
Specifically, let us take a look at how ”Sweet bread” (product code ”2349001002”)
is created by seeing its downstream and upstream nodes both traversing by 1
stage of linkages in either direction. Figure 6 shows the illustration of the net-
work.
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Figure 6: An illustration of Sweet bread ’s immediate network

Source: Statistics Indonesia-BPS (2017); network is calculated by authors
Note: The figure above presents the products (represented as nodes in a graph) with
upstream and/or downstream linkages with Sweet bread (product code 2349001002 ).
The figure uses a network specification that seeks the central node (sweet bread)’s
downstream and upstream nodes both traversing by 1 stage of linkages into either
directions, with pruning threshold of 50. Note that the edges presented in the table
omits the non-SILE edges.

Figure 6 shows how sweet bread is connected to a high number of other
products as input, making it one of the products with the highest number of
indegree centrality scores. Looking at the product descriptions of such related
nodes, the inputs that our algorithm produces for sweet bread also generally
pass a sense check: the algorithm outputs sugar, milk, flour, eggs, and yeast,
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among others, as inputs in creating a sweet bread.

Note that in this case, despite stating that this example aims to traverse by
one stage toward either direction (both upstream or downstream) starting from
sweet bread in the graph, we only have its upstream products and no down-
stream product. Such an illustration shows that, indeed, sweet bread is a final
product. Thus, we find no other products using it as input. Analogously, the
algorithm can be readily applied to other products as its centre node.

3.3.3 Products’ outdegrees: which products are utilized by the most
number of downstream products?

An analogous analysis regarding the outdegree characteristics can also be de-
rived. A motivating question that states the following: which products are
utilized by the most number of downstream products? That is, which products
are used by other products as input the most, a relationship represented in a
graph such that the product forms a directed edge toward the said other (more
downstream) products. A similar – only reversed – calculation compared to
indegree, the outdegree centrality OC(u) of a node in a graph (product u ∈ V

in our context) can be defined (see, for instance, Hansen et al., 2011) as follows.

OC(u) =
∑

v ̸=u∈V

sign(u −→ v)

where:

sign(u −→ v) =

{

1, if (u, v) ∈ E

0, otherwise

Similar to the indegree case, the outdegree centrality of the product (or
node) u ∈ V is the count of edges that starts from product u and ends at some
other product v ∈ V for any v ̸= u. This denotes the product u’s usage by other
products, allowing one to address the question of whether product u is utilized
by many other products or not. The products with the highest outdegree cen-
trality scores are shown in Table 5.

A general observation from Table 5 on the 10-digit product-level highest
outdegree is that, unsurprisingly, primary products still dominate. Chemical,
plantation and basic manufacturing products are used by tens of other down-
stream products. Table 6 further presents the 2-digit level aggregation, and the
2-digit level observation suggests a similar story to the 10-digit level discussion.
Agriculture, chemical, and extraction products have a high degree of usage by
other products in the downstream processes.
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Next, let us see a snapshot of one of the highly-utilized upstream prod-
ucts in the production network, namely Cotton (product code ”0192101000”).
Analogous to the previously-shown snapshot of Sweet bread’s upstream and
downstream neighbours, Figure 7 shows a similarly-constructed tree for Cotton.

Figure 7: An illustration of Cotton’s immediate network

Source: Statistics Indonesia-BPS (2017); network is calculated by authors
Note: The figure above presents the products (represented as nodes in a graph) with
upstream and/or downstream linkages with Cotton (product code 0192101000). The
figure uses a network specification that seeks the central node (cotton)’s downstream
and upstream nodes both traversing by 1 stage of linkages into either directions, with
pruning threshold of 50. Note that the edges presented in the table omits the non-
SILE edges. High-precision fonts are used in the figure, detailed zoom-ins are enabled
for reading.

Figure 7 shows how cotton is well-connected, this time as an input to a high
number of other downstream products, making it one of the products with the
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highest number of outdegree centrality scores. This study argues that also, by
evaluating the related products, the network created by the algorithm again
passes the sense check. Note that products such as fabrics, knitted socks, batik9

cloths, among others, are listed as its downstream products.

Analogous to the sweet bread’s case, this example aims to also traverse one
stage in either direction (both upstream or downstream) starting from cotton in
the graph. However, as cotton is one of the most upstream products, the figure
only has its downstream products and no upstream product.

3.3.4 Products’ betweenness: which products connect the most prod-
uct chains?

While the previous discussions regarding the indegree and outdegree measures
have shed light on the patterns revolving around the Indonesian manufactur-
ing products, such snapshots can only arguably show “one side” of a production.

For instance, products with a high number of indegree might show that
such a product uses many upstream products but does not say anything about
whether that product is then, in turn, used by many others. On the other hand,
products with a high number of outdegree might show that such a product is
used by many downstream products but does not say how many other products
such a product used to be produced.

If anything, both indicators might suggest good “upstream” (based on outde-
gree) and “downstream” (based on indegree) products, although imperfectly10.
But, what if a policy question arises on which products use many inputs and are
also used by many others as inputs? One might want to combine indegree and
outdegree in some formal notion to investigate this kind of good “intermediate”
or “connecting” products.

This study uses the notion of node betweenness to shed some light on this
discussion. Technically, some node b ∈ V is said to be “between” some other
nodes a, c ∈ V if node b is located in the shortest path between node a and c.
Translating such a notion into this study’s context, then we can say that, for
instance, if cotton is used as an input to produce threads, threads are used to
produce cloth, and then the cloth is used as an input to produce a t-shirt, then,
cotton is “between” the cotton and the t-shirt.

The notion of betweenness comes with the aggregation of many shortest
paths of some other products passing to a particular product x. If a product
is between a high number of paths between other products, then one can argue

9
Batik is one of the traditional Indonesian shirts.

10Note that a high number of indegree or outdegree might occur at any stage of a production
network (except source nodes for indegree or sink nodes for outdegree).
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that such a product is a crucial intermediate product used in the production
network. By definition, the betweenness centrality BC(u) of a node in a graph
(product u ∈ V in our context) can be defined (see, for instance, Perez and
Germon, 2016) as follow.

BC(u) =
∑

s ̸=u ̸=t

σs,t(u)

σs,t

In the above equation, BC(u) is calculated by taking a summation of the
ratio between the count of shortest paths between any other two pairs of prod-
ucts s, t ∈ V that is not u that passes through u, i.e., σs,t(u) and the count
of total shortest paths between the two products themselves s, t (regardless of
whether the paths pass through u or not), i.e., σs,t. This denotes how product u
connects other products, allowing one to address the question of interest. Table
7 presents the products (10-digit level) with the highest betweenness centrality
scores.

One general observation from the above table is the domination of metal
products in Indonesian production chains. We delve into the 2-digit level ag-
gregation to check whether the same story remains in Table 8. In Table 8, it
is shown that a similar story remains. Base metal products top the list, with
chemical, food, and electrical products closely following.
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Figure 8: An illustration of Steel sheet and other coating materials’s
immediate network

Source: Statistics Indonesia-BPS (2017); network is calculated by authors
Note: The figure above presents the products (represented as nodes in a graph) with
upstream and/or downstream linkages with Steel sheet and other coating materials

(product code 4123199000 ). The figure uses a network specification that seeks the cen-
tral node (Steel sheet and other coating materials)’s downstream and upstream nodes
both traversing by 1 stage of linkages into either directions, with pruning threshold
of 50. Note that the edges presented in the table omits the non-SILE edges. High-
precision fonts are used in the figure, detailed zoom-ins are enabled for reading.

Equipped with the betweenness centrality scores, let us now discuss another
product-level snapshot, this time with one of the highest betweenness centrality
scores. Figure 8 presents the immediate network (i.e., 1-stage upstream and
downstream linkage) of ”Steel sheet and other coating materials” (product code
4123199000 ). In Figure 8, steel sheet and other coating materials is depicted as
a well-connected product in the production network, in line with the high score
of betweenness centrality provided in Table 7. By evaluating the descriptions
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of the related products, the study argues that the network produced by the
algorithm also shows a sensible result.

3.3.5 Products’ PageRank: which products are connected to quality
products?

Suppose we have two products a, b ∈ V with similarly high centrality scores.
Our previous discussion suggests that, in that case, both products a and b are
well-connected as products. This study attempts to take the previous questions
into an even higher level of discussion: what if we consider the importance of
the products’ connections?

This study argues that such a question can be answered by solving for the
popular algorithm developed by Google’s founders (Page et al., 1999), widely
referred to as the ”PageRank” scores of each product (each node in our graph).
In layman’s terms, the PageRank scores of each node can be used to determine
the ”importance” of a node as it takes into account not only the nodes’ con-
nections but also the quality of such nodes’ connections. Such a calculation
is instrumental in Google’s aim of providing relevant and accurate web-search
results, but what if we apply such a calculation to this study’s context: an in-
dustrial tree of product networks?

Let us describe the ”importance” of some products in this manufacturing
sector context. Suppose for every product p, it uses many inputs p11, p

1
2, ..., p

1
n.

Then, each of the inputs uses a varying number of other inputs themselves, say,
p21, p

2
2, ..., p

2
n. The process continues upwards iteratively. One can thus argue

that a product that utilizes many inputs that utilize many (second order) in-
puts (and so on) is more ”important” than some other product that uses few
inputs that utilizes few (second order) inputs (and so on). The reason is that
the former is relied upon by many other products, as if that said product is
discontinued to be produced in the country, many other products will suffer.

Consider also that the linkages between product p and its inputs, and its in-
puts’ inputs, and so forth might not be so straightforward. Imagine a simple case
of a production chain between cotton, threads, fabric, and t-shirts. We know
that cotton can be used to produce threads, threads as input to produce cloths,
and cloths as input to produce t-shirts. In our network, here we have edges
between products such as the path (cotton −→ thread −→ cloth −→ t-shirt).
However, what if some t-shirts are designed to have some cotton accents on
them? Then, there will also be some edge (cotton −→ t-shirt). Analogously,
what if some t-shirts have nice shapes made out of threads?

This means that, for some product to be relied upon by many other prod-
ucts, we will want its network of input products leading up to that product to
be as complex and overreaching as possible. We argue that this question can be
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answered by considering the PageRank scores of each node.

In calculating PageRank, one must solve the calculation on how likely a ran-
dom walk in a network would end on each product. While the notion is highly
technical, one can more easily imagine the problem as playing in a maze (not
necessarily solving it). Consider the case where some corners of the labyrinth
have more roads leading to it. Then, trivially, a confused maze player would
more likely arrive at that corner rather than some other corner that has fewer
roads leading to it11. Imagining each corner of the maze as a node in a graph,
and the roads between the corners as the edges, then, a corner with a higher
PageRank represents the higher likelihood that some maze player arrives (and
ends her journey) at that corner. Can we say the same about products?

Much like the case of that maze, imagine each corner as one product and
each road as one input-output linkage (this time around, the roads might not
always be reversible, as input-output linkages are more one-directional rather
than bi-directional). Then, products with higher PageRank scores would corre-
spond to products where more roads lead to them, and thus more reliance by
other products (even considering the complexities of the network).

Thus, products with high PageRank scores can arguably be classified as
products that are not only well-connected but also well-connected to other prod-
ucts that are used by a high number of firms in production. More formally,
PageRank of a product u, PR(u) can be defined (see, for instance, De Keyser,
2012) as follow.

PR(u) = (1− d) + d





∑

v ̸=u∈N(u)

PR(v)

OC(v)





Above, PR(u) is defined as the addition between (1 − d) where d is the
”damping factor”12, and the summation of the division between the PageRanks
of every other nodes v ∈ N(u) linked to u, i.e. PR(v), and such nodes’ out-
degree OC(v), multiplied again by the damping factor d. Table 9 presents the
products (at the 10-digit level) with the highest PageRank scores.

A general observation on Table 9 shows that intermediate and more down-
stream products are primarily present in the table. This is shown by products
such as bottled water, sweet bread, and trousers, among others being the prod-
ucts with the highest PageRank scores. Such an occurrence is expected as the
graph is mostly acyclic. The 2-digit level aggregation is shown in Table 10.

11Technically, the PageRank calculation also involves that the maze player will end her
journey on that corner (due to the damping factor).

12(Essentially the ”boredom / continuation factor”, i.e., how likely the random walker
will/will not continue to the next iteration)
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From Table 10, food and tobacco generally top the list of sectors possessing
the highest number of presence in the list of 50 highest-PageRank products.
Such sectors can be interpreted as having the most products where the said
products are well-connected with other highly-used products.

Finally, let us also discuss one of the product-level snapshots that possess a
high score of PageRank (relative to the complete network). This study uses a
case study of ”Bottled water” (product code 2441000002 ). The Figure 9 presents
the adjacent network – now with 3-stages of upstream and downstream linkages,
if applicable – of ”Bottled water” (product code 2441000002 ).

Figure 9: An illustration of Bottled water ’s immediate network

Source: Statistics Indonesia-BPS (2017); network is calculated by authors
Note: The figure above presents the products (represented as nodes in a graph) with
upstream and/or downstream linkages with Bottled water (product code 2441000002 ).
The figure uses a network specification that seeks the central node (Bottled water)’s
downstream and upstream nodes both traversing by 3 stages of linkages into either
directions, with pruning threshold of 50. Note that the edges presented in the table
omits the non-SILE edges. High-precision fonts are used in the figure, detailed zoom-
ins are enabled for reading.

The visualization in Figure 9 is deliberately shown with a higher than one
stage of adjacency, as the figure aims to show the depth and connectedness of
Bottled water with the multitude of products it is connected to. As seen on the
network, the most immediate predecessors of Bottled water are the drinking wa-
ter itself (Distilled drinking water or demineralized drinking water), the bottle
cover, printing on the cover (Other printed goods or books), among others. This
study again argues that the findings in this example pass sense checks, as the
mentioned products do form bottled waters.
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3.4 Discussions

This section discusses how this study’s framework and the characterisations
mentioned above of the country’s manufacturing sector using this rather differ-
ent lens by utilising the Indonesian manufacturing survey as a network compared
to the existing literature. Before delving further, however, this study argues that
the number of studies compared to our results might be limited, mainly due to
two reasons. The first reason is that the construction of firm-level and product-
level data as networks and, consequently, its network characteristics exploration
is still limited for the Indonesian context – if any exists. A second related reason
would be that as such an analysis is still scarce, the topics discussed by past
studies when using the Indonesian manufacturing survey data are still limited13,
as noted by (Márquez-Ramos, 2020). Using the framework of this study, we ar-
gue that new issues can be addressed by utilising the network theory framework
as well as different characteristics that can be overlaid on the network structure.

First, we note that our findings generally point to the products contained
within the scope of the food and beverages sector to be well-connected in relation
to the whole production network. Our results further support one of the findings
in a joint study by ADB and Indonesia’s Ministry of Planning (BAPPENAS )
in 2019 (Zhongming et al., 2019), as the study notes that one-fourth of the total
number of manufacturing firms, one-sixth of the total employment, and just un-
der one-fifth of total value added in the Indonesian manufacturing comes from
the food sector14. Our study shows that products such as ”Bottled water” and
”Sweet bread”, among others, are mentioned numerous times in terms of prod-
ucts with high network connectivity indicators, as well as updating calculations
with the latest 2017 data available (Zhongming et al., 2019 used 2014 numbers).

Taking a broader context in the (Zhongming et al., 2019) study, a combina-
tion between food, textile, and wearing apparel manufacturing comprises 44 %
of the overall number of firms and 39 % of the overall employment in Indone-
sia. Along with that finding, our study provides further evidence that products
originating from such sectors are also well-connected products in our network
depicting the manufacturing sector. For instance, our findings show that food
products, as well as weaving/knitting products and other textiles, are well rep-
resented in the top indegree (most users of other sectors, see Table 4), outdegree
(most used by other sectors, see Table 6), betweenness (most connecting of other
products, see Table 8), and PageRank (see Table 10).

Using (Zhongming et al., 2019)’s classifications of technological groups of

13Based on the survey conducted on 33 studies that utilised the Indonesian manufacturing
survey (as used in this study), past studies have generally focused on three topics, namely
1) trade liberalisation, foreign ownership, and firms’ performance; 2) social issues (e.g., em-
ployment, poverty, skills, and wage); 3) other issues such as corruption and environment (see
Márquez-Ramos, 2020).

14See the study’s (Zhongming et al., 2019) Section 6.2 and its related description and
discussions.
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products in the Indonesian manufacturing15, our findings suggest that the cen-
tral products of Indonesian manufacturing are indeed more on the low-to-medium
technological products. For instance, products from food and beverages, to-
bacco, textiles and apparel, as well as other low technological products, domi-
nate the sectors with the highest centrality scores in Tables 4, 6, 8, and 10, if
not the medium technology products such as rubber, basic metal, and others.

Further, our study also relates to the sectoral and product-specific studies
previously conducted on Indonesian manufacturing, as the framework in our
study allows the integration and characterization of how the said sector stands
in the middle of the whole production network of Indonesian manufacturing.
Such studies include, for instance, the sectoral study on the furniture industry
(see Clements et al., 2019), chemical and pharmaceutical industry (see Suyanto
and Salim, 2013), apparel industry (see Hayakawa et al., 2017), automotive
industry (see Okamoto and Sjöholm, 2000), among others.

4 Conclusion

The body of literature utilizing models with sectors or products as nodes in net-
works have been rapidly expanding, starting from the early works by (W. W.
Leontief, 1936), the traditional stream of literature utilizing the input-output
based modeling (W. Leontief, 1987; Richardson, 1985) and the recent general
equilibrium derivations based on IO tables (Acemoglu et al., 2012; Bartelme
and Gorodnichenko, 2015; Baqaee, 2018; Acemoglu and Azar, 2020). However,
the most granular level such studies can provide is still mostly limited to the
sectoral level in most economies (except the U.S. tables where 4-digit level SIC
is used).

Recent works in the Product Space framework literature provides a compre-
hensive and granular look of products-as-networks (Hidalgo et al., 2007; Hidalgo
and Hausmann, 2008) and allows important policy questions to be addressed
in different economies (Hausmann and Klinger, 2008a; Hausmann and Klinger,
2008b; De La Cruz and Riker, 2012). However, its method in constructing the
product network is mainly based on the results of the production landscape in
a country, that is, the trade and competitiveness patterns of countries around
the world.

This study attempts to bring the product-level granularity of analysis that
closely resembles the Product Space literature into the traditionally used input-
output-based modelling. Specifically, this study explored and provided an ap-
proximation of a manufacturing sector 10-digit product-level unweighted input-
output network using firm-level and product-level data from Indonesia’s annual
survey of the manufacturing sector.

15See Figure 6.2 in Zhongming et al., 2019.

26



Our results suggest that, generally, low-to-medium technology goods in In-
donesia are the products that are the most central in the Indonesian production
network, using several centrality indicators from network theory. We also dis-
cussed the different centrality scores that might be useful for different types of
exploratory questions.

With all the above being said, this study still suffers from several limita-
tions. First, the inherent shape of the Indonesian raw material (Rawin ) and
output product (Proin ) datasets that are only able to be joined by firm IDs
limit our study to only being an approximation of the true network. We also
limit this study’s network to an unweighted version due to this condition, de-
spite the value-added figures being available in the data. A future study that
can robustly estimate and properly weigh the edge values in this network will
thus be able to simulate a proper 10-digit product-level input-output table.

Second, this study only covers the Indonesian manufacturing context. In
the absence of other countries’ networks, the only meaningful analysis derived
would be limited to the Indonesian-only cases. This study is also only depicting
the domestic market linkages, as a connection between the network to other
countries (e.g., through trade) requires concordance between the Indonesian
product-level code (KBKI) and the standardized trade codes (e.g., HS codes).
Future works that incorporate such analysis will provide an even richer analysis
with the addition of regional and international trade aspects.

However, despite the limitations, this study argues that the importance of
incorporating a more granular level of analysis in the input-output based mod-
elling, as well as the richness of analysis that can be provided if one is to
combine it with the product-level trade-related networks (e.g., product space
frameworks), cannot be understated. With the complexities and intricacies of
global trade, economies with better intelligence of the existing (input-output
models) and potential (PS models) markets will gain an advantage. This study
attempts to give Indonesia its first step in the said direction.
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Appendices

Extra Tables

Table 3: Products utilizing most number of inputs in production (sorted
by indegree centrality scores)

No KBKI code
(10 digits)

Product description Indegree

1 2349001002 Sweet bread 9
2 3811201999 Other wooden tables/chairs/benches 9
3 2153500000 Crude oil/raw oil palm 8
4 4129100999 Vessels, pipes and other hollow profiles

of cast iron including vessels and other
pipes from centrifugal cast steel

8

5 2922002999 Genuine leather goods for other per-
sonal purposes

7

6 4123199000 Steel sheet and other coating materials 7
7 2509001001 Cigarette tobacco 7
8 2399909999 Other crackers 7
9 4912904999 Other power train components 7

10 3699003002 Plastic electronic components 6

Source: Statistics Indonesia-BPS (2017); network is calculated by authors
Note: The table above presents the products (nodes in a graph) that use the most
number of other products as inputs (denoted as a strong edge in the graph). Indegree
calculations explain how many other products are used as inputs by a certain product.
Note that the number of edges presented in the table omits the non-SILE edges.
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Table 4: Sectors (2-digits KBKI) utilizing most number of inputs in produc-
tion (sorted by the highest contributors to top 50 indegree calculations)

No KBKI code
(2 digits)

Product description Number of
products
(10 digits)
in top 50
indegree

%

1 23 Paddy milling, kanji and other kanji
products; other food products

6 12%

2 21 Meat, fish, fruits, vegetables, oil and fat 6 12%
3 36 Rubber and plastic products 4 8%
4 31 Products from wood, cork, straw and

woven materials
4 8%

5 26 Yarn and yarn weaving/knitting; Wo-
ven fabric and tagged textile fabric

3 6%

6 25 Tobacco products 3 6%
7 37 Glass and glass products and other un-

classified non-metal products
3 6%

8 38 Household furniture; other unclassfied
items that can be moved

3 6%

9 41 Basic metal 3 6%
10 28 Knitted cloth or link; apparel 2 4%
11 29 Leather and product from the skin;

footwear
2 4%

12 42 Manufacturing metal products, except
machineries and equipment

2 4%

13 32 Pulp, paper and paper products;
printed goods and related items

2 4%

14 03 Forestry products and logging 1 2%
15 35 Other chemical products; artificial fiber 1 2%
16 49 Transportation equipment 1 2%
17 46 Electric machines and components 1 2%
18 33 Coke oven products, processed

petroleum products, nuclear fuels
1 2%

19 24 Drink 1 2%
20 01 The results of agriculture, horticulture

and plantations
1 2%

Source: Statistics Indonesia-BPS (2017); network is calculated by authors
Note: The table above presents the products (nodes in a graph), aggregated to the 2-digit
level, that use the most number of other products as inputs (denoted as a strong edge in the
graph). Note that the number of edges presented in the table omits the non-SILE edges.
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Table 5: Products utilized the most by other products as inputs in
production (sorted by outdegree centrality scores)

No KBKI code
(10 digits)

Product description Outdegree

1 2641001002 Synthetic filament sewing yarns from
poliester

35

2 3465101000 Non-liquid ammonia (NH3) 33
3 0192101000 Cotton 21
4 2311000001 Wheat flour 18
5 4123199000 Steel sheet and other coating materials 14
6 4153400001 Aluminum plates, with a thickness ex-

ceeding 0.2 mm
14

7 0411101999 Other fish 13
8 4621302999 Other distribution panels 12
9 4112205999 Iron and other alloy base steel 12

10 0196202009 Paper 11

Source: Statistics Indonesia-BPS (2017); network is calculated by authors
Note: The table above presents the products (nodes in a graph) that are used by
the most number of other products as inputs (denoted as a strong edge in the graph).
Outdegree calculations explains how many other products use the product as an input.
Note that the number of edges presented in the table omits the non-SILE edges.
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Table 6: Sectors (2-digits KBKI) utilized the most by other products as
inputs in production (sorted by the highest contributors to top 50 outdegree
calculations)

No KBKI code
(2 digits)

Product description Number of
products
(10 digits)
in top 50
outdegree

%

1 23 Paddy milling, kanji and other kanji
products; other food products

6 12%

2 41 Basic metal 6 12%
3 01 The results of agriculture, horticulture

and plantations
5 10%

4 26 Yarn and yarn weaving/knitting; Wo-
ven fabric and tagged textile fabric

4 8%

5 21 Meat, fish, fruits, vegetables, oil and fat 3 6%
6 34 Basic chemistry 3 6%
7 35 Other chemical products; artificial fiber 3 6%
8 42 Manufacturing metal products, except

machineries and equipment
3 6%

9 03 Forestry products and logging 2 4%
10 38 Household furniture; other unclassified

items that can be moved
2 4%

11 27 Items from textiles other than clothing 2 4%
12 16 Other minerals 2 4%
13 25 Tobacco products 1 2%
14 49 Transportation equipment 1 2%
15 45 Office, Accounting and Computing Ma-

chines
1 2%

16 46 Electric machines and components 1 2%
17 29 Leather and product from the skin;

footwear
1 2%

18 33 Coke oven products, processed
petroleum products, nuclear fuels

1 2%

19 04 Fish and other fishery products 1 2%
20 02 Live animals and animal products (not

including meat)
1 2%

21 32 Pulp, paper and paper products;
printed goods and related items

1 2%

Source: Statistics Indonesia-BPS (2017); network is calculated by authors
Note: The table above presents the products (nodes in a graph) that are used by the most
number of other products as inputs (denoted as a strong edge in the graph). Note that the
number of edges presented in the table omits the non-SILE edges.
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Table 7: Products that connects the most production chains (sorted by
betweenness centrality scores)

No KBKI code
(10 digits)

Product description Betweenness

1 4123199000 Steel sheet and other coating materials 490.3
2 4299907004 Other metal bolts and nuts 340.0
3 3870202999 Other aluminum metal construction

materials
294.3

4 4621302999 Other distribution panels 240.0
5 4153400001 Aluminum plates, with a thickness ex-

ceeding 0.2 mm
171.0

6 4112202999 Billet steel alloys 121.0
7 2153500000 Crude oil/raw oil palm 77.0
8 4129100999 Vessels, pipes and other hollow profiles

of cast iron including vessels and other
pipes from centrifugal cast steel

49.0

9 0196202009 Paper 48.0
10 2509001001 Cigarette tobacco 48.0

Source: Statistics Indonesia-BPS (2017); network is calculated by authors
Note: The table above presents the products (nodes in a graph) that connect the most
production chains by being between shortest paths of other products (betweenness).
Betweenness centrality calculations explain how ”central” a product is by showing how
many shortest paths among every other products passes through the node. Note that
the number of edges considered in producing the table omits the non-SILE edges.
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Table 8: Sectors (2-digits KBKI) utilized the most by other products as in-
puts in production (sorted by the highest contributors to top 50 betweenness
calculations)

No KBKI code
(2 digits)

Product description Number of
products
(10 digits)
in top 50
between-
ness

%

1 41 Basic metal 5 20%
2 23 Paddy milling, kanji and other kanji

products; other food products
3 12%

3 34 Basic chemistry 3 12%
4 26 Yarn and yarn weaving/knitting; Wo-

ven fabric and tagged textile fabric
2 8%

5 16 Other minerals 1 4%
6 42 Manufacturing metal products, except

machineries and equipment
1 4%

7 33 Coke oven products, processed
petroleum products, nuclear fuels

1 4%

8 25 Tobacco products 1 4%
9 36 Rubber and plastic products 1 4%

10 38 Household furniture; other unclassified
items that can be moved

1 4%

11 46 Electric machines and components 1 4%
12 21 Meat, fish, fruits, vegetables, oil and fat 1 4%
13 49 Transportation equipment 1 4%
14 01 The results of agriculture, horticulture

and plantations
1 4%

15 32 Pulp, paper and paper products;
printed goods and related items

1 4%

16 35 Other chemical products; artificial fiber 1 4%

Source: Statistics Indonesia-BPS (2017); network is calculated by authors
Note: The table above presents the products (nodes in a graph) that connect the most pro-
duction chains by being between shortest paths of other products (betweenness). Note that
the number of edges considered in producing the table omits the non-SILE edges.
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Table 9: Products connected to other quality products (sorted by
PageRank scores)

No KBKI code
(10 digits)

Product description PageRank

1 2349001002 Sweet bread 0.00961
2 3811201999 Other wooden tables/chairs/benches 0.00928
3 2441000002 Bottled water 0.00862
4 2399909999 Other crackers 0.00761
5 2509001001 Cigarette tobacco 0.00599
6 2502002001 Kretek cigarette without filter 0.00590
7 2153900001 Crude oil/raw oil palm seeds 0.00579
8 4654100999 Other direct components of electric

lights
0.00571

9 4641000999 Other batteries 0.00493
10 2153500000 Crude oil/raw oil palm 0.00483

Source: Statistics Indonesia-BPS (2017); network is calculated by authors
Note: The table above presents the products (nodes in a graph) sorted by the weighted
PageRank scores. The PageRank calculations explain how ”important” a product is
by scoring each product based on their connections and the connections’ connections.
Edge weights is defined as the number of firms reporting to use the predecessor node
as an input to produce the successor node. Note that the number of edges considered
in producing the table omits the non-SILE edges.
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Table 10: Sectors (2-digit level) by number of presence in top-50 PageRank
scores

No KBKI code
(2 digits)

Product description Number of
products
(10 digits)
in top 50
PageRank

%

1 23 Paddy milling, kanji and other kanji
products; other food products

7 14%

2 36 Rubber and plastic products 5 10%
3 41 Basic metal 5 10%
4 25 Tobacco products 5 10%
5 38 Household furniture; other unclassified

items that can be moved
4 8%

6 21 Meat, fish, fruits, vegetables, oil and fat 4 8%
7 15 Stones, sand and clay 2 4%
8 46 Electric machines and components 2 4%
9 24 Drink 2 4%

10 01 The results of agriculture, horticulture
and plantations

1 2%

11 49 Transportation equipment 1 2%
12 28 Knitted cloth or link; apparel 1 2%
13 42 Manufacturing metal products, except

machineries and equipment
1 2%

14 32 Pulp, paper and paper products;
printed goods and related items

1 2%

15 29 Leather and product from the skin;
footwear

1 2%

16 34 Basic chemistry 1 2%
17 26 Yarn and yarn weaving/knitting; Wo-

ven fabric and tagged textile fabric
1 2%

18 31 Products from wood, cork, straw and
woven materials

1 2%

19 35 Other chemical products; artificial fiber 1 2%
(continued on the next page)
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Table 10: Sectors (2-digit level) by number of presence in top-50 PageRank
scores

No KBKI code
(2 digits)

Product description Number of
products
(10 digits)
in top 50
PageRank

%

20 16 Other minerals 1 2%
21 33 Coke oven products, processed

petroleum products, nuclear fuels
1 2%

22 47 Radio equipment, television and com-
munication tools and equipment

1 2%

23 37 Glass and glass products and other un-
classfied non-metal products

1 2%

Source: Statistics Indonesia-BPS (2017); network is calculated by authors
Note: The table above presents the frequency of 10-digit level products in each sector (2-
digit level aggregation) appearing in the top-50 products with highest PageRank scores. Edge
weights is defined as the number of firms reporting to use the predecessor node as an input to
produce the successor node. Note that the number of edges considered in producing the table
omits the non-SILE edges.
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